1
|
Manzoor F, Tsurgeon CA, Gupta V. Exploring RNA-Seq Data Analysis Through Visualization Techniques and Tools: A Systematic Review of Opportunities and Limitations for Clinical Applications. Bioengineering (Basel) 2025; 12:56. [PMID: 39851330 PMCID: PMC11760846 DOI: 10.3390/bioengineering12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/28/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
RNA sequencing (RNA-seq) has emerged as a prominent resource for transcriptomic analysis due to its ability to measure gene expression in a highly sensitive and accurate manner. With the increasing availability of RNA-seq data analysis from clinical studies and patient samples, the development of effective visualization tools for RNA-seq analysis has become increasingly important to help clinicians and biomedical researchers better understand the complex patterns of gene expression associated with health and disease. This review aims to outline the current state-of-the-art data visualization techniques and tools commonly used to frame clinical inferences from RNA-seq data and point out their benefits, applications, and limitations. A systematic review of English articles using PubMed, Scopus, Web of Science, and IEEE Xplore databases was performed. Search terms included "RNA-seq", "visualization", "plots", and "clinical". Only full-text studies reported between 2017 and 2024 were included for analysis. Following PRISMA guidelines, a total of 126 studies were identified, of which 33 studies met the inclusion criteria. We found that 18% of studies have visualization techniques and tools for circular RNA-seq data, 56% for single-cell RNA-seq data, 23% for bulk RNA-seq data, and 3% for long non-coding RNA-seq data. Overall, this review provides a comprehensive overview of the common visualization tools and their potential applications, which is a useful resource for researchers and clinicians interested in using RNA-seq data for various clinical purposes (e.g., diagnosis or prognosis).
Collapse
Affiliation(s)
- Farhana Manzoor
- Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA;
| | - Cyruss A. Tsurgeon
- Department of Biomedical Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA;
| | - Vibhuti Gupta
- Department of Computer Science and Data Science, School of Applied Computational Sciences, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
2
|
Zhao X, Li Y, Shen J, Guo C, Li J, Chen M, Xu H, Li K. Analysis of the miRNA Transcriptome in Aconitum vilmorinianum and Its Regulation of Diterpenoid Alkaloid Biosynthesis. Int J Mol Sci 2025; 26:348. [PMID: 39796203 PMCID: PMC11720529 DOI: 10.3390/ijms26010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Aconitum vilmorinianum (A. vilmorinianum) is an important medicinal plant in the Aconitum genus that is known for its diterpenoid alkaloids, which exhibit significant pharmacological activity and toxicity, thus making it valuable for both medicinal use and as a biopesticide. Although the biosynthesis of terpenoids is well characterized, the potential gene regulatory role of microRNAs (miRNAs) in terpenoid biosynthesis in A. vilmorinianum remains unclear, and further research is needed to explore this aspect in this species. In this study, miRNA sequencing was conducted to analyze the miRNA population and its targets in A. vilmorinianum. A total of 22,435 small RNAs were identified across the nine samples. Through miRNA target gene association analysis, 356 target genes from 54 known miRNAs and 977 target genes from 151 novel miRNAs were identified. Target identification revealed that miR6300 targets the hydroxymethylglutaryl-CoA reductase (HMGR) gene, which is involved in the formation of the terpenoid backbone and regulates the synthesis of diterpenoid alkaloids. Additionally, preliminary findings suggest that miR4995 and miR5021 may be involved in the regulation of terpenoid biosynthesis, although further biochemical analysis is needed to confirm these potential roles. This study provides a foundational understanding of the molecular mechanisms by which miRNAs regulate terpenoid biosynthesis in A. vilmorinianum and offers scientific evidence for further research on the biosynthesis of diterpenoid alkaloids in this medicinal plant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Jiang C, Zhang X, Rao J, Luo S, Luo L, Lu W, Li M, Zhao S, Ren D, Liu J, Song Y, Zheng Y, Sun YB. Enhancing Pseudomonas syringae pv. Actinidiae sensitivity in kiwifruit by repressing the NBS-LRR genes through miRNA-215-3p and miRNA-29-3p identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1403869. [PMID: 39086918 PMCID: PMC11288850 DOI: 10.3389/fpls.2024.1403869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (PSA), poses a grave threat to the global kiwifruit industry. In this study, we examined the role of microRNAs (miRNAs) in kiwifruit's response to PSA. Kiwifruit seedlings subjected to PSA treatment showed significant changes in both miRNA and gene expression compared to the control group. We identified 364 differentially expressed miRNAs (DEMs) and 7170 differentially expressed genes (DEGs). Further analysis revealed 180 miRNAs negatively regulating 641 mRNAs. Notably, two miRNAs from the miRNA482 family, miRNA-215-3p and miRNA-29-3p, were found to increase kiwifruit's sensitivity to PSA when overexpressed. These miRNAs were linked to the regulation of NBS-LRR target genes, shedding light on their role in kiwifruit's defence against PSA. This study offers insights into the miRNA482-NBS-LRR network as a crucial component in enhancing kiwifruit bioresistance to PSA infestation and provides promising candidate genes for further research.
Collapse
Affiliation(s)
- Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Zhang
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiahui Rao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shu Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Liang Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shumei Zhao
- Key Laboratory of Agricultural Engineering in Structure and Environment, China Agricultural University, Beijing, China
| | - Dan Ren
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiaming Liu
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Yu Song
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Ishida K, Tanishima S, Tanida A, Nagira K, Mihara T, Takeda C, Ogawa S, Nagashima H. Comprehensive analysis of microRNA expression in lumbar facet joint capsules and synovium of patients with osteoarthritis: Comparison between early-stage and late-stage osteoarthritis samples from a single individual. J Orthop Sci 2024; 29:660-667. [PMID: 36781308 DOI: 10.1016/j.jos.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND MicroRNA is attracting attention as a therapeutic target for osteoarthritis. We focused on joint capsules and synovium in lumbar facet joint osteoarthritis. The purpose of this study was to identify microRNAs that are upregulated in lumbar facet joint capsules and synovium with osteoarthritis. METHODS We included patients who underwent spinal fusion for degenerative lumbar spine diseases. We selected patients who had both early-stage and late-stage facet joint osteoarthritis in a single individual. We extracted joint capsule and synovium samples from these patients and isolated microRNAs. During the screening phase, we compared early-stage and late-stage osteoarthritis samples from the same individual. We identified microRNAs with >2-fold change in expression in 75% or more of patients with late-stage osteoarthritis using next generation sequencing. During the technical validation phase, the same samples were used for real-time polymerase chain reaction. We identified microRNAs with >2-fold change in expression in 62.5% or more of patients with late-stage osteoarthritis. RESULTS Of 40 patients who underwent spinal fusion, we selected eight patients with both early-stage and late-stage facet joint osteoarthritis. During the screening phase, we identified eight upregulated microRNAs out of 2274 microRNAs in late-stage OA. In late-stage OA, two microRNAs (miR-133a-5p and miR-144-3p) were upregulated in seven patients and six microRNAs (miR-133a-3p, miR-133b, miR-206, miR-20a-5p, miR-301a-3p, and miR-32-5p) were upregulated in six patients. During the technical validation phase, we found significant upregulation of miR-144-3p expression in late-stage osteoarthritis compared with early-stage osteoarthritis. Expression of the other microRNAs was not significantly different according to the paired-t test. However, miR-133a-3p, miR-133b, and miR-206 were upregulated >2-fold in 62.5% or more of patients with late-stage osteoarthritis. CONCLUSIONS Some of the microRNAs identified in this study might be involved in joint capsule degeneration or synovitis.
Collapse
Affiliation(s)
- Koji Ishida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shinji Tanishima
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Atsushi Tanida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Keita Nagira
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Tokumitsu Mihara
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Chikako Takeda
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shinya Ogawa
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Hideki Nagashima
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
5
|
Wang C, Li J, Li S, Lin S. Effects and mechanisms of glyphosate as phosphorus nutrient on element stoichiometry and metabolism in the diatom Phaeodactylum tricornutum. Appl Environ Microbiol 2024; 90:e0213123. [PMID: 38265214 PMCID: PMC10880665 DOI: 10.1128/aem.02131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
The ability to utilize dissolved organic phosphorus (DOP) gives phytoplankton competitive advantages in P-limited environments. Our previous research indicates that the diatom Phaeodactylum tricornutum could grow on glyphosate, a DOP with carbon-phosphorus (C-P) bond and an herbicide, as sole P source. However, direct evidence and mechanism of glyphosate utilization are still lacking. In this study, using physiological and isotopic analysis, combined with transcriptomic profiling, we demonstrated the uptake of glyphosate by P. tricornutum and revealed the candidate responsible genes. Our data showed a low efficiency of glyphosate utilization by P. tricornutum, suggesting that glyphosate utilization costs energy and that the alga possessed an herbicide-resistant type of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. Compared to the P-limited cultures, the glyphosate-grown P. tricornutum cells up-regulated genes involved in DNA replication, cell growth, transcription, translation, carbon metabolism, and many genes encoding antioxidants. Additionally, cellular C and silicon (Si) increased remarkably while cellular nitrogen (N) declined in the glyphosate-grown P. tricornutum, leading to higher Si:C and Si:N ratios, which corresponded to the up-regulation of genes involved in the C metabolism and Si uptake and the down-regulation of those encoding N uptake. This has the potential to enhance C and Si export to the deep sea when P is limited but phosphonate is available. In sum, our study documented how P. tricornutum could utilize the herbicide glyphosate as P nutrient and how glyphosate utilization may affect the element content and stoichiometry in this diatom, which have important ecological implications in the future ocean.IMPORTANCEGlyphosate is the most widely used herbicide in the world and could be utilized as phosphorus (P) source by some bacteria. Our study first revealed that glyphosate could be transported into Phaeodactylum tricornutum cells for utilization and identified putative genes responsible for glyphosate uptake. This uncovers an alternative strategy of phytoplankton to cope with P deficiency considering phosphonate accounts for about 25% of the total dissolved organic phosphorus (DOP) in the ocean. Additionally, accumulation of carbon (C) and silicon (Si), as well as elevation of Si:C ratio in P. tricornutum cells when grown on glyphosate indicates glyphosate as the source of P nutrient has the potential to result in more C and Si export into the deep ocean. This, along with the differential ability to utilize glyphosate among different species, glyphosate supply in dissolved inorganic phosphorus (DIP)-depleted ecosystems may cause changes in phytoplankton community structure. These insights have implications in evaluating the effects of human activities (use of Roundup) and climate change (potentially reducing DIP supply in sunlit layer) on phytoplankton in the future ocean.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiashun Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sihan Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
6
|
Pinnenti M, Sami MA, Hassan U. Enabling biomedical technologies for chronic myelogenous leukemia (CML) biomarkers detection. BIOMICROFLUIDICS 2024; 18:011501. [PMID: 38283720 PMCID: PMC10817778 DOI: 10.1063/5.0172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.
Collapse
Affiliation(s)
- Meenakshi Pinnenti
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Muhammad Ahsan Sami
- Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
7
|
Morgunova A, Ibrahim P, Chen GG, Coury SM, Turecki G, Meaney MJ, Gifuni A, Gotlib IH, Nagy C, Ho TC, Flores C. Preparation and processing of dried blood spots for microRNA sequencing. Biol Methods Protoc 2023; 8:bpad020. [PMID: 37901452 PMCID: PMC10603595 DOI: 10.1093/biomethods/bpad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Dried blood spots (DBS) are biological samples commonly collected from newborns and in geographic areas distanced from laboratory settings for the purposes of disease testing and identification. MicroRNAs (miRNAs)-small non-coding RNAs that regulate gene activity at the post-transcriptional level-are emerging as critical markers and mediators of disease, including cancer, infectious diseases, and mental disorders. This protocol describes optimized procedural steps for utilizing DBS as a reliable source of biological material for obtaining peripheral miRNA expression profiles. We outline key practices, such as the method of DBS rehydration that maximizes RNA extraction yield, and the use of degenerate oligonucleotide adapters to mitigate ligase-dependent biases that are associated with small RNA sequencing. The standardization of miRNA readout from DBS offers numerous benefits: cost-effectiveness in sample collection and processing, enhanced reliability and consistency of miRNA profiling, and minimal invasiveness that facilitates repeated testing and retention of participants. The use of DBS-based miRNA sequencing is a promising method to investigate disease mechanisms and to advance personalized medicine.
Collapse
Affiliation(s)
- Alice Morgunova
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
| | - Gary Gang Chen
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
| | - Saché M Coury
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3A 2B4, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore City 138632, Singapore
| | - Anthony Gifuni
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Corina Nagy
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Tiffany C Ho
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Cecilia Flores
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
8
|
Xia Y, Lei X, Ma X, Wang S, Yang Z, Wu Y, Ren X. Combination of RCA and DNAzyme for Dual-Signal Isothermal Amplification of Exosome RNA. Molecules 2023; 28:5528. [PMID: 37513400 PMCID: PMC10384651 DOI: 10.3390/molecules28145528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
The RNA contained in exosomes plays a crucial role in information transfer between cells in various life activities. The accurate detection of low-abundance exosome RNA (exRNA) is of great significance for cell function studies and the early diagnosis of diseases. However, their intrinsic properties, such as their short length and high sequence homology, represent great challenges for exRNA detection. In this paper, we developed a dual-signal isothermal amplification method based on rolling circle amplification (RCA) coupled with DNAzyme (RCA-DNAzyme). The sensitive detection of low-abundance exRNA, the specific recognition of their targets and the amplification of the detection signal were studied and explored. By designing padlock probes to specifically bind to the target exRNA, while relying on the ligation reaction to enhance recognition, the precise targeting of exosome RNA was realized. The combination of RCA and DNAzyme could achieve a twice-as-large isothermal amplification of the signal compared to RCA alone. This RCA-DNAzyme assay could sensitively detect a target exRNA at a concentration as low as 527 fM and could effectively distinguish the target from other miRNA sequences. In addition, this technology was successfully proven to be effective for the quantitative detection of miR-21 by spike recovery, providing a new research approach for the accurate detection of low-abundance exRNA and the exploration of unknown exRNA functions.
Collapse
Affiliation(s)
- Yuqing Xia
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Lei
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaochen Ma
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Shizheng Wang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zifu Yang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yifan Wu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Liu Y, Liu X, Wang M, Chen C, Li X, Liang Z, Shan Y, Yin Y, Sun F, Li Z, Li H. Characterizations of microRNAs involved in the molecular mechanisms underlying the therapeutic effects of noni ( Morinda citrifolia L.) fruit juice on hyperuricemia in mice. Front Nutr 2023; 10:1121734. [PMID: 37426193 PMCID: PMC10324520 DOI: 10.3389/fnut.2023.1121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Hyperuricemia is generally defined as the high level of serum uric acid and is well known as an important risk factor for the development of various medical disorders. However, the medicinal treatment of hyperuricemia is frequently associated with multiple side-effects. Methods The therapeutic effect of noni (Morinda citrifolia L.) fruit juice on hyperuricemia and the underlying molecular mechanisms were investigated in mouse model of hyperuricemia induced by potassium oxonate using biochemical and high-throughput RNA sequencing analyses. Results The levels of serum uric acid (UA) and xanthine oxidase (XOD) in mice treated with noni fruit juice were significantly decreased, suggesting that the noni fruit juice could alleviate hyperuricemia by inhibiting the XOD activity and reducing the level of serum UA. The contents of both serum creatinine and blood urine nitrogen of the noni fruit juice group were significantly lower than those of the model group, suggesting that noni fruit juice promoted the excretion of UA without causing deleterious effect on the renal functions in mice. The differentially expressed microRNAs involved in the pathogenesis of hyperuricemia in mice were identified by RNA sequencing with their target genes further annotated based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases to explore the metabolic pathways and molecular mechanisms underlying the therapeutic effect on hyperuricemia by noni fruit juice. Conclusion Our study provided strong experimental evidence to support the further investigations of the potential application of noni fruit juice in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Yue Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Xianjun Liu
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Mengyuan Wang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Changwu Chen
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Xiaohong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Zhiyong Liang
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
- Qingdao Haoda Marine Biotechnology Co., Ltd., Qingdao, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, United States
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Hao Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
10
|
Liu F, Zhao P, Chen G, Wang Y, Yang Y. A comparative analysis of small RNA sequencing data in tubers of purple potato and its red mutant reveals small RNA regulation in anthocyanin biosynthesis. PeerJ 2023; 11:e15349. [PMID: 37223121 PMCID: PMC10202107 DOI: 10.7717/peerj.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Anthocyanins are a group of natural pigments acting as stress protectants induced by biotic/abiotic stress in plants. Although the metabolic pathway of anthocyanin has been studied in potato, the roles of miRNAs on the metabolic pathway remain unclear. In this study, a purple tetraploid potato of SD92 and its red mutant of SD140 were selected to explore the regulation mechanism of miRNA in anthocyanin biosynthesis. A comparative analysis of small RNAs between SD92 and SD140 revealed that there were 179 differentially expressed miRNAs, including 65 up- and 114 down-regulated miRNAs. Furthermore, 31 differentially expressed miRNAs were predicted to potentially regulate 305 target genes. KEGG pathway enrichment analysis for these target genes showed that plant hormone signal transduction pathway and plant-pathogen interaction pathway were significantly enriched. The correlation analysis of miRNA sequencing data and transcriptome data showed that there were 140 negative regulatory miRNA-mRNA pairs. The miRNAs included miR171 family, miR172 family, miR530b_4 and novel_mir170. The mRNAs encoded transcription factors, hormone response factors and protein kinases. All these results indicated that miRNAs might regulate anthocyanin biosynthesis through transcription factors, hormone response factors and protein kinase.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Zhao
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guangxia Chen
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongqiang Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanjun Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
11
|
Teng L, Zhang X, Wang R, Lin K, Zeng M, Chen H, Cao F. miRNA transcriptome reveals key miRNAs and their targets contributing to the difference in Cd tolerance of two contrasting maize genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114881. [PMID: 37030049 DOI: 10.1016/j.ecoenv.2023.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental and food safety production issue. microRNAs (miRNAs) are proven to be involved in plant growth and development, and abiotic/biotic stress response, but their role in Cd tolerance is largely unknown in maize. To understand the genetic basis of Cd tolerance, two maize genotypes differing in Cd tolerance (L42, a sensitive genotype and L63, a tolerant genotype) were selected, and miRNA sequencing was carried out at nine-day-old seedlings exposed to 24 h Cd stress (5 μM CdCl2). A total of 151 differentially expressed miRNAs were identified, including 20 known miRNAs and 131 novel miRNAs. The results revealed that 90 and 22 miRNAs were up-regulated and down-regulated by Cd in Cd-tolerant genotype L63, and there were 23 and 43 miRNAs in Cd-sensitive genotype L42, respectively. Twenty-six miRNAs were up-regulated in L42 and unchanged or down-regulated in L63, or unchanged in L42 and down-regulated in L63. There were 108 miRNAs that were up-regulated in L63 and unchanged or down-regulated in L42, or unchanged in L63 and down-regulated in L42. Their target genes were enriched mainly in peroxisomes, glutathione (GSH) metabolism, ABC transporter, and ubiquitin-protease system. Among them, target genes involved in the peroxisome pathway and GSH metabolism might play key roles in Cd tolerance in L63. Besides, several ABC transporters which might involve in Cd uptake and transport were identified. The differentially expressed miRNAs or target genes could be used for breeding low grain Cd accumulation and high Cd tolerance cultivars in maize.
Collapse
Affiliation(s)
- Lidong Teng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xueqing Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Runfeng Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hao Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
12
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
13
|
Wu Y, Cao F, Xie L, Wu F, Zhu S, Qiu C. Comparative Transcriptome Profiling Reveals Key MicroRNAs and Regulatory Mechanisms for Aluminum Tolerance in Olive. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12050978. [PMID: 36903838 PMCID: PMC10005091 DOI: 10.3390/plants12050978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/06/2023]
Abstract
Aluminum toxicity (Al) is one of the major constraints to crop production in acidic soils. MicroRNAs (miRNAs) have emerged as key regulatory molecules at post-transcriptional levels, playing crucial roles in modulating various stress responses in plants. However, miRNAs and their target genes conferring Al tolerance are poorly studied in olive (Olea europaea L.). Here, genome-wide expression changes in miRNAs of the roots from two contrasting olive genotypes Zhonglan (ZL, Al-tolerant) and Frantoio selezione (FS, Al-sensitive) were investigated by high-throughput sequencing approaches. A total of 352 miRNAs were discovered in our dataset, consisting of 196 conserved miRNAs and 156 novel miRNAs. Comparative analyses showed 11 miRNAs have significantly different expression patterns in response to Al stress between ZL and FS. In silico prediction identified 10 putative target gene of these miRNAs, including MYB transcription factors, homeobox-leucine zipper (HD-Zip) proteins, auxin response factors (ARF), ATP-binding cassette (ABC) transporters and potassium efflux antiporter. Further functional classification and enrichment analysis revealed these Al-tolerance associated miRNA-mRNA pairs are mainly involved in transcriptional regulation, hormone signaling, transportation and metabolism. These findings provide new information and perspectives into the regulatory roles of miRNAs and their target for enhancing Al tolerance in olives.
Collapse
Affiliation(s)
- Yi Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Lupeng Xie
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shenlong Zhu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengwei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Lin B, Ma H, Zhang K, Cui J. Regulatory mechanisms and metabolic changes of miRNA during leaf color change in the bud mutation branches of Acer pictum subsp. mono. FRONTIERS IN PLANT SCIENCE 2023; 13:1047452. [PMID: 36714704 PMCID: PMC9879609 DOI: 10.3389/fpls.2022.1047452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Acer pictum subsp. mono is a colorful tree species with considerable ornamental and economic value. However, little is known about the metabolism and regulatory mechanism of leaf color change in A. p. subsp. mono. To reveal the molecular mechanism of leaf color change in A. p. subsp. mono, the present study examined the bud mutation branches and compared the metabolites of the red leaves (AR) of the bud mutation branches of A. p. subsp. mono with those of the green leaves (AG) of the wild-type branches. It was found that the chlorophyll and carotenoids content of the red leaves decreased significantly, while anthocyanins, and various antioxidant enzymes increased significantly compared with the green leaves. The glycosides cyanidin, pelargonidin, malvidin, petunidin, delphinidin, and peonidin were detected in AR by liquid chromatography-mass spectrometry. The cyanidin glycosides increased, and cyanidin 3-O-glycoside was significantly upregulated. We analyzed the transcriptome and small RNA of A. p. subsp. mono leaves and detected 4061 differentially expressed mRNAs and 116 differentially expressed miRNAs. Through miRNA-mRNA association analysis, five differentially expressed modules were found; one miRNA targeted three genes, and four miRNAs targeted a single gene. Among them, miR160b, miR6300, and miR396g were found to be the key miRNAs regulating stable anthocyanin accumulation in A. p. subsp. mono leaves. By revealing the physiological response of leaf color change and the molecular regulatory mechanism of the miRNA, this study provides new insight into the molecular regulatory mechanism of leaf color change, thereby offering a foundation for future studies.
Collapse
Affiliation(s)
- Baoli Lin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - He Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, China
| | - Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
15
|
Yang Y, Jin F, Liu W, Huo G, Zhou F, Yan J, Zhou K, Li P. Comparative transcriptome, digital gene expression and proteome profiling analyses provide insights into the brachyurization from the megalopa to the first juvenile in Eriocheir sinensis. Heliyon 2023; 9:e12736. [PMID: 36685450 PMCID: PMC9853305 DOI: 10.1016/j.heliyon.2022.e12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/08/2023] Open
Abstract
Eriocheir sinensis larva normally experiences 11 stages. The reduced abdomen folded beneath the thorax is the most prominent characteristic of morphological alteration from megalopa to juvenile crab. Up to date, the molecular mechanisms of brachyurization remain a mystery. Here, transcriptome library, digital gene expression (DGE) libraries and proteome libraries at two developmental stages [the megalopa stage of E. sinensis (stage M) and the first stage of juvenile crab (stage J1)] of the Chinese mitten crab larva were constructed for RNA sequencing and iTRAQ approaches followed by bioinformatics analysis, respectively. In total, 1106 genes and 871 proteins were differentially expressed between the stage M and stage J1. Moreover, several important pathways were identified, including biosynthesis of secondary metabolites, metabolic pathways, focal adhesion, and some disease pathways. Besides, muscle contraction, oxidative phosphorylation, calcium signaling, PI3K-Akt, DNA replication pathway, and integrin signaling pathway also had important functions in brachyurization process. Furthermore, the components, actin, actin-related protein, collagens, filamin-A/B, laminin, integrins, paxillin, and fibronectin had up-regulated expression levels in M stage compared to J1 stage.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Fangcao Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Wanyi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangming Huo
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China,Corresponding author. College of Life Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
16
|
Li Y, Jin F, Wu X, Teixeira da Silva JA, Xiong Y, Zhang X, Ma G. Identification and function of miRNA-mRNA interaction pairs during lateral root development of hemi-parasitic Santalum album L. seedlings. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153866. [PMID: 36399836 DOI: 10.1016/j.jplph.2022.153866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.
Collapse
Affiliation(s)
- Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Feng Jin
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xiuju Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150040, China.
| | | | - Yuping Xiong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
17
|
MicroRNA-like RNA Functions Are Required for the Biosynthesis of Active Compounds in the Medicinal Fungus Sanghuangporus vaninii. Microbiol Spectr 2022; 10:e0021922. [PMID: 36301126 PMCID: PMC9769868 DOI: 10.1128/spectrum.00219-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
miRNA-like RNAs (milRNAs) have been recognized as sequence-specific regulators of posttranscriptional regulation of gene expression in eukaryotes. However, the functions of hundreds of fungal milRNAs in the biosynthesis of metabolic components are obscure. Sanghuangporus produces diverse bioactive compounds and is widely used in Asian countries. Here, genes encoding two Dicers, four Argonautes, and four RdRPs were identified and characterized in Sanghuangporus vanini. Due to the lack of an efficient gene manipulation system, the efficacy of spray-induced gene silencing (SIGS) was determined in S. vanini, which showed efficient double-stranded RNA (dsRNA) uptake and gene silencing efficiency. SIGS-mediated gene knockdown showed that SVRDRP-3, SVRDRP-4, SVDICER-1, and SVDICER-2 were critical for mycelial biomass, flavonoid, triterpenoid, and polysaccharide production. Illumina deep sequencing was performed to characterize the milRNAs from S. vanini mycelium and fruiting body. A total of 31 milRNAs were identified, out of which, SvmilR10, SvmilR17, and SvmilR33 were Svrdrp-4- and Svdicer-1-dependent milRNAs. Importantly, SIGS-mediated overexpression of SvmilR10 and SvmilR33 resulted in significant changes in the yields of flavonoids, triterpenoids, and polysaccharides. Further analysis showed that these milRNA target genes encoding the retrotransposon-derived protein PEG1 and histone-lysine N-methyltransferase were potentially downregulated in the milRNA overexpressing strain. Our results revealed that S. vanini has high external dsRNA and small RNA uptake efficiency and that milRNAs may play crucial regulatory roles in the biosynthesis of bioactive compounds. IMPORTANCE Fungi can take up environmental RNA that can silence fungal genes with RNA interference, which prompts the development of SIGS. Efficient dsRNA and milRNA uptake in S. vanini, successful dsRNA-targeted gene block, and the increase in intracellular miRNA abundance showed that SIGS technology is an effective and powerful tool for the functional dissection of fungal genes and millRNAs. We found that the RdRP, Dicer, and Argonaute genes are critical for mycelial biomass and bioactive compound production. Our study also demonstrated that overexpressed SVRDRP-4- and SVDICER-1-dependent milRNAs (SvmilR10 and SvmilR33) led to significant changes in the yields of the three active compounds. This study not only provides the first report on SIGS-based gene and milRNA function exploration, but also provides a theoretical platform for exploration of the functions of milRNAs involved in biosynthesis of metabolic compounds in fungi.
Collapse
|
18
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
19
|
Li H, You C, Yoshikawa M, Yang X, Gu H, Li C, Cui J, Chen X, Ye N, Zhang J, Wang G. A spontaneous thermo-sensitive female sterility mutation in rice enables fully mechanized hybrid breeding. Cell Res 2022; 32:931-945. [PMID: 36068348 PMCID: PMC9525692 DOI: 10.1038/s41422-022-00711-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Male sterility enables hybrid crop breeding to increase yields and has been extensively studied. But thermo-sensitive female sterility, which is an ideal property that may enable full mechanization in hybrid rice breeding, has rarely been investigated due to the absence of such germplasm. Here we identify the spontaneous thermo-sensitive female sterility 1 (tfs1) mutation that confers complete sterility under regular/high temperature and partial fertility under low temperature as a point mutation in ARGONAUTE7 (AGO7). AGO7 associates with miR390 to form an RNA-Induced Silencing Complex (RISC), which triggers the biogenesis of small interfering RNAs (siRNAs) from TRANS-ACTING3 (TAS3) loci by recruiting SUPPRESSOR OF GENE SILENCING (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) to TAS3 transcripts. These siRNAs are known as tasiR-ARFs as they act in trans to repress auxin response factor genes. The mutant TFS1 (mTFS1) protein is compromised in its ability to load the miR390/miR390* duplex and eject miR390* during RISC formation. Furthermore, tasiR-ARF levels are reduced in tfs1 due to the deficiency in RDR6 but not SGS3 recruitment by mTFS1 RISC under regular/high temperature, while low temperature partially restores mTFS1 function in RDR6 recruitment and tasiR-ARF biogenesis. A miR390 mutant also exhibits female sterility, suggesting that female fertility is controlled by the miR390-AGO7 module. Notably, the tfs1 allele introduced into various elite rice cultivars endows thermo-sensitive female sterility. Moreover, field trials confirm the utility of tfs1 as a restorer line in fully mechanized hybrid rice breeding.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manabu Yoshikawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai Tsukuba, Ibaraki, Japan
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Haiyong Gu
- The Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Chuanguo Li
- The Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Yang L, Cheng X, Shi W, Li H, Zhang Q, Huang S, Huang X, Wen S, Gan J, Liao Z, Sun J, Liang J, Ouyang Y, He M. Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation. Nutrients 2022; 14:nu14173600. [PMID: 36079859 PMCID: PMC9460126 DOI: 10.3390/nu14173600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023] Open
Abstract
Abnormal vasorin (Vasn) expression occurs in multiple diseases, particularly liver cancers. Vasn knockout (KO) in mice causes malnutrition, a shortened life span, and decreased physiological functions. However, the causes and underlying mechanisms remain unknown. Here, we established Vasn KO C57BL/6J mice by using the CRISPR/Cas9 system. The animals were weighed, and histology, immunohistochemistry, electronic microscopy, and liver function tests were used to examine any change in the livers. Autophagy markers were detected by Western blotting. MicroRNA (miRNA) sequencing was performed on liver samples and analyses to study the signaling pathway altered by Vasn KO. Significant reductions in mice body and liver weight, accompanied by abnormal liver function, liver injury, and reduced glycogen accumulation in hepatocytes, were observed in the Vasn KO mice. The deficiency of Vasn also significantly increased the number of autophagosomes and the expression of LC3A/B-II/I but decreased SQSTM1/p62 levels in hepatocytes, suggesting aberrant activation of autophagy. Vasn deficiency inhibited glycogen-mediated mammalian target of rapamycin (mTOR) phosphorylation and activated Unc-51-like kinase 1 (ULK1) signaling, suggesting that Vasn deletion upregulates hepatocyte autophagy through the mTOR-ULK1 signaling pathway as a possible cause of diminished life span and health. Our results indicate that Vasn is required for the homeostasis of liver glycogen metabolism upstream of hepatocyte autophagy, suggesting research values for regulating Vasn in pathways related to liver physiology and functions. Overall, this study provides new insight into the role of Vasn in liver functionality.
Collapse
Affiliation(s)
- Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Wei Shi
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Hui Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qi Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Shiping Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Ji Gan
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- Correspondence: (Y.O.); (M.H.); Tel.: +86-771-5629860 (M.H.)
| |
Collapse
|
21
|
Wang C, Sun X, Wang J, Tang JM, Gu Y, Lin S. Physiological and metabolic effects of glyphosate as the sole P source on a cosmopolitan phytoplankter and biogeochemical implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155094. [PMID: 35398121 DOI: 10.1016/j.scitotenv.2022.155094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Nutrient conditions influence the physiology and stoichiometry of marine phytoplankton. While extensive studies have documented the effects of abundances and types of nutrients such as nitrogen (N) and phosphorus (P), the effect of phosphonates as a P source is less understood and underexplored. Here, with the cosmopolitan coccolithophorid Emiliania huxleyi as a model phytoplankter, we investigated the effect of the phosphonate type of herbicide glyphosate as the sole P source in comparison with the P-depleted and P-replete (with 36 μM dissolved inorganic phosphate [DIP]) cultures. We measured changes in cellular C (carbon):P and N:P ratios and physiological performance and documented the corresponding transcriptomic and miRNAomic responses in E. huxleyi to glyphosate treatment. We found that glyphosate supported population growth but not to the full scale relative to DIP, and this was under the concerted regulation of DNA replication and cell cycle arrest genes as well as the growth-regulating miRNA. Furthermore, our data suggest that E. huxleyi took up glyphosate directly, bypassing extracellular hydrolysis, and this involved ABC transporters. Meanwhile, glyphosate-grown cultures displayed marked increases in cellular particulate organic C (POC) and PON contents, cell size, and transcription of genes for CO2 fixation and citrate cycle, nitrate transport, and protein biosynthesis. However, compared to DIP, the maximum absorption rate of glyphosate was only 33%, and glyphosate-grown E. huxleyi cells exhibited a mild P-stress symptom and elevated cellular C:P and N:P ratios. Interestingly, glyphosate-grown cells showed an increased sinking rate, suggesting that glyphosate as the sole P source might enhance the efficiency of C export by E. huxleyi, which would compensate for the expected decline in primary productivity (and hence carbon efflux) in the future more nutrient-depleted ocean. This biogeochemical implication needs to be further studied and verified, however.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jin-Ming Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yifan Gu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT, United States of America.
| |
Collapse
|
22
|
Analysis of Tissue-Specific Defense Responses to Sclerotinia sclerotiorum in Brassica napus. PLANTS 2022; 11:plants11152001. [PMID: 35956479 PMCID: PMC9370628 DOI: 10.3390/plants11152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (S. sclerotiorum) is the main disease threat of oilseed rape (Brassica napus), resulting in huge economic losses every year. SSR resistance manifests as quantitative disease resistance (QDR), and no gene with complete SSR resistance has been cloned or reported so far. Transcriptome analysis has revealed a large number of defense-related genes and response processes. However, the similarities and differences in the defense responses of different tissues are rarely reported. In this study, we analyzed the similarities and differences of different tissues in response to S. sclerotiorum at 24 h post inoculation (hpi) by using the published transcriptome data for respective leaf and stem inoculation. At 24 hpi, large differences in gene expression exist in leaf and stem, and there are more differentially expressed genes and larger expression differences in leaf. The leaf is more sensitive to S. sclerotiorum and shows a stronger response than stem. Different defense responses appear in the leaf and stem, and the biosynthesis of lignin, callose, lectin, chitinase, PGIP, and PR protein is activated in leaf. In the stem, lipid metabolism-mediated defense responses are obviously enhanced. For the common defense responses in both leaf and stem, the chain reactions resulting from signal transduction and biological process take the primary responsibility. This research will be beneficial to exploit the potential of different tissues in plant defense and find higher resistance levels of genotypic variability in different environments. Our results are significant in the identification of resistance genes and analysis of defense mechanisms.
Collapse
|
23
|
Key regulatory pathways, microRNAs, and target genes participate in adventitious root formation of Acer rubrum L. Sci Rep 2022; 12:12057. [PMID: 35835811 PMCID: PMC9283533 DOI: 10.1038/s41598-022-16255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Red maple (Acer rubrum L.) is a type of colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms of AR formation in A. rubrum. To address this knowledge gap, we sequenced the transcriptome and small RNAs (sRNAs) of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. We identified 82,468 differentially expressed genes (DEGs) between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two key regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene auxin response factor 10 (ArARF10) were selected based on KEGG pathway and cluster analyses. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. Experiments overexpressing ArARF10 and Ar-miR160a, indicated that ArARF10 promoted AR formation, while Ar-miR160a inhibited AR formation. Transcription factors (TFs) and miRNAs related to auxin regulation that promote AR formation in A. rubrum were identified. Differential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.
Collapse
|
24
|
Bendifallah S, Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E. MicroRNome analysis generates a blood-based signature for endometriosis. Sci Rep 2022; 12:4051. [PMID: 35260677 PMCID: PMC8902281 DOI: 10.1038/s41598-022-07771-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis, characterized by endometrial-like tissue outside the uterus, is thought to affect 2-10% of women of reproductive age: representing about 190 million women worldwide. Numerous studies have evaluated the diagnostic value of blood biomarkers but with disappointing results. Thus, the gold standard for diagnosing endometriosis remains laparoscopy. We performed a prospective trial, the ENDO-miRNA study, using both Artificial Intelligence (AI) and Machine Learning (ML), to analyze the current human miRNome to differentiate between patients with and without endometriosis, and to develop a blood-based microRNA (miRNA) diagnostic signature for endometriosis. Here, we present the first blood-based diagnostic signature obtained from a combination of two robust and disruptive technologies merging the intrinsic quality of miRNAs to condense the endometriosis phenotype (and its heterogeneity) with the modeling power of AI. The most accurate signature provides a sensitivity, specificity, and Area Under the Curve (AUC) of 96.8%, 100%, and 98.4%, respectively, and is sufficiently robust and reproducible to replace the gold standard of diagnostic surgery. Such a diagnostic approach for this debilitating disorder could impact recommendations from national and international learned societies.
Collapse
Affiliation(s)
- Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France.
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France.
| | - Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020, Paris, France
| | - Stéphane Suisse
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Ludmila Jornea
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013, Paris, France
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020, Paris, France
- Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), Paris, France
| |
Collapse
|
25
|
Li H, Hu R, Fan Z, Chen Q, Jiang Y, Huang W, Tao X. Dual RNA Sequencing Reveals the Genome-Wide Expression Profiles During the Compatible and Incompatible Interactions Between Solanum tuberosum and Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 13:817199. [PMID: 35401650 PMCID: PMC8993506 DOI: 10.3389/fpls.2022.817199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is a devastating plant disease. P. infestans genome encodes hundreds of effectors, complicating the interaction between the pathogen and its host and making it difficult to understand the interaction mechanisms. In this study, the late blight-resistant potato cultivar Ziyun No.1 and the susceptible potato cultivar Favorita were infected with P. infestans isolate SCPZ16-3-1 to investigate the global expression profiles during the compatible and incompatible interactions using dual RNA sequencing (RNA-seq). Most of the expressed Arg-X-Leu-Arg (RXLR) effector genes were suppressed during the first 24 h of infection, but upregulated after 24 h. Moreover, P. infestans induced more specifically expressed genes (SEGs), including RXLR effectors and cell wall-degrading enzymes (CWDEs)-encoding genes, in the compatible interaction. The resistant potato activated a set of biotic stimulus responses and phenylpropanoid biosynthesis SEGs, including kirola-like protein, nucleotide-binding site-leucine-rich repeat (NBS-LRR), disease resistance, and kinase genes. Conversely, the susceptible potato cultivar upregulated more kinase, pathogenesis-related genes than the resistant cultivar. This study is the first study to characterize the compatible and incompatible interactions between P. infestans and different potato cultivars and provides the genome-wide expression profiles for RXLR effector, CWDEs, NBS-LRR protein, and kinase-encoding genes.
Collapse
Affiliation(s)
- Honghao Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Rongping Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhonghan Fan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qinghua Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
26
|
Datta B, Paul D, Dey T, Pal S, Rakshit T. Importance of Extracellular Vesicle Derived RNAs as
Critical Colorectal Cancer Biomarkers. ACS BIO & MED CHEM AU 2022; 2:222-235. [PMID: 37101571 PMCID: PMC10114864 DOI: 10.1021/acsbiomedchemau.1c00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
![]()
Colorectal cancer
typically begins from a nonmalignant polyp formation
in the large intestine that, over time, develops into colorectal cancer.
The growth of benign polyps can be checked if detected in the early
stages of the disease. Doctors usually recommend colonoscopy to average
and high-risk individuals for colorectal cancer screening. Elevated
carcinoembryonic antigen (CEA) is a broadly used biomarker for colorectal
cancer. The genetic and epigenetic alteration of genes such as p53,
BRAF, APC, and PIK3CA is also correlated with colorectal cancer in
various clinical studies. In general, tissue biopsy is most frequently
used for colorectal cancer diagnosis, but the whole tumor heterogeneity
cannot be accessed by this technique. Furthermore, such a highly invasive
technique is not suitable for repeated testing. Recently, extracellular
vesicles (EVs), lipid bilayer enclosed sacs secreted from colorectal
cancer cells, are emerging as a diagnostic tool for colon cancer detection.
The major advantages of using EVs for colon cancer diagnosis are (i)
EVs can be isolated in a noninvasive manner from the body fluid and
(ii) EV incorporated cargoes (mostly RNAs) reveal various aspects
of colorectal cancer. EV-RNAs are also implicated in tumor invasion
and influence the immune system for the further spread of tumors.
However, due to the lack of standardized EV detection strategies,
diagnostic applicability is limited. Herein, we review the recent
literature on the pathobiological dependence of colorectal cancer
on EV-RNAs. Further, we present the advantages of identification and
characterization of EV-RNAs to explore the connection between differential
expression of extracellular vesicle incorporated RNAs and colorectal
cancer. How this approach may potentially translate into point of
care colorectal cancer diagnostics is also discussed.
Collapse
Affiliation(s)
- Brateen Datta
- School
of Medical Science and Technology, IIT Kharagpur, West Bengal 721302, India
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Debashish Paul
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
- Department
of Chemistry, Shiv Nadar University, Delhi-NCR, Uttar Pradesh 201314, India
| | - Tina Dey
- Department
of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata 700106, India
| | - Suchetan Pal
- Department
of Chemistry, IIT Bhilai, Chhattisgarh 492015, India
| | - Tatini Rakshit
- Department
of Chemistry, Shiv Nadar University, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
27
|
Xu W, Bao W, Liu H, Chen C, Bai H, Huang M, Zhu G, Zhao H, Gou N, Chen Y, Wang L, Wuyun TN. Insights Into the Molecular Mechanisms of Late Flowering in Prunus sibirica by Whole-Genome and Transcriptome Analyses. FRONTIERS IN PLANT SCIENCE 2022; 12:802827. [PMID: 35145534 PMCID: PMC8821173 DOI: 10.3389/fpls.2021.802827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Freezing during the flowering of Prunus sibirica is detrimental to fruit production. The late flowering (LF) type, which is delayed by 7-15 days compared with the normal flowering (NF) type, avoids damages at low temperature, but the molecular mechanism of LF remains unclear. Therefore, this study was conducted to comprehensively characterize floral bud differentiation. A histological analysis showed that initial floral bud differentiation was delayed in the LF type compared to the NF type. Genome-wide associated studies (GWAS) showed that a candidate gene (PaF106G0600023738.01) was significantly associated with LF type. It was identified as trehalose-6-phosphate phosphatase (PsTPPF), which is involved in trehalose-6-phosphate (Tre6P) signaling pathway and acts on floral transition. A whole-transcriptome RNA sequencing analysis was conducted, and a total of 6,110 differential expression (DE) mRNAs, 1,351 DE lncRNAs, and 148 DE miRNAs were identified. In addition, 24 DE mRNAs related with floral transition were predicted, and these involved the following: three interactions between DE lncRNAs and DE mRNAs of photoperiod pathway with two mRNAs (COP1, PaF106G0400018289.01 and CO3, MXLOC_025744) and three lncRNAs (CCLR, LTCONS_00031803, COCLR1, LTCONS_00046726, and COCLR2, LTCONS_00046731); one interaction between DE miRNAs and DE mRNAs with one mRNA, encoding trehalose-6-phosphate synthase (PsTPS1, PaF106G0100001132.01), and one miRNA (miRNA167h). Combined with the expression profiles and Tre6P levels, functions of PsTPPF and PsTPS1 in Tre6P regulation were considered to be associated with flowering time. A new network of ceRNAs correlated with LF was constructed, and it consisted of one mRNA (PsTPS1), one lncRNA (TCLR, LTCONS_00034157), and one miRNA (miR167h). This study provided insight into the molecular regulatory mechanism of LF in Prunus sibirica.
Collapse
Affiliation(s)
- Wanyu Xu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Haikun Bai
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Mengzhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Gaopu Zhu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Han Zhao
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Ningning Gou
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Yixiao Chen
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| | - Ta-Na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Zhengzhou, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Zhengzhou, China
| |
Collapse
|
28
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
29
|
Shan SSW, Wang PF, Cheung JKW, Yu F, Zheng H, Luo S, Yip SP, To CH, LAM C. Transcriptional profiling of the chick retina identifies down-regulation of VIP and UTS2B genes during early lens-induced myopia. Mol Omics 2022; 18:449-459. [DOI: 10.1039/d1mo00407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene expression of the chick retina was examined during the early development of lens-induced myopia (LIM) using whole transcriptome sequencing. Monocular treatment of the right eyes with −10 diopter (D)...
Collapse
|
30
|
Shen Y, Wang L, Wu Y, Ou Y, Lu H, Yao X. A novel diagnostic signature based on three circulating exosomal mircoRNAs for chronic obstructive pulmonary disease. Exp Ther Med 2021; 22:717. [PMID: 34007326 PMCID: PMC8120666 DOI: 10.3892/etm.2021.10149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomal microRNAs (exo-miRNAs or miRs) have demonstrated diagnostic value in various diseases. However, their diagnostic value in chronic obstructive pulmonary disease (COPD) has yet to be fully established. The purpose of the present study was to screen differentially expressed exo-miRNAs in the plasma of patients with COPD and healthy individuals and to evaluate their potential diagnostic value in COPD. Differentially expressed exo-miRNAs in the plasma of patients with COPD and controls were identified using high-throughput sequencing and confirmed using reverse transcription-quantitative PCR (RT-qPCR). Bioinformatics analysis was then performed to predict the function of the selected exo-miRNAs and their target genes in COPD. After a network model was constructed, linear regression analysis was performed to determine the association between exo-miRNA expression and the clinical characteristics of subjects in a validated cohort (46 COPD cases; 34 matched healthy controls). Receiver operating characteristic curve was subsequently plotted to test the diagnostic value of the candidate biomarkers. The top 20 significantly aberrantly expressed COPD-associated exo-miRNAs were verified using RT-qPCR. Of these, nine were then selected for subsequent analysis, five of which were found to be upregulated (miR-23a, miR-1, miR-574, miR-152 and miR-221) and four of which were downregulated (miR-3158, miR-7706, miR-685 and miR-144). The results of Gene Ontology and KEGG pathway analysis revealed that these miRNAs were mainly involved in certain biological functions, such as metabolic processes, such as galactose metabolism and signaling pathways (PI3K-AKT) associated with COPD. The expression levels of three exo-miRNAs (miR-23a, miR-221 and miR-574) were found to be negatively associated with the forced expiratory volume in the 1st second/forced vital capacity. Furthermore, the area under the curve values of the three exo-miRNAs (miR-23a, miR-221 and miR-574) for COPD diagnosis were 0.776 [95% confidence interval (CI), 0.669-0.882], 0.688 (95% CI, 0.563-0.812) and 0.842 (95% CI, 0.752-0.931), respectively. In conclusion, the three circulating exosomal miRNAs (miR-23a, miR-221 and miR-574) may serve as novel circulating biomarkers for the diagnosis of COPD. These results may also enhance our understanding and provide novel potential treatment options for patients with COPD.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Respiratory and Critical Care Medicine, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, Jiangsu 225300, P.R. China
| | - Lina Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huiyu Lu
- Department of Respiratory and Critical Care Medicine, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou, Jiangsu 225300, P.R. China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
Wu C, Wang C, Zhai B, Zhao Y, Zhao Z, Yuan Z, Zhang M, Tian K, Fu X. Study of microRNA Expression Profile in Different Regions of Ram Epididymis. Reprod Domest Anim 2021; 56:1209-1219. [PMID: 34169586 DOI: 10.1111/rda.13978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
The regional expression of epididymal genes provides a guarantee for sperm maturation. As a class of endogenous non-coding small RNAs, microRNAs (miRNAs) play an important role in spermatogenesis, maturation and fertilization. Currently, the regulatory role of miRNA in the epididymis is poorly understood. Here, transcriptome sequencing was used to analyse miRNA expression profiles in three regions of the epididymis of rams, including caput, corpus and cauda. The results showed that there were 13 known miRNAs between the caput and corpus controls, 29 between the caput and cauda and 22 differences between the corpus and cauda. Based on the analysis of miRNA target genes by GO and KEGG, a negative regulation network of miRNA-mRNA was constructed in which let-7, miR-541-5p, miR-133b and miR-150 may play an important regulatory role in the maturation regulation of ram epididymal sperm. This research provides a reference for studying the regulation mechanism of sperm maturation in male epididymis and improving semen quality and male reproductive performance.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.,Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chunxin Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Bo Zhai
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yunhui Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhuo Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Mingxin Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| |
Collapse
|
32
|
Zhao M, He X, Yang J, Feng Y, Wang H, Shao Z, Xing L. Aberrant microRNA expression in B lymphocytes from patients with primary warm autoimmune haemolytic anaemia. Autoimmunity 2021; 54:264-274. [PMID: 34044675 DOI: 10.1080/08916934.2021.1931842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To screen and analyze the micro-Ribonucleic Acid (miRNA) expression profile in B lymphocytes from patients with autoimmune haemolytic anaemia (AIHA) using high-throughput sequencing. METHODS Twelve patients with warm autoimmune haemolytic anaemia (wAIHA) and twelve healthy controls (HCs) were enrolled. CD19+ B lymphocytes were isolated and purified using magnetic activated cell sorting (MACS). RNA was subsequently extracted from these cells and a small RNA library was created. The miRNA expression profile was analyzed using Beijing Genomics Institute Sequencing 500 (BGISEQ-500), and stem-loop real-time quantitative PCR (stem-loop qRT-PCR) was used to verify the sequencing results. Downstream target genes of the differentially expressed miRNAs were predicted using miRanda and TargetScan online software, and GO functional enrichment and pathway enrichment analyses were performed on these genes. RESULTS Compared with HCs, 178 upregulated and 143 downregulated miRNAs were identified in wAIHA patients, and stem-loop qRT-PCR of four randomly selected differentially expressed miRNAs verified the sequencing results. Ninety-five significantly enriched GO terms and eighty-five significantly enriched pathways were identified. Genes targeted by differentially expressed miRNAs were found to be mainly involved in the regulation of signal transduction, metabolic processes, immune reactions, and neoplastic disease development. CONCLUSION The expression of miRNAs in B lymphocytes from patients with primary wAIHA was deregulated, and this phenomenon may be involved in the pathogenesis of wAIHA.
Collapse
Affiliation(s)
- Manjun Zhao
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Xin He
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Jin Yang
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Yingying Feng
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| | - Limin Xing
- Department of Hematology, General Hospital Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
miRNA-mRNA Regulatory Network Reveals miRNAs in HCT116 in Response to Folic Acid Deficiency via Regulating Vital Genes of Endoplasmic Reticulum Stress Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650181. [PMID: 33997035 PMCID: PMC8096553 DOI: 10.1155/2021/6650181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
Moderate folic acid (FA) intake is an effective strategy that slows colorectal cancer (CRC) progression. However, high consumption of FA may trigger the transition of precancerous tissue towards malignancy. MicroRNAs (miRNAs) are considered to be potential biomarkers of CRC. Thus, identification of miRNAs of dysregulated genes in CRC cells by detailed analysis of mRNA and miRNA expression profile in the context of FA deficiency could substantially increase our understanding of its oncogenesis. mRNA-seq and miRNA-seq analyses were utilized to investigate the expression of miRNAs in FA-deficient CRC cell line–HCT116 through massive parallel sequencing technology. A total of 38 mRNAs and 168 miRNAs were identified to be differentially expressed between CRC groups with or without FA deficiency. We constructed an miRNA-mRNA network for the vital regulatory miRNAs altered in FA-deficient CRC cells. The mRNAs and miRNAs validated by Western blotting and RT-qPCR were consistent with the sequencing results. Results showed that FA deficiency upregulated some miRNAs thereby inhibiting the expression of critical genes in the endoplasmic reticulum (ER) stress pathway. Dysregulated miRNAs in our miRNA-mRNA network could contribute to CRC cell in response to deficient FA. This work reveals novel molecular targets that are likely to provide therapeutic interventions for CRC.
Collapse
|
34
|
Yu D, Peng Z, Wu H, Zhang X, Ji C, Peng X. Stress responses in expressions of microRNAs in mussel Mytilus galloprovincialis exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111927. [PMID: 33508712 DOI: 10.1016/j.ecoenv.2021.111927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are known to have complicated functions in aquatic species, but little is known about the role of miRNAs in mollusk species under environmental stress. In this study, we performed small RNA sequencing to characterize the differentially expressed miRNAs in different tissues (whole tissues, digestive glands, gills, and gonads) of blue mussels (Mytilus galloprovincialis) exposed to cadmium (Cd). In summary, 107 known miRNAs and 32 novel miRNAs were significantly (p < 0.01) differentially expressed after Cd exposure. The peak size of miRNAs was 22 nucleotides. Target genes of these differentially expressions of miRNAs related to immune defense, apoptosis, lipid and xenobiotic metabolism showed significant changes under Cd stress. These findings provide the first characterization of miRNAs in mussel M. galloprovincialis and expressions of many target genes in response to Cd stress.
Collapse
Affiliation(s)
- Deliang Yu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Zheng Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Chenglong Ji
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
35
|
Cheng J, Guo Y, Guan G, Huang H, Jiang F, He J, Wu J, Guo Z, Liu X, Ao L. Two novel qualitative transcriptional signatures robustly applicable to non-research-oriented colorectal cancer samples with low-quality RNA. J Cell Mol Med 2021; 25:3622-3633. [PMID: 33719152 PMCID: PMC8034468 DOI: 10.1111/jcmm.16467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, due to the low quality of RNA caused by degradation or low abundance, the accuracy of gene expression measurements by transcriptome sequencing (RNA‐seq) is very challenging for non‐research‐oriented clinical samples, majority of which are preserved in hospitals or tissue banks worldwide with complete pathological information and follow‐up data. Molecular signatures consisting of several genes are rarely applied to such samples. To utilize these resources effectively, 45 stage II non‐research‐oriented samples which were formalin‐fixed paraffin‐embedded (FFPE) colorectal carcinoma samples (CRC) using RNA‐seq have been analysed. Our results showed that although gene expression measurements were significantly affected, most cancer features, based on the relative expression orderings (REOs) of gene pairs, were well preserved. We then developed two REO‐based signatures, which consisted of 136 gene pairs for early diagnosis of CRC, and 4500 gene pairs for predicting post‐surgery relapse risk of stage II and III CRC. The performance of our signatures, which included hundreds or thousands of gene pairs, was more robust for non‐research‐oriented clinical samples, compared to that of two published concise REO‐based signatures. In conclusion, REO‐based signatures with relatively more gene pairs could be robustly applied to non‐research‐oriented CRC samples.
Collapse
Affiliation(s)
- Jun Cheng
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan, China.,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Haiyan Huang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Fengle Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xing Liu
- Department of Colorectal Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Res 2021; 52:102235. [PMID: 33601096 DOI: 10.1016/j.scr.2021.102235] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic foot is caused by ischemic disease of lower extremities of diabetic patients, and the effective therapy is very limited. Mesenchymal stem cells (MSCs) based cell therapy had been developed into a new treatment strategy for diabetic foot clinically. However, the underlying molecular mechanism remains to be fully addressed. Exosomes (extracellular vesicles) secreted by MSCs may play crucial role in the processes of MSCs mediated inhibition of inflammatory microenvironment as well as pro-angiogenesis of ischemic tissue of diabetic foot. METHODS Exosomes were isolated from MSCs using ultracentrifugation, and further characterized by the nanoparticle tracking analyzer and flow cytometry. Moreover, RNA sequencing, Western Blot, in vitro cell proliferation, in vivo pro-angiogenesis, as well as ischemic repairment of diabetic foot through rat model were performed to evaluate exosome physiological functions. RESULTS We found that inflammatory cytokines (tumor necrosis factor α and interleukin-6) and vascularcelladhesion molecule-1 induced MSCs to secrete exosomes heterogeneously, including exosome size and quantity. Through RNA sequencing, we defined a new proangiogenic miRNA, miRNA-21-5p. Further knockdown and overexpression of miRNA-21-5p by manipulating MSCs validated the biological activity of exosome miRNA-21-5p, including in vitro cell proliferation, in vivo pro-angiogenesis in Chick Chorioallantoic Membrane (CAM) assay, and in vivo pro-angiogenesis experiments (tissue injury and repair) in diabetic rat models. Furthermore, we discovered that exosomemiRNA-21-5p promoted angiogenesis through upregulations of vascular endothelial growth factor receptor (VEGFR) as well as activations of serine/threonine kinase (AKT) and mitogen-activated protein kinase (MAPK). Together, our work suggested miRNA-21-5p could be a novel mechanism by which exosomes promote ischemic tissue repair and angiogenesis. Meanwhile, miRNA-21-5p could be potentially developed into a new biomarker for exosomes of MSCs to treat diabetic foot. CONCLUSIONS miRNA-21-5p is a new biomarker and a novel mechanism by which exosomes promote ischemic tissue repair and angiogenesis of diabetic foot. Our work could not only provide new scientific evidences for revealing pro-angiogenesis mechanism of MSCs, but also eventually benefit MSCs-based clinical therapy for diabetic foot of diabetes patients.
Collapse
|
37
|
Ye H, Xu H, Qiao M, Guo R, Ji Y, Yu Y, Chen Y, Gai X, Li H, Liu Q, Zhuang Y. MicroRNA expression profiles analysis of apheresis platelets treated with vitamin B 2 and ultraviolet-B during storage. Transfus Apher Sci 2021; 60:103079. [PMID: 33602623 DOI: 10.1016/j.transci.2021.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
Whether platelet (PLT) microRNA (miRNA) profiles are affected by pathogen reduction technology (PRT) using vitamin B2 and ultraviolet-B (VB2-PRT) remains unclear. Samples from VB2-PRT-treated (experimental group, E_) and untreated (control group, C_) apheresis PLTs were taken on days 1, 3 and 5 of storage, designated as E_1, E_3, E_5, C_1, C_3 and C_5, respectively. The miRNA expression profiles were assessed by DNA Nano Ball (DNB) sequencing technology, and verified by quantitive real-time fluorescence quantitative PCR (qRT-PCR). Compared with the expression profiles of PLT miRNAs, 3895 miRNAs were identified in the E_ groups while 4106 were in the C_ groups. There were 487 significant differentially expressed miRNAs in E_1 vs C_1 group, including 220 upregulated and 287 downregulated, such as miR-146a-5p and let-7b-5p. There were 908 significant differentially expressed miRNAs in E_3 vs C_3 group, including 297 upregulated and 611 downregulated, such as miR-142-5p and miR-7-5p. There were 229 significant differentially expressed miRNAs in E_5 vs C_5 group, including 80 upregulated and 149 downregulated, such as miR-3529-3p and miR-451a. These differentially expressed miRNAs had been suggested to have functional roles in energy homeostasis, cell communication, proliferation, migration and apoptosis. GO analysis showed a significant enrichmen in relevant biological process categories as receptor activity, signal transduction, cell transport, motility and chemotaxis. The significantly enriched KEGG pathway of predicted target genes was Glycosaminoglycan biosynthesis in E_ vs C_ groups. These new observation could provide insights on the understanding of change of miRNA profiles of PLT treated with VB2-PRT.
Collapse
Affiliation(s)
- Hui Ye
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China; School of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Huicong Xu
- Domestic Marketing System of Shenzhen Mindray Biomedical Electronics Co, Ltd, Jinan 250012, Shandong Province, China
| | - Mingming Qiao
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Rui Guo
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated With Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Yanbo Ji
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated With Shandong First Medical University, Jinan 250014, Shandong Province, China
| | - Yuan Yu
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Yuanfeng Chen
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Xia Gai
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Honglei Li
- School of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Qun Liu
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China
| | - Yunlong Zhuang
- Institute of Hematology, Blood Center of Shandong Province, Jinan 250014, Shandong Province, China.
| |
Collapse
|
38
|
Yang H, Yang YL, Li GQ, Yu Q, Yang J. Identifications of immune-responsive genes for adaptative traits by comparative transcriptome analysis of spleen tissue from Kazakh and Suffolk sheep. Sci Rep 2021; 11:3157. [PMID: 33542475 PMCID: PMC7862382 DOI: 10.1038/s41598-021-82878-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Aridity and heat are significant environmental stressors that affect sheep adaptation and adaptability, thus influencing immunity, growth, reproduction, production performance, and profitability. The aim of this study was to profile mRNA expression levels in the spleen of indigenous Kazakh sheep breed for comparative analysis with the exotic Suffolk breed. Spleen histomorphology was observed in indigenous Kazakh sheep and exotic Suffolk sheep raised in Xinjiang China. Transcriptome sequencing of spleen tissue from the two breeds were performed via Illumina high-throughput sequencing technology and validated by RT-qPCR. Blood cytokine and IgG levels differed between the two breeds and IgG and IL-1β were significantly higher in Kazakh sheep than in Suffolk sheep (p < 0.05), though spleen tissue morphology was the same. A total of 52.04 Gb clean reads were obtained and the clean reads were assembled into 67,271 unigenes using bioinformatics analysis. Profiling analysis of differential gene expression showed that 1158 differentially expressed genes were found when comparing Suffolk with Kazakh sheep, including 246 up-regulated genes and 912 down-regulated genes. Utilizing gene ontology annotation and pathway analysis, 21 immune- responsive genes were identified as spleen-specific genes associated with adaptive traits and were significantly enriched in hematopoietic cell lineage, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, and in the intestinal immune network for IgA production. Four pathways and up-regulated genes associated with immune responses in indigenous sheep played indispensable and promoting roles in arid and hot environments. Overall, this study provides valuable transcriptome data on the immunological mechanisms related to adaptive traits in indigenous and exotic sheep and offers a foundation for research into adaptive evolution.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Yong-Lin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Guo-Qing Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, 832000, China.,Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
39
|
Cao H, Chen J, Lai X, Liu T, Qiu P, Que S, Huang Y. Circular RNA expression profile in human primary multiple intracranial aneurysm. Exp Ther Med 2021; 21:239. [PMID: 33603847 PMCID: PMC7851595 DOI: 10.3892/etm.2021.9670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Primary multiple intracranial aneurysm (MIA) is a vascular disease that frequently leads to fatal vascular rupture and subarachnoid hemorrhage. However, the epigenetic regulation associated with MIA has remained largely elusive. Circular RNAs (circRNAs) serve important roles in cardiovascular diseases; however, their association with MIA has remained to be investigated. The present study initially aimed to explore novel mechanisms of MIA through examining circRNA expression profiles. Comprehensive circRNA expression profiles were detected by RNA sequencing (RNA-Seq) in human peripheral blood mononuclear cells. The RNA-Seq results were validated by reverse transcription-quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested the functions of these circRNAs. A competing endogenous RNA network was constructed to reveal the circRNA-microRNA-mRNA relationship. Among the 3,328 differentially expressed circRNAs between the MIA and matched control groups, 60 exhibited significant expression changes (|log2 fold change|≥2; P<0.05). Among these 60 circRNAs, 20 were upregulated, while the other 40 were downregulated. A number of downregulated circRNAs were involved in inflammation. The most significant KEGG pathway was ‘leukocyte transendothelial migration’. The circRNAs Homo sapiens (hsa)_circ_0135895, hsa_circ_0000682 and hsa_circ_0000690, which were also associated with the above-mentioned pathway, were indicated to be able to regulate protein tyrosine kinase 2, protein kinase Cβ and integrin subunit αL, respectively. To the best of our knowledge, the present study was the first to perform a circRNA sequencing analysis of MIA. The results specifically predicted the regulatory role of circRNAs in the pathogenesis of MIA. ‘Leukocyte transendothelial migration’ may be critical for the pathogenesis of MIA.
Collapse
Affiliation(s)
- Huimin Cao
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Jia Chen
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Xiaoyan Lai
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Tianqin Liu
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Ping Qiu
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Shuanglin Que
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Yanming Huang
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
40
|
Tang W, Zhao Y, Zeng J, Li Z, Fu Z, Yang M, Zeng D, Chen X, Lai Z, Wang-Pruski G, Guo R. Integration of Small RNA and Transcriptome Sequencing Reveal the Roles of miR395 and ATP Sulfurylase in Developing Seeds of Chinese Kale. FRONTIERS IN PLANT SCIENCE 2021; 12:778848. [PMID: 35185948 PMCID: PMC8851238 DOI: 10.3389/fpls.2021.778848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 05/23/2023]
Abstract
Seed development is closely related to plant production and reproduction, and MicroRNAs (miRNA) is widely involved in plant development including seed development. Chinese kale, as a Brassicaceae vegetable, mainly depends on seed for proper reproduction. In the present study, Chinese kale seed and silique at different stages were selected to establish small RNA (sRNA) libraries including silique wall sRNA libraries at torpedo-embryo stage (PC), silique wall sRNA libraries at cotyledonary-embryo stage (PD), seed sRNA libraries at torpedo-embryo stage (SC), and seed sRNA libraries at cotyledonary-embryo stage (SD). The results showed that miRNA expressed differentially in the seeds and corresponding siliques at different stages. To further clarify the functional mode of miRNA in the process of seed development, Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis was performed on target genes of the differentially expressed miRNAs, and these target genes were mainly enriched in plant hormone signal transduction, primary and secondary metabolic pathways. After joint analysis with the transcriptome change of the corresponding period, miR156-SPL10/SPL11, miR395-APS3, and miR397-LAC2/LAC11 modules were identified to be directly involved in the development of Chinese kale seeds. What's more, modified 5'RLM-RACE and Agrobacteria-mediated Chinese kale transient transformation suggest miR395b_2 is involved in sulfur metabolism during seed development by regulating its target gene APS3.
Collapse
Affiliation(s)
- Weiling Tang
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijiao Zhao
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiajing Zeng
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zunwen Li
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenlin Fu
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengyu Yang
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donglin Zeng
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodong Chen
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Rongfang Guo
- College of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
41
|
Fuady AM, van Roon-Mom WMC, Kiełbasa SM, Uh HW, Houwing-Duistermaat JJ. Statistical method for modeling sequencing data from different technologies in longitudinal studies with application to Huntington disease. Biom J 2020; 63:745-760. [PMID: 33350510 PMCID: PMC8049011 DOI: 10.1002/bimj.201900235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/13/2023]
Abstract
Advancement of gene expression measurements in longitudinal studies enables the identification of genes associated with disease severity over time. However, problems arise when the technology used to measure gene expression differs between time points. Observed differences between the results obtained at different time points can be caused by technical differences. Modeling the two measurements jointly over time might provide insight into the causes of these different results. Our work is motivated by a study of gene expression data of blood samples from Huntington disease patients, which were obtained using two different sequencing technologies. At time point 1, DeepSAGE technology was used to measure the gene expression, with a subsample also measured using RNA‐Seq technology. At time point 2, all samples were measured using RNA‐Seq technology. Significant associations between gene expression measured by DeepSAGE and disease severity using data from the first time point could not be replicated by the RNA‐Seq data from the second time point. We modeled the relationship between the two sequencing technologies using the data from the overlapping samples. We used linear mixed models with either DeepSAGE or RNA‐Seq measurements as the dependent variable and disease severity as the independent variable. In conclusion, (1) for one out of 14 genes, the initial significant result could be replicated with both technologies using data from both time points; (2) statistical efficiency is lost due to disagreement between the two technologies, measurement error when predicting gene expressions, and the need to include additional parameters to account for possible differences.
Collapse
Affiliation(s)
- Angga M Fuady
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.,Department of Biostatistics and Research Support, Div. Julius Centrum, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hae-Won Uh
- Department of Biostatistics and Research Support, Div. Julius Centrum, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeanine J Houwing-Duistermaat
- Department of Biostatistics and Research Support, Div. Julius Centrum, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Statistics and Alan Turing Institute, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
42
|
Lu Z, Jiang B, Zhao B, Mao X, Lu J, Jin B, Wang L. Liquid profiling in plants: identification and analysis of extracellular metabolites and miRNAs in pollination drops of Ginkgo biloba. TREE PHYSIOLOGY 2020; 40:1420-1436. [PMID: 32542386 DOI: 10.1093/treephys/tpaa073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The pollination drop (PD), also known as an ovular secretion, is a critical feature of most wind-pollinated gymnosperms and function as an essential component of pollination systems. However, the metabolome and small RNAs of gymnosperm PDs are largely unknown. We employed gas chromatography-mass spectrometry to identify a total of 101 metabolites in Ginkgo biloba L. PDs. The most abundant metabolites were sugars (45.70%), followed by organic acids (15.94%) and alcohols (15.39%) involved in carbohydrate metabolism, glycine, serine and threonine metabolism. Through pollen culture of the PDs, we further demonstrated that the metabolic components of PDs are indispensable for pollen germination and growth; in particular, organic acids and fatty acids play defensive roles against microbial activity. In addition, we successfully constructed a small RNA library and detected 45 known and 550 novel miRNAs in G. biloba PDs. Interestingly, in a comparative analysis of miRNA expression between PDs and ovules, we found that most of the known miRNAs identified in PDs were also expressed in the ovules, implying that miRNAs in PDs may originate from ovules. Further, combining with potential target prediction, degradome validation and transcriptome sequencing, we identified that the interactions of several known miRNAs and their targets in PDs are involved in carbohydrate metabolism, hormone signaling and defense response pathways, consistent with the metabolomics results. Our results broaden the knowledge of metabolite profiling and potential functional roles in gymnosperm PDs and provide the first evidence of extracellular miRNA functions in ovular secretions from gymnosperms.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Bei Jiang
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Beibei Zhao
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xinyu Mao
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Jinkai Lu
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| |
Collapse
|
43
|
Zhang Y, Jiao Y, Li Y, Tian Q, Du X, Deng Y. Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110508. [PMID: 32992005 DOI: 10.1016/j.cbpb.2020.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA molecules with post-transcriptional regulatory activity in various biological processes. Pearl oyster Pinctada fucata martensii is one of the main species cultured for marine pearl production in China and Japan. In this study, we constructed two small RNA libraries of mantle central (MC) and mantle edge (ME) from P. f. martensii and obtained 24,175,537 and 21,593,898 clean reads, respectively. A total of 258 miRNAs of P. f. martensii (Pm-miRNA) were identified, and 93 differentially expressed miRNAs (DEMs) including 49 known Pm-miRNAs and 44 novel Pm-miRNAs were obtained from the MC and ME. The target transcripts of these DEMs were obviously enriched in neuroactive ligand-receptor interaction pathway, and others. After over-expression of Pm-miR-124 and Pm-miR-9a-5p in the MC by mimic injection into the muscle of P. f. martensii, nacre exhibited a disorderly growth as detected by scanning electron microscopy. Pm-nicotinic acetylcholine receptor alpha subunit, Pm-neuropeptide Y and Pm-chitin synthase were investigated as the targets of Pm-miR-124; and Pm-tumor necrosis factor receptor associated factor 2 and Pm-chitin synthase were investigated as the targets of Pm-miR-9a-5p. These predicted target transcripts were down-regulated after the over-expression of Pm-miR-124 and Pm-miR-9a-5p in MC. This study comprehensively analyzed the miRNAs in mantle tissues to enhance our understanding of the regulatory mechanism underlying shell formation.
Collapse
Affiliation(s)
- Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yiping Li
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qunli Tian
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China.
| |
Collapse
|
44
|
Li C, Zhu J, Shi H, Luo J, Zhao W, Shi H, Xu H, Wang H, Loor JJ. Comprehensive Transcriptome Profiling of Dairy Goat Mammary Gland Identifies Genes and Networks Crucial for Lactation and Fatty Acid Metabolism. Front Genet 2020; 11:878. [PMID: 33101357 PMCID: PMC7545057 DOI: 10.3389/fgene.2020.00878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022] Open
Abstract
Milk fatty acids secreted by the mammary gland are one of the most important determinants of the nutritional value of goat milk. Unlike cow milk, limited data are available on the transcriptome-wide changes across stages of lactation in dairy goats. In this study, goat mammary gland tissue collected at peak lactation, cessation of milking, and involution were analyzed with digital gene expression (DGE) sequencing to generate longitudinal transcript profiles. A total of 51,299 unigenes were identified and further annotated to 12,763 genes, of which 9,131 were differentially expressed across various stages of lactation. Most abundant genes and differentially expressed genes (DEGs) were functionally classified through clusters of euKaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 16 possible expression patterns were uncovered, and 13 genes were deemed novel candidates for regulation of lactation in the goat: POLG, SPTA1, KLC, GIT2, COPS3, PDP, CD31, USP16/29/37, TLL1, NCAPH, ABI2, DNAJC4, and MAPK8IP3. In addition, PLA2, CPT1, PLD, GGA, SRPRB, and AP4S1 are proposed as novel and promising candidates regulating mammary fatty acid metabolism. “Butirosin and neomycin biosynthesis” and “Glyoxylate and dicarboxylate metabolism” were the most impacted pathways, and revealed novel metabolic alterations in lipid metabolism as lactation progressed. Overall, the present study provides new insights into the synthesis and metabolism of fatty acids and lipid species in the mammary gland along with more detailed information on molecular regulation of lactogenesis. The major findings will benefit efforts to further improve milk quality in dairy goats.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangjiang Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hengbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wangsheng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huifen Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
45
|
Capstaff NM, Morrison F, Cheema J, Brett P, Hill L, Muñoz-García JC, Khimyak YZ, Domoney C, Miller AJ. Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5689-5704. [PMID: 32599619 PMCID: PMC7501823 DOI: 10.1093/jxb/eraa283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
The use of potential biostimulants is of broad interest in plant science for improving yields. The application of a humic derivative called fulvic acid (FA) may improve forage crop production. FA is an uncharacterized mixture of chemicals and, although it has been reported to increase growth parameters in many species including legumes, its mode of action remains unclear. Previous studies of the action of FA have lacked appropriate controls, and few have included field trials. Here we report yield increases due to FA application in three European Medicago sativa cultivars, in studies which include the appropriate nutritional controls which hitherto have not been used. No significant growth stimulation was seen after FA treatment in grass species in this study at the treatment rate tested. Direct application to bacteria increased Rhizobium growth and, in M. sativa trials, root nodulation was stimulated. RNA transcriptional analysis of FA-treated plants revealed up-regulation of many important early nodulation signalling genes after only 3 d. Experiments in plate, glasshouse, and field environments showed yield increases, providing substantial evidence for the use of FA to benefit M. sativa forage production.
Collapse
Affiliation(s)
- Nicola M Capstaff
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Freddie Morrison
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jitender Cheema
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Juan C Muñoz-García
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
46
|
What Happened in the Hippocampal Axon in a Rat Model of Posttraumatic Stress Disorder. Cell Mol Neurobiol 2020; 42:723-737. [PMID: 32930942 DOI: 10.1007/s10571-020-00960-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023]
Abstract
Studies from postmortem and animal models have revealed altered synapse morphology and function in the brain of posttraumatic stress disorder (PTSD). And the effects of PTSD on dendrites and spines have been reported, however, the effection on axon include microtubule (MT) and synaptic vesicles of presynaptic elements remains unknown. Hippocampus is involved in abnormal memory in PTSD. In the present study, we used the single prolonged stress (SPS) model to mimic PTSD. Quantitative real-time polymerase chain reaction (RT-qPCR) and high-throughput sequencing (GSE153081) were utilized to analyze differentially expressed genes (DEGs) in the hippocampus of control and SPS rats. Immunofluorescence and western blotting were performed to examine change in axon-related proteins. Synaptic function was evaluated by measuring miniature excitatory postsynaptic currents (mEPSCs). RNA-sequencing analysis revealed 230 significantly DEGs between the control and SPS groups. Gene Ontology analysis revealed upregulation in axonemal assembly, MT formation, or movement, but downregulation in axon initial segment and synaptic vesicles fusion in the hippocampus of SPS rats. Increased expression in tau, β-tubulin MAP1B, KIF9, CCDC40, DNAH12 and decreased expression in p-tau, stathmin suggested SPS induced axon extension. Increased protein expression in VAMP, STX1A, Munc18-1 and decreased expression in synaptotagmin-1 suggested SPS induced more SNARE complex formation but decreased ability in synaptic vesicle fusion to presynaptic active zone membrane in the hippocampus of SPS rats. Further, low mEPSC frequency in SPS rats indicated dysfunction in presynaptic membrane. These results suggest that axon extension and synaptic vesicles fusion abnormality are involved in dysfunction of PTSD.
Collapse
|
47
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2020; 112:5086-5100. [PMID: 32919018 DOI: 10.1016/j.ygeno.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
48
|
Down-regulation of the insulin signaling pathway by SHC may correlate with congenital heart disease in Chinese populations. Clin Sci (Lond) 2020; 134:349-358. [PMID: 31971563 DOI: 10.1042/cs20190255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Congenital heart disease (CHD) is one of the most common and severe congenital defects. The incidence of fetal cardiac malformation is increased in the context of maternal gestational diabetes mellitus (GDM). Therefore, we wanted to determine whether abnormalities in the insulin signaling pathway are associated with the occurrence of nonsyndromic CHD (ns-CHD). METHODS We used digital gene expression profiling (DGE) of right atrial myocardial tissue samples from eight ns-CHD patients and four controls. The genes potentially associated with CHD were validated by real-time fluorescence quantitative PCR analysis of right atrial myocardial tissues from 37 patients and 10 controls and the H9C2 cell line. RESULTS The results showed that the insulin signaling pathway, which is mediated by the SHC gene family, was inhibited in the ns-CHD patients. The expression levels of five genes (PTPRF, SHC4, MAP2K2, MKNK2, and ELK1) in the pathway were significantly down-regulated in the patients' atrial tissues (P<0.05 for all). In vitro, the H9C2 cells cultured in high glucose (33 mmol/l) expressed less SHC4, MAP2K2, and Elk-1 than those cultured in low glucose (25 mmol/l). Furthermore, the high glucose concentration down-regulated the 25 genes associated with blood vessel development based on Gene Ontology (GO) term enrichment analyses of RNA-seq data. CONCLUSION We considered that changes in the insulin signaling pathway mediated by SHC might be involved in the heart development process. This mechanism might account for the increase in the incidence of fetal cardiac malformations in the context of GDM.
Collapse
|
49
|
Arias D, Maldonado J, Silva H, Stange C. A de novo transcriptome analysis revealed that photomorphogenic genes are required for carotenoid synthesis in the dark-grown carrot taproot. Mol Genet Genomics 2020; 295:1379-1392. [PMID: 32656704 DOI: 10.1007/s00438-020-01707-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Carotenoids are terpenoid pigments synthesized by all photosynthetic and some non-photosynthetic organisms. In plants, these lipophilic compounds are involved in photosynthesis, photoprotection, and phytohormone synthesis. In plants, carotenoid biosynthesis is induced by several environmental factors such as light including photoreceptors, such as phytochromes (PHYs) and negatively regulated by phytochrome interacting factors (PIFs). Daucus carota (carrot) is one of the few plant species that synthesize and accumulate carotenoids in the storage root that grows in darkness. Contrary to other plants, light inhibits secondary root growth and carotenoid accumulation suggesting the existence of new mechanisms repressed by light that regulate both processes. To identify genes induced by dark and repressed by light that regulate carotenoid synthesis and carrot root development, in this work an RNA-Seq analysis was performed from dark- and light-grown carrot roots. Using this high-throughput sequencing methodology, a de novo transcriptome model with 63,164 contigs was obtained, from which 18,488 were differentially expressed (DEG) between the two experimental conditions. Interestingly, light-regulated genes are preferably expressed in dark-grown roots. Enrichment analysis of GO terms with DEGs genes, validation of the transcriptome model and DEG analysis through qPCR allow us to hypothesize that genes involved in photomorphogenesis and light perception such as PHYA, PHYB, PIF3, PAR1, CRY2, FYH3, FAR1 and COP1 participate in the synthesis of carotenoids and carrot storage root development.
Collapse
Affiliation(s)
- Daniela Arias
- Facultad de Ciencias, Centro de Biología Molecular Vegetal, Universidad de Chile, Las Palmeras, 3425, Ñuñoa, Santiago, Chile
| | - Jonathan Maldonado
- Laboratorio de Genómica Funcional & Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa 11315, 8820808, La Pintana, Santiago, Chile
| | - Herman Silva
- Laboratorio de Genómica Funcional & Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, Av. Santa Rosa 11315, 8820808, La Pintana, Santiago, Chile
| | - Claudia Stange
- Facultad de Ciencias, Centro de Biología Molecular Vegetal, Universidad de Chile, Las Palmeras, 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
50
|
Liu M, Zhang Z, Ding C, Wang T, Kelly B, Wang P. Transcriptomic Analysis of Extracellular RNA Governed by the Endocytic Adaptor Protein Cin1 of Cryptococcus deneoformans. Front Cell Infect Microbiol 2020; 10:256. [PMID: 32656093 PMCID: PMC7324655 DOI: 10.3389/fcimb.2020.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Membrane vesicles are considered virulence cargoes as they carry capsular and melanin components whose secretory transport is critical for the virulence of the human fungal pathogen Cryptococcus species. However, other components of the vesicles and their function in the growth and virulence of the fungus remain unclear. We have previously found that the cryptococcal intersectin protein Cin1 governs a unique Cin1-Wsp1-Cdc42 endocytic pathway required for intracellular transport and virulence. Using RNA sequencing, we compared the profiles of extracellular RNA (exRNA), including microRNA (miRNA), small interference RNA (siRNA), long noncoding RNA (lncRNA), and messenger RNA (mRNA) between the wild-type (WT), and derived Δcin1 mutant strains of Cryptococcus deneoformans. Seven hundred twelve miRNAs and 88 siRNAs were identified from WT, whereas 799 miRNAs and 66 siRNAs were found in Δcin1. Also, 572 lncRNAs and 7,721 mRNAs were identified from WT and 584 lncRNAs and 7,703 mRNAs from Δcin1. Differential expression analysis revealed that the disruption of CIN1 results in many important cellular changes, including those in exRNA expression, transport, and function. First, for miRNA target genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that cellular processes, components, and macromolecular functions are the most affected pathways. A higher number of genes were involved in the intracellular transport of endocytosis. Second, the results of GO term and KEGG analysis of differentially expressed lncRNA target genes and mRNA genes were consistent with those of miRNA targets. In particular, protein export is the topmost affected pathway among lncRNA target genes and one of the affected pathways among mRNA genes. The result of quantitative real-time reverse transcription PCR (qRT-PCR) from 12 mRNAs tested is largely agreeable with that of RNA-Seq. Taken together, our studies provide a comprehensive reference that Cryptococcus secretes abundant RNAs and that Cin1 plays a critical role in regulating their secretion. Given the growing clinical importance of exRNAs, our studies illuminate the significance of exploring this cutting-edge technology in studies of cryptococcal pathogenesis for the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Liaoning, China
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States
| | - Ben Kelly
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|