1
|
Mack SJ, Single RM, Solberg OD, Thomson G, Erlich HA. Population Genetic Dissection of HLA-DPB1 Amino Acid Polymorphism to Infer Selection. Hum Immunol 2024; 85:111151. [PMID: 39413638 DOI: 10.1016/j.humimm.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPβ diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
Collapse
Affiliation(s)
- Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
2
|
Lee JW, Chen EY, Hu T, Perret R, Chaffee ME, Martinov T, Mureli S, McCurdy CL, Jones LA, Gafken PR, Chanana P, Su Y, Chapuis AG, Bradley P, Schmitt TM, Greenberg PD. Overcoming immune evasion from post-translational modification of a mutant KRAS epitope to achieve TCR-T cell-mediated antitumor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.612965. [PMID: 39345486 PMCID: PMC11429761 DOI: 10.1101/2024.09.18.612965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
T cell receptor (TCR)-T cell immunotherapy, in which T cells are engineered to express a TCR targeting a tumor epitope, is a form of adoptive cell therapy (ACT) that has exhibited promise against various tumor types. Mutants of oncoprotein KRAS, particularly at glycine-12 (G12), are frequent drivers of tumorigenicity, making them attractive targets for TCR-T cell therapy. However, class I-restricted TCRs specifically targeting G12-mutant KRAS epitopes in the context of tumors expressing HLA-A2, the most common human HLA-A allele, have remained elusive despite evidence an epitope encompassing such mutations can bind HLA-A2 and induce T cell responses. We report post-translational modifications (PTMs) on this epitope may allow tumor cells to evade immunologic pressure from TCR-T cells. A lysine side chain-methylated KRAS G12V peptide, rather than the unmodified epitope, may be presented in HLA-A2 by tumor cells and impact TCR recognition. Using a novel computationally guided approach, we developed by mutagenesis TCRs that recognize this methylated peptide, enhancing tumor recognition and destruction. Additionally, we identified TCRs with similar functional activity in normal repertoires from primary T cells by stimulation with modified peptide, clonal expansion, and selection. Mechanistically, a gene knockout screen to identify mechanism(s) by which tumor cells methylate/demethylate this epitope unveiled SPT6 as a demethylating protein that could be targeted to improve effectiveness of these new TCRs. Our findings highlight the role of PTMs in immune evasion and suggest identifying and targeting such modifications should make effective ACTs available for a substantially greater range of tumors than the current therapeutic landscape. One-sentence summary Tumor cell methylation of KRAS G12V epitope in HLA-A2 permits immune evasion, and new TCRs were generated to overcome this with engineered cell therapy.
Collapse
|
3
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
4
|
Ryan JC, Haight C, Niemi EC, Grab JD, Dodge JL, Lanier LL, Monto A. Hepatocellular carcinoma after direct-acting antivirals for hepatitis C is associated with KIR-HLA types predicting weak NK cell-mediated immunity. Eur J Immunol 2024; 54:e2350678. [PMID: 38700055 DOI: 10.1002/eji.202350678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIMS Second-generation direct-acting antivirals (2G DAA) to cure HCV have led to dramatic clinical improvements. HCV-associated hepatocellular carcinoma (HCC), however, remains common. Impaired immune tumor surveillance may play a role in HCC development. Our cohort evaluated the effects of innate immune types and clinical variables on outcomes including HCC. METHODS Participants underwent full HLA class I/KIR typing and long-term HCV follow-up. RESULTS A total of 353 HCV+ participants were followed for a mean of 7 years. Cirrhosis: 25% at baseline, developed in 12% during follow-up. 158 participants received 2G DAA therapy. HCC developed without HCV therapy in 20 subjects, 24 HCC after HCV therapy, and 10 of these after 2G DAA. Two predictors of HCC among 2G DAA-treated patients: cirrhosis (OR, 10.0, p = 0.002) and HLA/KIR profiles predicting weak natural killer (NK) cell-mediated immunity (NK cell complementation groups 6, 9, 11, 12, OR of 5.1, p = 0.02). Without 2G DAA therapy: cirrhosis was the main clinical predictor of HCC (OR, 30.8, p < 0.0001), and weak NK-cell-mediated immunity did not predict HCC. CONCLUSION Cirrhosis is the main risk state predisposing to HCC, but weak NK-cell-mediated immunity may predispose to post-2G DAA HCC more than intermediate or strong NK-cell-mediated immunity.
Collapse
Affiliation(s)
- James C Ryan
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Division of Gastroenterology, University of California, San Francisco, California, USA
| | - Christina Haight
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Erene C Niemi
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Joshua D Grab
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jennifer L Dodge
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Alexander Monto
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
- Division of Gastroenterology, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, Merk H, Gourley I, Komocsar WJ, Piccotti JR, Balazs M, Sharma A, Walker DB, Weinstock D. Drug hypersensitivity reactions: review of the state of the science for prediction and diagnosis. Toxicol Sci 2024; 200:11-30. [PMID: 38588579 PMCID: PMC11199923 DOI: 10.1093/toxsci/kfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas nonallergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low-molecular weight drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.
Collapse
Affiliation(s)
- Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, 91400, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM, CEA, Center for Research in Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre, 94270, France
| | - Jessica Whritenour
- Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA
| | - Shermaine Mitchell-Ryan
- The Health and Environmental Science Institute, Immunosafety Technical Committee, Washington, District of Columbia 20005, USA
| | - Danuta Herzyk
- Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Herve Lebrec
- Amgen Inc., Translational Safety and Bioanalytical Sciences, South San Francisco, California 94080, USA
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, 52062, Germany
| | - Ian Gourley
- Janssen Research & Development, LLC, Immunology Clinical Development, Spring House, Pennsylvania 19002, USA
| | - Wendy J Komocsar
- Immunology Business Unit, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | | | - Mercedesz Balazs
- Genentech, Biochemical and Cellular Pharmacology, South San Francisco, California 94080, USA
| | - Amy Sharma
- Pfizer, Drug Safety Research & Development, New York 10017, USA
| | - Dana B Walker
- Novartis Institute for Biomedical Research, Preclinical Safety-Translational Immunology and Clinical Pathology, Cambridge, Massachusetts 02139, USA
| | - Daniel Weinstock
- Janssen Research & Development, LLC, Preclinical Sciences Translational Safety, Spring House, Pennsylvania 19002, USA
| |
Collapse
|
6
|
Silva NSB, Bourguiba-Hachemi S, Ciriaco VAO, Knorst SHY, Carmo RT, Masotti C, Meyer D, Naslavsky MS, Duarte YAO, Zatz M, Gourraud PA, Limou S, Castelli EC, Vince N. A multi-ethnic reference panel to impute HLA classical and non-classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil. HLA 2024; 103:e15543. [PMID: 38837862 DOI: 10.1111/tan.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.
Collapse
Affiliation(s)
- Nayane S B Silva
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
- Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Sonia Bourguiba-Hachemi
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Viviane A O Ciriaco
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Stefan H Y Knorst
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Ramon T Carmo
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Cibele Masotti
- Department of Molecular Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Michel S Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Yeda A O Duarte
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, State of São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University, Botucatu, State of São Paulo, Brazil
- Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, State of São Paulo, Brazil
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| |
Collapse
|
7
|
Sanchez-Mazas A, Nunes JM. The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract Res Clin Haematol 2024; 37:101559. [PMID: 39098805 DOI: 10.1016/j.beha.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
A comprehensive knowledge of human leukocyte antigen (HLA) molecular variation worldwide is essential in human population genetics research and disease association studies and is also indispensable for clinical applications such as allogeneic hematopoietic cell transplantation, where ensuring HLA compatibility between donors and recipients is paramount. Enormous progress has been made in this field thanks to several decades of HLA population studies allowing the development of helpful databases and bioinformatics tools. However, it is still difficult to appraise the global HLA population diversity in a synthetic way. We thus introduce here a novel approach, based on approximately 2000 data sets, to assess this complexity by providing a fundamental synopsis of the most frequent HLA alleles observed in different regions of the world. This new knowledge will be useful not only as a fundamental reference for basic research, but also as an efficient guide for clinicians working in the field of transplantation.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| |
Collapse
|
8
|
Andrade KCR, Homem-de-Mello M, Motta JA, Borges MG, de Abreu JAC, de Souza PM, Pessoa A, Pappas GJ, de Oliveira Magalhães P. A Structural In Silico Analysis of the Immunogenicity of L-Asparaginase from Penicillium cerradense. Int J Mol Sci 2024; 25:4788. [PMID: 38732010 PMCID: PMC11084778 DOI: 10.3390/ijms25094788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
L-asparaginase is an essential drug used to treat acute lymphoid leukemia (ALL), a cancer of high prevalence in children. Several adverse reactions associated with L-asparaginase have been observed, mainly caused by immunogenicity and allergenicity. Some strategies have been adopted, such as searching for new microorganisms that produce the enzyme and applying protein engineering. Therefore, this work aimed to elucidate the molecular structure and predict the immunogenic profile of L-asparaginase from Penicillium cerradense, recently revealed as a new fungus of the genus Penicillium and producer of the enzyme, as a motivation to search for alternatives to bacterial L-asparaginase. In the evolutionary relationship, L-asparaginase from P. cerradense closely matches Aspergillus species. Using in silico tools, we characterized the enzyme as a protein fragment of 378 amino acids (39 kDa), including a signal peptide containing 17 amino acids, and the isoelectric point at 5.13. The oligomeric state was predicted to be a homotetramer. Also, this L-asparaginase presented a similar immunogenicity response (T- and B-cell epitopes) compared to Escherichia coli and Dickeya chrysanthemi enzymes. These results suggest a potentially useful L-asparaginase, with insights that can drive strategies to improve enzyme production.
Collapse
Affiliation(s)
- Kellen Cruvinel Rodrigues Andrade
- Laboratory of Natural Products, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (K.C.R.A.)
| | - Mauricio Homem-de-Mello
- inSiliTox, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Julia Almeida Motta
- inSiliTox, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marina Guimarães Borges
- Laboratory of Natural Products, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (K.C.R.A.)
| | - Joel Antônio Cordeiro de Abreu
- Laboratory of Natural Products, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (K.C.R.A.)
| | - Paula Monteiro de Souza
- Laboratory of Natural Products, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (K.C.R.A.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Georgios J. Pappas
- Department Cell Biology, Institute Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Pérola de Oliveira Magalhães
- Laboratory of Natural Products, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (K.C.R.A.)
| |
Collapse
|
9
|
Naidoo L, Arumugam T, Ramsuran V. Narrative Review Explaining the Role of HLA-A, -B, and -C Molecules in COVID-19 Disease in and around Africa. Infect Dis Rep 2024; 16:380-406. [PMID: 38667755 PMCID: PMC11049896 DOI: 10.3390/idr16020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has left a devasting effect on various regions globally. Africa has exceptionally high rates of other infectious diseases, such as tuberculosis (TB), human immunodeficiency virus (HIV), and malaria, and was not impacted by COVID-19 to the extent of other continents Globally, COVID-19 has caused approximately 7 million deaths and 700 million infections thus far. COVID-19 disease severity and susceptibility vary among individuals and populations, which could be attributed to various factors, including the viral strain, host genetics, environment, lifespan, and co-existing conditions. Host genetics play a substantial part in COVID-19 disease severity among individuals. Human leukocyte antigen (HLA) was previously been shown to be very important across host immune responses against viruses. HLA has been a widely studied gene region for various disease associations that have been identified. HLA proteins present peptides to the cytotoxic lymphocytes, which causes an immune response to kill infected cells. The HLA molecule serves as the central region for infectious disease association; therefore, we expect HLA disease association with COVID-19. Therefore, in this narrative review, we look at the HLA gene region, particularly, HLA class I, to understand its role in COVID-19 disease.
Collapse
Affiliation(s)
- Lisa Naidoo
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (L.N.); (T.A.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
10
|
Fein JA, Shouval R, Krieger E, Spellman SR, Wang T, Baldauf H, Fleischhauer K, Kröger N, Horowitz M, Maiers M, Miller JS, Mohty M, Nagler A, Weisdorf D, Malmberg KJ, Toor AA, Schetelig J, Romee R, Koreth J. Systematic evaluation of donor-KIR/recipient-HLA interactions in HLA-matched hematopoietic cell transplantation for AML. Blood Adv 2024; 8:581-590. [PMID: 38052043 PMCID: PMC10837477 DOI: 10.1182/bloodadvances.2023011622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), donor natural killer cell killer immunoglobulin-like receptors (KIR) and recipient HLA interactions may contribute to the graft-versus-leukemia effect of allogeneic hematopoietic cell transplantation (HCT). Analyses of individual KIR/HLA interactions, however, have yielded conflicting findings, and their importance in the HLA-matched unrelated donor (MUD) setting remains controversial. We systematically studied outcomes of individual donor-KIR/recipient-HLA interactions for HCT outcomes and empirically evaluated prevalent KIR genotypes for clinical benefit. Adult patients with AML (n = 2025) who received HCT with MUD grafts in complete remission reported to the Center for International Blood and Marrow Transplantation were evaluated. Only the donor-2DL2+/recipient-HLA-C1+ pair was associated with reduced relapse (hazard ratio [HR], 0.79; 95% confidence interval [CI], 0.67-0.93; P = .006) compared with donor-2DL2-/recipient-HLA-C1+ pair. However, no association was found when comparing HLA-C groups among KIR-2DL2+-graft recipients. We identified 9 prevalent donor KIR genotypes in our cohort and screened them for association with relapse risk. Genotype 5 (G5) in all recipients and G3 in Bw4+ recipients were associated with decreased relapse risk (HR, 0.52; 95% CI, 0.35-0.78; P = .002; and HR, 0.32; 95% CI, 0.14-0.72; P = .006; respectively) and G2 (HR 1.63, 95% CI, 1.15-2.29; P = .005) with increased relapse risk in C1-homozygous recipients, compared with other patients with the same ligand. However, we could not validate these findings in an external data set of 796 AML transplants from the German transplantation registry. Neither a systematic evaluation of known HLA-KIR interactions nor an empiric assessment of prevalent KIR genotypes demonstrated clinically actionable associations; therefore, these data do not support these KIR-driven strategies for MUD selection in AML.
Collapse
Affiliation(s)
- Joshua A. Fein
- Depatment of Hematology and Medical Oncology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Roni Shouval
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Krieger
- Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Henning Baldauf
- Clinical Trials Unit, DKMS Bone Marrow Registry, Tübingen, Germany
| | | | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mary Horowitz
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Martin Maiers
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN
| | - Mohamad Mohty
- Department of Hematology, Saint Antoine Hospital, Sorbonne University, Paris, France
| | - Arnon Nagler
- Division of Hematoloy, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Daniel Weisdorf
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Amir A. Toor
- Topper Cancer Institute, Lehigh Valley Health Network, Allentown, PA
| | - Johannes Schetelig
- Clinical Trials Unit, DKMS Bone Marrow Registry, Tübingen, Germany
- Medizinische Klinik I, University Hospital TU Dresden, Dresden, Germany
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - John Koreth
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| |
Collapse
|
11
|
Sverchkova A, Burkholz S, Rubsamen R, Stratford R, Clancy T. Integrative HLA typing of tumor and adjacent normal tissue can reveal insights into the tumor immune response. BMC Med Genomics 2024; 17:37. [PMID: 38281021 PMCID: PMC10821267 DOI: 10.1186/s12920-024-01808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND The HLA complex is the most polymorphic region of the human genome, and its improved characterization can help us understand the genetics of human disease as well as the interplay between cancer and the immune system. The main function of HLA genes is to recognize "non-self" antigens and to present them on the cell surface to T cells, which instigate an immune response toward infected or transformed cells. While sequence variation in the antigen-binding groove of HLA may modulate the repertoire of immunogenic antigens presented to T cells, alterations in HLA expression can significantly influence the immune response to pathogens and cancer. METHODS RNA sequencing was used here to accurately genotype the HLA region and quantify and compare the level of allele-specific HLA expression in tumors and patient-matched adjacent normal tissue. The computational approach utilized in the study types classical and non-classical Class I and Class II HLA alleles from RNA-seq while simultaneously quantifying allele-specific or personalized HLA expression. The strategy also uses RNA-seq data to infer immune cell infiltration into tumors and the corresponding immune cell composition of matched normal tissue, to reveal potential insights related to T cell and NK cell interactions with tumor HLA alleles. RESULTS The genotyping method outperforms existing RNA-seq-based HLA typing tools for Class II HLA genotyping. Further, we demonstrate its potential for studying tumor-immune interactions by applying the method to tumor samples from two different subtypes of breast cancer and their matched normal breast tissue controls. CONCLUSIONS The integrative RNA-seq-based HLA typing approach described in the study, coupled with HLA expression analysis, neoantigen prediction and immune cell infiltration, may help increase our understanding of the interplay between a patient's tumor and immune system; and provide further insights into the immune mechanisms that determine a positive or negative outcome following treatment with immunotherapy such as checkpoint blockade.
Collapse
Affiliation(s)
- Angelina Sverchkova
- NEC OncoImmunity, Oslo Cancer Cluster, Innovation Park, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Scott Burkholz
- Flow Pharma, Inc, Warrensville Heights, Galaxy Parkway, OH, 4829, USA
| | - Reid Rubsamen
- Flow Pharma, Inc, Warrensville Heights, Galaxy Parkway, OH, 4829, USA
- University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Richard Stratford
- NEC OncoImmunity, Oslo Cancer Cluster, Innovation Park, Oslo, Norway
| | - Trevor Clancy
- NEC OncoImmunity, Oslo Cancer Cluster, Innovation Park, Oslo, Norway.
| |
Collapse
|
12
|
Silva NSB, Bourguiba-Hachemi S, Douillard V, Koskela S, Degenhardt F, Clancy J, Limou S, Meyer D, Masotti C, Knorst S, Naslavsky MS, Franke A, Castelli EC, Gourraud PA, Vince N. 18th International HLA and Immunogenetics Workshop: Report on the SNP-HLA Reference Consortium (SHLARC) component. HLA 2024; 103:e15293. [PMID: 37947386 DOI: 10.1111/tan.15293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The SNP-HLA Reference Consortium (SHLARC), a component of the 18th International HLA and Immunogenetics Workshop, is aimed at collecting diverse and extensive human leukocyte antigen (HLA) data to create custom reference panels and enhance HLA imputation techniques. Genome-wide association studies (GWAS) have significantly contributed to identifying genetic associations with various diseases. The HLA genomic region has emerged as the top locus in GWAS, particularly in immune-related disorders. However, the limited information provided by single nucleotide polymorphisms (SNPs), the hallmark of GWAS, poses challenges, especially in the HLA region, where strong linkage disequilibrium (LD) spans several megabases. HLA imputation techniques have been developed using statistical inference in response to these challenges. These techniques enable the prediction of HLA alleles from genotyped GWAS SNPs. Here we present the SHLARC activities, a collaborative effort to create extensive, and multi-ethnic reference panels to enhance HLA imputation accuracy.
Collapse
Affiliation(s)
- Nayane S B Silva
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Venceslas Douillard
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Satu Koskela
- Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany
| | - Jonna Clancy
- Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Cibele Masotti
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Stefan Knorst
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, Brazil
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, Ecole Centrale Nantes, Nantes, France
| |
Collapse
|
13
|
Gonzalez-Galarza FF, McCabe A, Melo Dos Santos EJ, Ghattaoraya G, Jones AR, Middleton D. Allele Frequency Net Database. Methods Mol Biol 2024; 2809:19-36. [PMID: 38907888 DOI: 10.1007/978-1-0716-3874-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The allele frequency net database (AFND, http://www.allelefrequencies.net ) is an online web-based repository that contains information on the frequencies of immune-related genes and their corresponding alleles in worldwide human populations. At present, the website contains data from 1784 population samples in more than 14 million individuals from 129 countries on the frequency of genes from different polymorphic regions including data for the human leukocyte antigen (HLA) system. In addition, over the last four years, AFND has also incorporated genotype raw data from 85,000 individuals comprising 215 population samples from 39 countries. Moreover, more population data sets containing next generation sequencing data spanning >3 million individuals have been added. This resource has been widely used in a variety of contexts such as histocompatibility, immunology, epidemiology, pharmacogenetics, epitope prediction algorithms for population coverage in vaccine development, population genetics, among many others. In this chapter, we present an update of the most used searching mechanisms as described in a previous volume and some of the latest developments included in AFND.
Collapse
Affiliation(s)
- Faviel F Gonzalez-Galarza
- Department of Molecular Immunobiology, Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Coahuila, Mexico.
| | - Antony McCabe
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Eduardo J Melo Dos Santos
- Genetic of Complex Diseases, Institute of Biological Sciences, Federal University of Para, Belém, Brazil
| | - Gurpreet Ghattaoraya
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Derek Middleton
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Zhu X, Yu Y, Zhang J, Zhan Y, Luo G, Zheng L. Accurate identification of HLA-B*15:02 allele by two-dimensional polymerase chain reaction. Clin Chim Acta 2024; 552:117654. [PMID: 37972805 DOI: 10.1016/j.cca.2023.117654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND HLA-B*15:02 is highly associated with carbamazepine-induced SJS/TEN; however, there is no rapid and accurate detecting method. Here, we present a method to distinguish HLA-B*15:02 from 16 highly homologous HLA-B*15 alleles. METHODS The high-throughput two-dimensional polymerase chain reaction (2D-PCR) technology was employed to identify HLA-B*15:02 in two-tube reaction. And, 2D-PCR accuracy was verified by PCR-sequence based typing (PCR-SBT). RESULTS HLA-B*15:02 heterozygotes were identified by 14 melting valleys in the first tube reaction and none in the second, or by 13 melting valleys in the first tube reaction and one in the second. HLA-B*15:02 homozygote was identified by 13 melting valleys in the first tube reaction and none in the second. Three (0.16%) HLA-B*15:02 homozygotes and 84 (4.59%) HLA-B*15:02 heterozygotes were detected in 1830 samples of clinical general population without detecting 16 highly homologous alleles to HLA-B*15:02. The kappa test showed 100% coincidence between the 2D-PCR and PCR-SBT. CONCLUSIONS 2D-PCR in two-tube reaction method for identifying HLA-B*15:02 was successfully established. Identification of HLA-B*15:02 is necessary prior to taking CBZ based on HLA-B*15:02 allele frequency.
Collapse
Affiliation(s)
- Xueting Zhu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yang Yu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Zhang
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuxia Zhan
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
15
|
McShan AC, Flores-Solis D, Sun Y, Garfinkle SE, Toor JS, Young MC, Sgourakis NG. Conformational plasticity of RAS Q61 family of neoepitopes results in distinct features for targeted recognition. Nat Commun 2023; 14:8204. [PMID: 38081856 PMCID: PMC10713829 DOI: 10.1038/s41467-023-43654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The conformational landscapes of peptide/human leucocyte antigen (pHLA) protein complexes encompassing tumor neoantigens provide a rationale for target selection towards autologous T cell, vaccine, and antibody-based therapeutic modalities. Here, using complementary biophysical and computational methods, we characterize recurrent RAS55-64 Q61 neoepitopes presented by the common HLA-A*01:01 allotype. We integrate sparse NMR restraints with Rosetta docking to determine the solution structure of NRASQ61K/HLA-A*01:01, which enables modeling of other common RAS55-64 neoepitopes. Hydrogen/deuterium exchange mass spectrometry experiments alongside molecular dynamics simulations reveal differences in solvent accessibility and conformational plasticity across a panel of common Q61 neoepitopes that are relevant for recognition by immunoreceptors. Finally, we predict binding and provide structural models of NRASQ61K antigens spanning the entire HLA allelic landscape, together with in vitro validation for HLA-A*01:191, HLA-B*15:01, and HLA-C*08:02. Our work provides a basis to delineate the solution surface features and immunogenicity of clinically relevant neoepitope/HLA targets for cancer therapy.
Collapse
Affiliation(s)
- Andrew C McShan
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA, 30318, USA
| | - David Flores-Solis
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold Straße 3A, 37075, Göttingen, Germany
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel E Garfinkle
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jugmohit S Toor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI, 48202, USA
| | - Michael C Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Karpov DS, Sosnovtseva AO, Pylina SV, Bastrich AN, Petrova DA, Kovalev MA, Shuvalova AI, Eremkina AK, Mokrysheva NG. Challenges of CRISPR/Cas-Based Cell Therapy for Type 1 Diabetes: How Not to Engineer a "Trojan Horse". Int J Mol Sci 2023; 24:17320. [PMID: 38139149 PMCID: PMC10743607 DOI: 10.3390/ijms242417320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of insulin-producing β-cells in the pancreas by cytotoxic T-cells. To date, there are no drugs that can prevent the development of T1D. Insulin replacement therapy is the standard care for patients with T1D. This treatment is life-saving, but is expensive, can lead to acute and long-term complications, and results in reduced overall life expectancy. This has stimulated the research and development of alternative treatments for T1D. In this review, we consider potential therapies for T1D using cellular regenerative medicine approaches with a focus on CRISPR/Cas-engineered cellular products. However, CRISPR/Cas as a genome editing tool has several drawbacks that should be considered for safe and efficient cell engineering. In addition, cellular engineering approaches themselves pose a hidden threat. The purpose of this review is to critically discuss novel strategies for the treatment of T1D using genome editing technology. A well-designed approach to β-cell derivation using CRISPR/Cas-based genome editing technology will significantly reduce the risk of incorrectly engineered cell products that could behave as a "Trojan horse".
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Svetlana V. Pylina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Asya N. Bastrich
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Darya A. Petrova
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (A.O.S.); (M.A.K.); (A.I.S.)
| | - Anna K. Eremkina
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| | - Natalia G. Mokrysheva
- Endocrinology Research Centre, 115478 Moscow, Russia; (S.V.P.); (A.N.B.); (D.A.P.); (A.K.E.)
| |
Collapse
|
17
|
Wang ZZ, Zeng R, Wu ZW, Wang C, Jiang HQ, Wang HS. Overview and Current Advances in Dapsone Hypersensitivity Syndrome. Curr Allergy Asthma Rep 2023; 23:635-645. [PMID: 37804376 DOI: 10.1007/s11882-023-01109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE OF REVIEW As a sulfone antibacterial agent, dapsone has been widely used to treat leprosy. Moreover, dapsone is also used in many immune diseases such as herpetic dermatitis because of its anti-inflammatory and immunomodulatory effects. However, dapsone can cause several adverse effects, the most serious being dapsone hypersensitivity syndrome. Dapsone hypersensitivity syndrome is characterized by a triad of eruptions, fever, and organ involvement, which limits the application of dapsone to some extent. RECENT FINDINGS In this article, we review current research about the interaction model between HLA-B*13:01, dapsone, and specific TCR in dapsone-induced drug hypersensitivity. In addition to the proposed mechanisms, we also discussed clinical features, treatment progress, prevalence, and prevention of dapsone hypersensitivity syndrome. These studies reveal the pathogenesis, clinical features, and prevalence from the perspectives of genetic susceptibility and innate and adaptive immunity in dapsone hypersensitivity syndrome, thereby guiding clinicians on how to diagnose, prevent, and treat dapsone hypersensitivity syndrome.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- Hospital of Skin Diseases and Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, St. 12 Jiangwangmiao, Nanjing, Jiangsu, China
| | - Rui Zeng
- Hospital of Skin Diseases and Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, St. 12 Jiangwangmiao, Nanjing, Jiangsu, China
| | - Zi-Wei Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hai-Qin Jiang
- Hospital of Skin Diseases and Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, St. 12 Jiangwangmiao, Nanjing, Jiangsu, China.
| | - Hong-Sheng Wang
- Hospital of Skin Diseases and Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, St. 12 Jiangwangmiao, Nanjing, Jiangsu, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Guin D, Hasija Y, Kukreti R. Assessment of clinically actionable pharmacogenetic markers to stratify anti-seizure medications. THE PHARMACOGENOMICS JOURNAL 2023; 23:149-160. [PMID: 37626111 DOI: 10.1038/s41397-023-00313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Epilepsy treatment is challenging due to heterogeneous syndromes, different seizure types and higher inter-individual variability. Identification of genetic variants predicting drug efficacy, tolerability and risk of adverse-effects for anti-seizure medications (ASMs) is essential. Here, we assessed the clinical actionability of known genetic variants, based on their functional and clinical significance and estimated their diagnostic predictability. We performed a systematic PubMed search to identify articles with pharmacogenomic (PGx) information for forty known ASMs. Functional annotation of the identified genetic variants was performed using different in silico tools, and their clinical significance was assessed using the American College of Medical Genetics (ACMG) guidelines for variant pathogenicity, level of evidence (LOE) from PharmGKB and the United States-Food and drug administration (US- FDA) drug labelling with PGx information. Diagnostic predictability of the replicated genetic variants was evaluated by calculating their accuracy. A total of 270 articles were retrieved with PGx evidence associated with 19 ASMs including 178 variants across 93 genes, classifying 26 genetic variants as benign/ likely benign, fourteen as drug response markers and three as risk factors for drug response. Only seventeen of these were replicated, with accuracy (up to 95%) in predicting PGx outcomes specific to six ASMs. Eight out of seventeen variants have FDA-approved PGx drug labelling for clinical implementation. Therefore, the remaining nine variants promise for potential clinical actionability and can be improvised with additional experimental evidence for clinical utility.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Liao SY, Fingerlin T, Maier L. Genetic predisposition to sarcoidosis. J Autoimmun 2023:103122. [PMID: 37865580 DOI: 10.1016/j.jaut.2023.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Sarcoidosis is a complex systemic disease with clinical heterogeneity based on varying phenotypes and natural history. The detailed etiology of sarcoidosis remains unknown, but genetic predisposition as well as environmental exposures play a significant role in disease pathogenesis. We performed a comprehensive review of germline genetic (DNA) and transcriptomic (RNA) studies of sarcoidosis, including both previous studies and more recent findings. In this review, we provide an assessment of the following: genetic variants in sarcoidosis susceptibility and phenotypes, ancestry- and sex-specific genetic variants in sarcoidosis, shared genetic architecture between sarcoidosis and other diseases, and gene-environment interactions in sarcoidosis. We also highlight the unmet needs in sarcoidosis genetic studies, including the pressing requirement to include diverse populations and have consistent definitions of phenotypes in the sarcoidosis research community to help advance the application of genetic predisposition to sarcoidosis disease risk and manifestations.
Collapse
Affiliation(s)
- Shu-Yi Liao
- National Jewish Health, Department of Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA; Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Tasha Fingerlin
- National Jewish Health, Department of Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA; Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; National Jewish Health, Department of Immunology and Genomic Medicine, Denver, CO, USA
| | - Lisa Maier
- National Jewish Health, Department of Medicine, Denver, CO, USA; University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA; Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
20
|
Hamm SR, Saini SK, Hald A, Vaaben AV, Pedersen NW, Suarez-Zdunek MA, Harboe ZB, Bruunsgaard H, Johansen IS, Larsen CS, Bistrup C, Birn H, Sørensen SS, Hadrup SR, Nielsen SD. Herpes Virus Infections in Kidney Transplant Patients (HINT) - a prospective observational cohort study. BMC Infect Dis 2023; 23:687. [PMID: 37845608 PMCID: PMC10578002 DOI: 10.1186/s12879-023-08663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Kidney transplant recipients receive maintenance immunosuppressive therapy to avoid allograft rejection resulting in increased risk of infections and infection-related morbidity and mortality. Approximately 98% of adults are infected with varicella zoster virus, which upon reactivation causes herpes zoster. The incidence of herpes zoster is higher in kidney transplant recipients than in immunocompetent individuals, and kidney transplant recipients are at increased risk of severe herpes zoster-associated disease. Vaccination with adjuvanted recombinant glycoprotein E subunit herpes zoster vaccine (RZV) prevents herpes zoster in older adults with excellent efficacy (90%), and vaccination of kidney transplant candidates is recommended in Danish and international guidelines. However, the robustness and duration of immune responses after RZV vaccination, as well as the optimal timing of vaccination in relation to transplantation remain unanswered questions. Thus, the aim of this study is to characterize the immune response to RZV vaccination in kidney transplant candidates and recipients at different timepoints before and after transplantation. METHODS The Herpes Virus Infections in Kidney Transplant Patients (HINT) study is a prospective observational cohort study. The study will include kidney transplant candidates on the waiting list for transplantation (n = 375) and kidney transplant recipients transplanted since January 1, 2019 (n = 500) from all Danish kidney transplant centers who are offered a RZV vaccine as routine care. Participants are followed with repeated blood sampling until 12 months after inclusion. In the case of transplantation or herpes zoster disease, additional blood samples will be collected until 12 months after transplantation. The immune response will be characterized by immunophenotyping and functional characterization of varicella zoster virus-specific T cells, by detection of anti-glycoprotein E antibodies, and by measuring cytokine profiles. DISCUSSION The study will provide new knowledge on the immune response to RZV vaccination in kidney transplant candidates and recipients and the robustness and duration of the response, potentially enhancing preventive strategies against herpes zoster in a population at increased risk. TRIAL REGISTRATION ClinicalTrials.gov (NCT05604911).
Collapse
Affiliation(s)
- Sebastian Rask Hamm
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sunil Kumar Saini
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Annemette Hald
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anna V Vaaben
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natasja Wulff Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Moises Alberto Suarez-Zdunek
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Bruunsgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Isik Somuncu Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Claus Bistrup
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, and Departments of Clinical Medicine and Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren Schwartz Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Nephrology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Surgical Gastroenterology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
21
|
Jansson-Knodell CL, Celdir MG, Hujoel IA, Lyu R, Gardinier D, Weekley K, Prokop LJ, Rubio-Tapia A. Relationship between gluten availability and celiac disease prevalence: A geo-epidemiologic systematic review. J Gastroenterol Hepatol 2023; 38:1695-1709. [PMID: 37332011 DOI: 10.1111/jgh.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Celiac disease is a global disease requiring genetic susceptibility and gluten exposure to trigger immune-mediated enteropathy. The effect of the degree of gluten-containing grain availability on celiac disease prevalence is unknown. Our objective was to compare country-based gluten availability to celiac prevalence using a systematic literature review. We searched MEDLINE, Embase, Cochrane, and Scopus until May 2021. We included population-based serum screening with confirmatory testing (second serological study or small intestine biopsy) and excluded specific, high-risk, or referral populations. We determined country-specific gluten availability using the United Nations food balance for wheat, barley, and rye. Human leukocyte antigen (HLA) frequencies were obtained from allelefrequencies.net. The primary outcome was association between gluten-containing grain availability and celiac disease prevalence. Generalized linear mixed models method with Poisson's link was used for analysis. We identified 5641 articles and included 120 studies on 427 146 subjects from 41 countries. Celiac disease prevalence was 0-3.1%, median 0.75% (interquartile range 0.35, 1.22). Median wheat supply was 246 g/capita/day (interquartile range 214.8, 360.7). The risk ratio (RR) for wheat availability on celiac disease was 1.002 (95% confidence interval [CI]: 1.0001, 1.004, P = 0.036). A protective association was seen with barley, RR 0.973 (95% CI: 0.956, 0.99, P = 0.003), and rye, RR 0.989 (95% CI: 0.982, 0.997, P = 0.006). The RR for gross domestic product on celiac disease prevalence was 1.009 (95% CI: 1.005, 1.014, P < 0.001). The RR for HLA-DQ2 was 0.982 (95% CI: 0.979, 0.986, P < 0.001), and that for HLA-DQ8 was 0.957 (95% CI: 0.950, 0.964, P < 0.001). In this geo-epidemiologic study, gluten-containing grain availability showed mixed associations with celiac disease prevalence.
Collapse
Affiliation(s)
- Claire L Jansson-Knodell
- Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Melis G Celdir
- Department of Gastroenterology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Isabel A Hujoel
- Department of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - David Gardinier
- Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kendra Weekley
- Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Larry J Prokop
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota, USA
| | - Alberto Rubio-Tapia
- Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Phillips SR. MHC-B Diversity and Signs of Respiratory Illness in Wild, East African Chimpanzees ( Pan troglodytes schweinfurthii ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551731. [PMID: 37577711 PMCID: PMC10418158 DOI: 10.1101/2023.08.02.551731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many traits, intrinsic and extrinsic to an organism, contribute to interindividual variation in immunity in wild habitats. The vertebrate Major Histocompatibility Complex (MHC) includes genes encoding antigen-presenting molecules that are highly variable, and that variation often predicts susceptibility/resistance to and recovery from pathogen infection. I compare MHC-B variation at two long-term chimpanzee research sites, Kibale National Park in Uganda and Gombe National Park in Tanzania. Using decades of respiratory health data available for these chimpanzees, I test hypotheses associated with maintenance of diversity at MHC loci, including heterozygote, divergent allele, and rare allele advantage hypotheses, and predictions for unique function of MHC-B in great apes. I found, despite confirmation of recent shared ancestry between Kibale and Gombe chimpanzees, including an overlapping MHC-B allele repertoire and similar MHC-B phenotype compositions, chimpanzees from the two research sites experienced differences in the occurrence of respiratory signs and had different associations of MHC-B diversity with signs of respiratory illness. Kibale chimpanzees with heterozygous genotypes and different peptide-binding supertypes were observed less often with respiratory signs than those homozygous or possessing the same supertypes, but this same association was not observed among Gombe chimpanzees. Gombe chimpanzees with specific MHC-B phenotypes that enable engagement of Natural Killer (NK) cells were observed more often with respiratory signs than chimpanzees with other phenotypes, but this was not observed at Kanyawara. This study emphasizes local adaptation in shaping genetic and phenotypic traits in different infectious disease contexts, even among close genetic relatives of the same subspecies, and highlights utility for continued and simultaneous tracking of host immune genes and specific pathogens in wild species.
Collapse
|
23
|
Nguyen CM, Luong BA, Thi Tran TT, Nguyen HN, Tran LS. Design and generation of mRNAs encoding conserved regions of SARS-CoV-2 ORF1ab for T cell-mediated immune activation. Future Virol 2023; 18:501-516. [PMID: 38051989 PMCID: PMC10308627 DOI: 10.2217/fvl-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 12/07/2023]
Abstract
Aim To generate mRNAs encoding conserved regions within SARS-CoV-2 ORF1ab which can induce strong T-cell responses to overcome the immune invasion of newly emergent variants. Methods We selected two conserved regions with a high density of T-cell epitopes using immunoinformatics for mRNA synthesis. The ability of testing mRNAs to activate T cells for IFN-γ production was examined by an ELISpot assay and flow cytometry. Results Two synthesized mRNAs were successfully translated in MDA-MB-231 cells and had comparable potency to the spike mRNA to induce CD4+ and CD8+ T-cell responses in peripheral blood mononuclear cells in 29 out of 34 participants. Conclusion This study provides a proof-of-concept for the use of SARS-CoV-2 conserved regions to develop booster vaccines capable of eliciting T-cell-mediated immunity.
Collapse
Affiliation(s)
| | - Bac An Luong
- University of Medicine & Pharmacy at Ho Chi Minh City, Vietnam
| | | | | | | |
Collapse
|
24
|
James LM, Georgopoulos AP. Risk assessment of substance use disorders based on the human leukocyte antigen (HLA). Sci Rep 2023; 13:8545. [PMID: 37237010 DOI: 10.1038/s41598-023-35305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Substance use disorders (SUDs) are common and costly conditions that are partially attributable to genetic factors. In light of immune system influences on neural and behavioral aspects of addiction, the present study evaluated the influence of genes involved in the human immune response, human leukocyte antigen (HLA), on SUDs. We used an immunogenetic epidemiological approach to evaluate associations between the population frequencies of 127 HLA alleles and the population prevalences of six SUDs (alcohol, amphetamine, cannabis, cocaine, opioid, and "other" dependence) in 14 countries of Continental Western Europe to identify immunogenetic profiles of each SUD and evaluate their associations. The findings revealed two primary groupings of SUDs based on their immunogenetic profiles: one group comprised cannabis and cocaine, whereas the other group comprised alcohol, amphetamines, opioids, and "other" dependence. Since each individual possesses 12 HLA alleles, the population HLA-SUD scores were subsequently used to estimate individual risk for each SUD. Overall, the findings highlight similarities and differences in immunogenetic profiles of SUDs that may influence the prevalence and co-occurrence of problematic SUDs and may contribute to assessment of SUD risk of an individual on the basis of their HLA genetic makeup.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
25
|
Nilsson JB, Kaabinejadian S, Yari H, Peters B, Barra C, Gragert L, Hildebrand W, Nielsen M. Machine learning reveals limited contribution of trans-only encoded variants to the HLA-DQ immunopeptidome. Commun Biol 2023; 6:442. [PMID: 37085710 PMCID: PMC10121683 DOI: 10.1038/s42003-023-04749-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Human leukocyte antigen (HLA) class II antigen presentation is key for controlling and triggering T cell immune responses. HLA-DQ molecules, which are believed to play a major role in autoimmune diseases, are heterodimers that can be formed as both cis and trans variants depending on whether the α- and β-chains are encoded on the same (cis) or opposite (trans) chromosomes. So far, limited progress has been made for predicting HLA-DQ antigen presentation. In addition, the contribution of trans-only variants (i.e. variants not observed in the population as cis) in shaping the HLA-DQ immunopeptidome remains largely unresolved. Here, we seek to address these issues by integrating state-of-the-art immunoinformatics data mining models with large volumes of high-quality HLA-DQ specific mass spectrometry immunopeptidomics data. The analysis demonstrates highly improved predictive power and molecular coverage for models trained including these novel HLA-DQ data. More importantly, investigating the role of trans-only HLA-DQ variants reveals a limited to no contribution to the overall HLA-DQ immunopeptidome. In conclusion, this study furthers our understanding of HLA-DQ specificities and casts light on the relative role of cis versus trans-only HLA-DQ variants in the HLA class II antigen presentation space. The developed method, NetMHCIIpan-4.2, is available at https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2 .
Collapse
Affiliation(s)
| | - Saghar Kaabinejadian
- Pure MHC, LLC, Oklahoma City, OK, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hooman Yari
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, California, USA
| | - Carolina Barra
- Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
26
|
Pedroso A, Herrera Belén L, Beltrán JF, Castillo RL, Pessoa A, Pedroso E, Farías JG. In Silico Design of a Chimeric Humanized L-asparaginase. Int J Mol Sci 2023; 24:ijms24087550. [PMID: 37108713 PMCID: PMC10144303 DOI: 10.3390/ijms24087550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.
Collapse
Affiliation(s)
- Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Avenida Carlos Schorr 255, Talca 3460000, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Rodrigo L Castillo
- Department of Internal Medicine, East Division, Faculty of Medicine, University of Chile, Santiago 7500922, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Enrique Pedroso
- Department of Family Medicine, Faculty of Medicine, University of Medical Sciences Matanzas, Matanzas 42300, Cuba
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
27
|
Zhao Q, Sun L, Sun Y, Naisbitt D, Liu H, Zhang F. Dapsone hypersensitivity syndrome. Chin Med J (Engl) 2023:00029330-990000000-00550. [PMID: 37057725 DOI: 10.1097/cm9.0000000000002492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 04/15/2023] Open
Affiliation(s)
- Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Dean Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| |
Collapse
|
28
|
Amanda M, Daniela C, Fernando G, Silvia M, Sofia L, Márcia D, Francisco A, Jeane V, Cármino DS. Association of KIR genes polymorphism and its HLA ligands in Diffuse Large B-cell Lymphoma. CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2023; 23:438-445. [PMID: 37105848 DOI: 10.1016/j.clml.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Non-Hodgkin lymphoma (NHL) is a heterogeneous disease, with each subtype associated with different risk factors. Within this group, diffuse large B-cell lymphoma (DLBCL) can be highlighted, the most common type of NHL.NK cells are key components of the innate immune response and may play an important antitumor role. OBJECTIVE The objective of the present work was to determine the polymorphism of KIR genes in Brazilian patients with DLBCL. MATERIALS AND METHODS Furthermore, we evaluated the association between the polymorphism of these genes and their ligands with the clinical course of the disease. For the study, 112 patients with DLBCL and 222 voluntary blood and bone marrow donors. The genetic material of these samples were extracted for KIR and HLA typing, determination of HLA ligands, determination of the KIR haplotype and search for the deletion of 22 bp in the KIR2DS4 gene. KIR genotype distributions were made by direct counting using 2 × 2 contingency tables using Fisher's exact test. The magnitude of the association was measured by odds ratio (OR) and 95% confidence interval. P values <.05 were considered significant. Overall survival and progression-free survival were assessed with a Kaplan-Meier estimator. RESULTS In the present study, an association of HLA-Bw4 and HLA-Bw480I ligand was found with more advanced stages of the disease. Also, an association of the KIR2DL3 gene with a better response to treatment was found. CONCLUSION With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment was found. With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment.Non-Hodgkin lymphoma (NHL) is a heterogeneous disease, with each subtype associated with different risk factors. Within this group, diffuse large B-cell lymphoma (DLBCL) can be highlighted, the most common type of NHL.NK cells are key components of the innate immune response and may play an important antitumor role. The objective of the present work was to determine the polymorphism of KIR genes in Brazilian patients with DLBCL. Furthermore, we evaluated the association between the polymorphism of these genes and their ligands with the clinical course of the disease. For the study, 112 patients with DLBCL and 222 voluntary blood and bone marrow donors. The genetic material of these samples were extracted for KIR and HLA typing, determination of HLA ligands, determination of the KIR haplotype and search for the deletion of 22 bp in the KIR2DS4 gene. KIR genotype distributions were made by direct counting using 2 × 2 contingency tables using Fisher's exact test. The magnitude of the association was measured by odds ratio (OR) and 95% confidence interval. P values <.05 were considered significant. Overall survival and progression-free survival were assessed with a Kaplan-Meier estimator. In the present study, an association of HLA-Bw4 and HLA-Bw480I ligand was found with more advanced stages of the disease. Also, an association of the KIR2DL3 gene with a better response to treatment was found. With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment was found. With this, we can conclude that the polymorphism of KIR genes and the association with HLA ligands can influence the prognosis of DLBCL, as well as the response to treatment.
Collapse
|
29
|
Structural Analyses of a Dominant Cryptosporidium parvum Epitope Presented by H-2K b Offer New Options To Combat Cryptosporidiosis. mBio 2023; 14:e0266622. [PMID: 36602309 PMCID: PMC9973275 DOI: 10.1128/mbio.02666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidium parvum has gained much attention as a major cause of diarrhea in the world, particularly in those with compromised immune systems. The data currently available on how the immune system recognizes C. parvum are growing rapidly, but we lack data on the interactions among host major histocompatibility complex (MHC) diversity and parasitic T-cell epitopes. To identify antigenic epitopes in a murine model, we performed systematic profiling of H-2Kb-restricted peptides by screening the dominant Cryptosporidium antigens. The results revealed that the glycoprotein-derived epitope Gp40/15-SVF9 induced an immunodominant response in C. parvum-recovered C57BL/6 mice, and injection of the cytotoxic-T-lymphocyte (CTL) peptide with the adjuvant activated peptide-specific CD8+ T cells. Notably, the SVF9 epitope was highly conserved across Cryptosporidium hominis, C. parvum, and many other Cryptosporidium species. SVF9 also formed stable peptide-MHC class I (MHC I) complexes with HLA-A*0201, suggesting cross-reactivity between H-2Kb and human MHC I specificities. Crystal structure analyses revealed that the interactions of peptide-MHC surface residues of H-2Kb and HLA-A*0201 are highly conserved. The hydrogen bonds of H-2Kb-SVF9 are similar to those of a dominant epitope presented by HLA-A*0201, which can be recognized by a public human T-cell receptor (TCR). Notably, we found double conformations in position 4 (P4), 5 (P5) of the SVF9 peptide, which showed high flexibility, and multiple peptide conformations generated more molecular surfaces that can potentially be recognized by TCRs. Our findings demonstrate that an immunodominant C. parvum epitope and its homologs from different Cryptosporidium species and subtypes can benefit vaccine development to combat cryptosporidiosis. IMPORTANCE Adaptive immune responses and T lymphocytes have been implicated as important mechanisms of parasite-induced protection. However, the role of CD8+ T lymphocytes in the resolution of C. parvum infection is largely unresolved. Our results revealed that the glycoprotein-derived epitope Gp40/15-SVF9 induced an immunodominant CD8+ T-cell response in C57BL/6 mice. Crystal structure analyses revealed that the interactions of the H-2Kb-SVF9 peptide are similar to those of a dominant epitope presented by HLA-A*0201, which can be recognized by human TCRs. In addition, we found double conformations of the SVF9 peptide, which showed high flexibility and multiple peptide conformations that can potentially be recognized by TCRs.
Collapse
|
30
|
Optimisation of AAV-NDI1 Significantly Enhances Its Therapeutic Value for Correcting Retinal Mitochondrial Dysfunction. Pharmaceutics 2023; 15:pharmaceutics15020322. [PMID: 36839646 PMCID: PMC9960502 DOI: 10.3390/pharmaceutics15020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.
Collapse
|
31
|
Chen S, Qiang J, Zhang Y, Zhao B, Tian R, Yuan T, Li M, Li M, Li Y, Zhu H, Pan H. Hypoglycemia as a potential risk for patients taking clopidogrel: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1091933. [PMID: 36926026 PMCID: PMC10011644 DOI: 10.3389/fendo.2023.1091933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Clopidogrel is a cornerstone antiplatelet drug used in cardiovascular, cerebrovascular, and peripheral artery diseases. The sulfhydryl group of clopidogrel metabolite could induce insulin autoimmune syndrome (IAS) with hypoglycemia as the major symptom. Discontinuing clopidogrel and substituting it with ticagrelor has been revealed as an effective treatment in previous studies. Since hypoglycemia serves as a risk factor for cardiovascular and cerebrovascular events, we aimed to determine the association between hypoglycemia/IAS and clopidogrel and to investigate whether clopidogrel is a modifiable and causal risk factor of hypoglycemia/IAS. METHODS MEDLINE, Embase, Cochrane databases, and clinical trial registries were searched for randomized controlled trials (RCTs) of clopidogrel from inception to 28 February 2022. RCTs comparing clopidogrel with placebo or other antiplatelet drugs were eligible if meeting the inclusion criteria: 1) clopidogrel was administrated 75 mg qd orally as a long-term antiplatelet prescription at least for months, and 2) hypoglycemia-inducible drugs were not used in the control arm. One investigator abstracted articles and performed a quality assessment. Uncertainties were resolved by discussions with two investigators independently. Odds ratio (OR) and risk difference (RD) were calculated and performed with subgroup analyses. The pre-specified protocol was registered in PROSPERO (CRD42022299622). RESULTS Six trials with 61,399 participants in total fulfilled the criteria and were included in the meta-analysis. Clopidogrel might not be associated with higher hypoglycemia odds (OR 0.95, 95% CI 0.65 to 1.40). However, Asian participants (p = 0.0437) seemed more likely to develop clopidogrel-associated hypoglycemia. Clopidogrel-associated hypoglycemia occurred at the highest rate of 0.03% (RD -0.00023, 95% CI -0.00077 to 0.00031), and this increased to 0.91% (RD 0.00210, 95% CI -0.00494 to 0.00914) in an aging population and to 0.18% (RD 0.00040, 95% CI -0.00096 to 0.00177) when Asian ratio of the population was elevated. CONCLUSIONS We raise the concern that clopidogrel might be a modifiable and causal risk factor of hypoglycemia. The Asian population might be more vulnerable and need additional care. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero, identifier CRD42022299622.
Collapse
Affiliation(s)
- Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Qiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuelun Zhang
- Medical Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhao
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxiu Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Hui Pan,
| |
Collapse
|
32
|
Tembhurne AK, Maheshwari A, Warke H, Chaudhari H, Kerkar SC, Deodhar K, Rekhi B, Mania-Pramanik J. Killer cell immunoglobulin-like receptor (KIR) gene contents: Are they associated with cervical cancer? J Med Virol 2023; 95:e27873. [PMID: 35593263 DOI: 10.1002/jmv.27873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are required for natural killer cell function against virus-infected cells or tumor cells. KIR gene content polymorphisms in Indian women with cervical cancer (CaCx) remain unexplored. Hence, we analyzed the frequencies of KIR genes, KIR haplotypes, and Bx subsets to draw their association with CaCx. The polymerase chain reaction-sequence-specific primer method was used for KIR genotyping in three groups of women: healthy controls (n = 114), women with human papillomavirus (HPV) infection (n = 70), and women with CaCx (n = 120). The results showed that the frequency of KIR2DS5 was significantly higher in women with CaCx compared to women with HPV infection (p = 0.02) and healthy controls (p = 0.01). Whereas the frequency of KIR2DL5B was significantly higher in healthy controls than in women with HPV infection (p = 0.02). The total number of activating KIR genes was higher in women with CaCx than in healthy controls (p = 0.006), indicating their positive association with CaCx. Moreover, the C4T4 subset was higher in women with CaCx than in women with HPV infection, though not significant. In conclusion, our findings highlight KIR2DS5, the C4T4 subset, and activating KIR genes are susceptible factors or positively associated with CaCx. Besides KIR2DL5B, this study also reported for the first time significantly high frequency of KIR2DL1 in healthy controls, indicating its possible protective association against CaCx. Further, significantly high frequency of KIR2DL3 observed in HPV-infected women might be also a promising biomarker for viral infections. Thus, the study confirms the association of KIR genes with cervical cancer in women with HPV infection.
Collapse
Affiliation(s)
- Alok K Tembhurne
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | - Himangi Warke
- Seth GS Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - Hemangi Chaudhari
- Seth GS Medical College and King Edward Memorial Hospital, Parel, Mumbai, India
| | - Shilpa C Kerkar
- ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, India
| | | | | | | |
Collapse
|
33
|
Wang F, Li W, Wang X, Luo X, Dai P. A single-tube multiplex real-time PCR for HLA-B*38:02 genotype by detecting highly specific SNPs. Pharmacogenomics 2023; 24:5-14. [PMID: 36661044 DOI: 10.2217/pgs-2022-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose: HLA-B*38:02 is closely related to carbimazole/methimazole-induced agranulocytosis. This study aimed to develop and validate a rapid and economical method for HLA-B*38:02 genotyping. Methods: A single-tube multiplex real-time PCR detection system comprising amplification refractory mutation system primers and TaqMan probes was established for HLA-B*38:02 genotyping. Sequence-based typing was applied to validate the accuracy of the assay. Results: The accuracy of the assay was 100% for HLA-B*38:02 genotyping. The detection limit of the new method was 0.05 ng DNA. The positive rate of HLA-B*38:02 in the Han (8%, n = 100), Bouyei (17.8%, n = 90) and Tibetan (12.7%, n = 110) populations was significantly higher than that in the Uighur population (1%, n = 100) (p < 0.05). Conclusion: The proposed method is rapid and reliable for HLA-B*38:02 screening in a clinical setting.
Collapse
Affiliation(s)
- Fei Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University of Xi'an, Shaanxi Province, 710069, China
| | - Wenqi Li
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University of Xi'an, Shaanxi Province, 710069, China
| | - Xuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University of Xi'an, Shaanxi Province, 710069, China
| | - Xiang Luo
- Department of Respiratory, Tongchuan People's Hospital Tongchuan, Shaanxi Province, People's Republic of China
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University of Xi'an, Shaanxi Province, 710069, China.,Shaanxi Lifegen Co.,Ltd, Building 1, Collaborative Innovation Port, Fengdong New City, Xixian New Area, Xi'an, Shaanxi Province, 712000, China
| |
Collapse
|
34
|
Switzer B, Piperno-Neumann S, Lyon J, Buchbinder E, Puzanov I. Evolving Management of Stage IV Melanoma. Am Soc Clin Oncol Educ Book 2023; 43:e397478. [PMID: 37141553 DOI: 10.1200/edbk_397478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Significant advancements have been made in the treatment of advanced melanoma with the use of immune checkpoint inhibitors, novel immunotherapies, and BRAF/MEK-targeted therapies with numerous frontline treatment options. However, there remains suboptimal evidence to guide treatment decisions in many patients. These include patients with newly diagnosed disease, immune checkpoint inhibitor (ICI)-resistant/ICI-refractory disease, CNS metastases, history of autoimmune disease, and/or immune-related adverse events (irAEs). Uveal melanoma (UM) is a rare melanoma associated with a poor prognosis in the metastatic setting. Systemic treatments, including checkpoint inhibitors, failed to demonstrate any survival benefit. Tebentafusp, a bispecific molecule, is the first treatment to improve overall survival (OS) in patients with HLA A*02:01-positive metastatic UM.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | - James Lyon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
35
|
Belén LH, Beltrán JF, Pessoa A, Castillo RL, de Oliveira Rangel-Yagui C, Farías JG. Helicobacter pyloril-asparaginase: a study of immunogenicity from an in silico approach. 3 Biotech 2022; 12:286. [PMID: 36276451 PMCID: PMC9489821 DOI: 10.1007/s13205-022-03359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Helicobacter pylori has become the causal agent of multiple forms of gastric disease worldwide, including gastric cancer. The enzyme l-asparaginase (ASNase) has been studied as a virulence factor. In this work, we performed an in silico investigation to characterize the immunological profile of H. pylori ASNase (HpASNase) to ascertain the possible implication of HpASNase immunogenicity in the H. pylori virulence mechanism. We applied a workflow based on bioinformatics tools, which, by calculating the relative frequency of immunogenic T-cell and B-cell epitopes, allowed us to predict the immunogenicity and allergenicity of HpASNase in silico. We also visualized the epitopes by mapping them into the native structure of the enzyme. We report for the first time the T-cell and B-cell epitope composition that contributes to the immunogenicity of this HpASNase, as well as the regions that could generate a hypersensitivity response in humans. ASNase from H. pylori resulted in highly immunogenic and allergenic. The high immunogenicity of HpASNase could imply the pathogenic mechanisms of H. pylori. This knowledge could be important for the development of new drugs against H. pylori infections. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03359-0.
Collapse
Affiliation(s)
- Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avda. Francisco Salazar 01145, P.O. Box: 54-D, Temuco, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avda. Francisco Salazar 01145, P.O. Box: 54-D, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, Universidad de Sao Paulo, São Paulo, Brazil
| | - Rodrigo L. Castillo
- Department of Internal Medicine East, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, Universidad de Sao Paulo, São Paulo, Brazil
| | - Jorge G. Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avda. Francisco Salazar 01145, P.O. Box: 54-D, Temuco, Chile
| |
Collapse
|
36
|
Prevalence of HLA-B*57:01 allele in HIV-positive and HIV-negative population of eastern India: An epidemiological study. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022. [DOI: 10.1016/j.cegh.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Liu G, Chen H, Cao X, Jia L, Rui W, Zheng H, Huang D, Liu F, Liu Y, Zhao X, Lu P, Lin X. Efficacy of pp65-specific TCR-T cell therapy in treating cytomegalovirus infection after hematopoietic stem cell transplantation. Am J Hematol 2022; 97:1453-1463. [PMID: 36054234 DOI: 10.1002/ajh.26708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Cytomegalovirus (CMV) infection remains a major cause of mortality after hematopoietic stem cell transplantation (HSCT). Current treatments, including antiviral drugs and adoptive cell therapy with CMV-specific cytotoxic T lymphocytes (CTLs), only show limited benefits in patients. T-cell receptor (TCR)-T cell therapy offers a promising option to treat CMV infections. Here, using tetramer-based screening and single-cell TCR cloning technologies, we identified various CMV antigen-specific TCRs from healthy donors, and generated TCR-T cells targeting multiple pp65 epitopes corresponding to three major HLA-A alleles. The TCR-T cells showed efficient cytotoxicity toward epitope-expressing target cells in vitro. After transfer into immune-deficient mice bearing pp65+ HLA+ tumor cells, TCR-T cells induced dramatic tumor regression and exhibited long-term persistence. In a phase I clinical trial (NCT04153279), CMV TCR-T cells were applied to treat patients with CMV reactivation after HSCT. Except one patient who withdrew at early treatment stage, all other six patients were well-tolerated and achieved complete response (CR), no more than grade 2 cytokine release syndrome (CRS) and other adverse events were observed. CMV TCR-T cells persisted up to 3 months. Among them, two patients have survived for more than 1 year. This study demonstrates the great potential in the treatment and prevention of CMV infection following HSCT or other organ transplantation.
Collapse
Affiliation(s)
- Guangna Liu
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,School of Biomedical Sciences, Hunan University, Changsha, China
| | - Hua Chen
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,BriStar Immunotech Co, Beijing, China
| | - Xingyu Cao
- Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Lemei Jia
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Rui
- BriStar Immunotech Co, Beijing, China
| | | | - Daosheng Huang
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| | - Fang Liu
- BriStar Immunotech Co, Beijing, China
| | - Yue Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueqiang Zhao
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China.,BriStar Immunotech Co, Beijing, China
| | - Peihua Lu
- Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xin Lin
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
38
|
Dhankhar R, Kawatra A, Gupta V, Mohanty A, Gulati P. In silico and in vitro analysis of arginine deiminase from Pseudomonas furukawaii as a potential anticancer enzyme. 3 Biotech 2022; 12:220. [PMID: 35971334 PMCID: PMC9374873 DOI: 10.1007/s13205-022-03292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Vatika Gupta
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
39
|
Hajar CGN, Md Akhir S, Zefarina Z, Riffin NSM, Tuan Mohammad TH, Hassan MN, Aziz MY, Pati S, Chambers GK, Kari ZA, Edinur HA, Che Mat NF. Distribution of 22 Single Nucleotide Polymorphisms in 13 Cytokine Genes in Malays, Chinese, and Indians in Peninsular Malaysia. Genet Test Mol Biomarkers 2022; 26:449-456. [PMID: 36166739 DOI: 10.1089/gtmb.2022.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Cytokines are cell signaling glycoproteins that are particularly important in immunity and inflammatory responses. Therefore, variations, such as single nucleotide polymorphisms (SNPs), in genes encoding for cytokines may have important consequences for their roles in health. Materials and Methods: A total of 222 unrelated, healthy, and un-admixed Malays (n = 97), Chinese (n = 77), and Indians (n = 48) with a median age of 30 years old (range 21-50) were typed for 22 cytokine gene SNPs: IL-1α -889 T/C, IL-1β (-511 T/C, +3962 T/C), IL-1R pst1 1970 T/C, IL-1RA mspa1 11100 T/C, IL-4Rα +1902 G/A, IL-12 - 1188 C/A, IFN-γ +874 A/T, TGF-β (cdn 10 C/T, cdn 25 G/C), TNF-α (-308 A/G, -238 A/G) IL-2 (+166 G/T, -330 T/G), IL-4 (-1098 T/G, -590 T/C, -33 T/C), IL-6 (-174 C/G, nt565 G/A), and IL-10 (-1082 G/A, -819 C/T, -592 A/C). This involved using well-established polymerase chain reaction procedures with sequence-specific primers and restriction fragment length polymorphism methods. Results: The majority of the screened cytokine gene SNPs are polymorphic in all three ethnicities. Exceptions include TGF-β cdn 25 (G/C), IL-1β +3962 (T/C), and TNF-α -238 (A/G), which were all observed to be monomorphic in Malays, Chinese and Indians. Many of the analyzed cytokine gene SNP genotypes deviated from Hardy-Weinberg equilibrium and the three ethnic study groups were all well-separated from reference Asian, African and European populations in a principal component analysis plot. Conclusion: We successfully typed 22 SNPs in 13 cytokine genes from genetic material collected from unrelated and un-admixed Malay, Chinese and Indian individuals in Peninsular Malaysia. These new cytokine gene population datasets reveal interesting contrasts with other populations.
Collapse
Affiliation(s)
- Che Ghazali Norul Hajar
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhaida Md Akhir
- Biomedicine Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zulkafli Zefarina
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | - Mohd Nazri Hassan
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Yusmaidie Aziz
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | | | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kelantan, Malaysia
| | - Hisham Atan Edinur
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nor Fazila Che Mat
- Transfusion Medicine Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
- Biomedicine Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
40
|
Mier-Cabrera J, Cruz-Orozco O, de la Jara-Díaz J, Galicia-Castillo O, Buenrostro-Jáuregui M, Parra-Carriedo A, Hernández-Guerrero C. Polymorphisms of TNF-alpha (− 308), IL-1beta (+ 3954) and IL1-Ra (VNTR) are associated to severe stage of endometriosis in Mexican women: a case control study. BMC Womens Health 2022; 22:356. [PMID: 36028805 PMCID: PMC9413921 DOI: 10.1186/s12905-022-01941-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Endometriosis is an estrogen-dependent and chronic inflammatory disease affecting up to 10% of women. It is the result of a combined interaction of genetic, epigenetic, environmental, lifestyle, reproductive and local inflammatory factors. In this study, we investigated whether single nucleotide polymorphisms (SNPs) mapping to TNF-alpha (TNF, rs1800629) and IL-1beta (IL1B, rs1143634) and variable number tandem repeat polymorphism mapping to IL1-Ra (IL1RN intron 2, rs2234663) genetic loci are associated with risk for endometriosis in a Mexican mestizo population.
Methods
This study included 183 women with confirmed endometriosis (ENDO) diagnosed after surgical laparoscopy and 186 women with satisfied parity and without endometriosis as controls (CTR). PCR/RFLP technique was used for genotyping SNPs (rs1800629 and rs1143634); PCR for genotyping rs2234663.
Results
We found no statistical differences in age between groups nor among stages of endometriosis and the CTR group. We observed no difference in genotype and allele frequencies, nor carriage rate between groups in none of the three studied polymorphisms. The prevalence of TNF*2-allele heterozygotes (p = 0.025; OR 3.8), TNF*2-allele (p = 0.029; OR 3.4), IL1B*2-allele heterozygotes (p = 0.044; OR 2.69) and its carriage rate (p = 0.041; OR 2.64) in endometriosis stage IV was higher than the CTR group. Surprisingly, the carriage rate of IL1RN*2-allele (ENDO: p = 0.0004; OR 0.4; stage I: p = 0.002, OR 0.38; stage II: p = 0.002, OR 0.35; stage III: p = 0.003, OR 0.33), as well as the IL1RN*2-allele frequencies (ENDO: p = 0.0008, OR 0.55; I: p = 0.037, OR 0.60; II: p = 0.002, OR 0.41; III: p = 0.003, OR 0.38) were lower than the CTR group. Women with endometriosis stage IV (severe) had frequencies more alike to the CTR group in the IL1RN*2 allele frequency (31.2% vs. 27.2%) and carriage rate (37.5% vs. 41.9%).
Conclusion
Although these polymorphisms are not associated with the risk of endometriosis, Mexican mestizo women with severe stage of endometriosis have higher frequencies of TNF*2-, IL1B*2- and IL1RN*2-alleles, which may explain a possible correlation with disease severity rather than predisposition or risk.
Collapse
|
41
|
Sharif-zak M, Abbasi-Jorjandi M, Asadikaram G, Ghoreshi ZAS, Rezazadeh-Jabalbarzi M, Rashidinejad H. Influence of Disease Severity and Gender on HLA-C Methylation in COVID-19 Patients. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY. TRANSACTION A, SCIENCE 2022; 46:1309-1316. [PMID: 35912367 PMCID: PMC9325662 DOI: 10.1007/s40995-022-01334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
In the pathophysiology of COVID-19, immunomodulatory factors play a vital role. Viruses have epigenetic effects on various genes, particularly methylation. Explaining the changes in immunological factor methylation levels during viral infections requires substantial consideration. HLA-C is a crucial determinant of immune function and NK cell activity and is primarily implicated in viral infections. This research focused on studying HLA-C methylation in COVID-19 patients with different severity. Peripheral blood samples were collected from 470 patients (235 men and 235 women) with RT-qPCR-confirmed COVID-19 test and classified into moderate, severe, and critical groups based on WHO criteria. Also, one hundred (50 men and 50 women) healthy subjects were selected as the control group. Peripheral blood mononuclear cells were used for DNA extraction, and the methylation-specific PCR (MSP) method and gel electrophoresis were used to determine the methylation status of the HLA-C. Significant statistical differences in HLA-C methylation were observed among cases and controls and various stages of the disease. HLA-C methylation in men and women has decreased in all stages (p < 0.05). In comparison with control, HLA-C methylation in both genders were as follows: moderate (women: 41.0%, men: 52.33%), severe (women: 43.42%, men: 64.86%), critical (women: 42.33%, men: 60.07%), and total patients (women: 45.52%, men: 56.97%). Furthermore, the methylation levels in men were higher than in women in all groups (p < 0.05). Significantly, among all groups, the severe group of men participants showed the highest methylation percentage (p < 0.05). No significant differences were detected for different disease severity in the women group (p > 0.1). This study found that HLA-C methylation was significantly lower in COVID-19 patients with different disease severity. There were also significant differences in HLA-C methylation between men and women patients with different severity. Therefore, during managing viral infections, particularly COVID-19, it is critical to consider patient gender and disease severity.
Collapse
Affiliation(s)
- Mohsen Sharif-zak
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh-al-Sadat Ghoreshi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Rezazadeh-Jabalbarzi
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamidreza Rashidinejad
- Department of Cardiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
42
|
James LM, Georgopoulos AP. Immunogenetic clustering of 30 cancers. Sci Rep 2022; 12:7235. [PMID: 35508592 PMCID: PMC9068692 DOI: 10.1038/s41598-022-11366-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Human leukocyte antigen (HLA) genes have been implicated in cancer risk and shared heritability of different types of cancer. In this immunogenetic epidemiological study we first computed a Cancer-HLA profile for 30 cancer types characterized by the correlation between the prevalence of each cancer and the population frequency of 127 HLA alleles, and then used multidimensional scaling to evaluate the possible clustering of those Cancer-HLA associations. The results indicated the presence of three clusters, broadly reflecting digestive-skin-cervical cancers, reproductive and endocrine systems cancers, and brain and androgen-associated cancers. The clustering of cancer types documented here is discussed in terms of mechanisms underlying shared Cancer-HLA associations.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.,Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA. .,Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA. .,Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
43
|
Khan AR, Shah SH, Ajaz S, Firasat S, Abid A, Raza A. The Prevalence of Pharmacogenomics Variants and Their Clinical Relevance Among the Pakistani Population. Evol Bioinform Online 2022; 18:11769343221095834. [PMID: 35497687 PMCID: PMC9047794 DOI: 10.1177/11769343221095834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Pharmacogenomics (PGx), forming the basis of precision medicine, has
revolutionized traditional medical practice. Currently, drug responses such
as drug efficacy, drug dosage, and drug adverse reactions can be anticipated
based on the genetic makeup of the patients. The pharmacogenomic data of
Pakistani populations are limited. This study investigates the frequencies
of pharmacogenetic variants and their clinical relevance among ethnic groups
in Pakistan. Methods: The Pharmacogenomics Knowledge Base (PharmGKB) database was used to extract
pharmacogenetic variants that are involved in medical conditions with high
(1A + 1B) to moderate (2A + 2B) clinical evidence. Subsequently, the allele
frequencies of these variants were searched among multiethnic groups of
Pakistan (Balochi, Brahui, Burusho, Hazara, Kalash, Pashtun, Punjabi, and
Sindhi) using the 1000 Genomes Project (1KGP) and
ALlele FREquency
Database (ALFRED). Furthermore, the published
Pharmacogenomics literature on the Pakistani population was reviewed in
PubMed and Google Scholar. Results: Our search retrieved (n = 29) pharmacogenetic genes and their (n = 44)
variants with high to moderate evidence of clinical association. These
pharmacogenetic variants correspond to drug-metabolizing enzymes (n = 22),
drug-metabolizing transporters (n = 8), and PGx gene regulators, etc.
(n = 14). We found 5 pharmacogenetic variants present at >50% among 8
ethnic groups of Pakistan. These pharmacogenetic variants include
CYP2B6 (rs2279345, C; 70%-86%), CYP3A5
(rs776746, C; 64%-88%), FLT3 (rs1933437, T; 54%-74%),
CETP (rs1532624, A; 50%-70%), and DPP6
(rs6977820, C; 61%-86%) genes that are involved in drug response for
acquired immune deficiency syndrome, transplantation, cancer, heart disease,
and mental health therapy, respectively. Conclusions: This study highlights the frequency of important clinical pharmacogenetic
variants (1A, 1B, 2A, and 2B) among multi-ethnic Pakistani populations. The
high prevalence (>50%) of single nucleotide pharmacogenetic variants may
contribute to the drug response/diseases outcome. These PGx data could be
used as pharmacogenetic markers in the selection of appropriate therapeutic
regimens for specific ethnic groups of Pakistan.
Collapse
Affiliation(s)
- Abdul Rafay Khan
- Center for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sayed Hajan Shah
- Center for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sadia Ajaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sadaf Firasat
- Center for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Aiysha Abid
- Center for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ali Raza
- Center for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| |
Collapse
|
44
|
Koomdee N, Kloypan C, Jinda P, Rachanakul J, Jantararoungtong T, Sukprasong R, Prommas S, Nuntharadthanaphong N, Puangpetch A, Ershadian M, John S, Biswas M, Sukasem C. Evolution of HLA-B Pharmacogenomics and the Importance of PGx Data Integration in Health Care System: A 10 Years Retrospective Study in Thailand. Front Pharmacol 2022; 13:866903. [PMID: 35450046 PMCID: PMC9016335 DOI: 10.3389/fphar.2022.866903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The HLA-B is the most polymorphic gene, play a crucial role in drug-induced hypersensitivity reactions. There is a lot of evidence associating several risk alleles to life-threatening adverse drug reactions, and a few of them have been approved as valid biomarkers for predicting life-threatening hypersensitivity reactions. Objectives: The objective of this present study is to present the progression of HLA-B pharmacogenomics (PGx) testing in the Thai population during a 10‐year period, from 2011 to 2020. Methods: This was a retrospective observational cohort study conducted at the Faculty of Medicine Ramathibodi Hospital. Overall, 13,985 eligible patients who were tested for HLA-B risk alleles between periods of 2011–2020 at the study site were included in this study. Results: The HLA PGx testing has been increasing year by year tremendously, 94 HLA-B testing was done in 2011; this has been raised to 2,880 in 2020. Carbamazepine (n = 4,069, 33%), allopurinol (n = 4,675, 38%), and abacavir (n = 3,246, 26%) were the most common drugs for which the HLA-B genotyping was performed. HLA-B*13:01, HLA-B*15:02 and HLA-B*58:01 are highly frequent, HLA-B*51:01 and HLA-B*57:01 are moderately frequent alleles that are being associated with drug induced hypersensitivity. HLA-B*59:01 and HLA-B*38:01 theses alleles are rare but has been reported with drug induced toxicity. Most of the samples were from state hospital (50%), 36% from private clinical laboratories and 14% from private hospitals. Conclusion: According to this study, HLA-B PGx testing is increasing substantially in Thailand year after year. The advancement of research in this field, increased physician awareness of PGx, and government and insurance scheme reimbursement assistance could all be factors. Incorporating PGx data, along with other clinical and non-clinical data, into clinical decision support systems (CDS) and national formularies, on the other hand, would assist prescribers in prioritizing therapy for their patients. This will also aid in the prediction and prevention of serious adverse drug reactions.
Collapse
Affiliation(s)
- Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand.,Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.,MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
45
|
Hovhannisyan A, Madelian V, Avagyan S, Nazaretyan M, Hyussyan A, Sirunyan A, Arakelyan R, Manukyan Z, Yepiskoposyan L, Mayilyan KR, Jordan F. HLA-C*04:01 Affects HLA Class I Heterozygosity and Predicted Affinity to SARS-CoV-2 Peptides, and in Combination With Age and Sex of Armenian Patients Contributes to COVID-19 Severity. Front Immunol 2022; 13:769900. [PMID: 35185875 PMCID: PMC8850920 DOI: 10.3389/fimmu.2022.769900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The novel SARS-CoV-2 coronavirus infection has become a global health concern, causing the COVID-19 pandemic. The disease symptoms and outcomes depend on the host immunity, in which the human leukocyte antigen (HLA) molecules play a distinct role. The HLA alleles have an inter-population variability, and understanding their link to the COVID-19 in an ethnically distinct population may contribute to personalized medicine. The present study aimed at detecting associations between common HLA alleles and COVID-19 susceptibility and severity in Armenians. In 299 COVID-19 patients (75 asymptomatic, 102 mild/moderate, 122 severe), the association between disease severity and classic HLA-I and II loci was examined. We found that the advanced age, male sex of patients, and sex and age interaction significantly contributed to the severity of the disease. We observed that an age-dependent effect of HLA-B*51:01 carriage [odds ratio (OR)=0.48 (0.28-0.80), Pbonf <0.036] is protective against severe COVID-19. Contrary, the HLA-C*04:01 allele, in a dose-dependent manner, was associated with a significant increase in the disease severity [OR (95% CI) =1.73 (1.20-2.49), Pbonf <0.021] and an advancing age (P<0.013). The link between HLA-C*04:01 and age was secondary to a stronger association between HLA-C*04:01 and disease severity. However, HLA-C*04:01 exerted a sex-dependent differential distribution between clinical subgroups [females: P<0.0012; males: P=0.48]. The comparison of HLA-C*04:01 frequency between subgroups and 2,781 Armenian controls revealed a significant incidence of HLA-C*04:01 deficiency in asymptomatic COVID-19. HLA-C*04:01 homozygous genotype in patients blueprinted a decrease in heterozygosity of HLA-B and HLA class-I loci. In HLA-C*04:01 carriers, these changes translated to the SARS-CoV-2 peptide presentation predicted inefficacy by HLA-C and HLA class-I molecules, simultaneously enhancing the appropriate HLA-B potency. In patients with clinical manifestation, due to the high prevalence of HLA-C*04:01, these effects provided a decrease of the HLA class-I heterozygosity and an ability to recognize SARS-CoV-2 peptides. Based on our observations, we developed a prediction model involving demographic variables and HLA-C*04:01 allele for the identification of potential cases with the risk of hospitalization (the area under the curve (AUC) = 86.2%) or severe COVID-19 (AUC =71%).
Collapse
Affiliation(s)
- Anahit Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Vergine Madelian
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Sevak Avagyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Mihran Nazaretyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Armine Hyussyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | - Alina Sirunyan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| | | | | | | | - Karine R. Mayilyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Frieda Jordan
- Armenian Bone Marrow Donor Registry Charitable Trust, Yerevan, Armenia
| |
Collapse
|
46
|
Antonelli ACB, Almeida VP, de Castro FOF, Silva JM, Pfrimer IAH, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL, Fonseca SG. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep 2022; 12:53. [PMID: 34997041 PMCID: PMC8741764 DOI: 10.1038/s41598-021-03990-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine’s average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.
Collapse
Affiliation(s)
- Ana Clara Barbosa Antonelli
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Vinnycius Pereira Almeida
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil
| | - Fernanda Oliveira Feitosa de Castro
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil.,Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | | | - Irmtraut Araci Hoffmann Pfrimer
- Departament of Master in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Andréa Queiroz Maranhão
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | - Marcelo Macedo Brígido
- Department of Cell Biology, University of Brasília, Brasília, Brazil.,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil
| | | | | | - Simone Gonçalves Fonseca
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 s/n, sala 335, Setor Universitário, Goiânia, GO, 74605-050, Brazil. .,Institute for Investigation in Immunology (iii) - National Institute of Science and Technology (INCT), São Paulo, Brazil.
| |
Collapse
|
47
|
Yawata M, Yawata N. Practical Considerations and Workflow in Utilizing KIR Genotyping in Transplantation Medicine. Methods Mol Biol 2022; 2463:291-310. [PMID: 35344182 DOI: 10.1007/978-1-0716-2160-8_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter is intended to serve as a practical guide for establishing a workflow using sequence-specific polymorphism PCR (SSP-PCR) for killer cell immunoglobulin-like receptor (KIR) genotyping in a clinical setting, especially in allogeneic hematopoietic stem cell transplantation (HSCT). As clinical evidence accumulates on the application of KIR and HLA genetics to guide donor selection in HSCT, there is an increasing need for KIR genotyping in clinical settings, and thus medical institutes may need to build this capability. Among the various KIR genotyping approaches now available, SSP-PCR methods are well-established and are the most cost-effective and will likely be the method of choice especially when expenses will be passed on to the patient. The protocol described in this chapter developed by Vilches et al. features small amplicon PCR and is suitable for KIR genotyping using FFPE-derived DNA as well as DNA extracted from blood samples. Setting up a laboratory workflow for in-house KIR genotyping is relatively straightforward; in this chapter, considerations for KIR genotyping to guide clinical decisions are discussed.In HSCT, a main objective of KIR genotyping is to apply the genetic analysis to predict donor and recipient combinations that have the most potential to produce NK cell alloresponses either through the missing-self mechanism or by action associated with activating KIR. The desired effects are reduction in acute GVHD and relapse rates and enhancement of overall survival. The information herein may also be useful to clinical laboratories considering the application of KIR genotyping in areas such as solid organ transplantation, NK cell-based treatment in other forms of cancer and autoimmune diseases, humanized antibody treatment, regenerative medicine, and reproductive medicine. Some background knowledge on KIR genetics will be necessary in managing a KIR genotyping platform. This chapter aims to address the main difficulties often encountered by physicians in understanding the KIR system, such as basic aspects of the nomenclature of KIR genes and haplotypes, genotypes, and determining presence/absence of KIR ligands in the patient and donor from the extensively diversified HLA class I allotypes. In describing the workflow, emphasis has been placed on the processes after genotype PCR and gel image acquisition: haplotype inference, generating B content scores, deduction of KIR ligands from HLA typing results, and the emerging algorithms for donor selection based on KIR and HLA genetics.
Collapse
Affiliation(s)
- Makoto Yawata
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore.
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Kyushu, Japan
- Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
48
|
Pandi S, Chinniah R, Sevak V, Ravi PM, Raju M, Vellaiappan NA, Karuppiah B. Association of HLA-DRB1, DQA1 and DQB1 alleles and haplotype in Parkinson's disease from South India. Neurosci Lett 2021; 765:136296. [PMID: 34655711 DOI: 10.1016/j.neulet.2021.136296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative motor disease exhibiting familial and sporadic forms. The present study was aimed to elucidate the association of HLA-DRB1*, DQA1* and DQB1* alleles with PD. A total of 105 PD patients and 100 healthy controls were typed by PCR-SSP method. We further carried out high-resolution genotyping for DQB1 and DQA1. Results revealed the increased frequencies of alleles DRB1*04 (OR = 2.36), DRB1* 13 (OR = 4.04), DQA1* 01:04:01 (OR = 4.51), DQB1*02:01 (OR = 2.66) and DQB1*06:03 (OR = 2.65) in PD patients suggesting susceptible associations. Further, decreased frequencies observed for alleles DRB1*10 (OR = 0.34), DRB1*15 (OR = 0.44), DQA1*04:01 (OR = 0.28), DQA1*06:01 (OR = 0.11) and HLA-DQB1*05:01 (OR = 0.37) among patients have suggested protective associations. Significant disease associations were observed for two-locus haplotype such as DRB1*13-DQB1*06:03 (OR = 11.52), DQA1*01:041-DQB1*06:03 (OR = 16.50), DQA1*01:041-DQB1*05:02 (OR = 5.38) and DQA1*04:01-DQB1*06:03 (OR = 3.027). Protective associations were observed for haplotypes DRB1*10-DQB1*05:01 (OR = 0.21), DRB1*15-DQB1*06 (OR = 0.006), DQA1*04:01-DQB1*05:01 (OR = 0.400) and DQA1*04:01-DQB1*05:03 (OR = 0.196). The critical amino acid residue analyses have revealed strong susceptible association for the residues of DQB1 alleles such as: L26, S28, K71, T71 and A74, Y9, S30, D37, I37, A38, A57 and S57; and for the residues of DQA1 alleles such as: C11, F61, I74, and M76. Similarly, amino acid residues such as A13, G26, Y26, A71, S74, L9 and V38 of HLA-DQB1 alleles and residues such as Y11, G61, S74 and L76 of DQA1 alleles showed protective associations. Thus, our study documented the susceptible and protective associations of DRB1*, DQB1 and DQA1 alleles and haplotypes in developing the disease and their influence on longevity of PD patients in south India.
Collapse
Affiliation(s)
- Sasiharan Pandi
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Vandit Sevak
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Padma Malini Ravi
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | - Muthuppandi Raju
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India
| | | | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu 625021, India.
| |
Collapse
|
49
|
Yang X, Meng T. Killer-cell immunoglobulin-like receptor/human leukocyte antigen-C combination and 'great obstetrical syndromes' (Review). Exp Ther Med 2021; 22:1178. [PMID: 34504623 PMCID: PMC8394021 DOI: 10.3892/etm.2021.10612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Recurrent pregnancy loss (RPL), pre-eclampsia (PE), fetal growth restriction (FGR), and preterm delivery are examples of 'great obstetrical syndromes' (GOS). Placental dysfunction is the most common pathogenesis of GOS. In human pregnancies, the effects of uterine natural killer cells involve angiogenesis, promoting the remodeling of uterine spiral artery, and improving the invasion of trophoblast cells. The uNK cells supply killer immunoglobulin-like receptors (KIRs), which come into contact with human leukocyte antigen-C (HLA-C) ligands expressed by extravillous trophoblast cells (EVTs). Numerous studies have investigated the association between GOS and KIR/HLA-C combination. However, the outcomes have not been conclusive. The present review aimed to reveal the association between GOS and KIR/HLA-C combination to screen out high-risk pregnancies, strengthen the treatment of pregnancy complications, and reduce the frequency of adverse maternal and fetal outcomes. It has been reported that a female with a KIR AA genotype and a neonate with a paternal HLA-C2 molecule is more prone to develop GOS and have a small fetus since less cytokines were secreted by uNK cells. Conversely, the combination of KIR BB haplotype (including the activating KIR2DS1) and HLA-C2 can induce the production of cytokines and increase trophoblast invasion, leading to the birth of a large fetus. KIR/HLA-C combinations may be applicable in selecting third-party gametes or surrogates. Detection of maternal KIR genes and HLA-C molecules from the couple could serve as useful markers for predicting and diagnosing GOS.
Collapse
Affiliation(s)
- Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
50
|
Parent AV, Faleo G, Chavez J, Saxton M, Berrios DI, Kerper NR, Tang Q, Hebrok M. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep 2021; 36:109538. [PMID: 34407395 DOI: 10.1016/j.celrep.2021.109538] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022] Open
Abstract
Stem cell-based replacement therapies hold the promise to restore function of damaged or degenerated tissue such as the pancreatic islets in people with type 1 diabetes. Wide application of these therapies requires overcoming the fundamental roadblock of immune rejection. To address this issue, we use genetic engineering to create human pluripotent stem cells (hPSCs) in which the majority of the polymorphic human leukocyte antigens (HLAs), the main drivers of allogeneic rejection, are deleted. We retain the common HLA class I allele HLA-A2 and less polymorphic HLA-E/F/G to allow immune surveillance and inhibition of natural killer (NK) cells. We employ a combination of in vitro assays and humanized mouse models to demonstrate that these gene manipulations significantly reduce NK cell activity and T-cell-mediated alloimmune response against hPSC-derived islet cells. In summary, our approach produces hypoimmunogenic hPSCs that can be readily matched with recipients to avoid alloimmune rejection.
Collapse
Affiliation(s)
- Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Chavez
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Saxton
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David I Berrios
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natanya R Kerper
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|