1
|
Tian L, Wu L, Zhong XF, Ma LH, Du GY. Genome-Wide Characterization of ABC Transporter Genes and Expression Profiles in Red Macroalga Pyropia yezoensis Expose to Low-Temperature. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024:10.1007/s10126-024-10355-3. [PMID: 39269589 DOI: 10.1007/s10126-024-10355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
Pyropia yezoensis is an important economic macroalga widely cultivated in the East Asia countries of China, Korea, and Japan. The ATP-binding cassette (ABC) transporter gene family is one of the largest transporter families in all forms of life involved in various biological processes. The characteristics of ABC transporter genes in P. yezoensis (PyABC) and their functions in stress resistance, however, remain largely unknown. In this study, PyABCs were identified and characterized their expression patterns under low-temperature stress. A total of 48 PyABCs transporters were identified and divided into eight subfamilies, which are mostly predicted as membrane-binding proteins. The cis-elements of phytohormone and low-temperature response were distinguished in promoter sequences of PyABCs. Transcriptome analysis showed that PyABCs are involved in response to low-temperature stress. Among them, 12 PyABCs were significantly up-regulated after 24 h of exposure to low temperature (2 °C). Further quantitative RT-PCR analysis corroborated the highest expression happened at 24 for detected genes of PyABCC8, PyABCF3, and PyABCI1, extraordinarily for PyABCF3, and followed by decreased expression at 48 h. The expression of PyABCI1 was generally low in all tested strains. Whereas, in a strain of P. yezoensis with lower tolerance to low temperature, the expression was observed higher in PyABCC1, PyABCC8, and remarkably high in PyABCF3. This study provided valuable information on ABC gene families in P. yezoensis and their functional characteristics, especially on low-temperature resistance, and would help to understand the adaptive mechanisms of P. yezoensis to adverse environments.
Collapse
Affiliation(s)
- Lin Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Lan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Xue-Feng Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Li-Hong Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Guo-Ying Du
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Tao J, Dong F, Wang Y, Xu T, Chen H, Tang M. Arbuscular mycorrhizal fungi alter carbon metabolism and invertase genes expressions of Populus simonii × P. nigra under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14572. [PMID: 39382057 DOI: 10.1111/ppl.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) play a crucial role in regulating the allocation of carbon between source and sink tissues in plants and in regulating their stress responses by changing the sucrose biosynthesis, transportation, and catabolism in plants. Invertase, a key enzyme for plant development, participates in the response of plants to drought stress by regulating sucrose metabolism. However, the detailed mechanisms by which INV genes respond to drought stress in mycorrhizal plants remain unclear. This study examined the sugar content, enzyme activity, and expression profiles of INV genes of Populus simonii × P. nigra (PsnINVs) under two inoculation treatments (inoculation or non-inoculation) and two water conditions (well-watered or drought stress). Results showed that under drought stress, AMF up-regulated the expressions of PsnA/NINV1, PsnA/NINV2, PsnA/NINV3, and PsnA/NINV5 in leaves, which may be related to the enhancement of photosynthetic capacity. Additionally, AMF up-regulated the expressions of PsnA/NINV6, PsnA/NINV10, and PsnA/NINV12 in leaves, which may be related to enhancing osmotic regulation ability and drought tolerance.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fengxin Dong
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yihan Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingying Xu
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zhang Z, Fu L, Yun B, Wang X, Wang X, Wu Y, Lv J, Chen L, Li W. Differentially localized protein identification for breast cancer based on deep learning in immunohistochemical images. Commun Biol 2024; 7:935. [PMID: 39095659 PMCID: PMC11297317 DOI: 10.1038/s42003-024-06548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The mislocalization of proteins leads to breast cancer, one of the world's most prevalent cancers, which can be identified from immunohistochemical images. Here, based on the deep learning framework, location prediction models were constructed using the features of breast immunohistochemical images. Ultimately, six differentially localized proteins that with stable differentially predictive localization, maximum localization differences, and whose predicted results are not affected by removing a single image are obtained (CCNT1, NSUN5, PRPF4, RECQL4, UTP6, ZNF500). Further verification reveals that these proteins are not differentially expressed, but are closely associated with breast cancer and have great classification performance. Potential mechanism analysis shows that their co-expressed or co-located proteins and RNAs may affect their localization, leading to changes in interactions and functions that further causes breast cancer. They have the potential to help shed light on the molecular mechanisms of breast cancer and provide assistance for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Bei Yun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Xu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Xiaoxi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Yifan Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
4
|
Zhao X, Shi Z, He F, Niu Y, Qi G, Sun S, Li X, Gao X. Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:7460. [PMID: 39000567 PMCID: PMC11242666 DOI: 10.3390/ijms25137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Veszelyi K, Czegle I, Varga V, Németh CE, Besztercei B, Margittai É. Subcellular Localization of Thioredoxin/Thioredoxin Reductase System-A Missing Link in Endoplasmic Reticulum Redox Balance. Int J Mol Sci 2024; 25:6647. [PMID: 38928353 PMCID: PMC11204020 DOI: 10.3390/ijms25126647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability.
Collapse
Affiliation(s)
- Krisztina Veszelyi
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Viola Varga
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Csilla Emese Németh
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Éva Margittai
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| |
Collapse
|
6
|
Jin Y, Jia J, Yang Y, Zhu X, Yan H, Mao C, Najeeb A, Luo J, Sun M, Xie Z, Wang X, Huang L. DNAJ protein gene expansion mechanism in Panicoideae and PgDNAJ functional identification in pearl millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:149. [PMID: 38836874 DOI: 10.1007/s00122-024-04656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.
Collapse
Affiliation(s)
- Yarong Jin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuchen Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haidong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunli Mao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinchan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheni Xie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Lamelas L, López-Hidalgo C, Valledor L, Meijón M, Cañal MJ. Like mother like son: Transgenerational memory and cross-tolerance from drought to heat stress are identified in chloroplast proteome and seed provisioning in Pinus radiata. PLANT, CELL & ENVIRONMENT 2024; 47:1640-1655. [PMID: 38282466 DOI: 10.1111/pce.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
How different stressors impact plant health and memory when they are imposed in different generations in wild ecosystems is still scarce. Here, we address how different environments shape heritable memory for the next generation in seeds and seedlings of Pinus radiata, a long-lived species with economic interest. The performance of the seedlings belonging to two wild clonal subpopulations (optimal fertirrigation vs. slightly stressful conditions) was tested under heat stress through physiological profiling and comparative time-series chloroplast proteomics. In addition, we explored the seeds conducting a physiological characterization and targeted transcriptomic profiling in both subpopulations. Our results showed differential responses between them, evidencing a cross-stress transgenerational memory. Seedlings belonging to the stressed subpopulation retained key proteins related to Photosystem II, chloroplast-to-nucleus signalling and osmoprotection which helped to overcome the applied heat stress. The seeds also showed a differential gene expression profile for targeted genes and microRNAs, as well as an increased content of starch and secondary metabolites, molecules which showed potential interest as biomarkers for early selection of primed plants. Thus, these finds not only delve into transgenerational cross-stress memory in trees, but also provide a new biotechnological tool for forest design.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
8
|
Gao Y, Qu D, Zhou M, Tang R, Ye J, Li X, Wang Y. Rhizobial-induced phosphatase GmPP2C61A positively regulates soybean nodulation. PHYSIOLOGIA PLANTARUM 2024; 176:e14341. [PMID: 38741264 DOI: 10.1111/ppl.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Yongkang Gao
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Dejie Qu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Miaomiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Ruiheng Tang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Junjie Ye
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
| | - Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, P.R. China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University Yangling, Shaanxi Province, P.R. China
| |
Collapse
|
9
|
Qiu H, Chen Y, Fu J, Zhang C. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans. Genes Genomics 2024; 46:399-408. [PMID: 38319456 DOI: 10.1007/s13258-023-01489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.
Collapse
Affiliation(s)
- Hui Qiu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yiwen Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
10
|
Graffam D, Cutlan M, Storm AR, Hulse-Kemp AM, Stoeckman AK. Gossypium hirsutum gene of unknown function Gohir.A02G161000 encodes a potential transmembrane Root UVB Sensitive 4 Protein with a putative protein-protein interaction interface. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000869. [PMID: 38495582 PMCID: PMC10943365 DOI: 10.17912/micropub.biology.000869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
A gene of unknown function, Gohir.A02G161000.1, identified in Gossypium hirsutum was studied using computational sequence and structure bioinformatics tools. The associated protein GhRUS4-A0A1U8JPV7 (UniProt A0A1U8JPV7) is predicted to be a plastid-localized, transmembrane root UVB-sensitive 4 (RUS4) protein with a newly identified potential dimerization surface. Evidence from homology and sequence conservation suggest involvement in auxin transport and pollen maturation.
Collapse
Affiliation(s)
| | - Marissa Cutlan
- Chemistry Department, Bethel University, Saint Paul, MN USA
| | - Amanda R Storm
- Department of Biology, Western Carolina University, Cullowhee, NC USA
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, The Agricultural Research Service of U.S. Department of Agriculture, Raleigh, NC USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC USA
| | | |
Collapse
|
11
|
Nahirñak V, Almasia NI, Lia VV, Hopp HE, Vazquez Rovere C. Unveiling the defensive role of Snakin-3, a member of the subfamily III of Snakin/GASA peptides in potatoes. PLANT CELL REPORTS 2024; 43:47. [PMID: 38302779 DOI: 10.1007/s00299-023-03108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024]
Abstract
KEY MESSAGE The first in-depth characterization of a subfamily III Snakin/GASA member was performed providing experimental evidence on promoter activity and subcellular localization and unveiling a role of potato Snakin-3 in defense Snakin/GASA proteins share 12 cysteines in conserved positions in the C-terminal region. Most of them were involved in different aspects of plant growth and development, while a small number of these peptides were reported to have antimicrobial activity or participate in abiotic stress tolerance. In potato, 18 Snakin/GASA genes were identified and classified into three groups based on phylogenetic analysis. Snakin-1 and Snakin-2 are members of subfamilies I and II, respectively, and were reported to be implicated not only in defense against pathogens but also in plant development. In this work, we present the first in-depth characterization of Snakin-3, a member of the subfamily III within the Snakin/GASA gene family of potato. Transient co-expression of Snakin-3 fused to the green fluorescent protein and organelle markers revealed that it is located in the endoplasmic reticulum. Furthermore, expression analyses via pSnakin-3::GUS transgenic plants showed GUS staining mainly in roots and vascular tissues of the stem. Moreover, GUS expression levels were increased after inoculation with Pseudomonas syringae pv. tabaci or Pectobacterium carotovorum subsp. carotovorum and also after auxin treatment mainly in roots and stems. To gain further insights into the function of Snakin-3 in planta, potato overexpressing lines were challenged against P. carotovorum subsp. carotovorum showing enhanced tolerance to this bacterial pathogen. In sum, here we report the first functional characterization of a Snakin/GASA gene from subfamily III in Solanaceae. Our findings provide experimental evidence on promoter activity and subcellular localization and reveal a role of potato Snakin-3 in plant defense.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Natalia Inés Almasia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
| | - Verónica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto, Hurlingham, Argentina.
| |
Collapse
|
12
|
Su Y, Zeeshan Ul Haq M, Liu X, Li Y, Yu J, Yang D, Wu Y, Liu Y. A Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Pogostemon cablin in Response to p-HBA-Induced Continuous Cropping Obstacles. PLANTS (BASEL, SWITZERLAND) 2023; 12:3901. [PMID: 38005798 PMCID: PMC10675793 DOI: 10.3390/plants12223901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of the patchouli PatCASPL gene family. In this study, 156 PatCASPL genes were identified at the whole-genome level. Subcellular localization predicted that 75.6% of PatCASPL proteins reside on the cell membrane. A phylogenetic analysis categorized PatCASPL genes into five subclusters alongside Arabidopsis CASPL genes. In a cis-acting element analysis, a total of 16 different cis-elements were identified, among which the photo-responsive element was the most common in the CASPL gene family. A transcriptome analysis showed that p-hydroxybenzoic acid, an allelopathic autotoxic substance, affected the expression pattern of PatCASPLs, including a total of 27 upregulated genes and 30 down-regulated genes, suggesting that these PatCASPLs may play an important role in the regulation of patchouli continuous cropping obstacles by affecting the formation and integrity of Casparian strip bands. These results provided a theoretical basis for exploring and verifying the function of the patchouli PatCASPL gene family and its role in continuous cropping obstacles.
Collapse
Affiliation(s)
- Yating Su
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Xiaofeng Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Yang Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| |
Collapse
|
13
|
Godbole RC, Kadam SB, Pable AA, Singh S, Barvkar VT. Phylogenomics of transcriptionally active AP2/ERF and bHLH transcription factors and study of their promoter regions in Nothapodytes nimmoniana (J.Graham) Mabb. Genome 2023; 66:235-250. [PMID: 37163758 DOI: 10.1139/gen-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nothapodytes nimmoniana is a medicinally important plant producing anticancer monoterpene indole alkaloid (MIA), camptothecin (CPT). The CPT is synthesised through the strictosidine intermediate following the MIA pathway; however, transcriptional regulation of CPT pathway is still elusive in N. nimmoniana. Biosynthesis of MIA is regulated by various transcription factors (TFs) belonging to AP2/ERF, bHLH, MYB, and WRKY families. The present study identified transcriptionally active full-length 105 AP2/ERF and 68 bHLH family TFs from the N. nimmoniana. AP2/ERF TFs were divided into three subfamilies along with a soloist, while bHLH TFs were divided into 10 subfamilies according to their phylogenetic similarities. Three group IXa ERFs, Nn-ERF22, Nn-ERF29, and Nn-ERF41, one subfamily IVa TF Nn-bHLH7, and three subfamilies IIIe Nn-bHLH33, Nn-bHLH51, and Nn-bHLH52 clustered with the TFs regulating alkaloid biosynthesis in Catharanthus roseus, tomato, tobacco, and Artemisia annua. Expression of these TFs in N. nimmoniana was higher in roots, which is a primary CPT accumulating tissue. Moreover, genome skimming approach was used to reconstruct the promoter regions of candidate ERF genes to identify the cis-regulatory elements. The presence of G-boxes and other jasmonic acid-responsive elements in the promoter suggests the regulation of ERFs by bHLHs. The present study effectively generated and used genomics resource for characterisation of regulatory TFs from non-model medicinal plant.
Collapse
Affiliation(s)
- Rucha C Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Sudhir Singh
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
14
|
Jin Y, Luo J, Yang Y, Jia J, Sun M, Wang X, Khan I, Huang D, Huang L. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genomics 2023; 24:510. [PMID: 37653366 PMCID: PMC10472707 DOI: 10.1186/s12864-023-09550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Along with global warming, resulting in crop production, exacerbating the global food crisis. Therefore, it is urgent to study the mechanism of plant heat resistance. However, crop resistance genes were lost due to long-term artificial domestication. By analyzing the potential heat tolerance genes and molecular mechanisms in other wild materials, more genetic resources can be provided for improving the heat tolerance of crops. Elephant grass (Pennisetum purpureum Schum.) has strong adaptability to heat stress and contains abundant heat-resistant gene resources. RESULTS Through sequence structure analysis, a total of 36 RWP-RK members were identified in elephant grass. Functional analysis revealed their close association with heat stress. Four randomly selected RKDs (RKD1.1, RKD4.3, RKD6.6, and RKD8.1) were analyzed for expression, and the results showed upregulation under high temperature conditions, suggesting their active role in response to heat stress. The members of RWP-RK gene family (36 genes) in elephant grass were 2.4 times higher than that of related tropical crops, rice (15 genes) and sorghum (15 genes). The 36 RWPs of elephant grass contain 15 NLPs and 21 RKDs, and 73% of RWPs are related to WGD. Among them, combined with the DAP-seq results, it was found that RWP-RK gene family expansion could improve the heat adaptability of elephant grass by enhancing nitrogen use efficiency and peroxidase gene expression. CONCLUSIONS RWP-RK gene family expansion in elephant grass is closely related to thermal adaptation evolution and speciation. The RKD subgroup showed a higher responsiveness than the NLP subgroup when exposed to high temperature stress. The promoter region of the RKD subgroup contains a significant number of MeJA and ABA responsive elements, which may contribute to their positive response to heat stress. These results provided a scientific basis for analyzing the heat adaptation mechanism of elephant grass and improving the heat tolerance of other crops.
Collapse
Affiliation(s)
- Yarong Jin
- Herbivorous Livestock Research Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinchan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuchen Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiyuan Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Dejun Huang
- Herbivorous Livestock Research Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
15
|
Bhattacharya O, Ortiz I, Hendricks N, Walling LL. The tomato chloroplast stromal proteome compendium elucidated by leveraging a plastid protein-localization prediction Atlas. FRONTIERS IN PLANT SCIENCE 2023; 14:1020275. [PMID: 37701797 PMCID: PMC10493611 DOI: 10.3389/fpls.2023.1020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Irma Ortiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Nathan Hendricks
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
16
|
Sanyal SK, Awasthi M, Ranjan P, Sharma S, Pandey GK, Kateriya S. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga. Int J Biol Macromol 2023; 245:125492. [PMID: 37343610 DOI: 10.1016/j.ijbiomac.2023.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayanka Awasthi
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Peeyush Ranjan
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, the University of Delhi South Campus, New Delhi 110021, India.
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
17
|
Di Donfrancesco A, Berlingieri C, Giacomello M, Frascarelli C, Magalhaes Rebelo AP, Bindoff LA, Reeval S, Renbaum P, Santorelli FM, Massaro G, Viscomi C, Zeviani M, Ghezzi D, Bottani E, Brunetti D. PPAR-gamma agonist pioglitazone recovers mitochondrial quality control in fibroblasts from PITRM1-deficient patients. Front Pharmacol 2023; 14:1220620. [PMID: 37576821 PMCID: PMC10415619 DOI: 10.3389/fphar.2023.1220620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Biallelic variants in PITRM1 are associated with a slowly progressive syndrome characterized by intellectual disability, spinocerebellar ataxia, cognitive decline and psychosis. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests diverse oligopeptides, including the mitochondrial targeting sequences (MTS) that are cleaved from proteins imported across the inner mitochondrial membrane by the mitochondrial processing peptidase (MPP). Mitochondrial peptidases also play a role in the maturation of Frataxin, the protein affected in Friedreich's ataxia. Recent studies in yeast indicated that the mitochondrial matrix protease Ste23, which is a homologue of the human insulin-degrading enzyme (IDE), cooperates with Cym1 (homologue of PITRM1) to ensure the proper functioning of the preprotein processing machinery. In humans, IDE could be upregulated by Peroxisome Proliferator-Activated Receptor Gamma (PPARG) agonists. Methods: We investigated preprotein processing, mitochondrial membrane potential and MTS degradation in control and patients' fibroblasts, and we evaluated the pharmacological effect of the PPARG agonist Pioglitazone on mitochondrial proteostasis. Results: We discovered that PITRM1 dysfunction results in the accumulation of MTS, leading to the disruption and dissipation of the mitochondrial membrane potential. This triggers a feedback inhibition of MPP activity, consequently impairing the processing and maturation of Frataxin. Furthermore, we found that the pharmacological stimulation of PPARG by Pioglitazone upregulates IDE and also PITRM1 protein levels restoring the presequence processing machinery and improving Frataxin maturation and mitochondrial function. Discussion: Our findings provide mechanistic insights and suggest a potential pharmacological strategy for this rare neurodegenerative mitochondrial disease.
Collapse
Affiliation(s)
- Alessia Di Donfrancesco
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Christian Berlingieri
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Frascarelli
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | - Segel Reeval
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Renbaum
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Giulia Massaro
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Daniele Ghezzi
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Emanuela Bottani
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Dario Brunetti
- Unità di Genetica Medica e Neurogenetica, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Fang H, Liu J, Ma R, Zou Y, Ho SH, Chen J, Xie Y. Functional Characterization of Lycopene β- and ε-Cyclases from a Lutein-Enriched Green Microalga Chlorella sorokiniana FZU60. Mar Drugs 2023; 21:418. [PMID: 37504949 PMCID: PMC10381880 DOI: 10.3390/md21070418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Lutein is a high-value carotenoid with many human health benefits. Lycopene β- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently β-cyclize both ends of lycopene to produce β-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into β-monocyclic γ-carotene and ultimately produced α-carotene with a β-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60.
Collapse
Affiliation(s)
- Hong Fang
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Junjie Liu
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Ruijuan Ma
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shih-Hsin Ho
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianfeng Chen
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Marine Biological Manufacturing Center of Fuzhou Institute of Oceanography, Fuzhou University, Fuzhou 350108, China
- Technical Innovation Service Platform for High-Value and High-Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High-Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
19
|
Grass GD, Ercan D, Obermayer AN, Shaw T, Stewart PA, Chahoud J, Dhillon J, Lopez A, Johnstone PAS, Rogatto SR, Spiess PE, Eschrich SA. An Assessment of the Penile Squamous Cell Carcinoma Surfaceome for Biomarker and Therapeutic Target Discovery. Cancers (Basel) 2023; 15:3636. [PMID: 37509297 PMCID: PMC10377392 DOI: 10.3390/cancers15143636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Penile squamous cell carcinoma (PSCC) is a rare malignancy in most parts of the world and the underlying mechanisms of this disease have not been fully investigated. About 30-50% of cases are associated with high-risk human papillomavirus (HPV) infection, which may have prognostic value. When PSCC becomes resistant to upfront therapies there are limited options, thus further research is needed in this venue. The extracellular domain-facing protein profile on the cell surface (i.e., the surfaceome) is a key area for biomarker and drug target discovery. This research employs computational methods combined with cell line translatomic (n = 5) and RNA-seq transcriptomic data from patient-derived tumors (n = 18) to characterize the PSCC surfaceome, evaluate the composition dependency on HPV infection, and explore the prognostic impact of identified surfaceome candidates. Immunohistochemistry (IHC) was used to validate the localization of select surfaceome markers. This analysis characterized a diverse surfaceome within patient tumors with 25% and 18% of the surfaceome represented by the functional classes of receptors and transporters, respectively. Significant differences in protein classes were noted by HPV status, with the most change being seen in transporter proteins (25%). IHC confirmed the robust surface expression of select surfaceome targets in the top 85% of expression and a superfamily immunoglobulin protein called BSG/CD147 was prognostic of survival. This study provides the first description of the PSCC surfaceome and its relation to HPV infection and sets a foundation for novel biomarker and drug target discovery in this rare cancer.
Collapse
Affiliation(s)
- George Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Dalia Ercan
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Timothy Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasreman Dhillon
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alex Lopez
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Peter A S Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark-Vejle, Beriderbakken 4, 7100 Vejle, Denmark
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Ma J, Wang R, Zhao H, Li L, Zeng F, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. Genome-wide characterization of the VQ genes in Triticeae and their functionalization driven by polyploidization and gene duplication events in wheat. Int J Biol Macromol 2023:125264. [PMID: 37302635 DOI: 10.1016/j.ijbiomac.2023.125264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Valine-glutamine motif-containing (VQ) proteins are transcriptional cofactors widely involved in plant growth, development, and response to various stresses. Although the VQ family has been genome-wide identified in some species, but the knowledge regarding duplication-driven functionalization of VQ genes among evolutionarily related species is still lacking. Here, 952 VQ genes have been identified from 16 species, emphasizing seven Triticeae species including the bread wheat. Comprehensive phylogenetic and syntenic analyses allow us to establish the orthologous relationship of VQ genes from rice (Oryza sativa) to bread wheat (Triticum aestivum). The evolutionary analysis revealed that whole-genome duplication (WGD) drives the expansion of OsVQs, while TaVQs expansion is associated with a recent burst of gene duplication (RBGD). We also analyzed the motif composition and molecular properties of TaVQ proteins, enriched biological functions, and expression patterns of TaVQs. We demonstrate that WGD-derived TaVQs have become divergent in both protein motif composition and expression pattern, while RBGD-derived TaVQs tend to adopt specific expression patterns, suggesting their functionalization in certain biological processes or in response to specific stresses. Furthermore, some RBGD-derived TaVQs are found to be associated with salt tolerance. Several of the identified salt-related TaVQ proteins were located in the cytoplasm and nucleus and their salt-responsive expression patterns were validated by qPCR analysis. Yeast-based functional experiments confirmed that TaVQ27 may be a new regulator to salt response and regulation. Overall, this study lays the foundation for further functional validation of VQ family members within the Triticeae species.
Collapse
Affiliation(s)
- Jingfei Ma
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fang Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
21
|
Zafer MZ, Tahir MHN, Khan Z, Sajjad M, Gao X, Bakhtavar MA, Waheed U, Siddique M, Geng Z, Ur Rehman S. Genome-Wide Characterization and Sequence Polymorphism Analyses of Glycine max Fibrillin ( FBN) Revealed Its Role in Response to Drought Condition. Genes (Basel) 2023; 14:1188. [PMID: 37372368 DOI: 10.3390/genes14061188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
The fibrillin (FBN) gene family is widely distributed in all photosynthetic organisms. Members of this gene family are involved in plant growth and development and their response to various biotic and abiotic stress factors. In this study, 16 members of FBN were identified in Glycine max and characterized by using different bioinformatics tools. Phylogenetic analysis classified FBN genes into seven groups. The presence of stress-related cis-elements in the upstream region of GmFBN highlighted their role in tolerance against abiotic stresses. To further decipher the function, physiochemical properties, conserved motifs, chromosomal localization, subcellular localization, and cis-acting regulatory elements were also analyzed. Gene expression analysis based on FPKM values revealed that GmFBNs greatly enhanced soybean drought tolerance and controlled the expression of several genes involved in drought response, except for GmFBN-4, GmFBN-5, GmFBN-6, GmFBN-7 and GmFBN-9. For high throughput genotyping, an SNP-based CAPS marker was also developed for the GmFBN-15 gene. The CAPS marker differentiated soybean genotypes based on the presence of either the GmFBN-15-G or GmFBN-15-A alleles in the CDS region. Association analysis showed that G. max accessions containing the GmFBN-15-A allele at the respective locus showed higher thousand seed weight compared to accessions containing the GmFBN-15-G allele. This research has provided the basic information to further decipher the function of FBN in soybean.
Collapse
Affiliation(s)
- Muhammad Zeshan Zafer
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Zulqurnain Khan
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University, Islamabad (CUI), Park Road, Islamabad 45550, Pakistan
| | - Xiangkuo Gao
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Muhammad Amir Bakhtavar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zhide Geng
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Shoaib Ur Rehman
- SINO-PAK Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Pakistan
| |
Collapse
|
22
|
Perween N, Pekhale K, Haval G, Khude G, Ghaskadbi S, Ghaskadbi SS. Glutathione synthetase from Hydra vulgaris: Molecular cloning, overexpression, purification and partial characterization. Protein Expr Purif 2023; 208-209:106292. [PMID: 37127055 DOI: 10.1016/j.pep.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India; Department of Zoology, M.C.E. Society's Abeda Inamdar Senior College, Pune, 411001, India
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India; Department of Zoology, Abasaheb Garware College, Pune, 411004, India
| | - Gaurav Khude
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
23
|
Smith ER, Caulley LR, Storm AR, Hulse-Kemp AM, Stoeckman AK. Gossypium hirsutum gene of unknown function Gohir.A03G007700.1 encodes a potential VAN3-binding protein with a phosphoinositide-binding site. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000669. [PMID: 36798590 PMCID: PMC9926292 DOI: 10.17912/micropub.biology.000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
A gene of unknown function, Gohir.A03G007700.1 (gene ID: Gohir.A03G007700_UTX-TM1_v2.1; transcript ID: Gohir.A03G007700.1_UTX-TM1_v2.1), identified in Gossypium hirsutum was studied using bioinformatic analyses of the sequence and structure of its encoded protein. Results from domain prediction, conserved residues and structure comparison indicate the encoded plant-specific protein (UniProt A0A1U8N485) is part of the VAN3-binding protein family with a conserved phosphoinositide-binding site. Homology comparison suggests functional similarity with Arabidopsis FORKED-like FL5 and 6, which localize to the Golgi apparatus and are linked to vein development and leaf size phenotypes.
Collapse
Affiliation(s)
- Emma R. Smith
- Chemistry Department, Bethel University, Saint Paul, MN USA
| | | | - Amanda R Storm
- Department of Biology, Western Carolina University, Cullowhee, NC USA
,
Correspondence to: Amanda R Storm (
)
| | - Amanda M. Hulse-Kemp
- Genomics and Bioinformatics Research Unit, The Agricultural Research Service of U.S. Department of Agriculture, Raleigh, NC USA
,
Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC
,
Correspondence to: Amanda M. Hulse-Kemp (
)
| | - Angela K. Stoeckman
- Chemistry Department, Bethel University, Saint Paul, MN USA
,
Correspondence to: Angela K. Stoeckman (
)
| |
Collapse
|
24
|
Dey J, Kishore Prasad H. Structure based functional annotation of a MYND-less lysine methyl transferase in Candida albicans. Bioinformation 2022; 18:1146-1153. [PMID: 37701516 PMCID: PMC10492916 DOI: 10.6026/973206300181146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 09/14/2023] Open
Abstract
Candida albicans is opportunistic pathogenic yeast that is widely distributed throughout the world and is classified as the most critical fungal pathogen group. Candida albicans is a common microbiota of healthy individuals but can cause superficial and invasive infections in immune compromised individuals. Protein Post-translational modifications involving methylation of lysine amino acids stand for a major regulator of eukaryotic transcription, and pathways controlling several cellular processes. SMYD makes up a SET (Su (Var) 3-9, Enhancer-of-zeste and Trithorax) and MYND (Myeloid, Nervy, and DEAF-1) domain containing lysine methyl transferase subfamily that transfers methyl groups from methyl donors onto lysine residues in histones (H3 and H4) and non-histone proteins. The SET domain is the methyltransferase catalytic domain, while MYND participates in both protein and DNA interactions. Well-studied examples of SMYD proteins are five human and two Saccharomyces cerevisiae, constituting examples of histone and non-histone protein lysine methyl transferase members. However, there is limited understanding of SET lysine methyltransferases, including the SMYD subfamily, in the pathogenic fungi Candida albicans. Using bioinformatics tools, we characterized the SMYD domain containing proteins in the important pathogen. We report the presence of an atypical SMYD member (CaO19.3863) as a new lysine methyltransferase that can be a target for antifungal therapy.
Collapse
Affiliation(s)
- Joydeb Dey
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam-788011, India
| | - Himanshu Kishore Prasad
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam-788011, India
| |
Collapse
|
25
|
Zhang T, Gu J, Wang Z, Wu C, Liang Y, Shi X. Protein Subcellular Localization Prediction Model Based on Graph Convolutional Network. Interdiscip Sci 2022; 14:937-946. [PMID: 35713780 DOI: 10.1007/s12539-022-00529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Protein subcellular localization prediction is an important research area in bioinformatics, which plays an essential role in understanding protein function and mechanism. Many machine learning and deep learning algorithms have been employed for this task, but most of them do not use structural information of proteins. With the advances in protein structure research in recent years, protein contact map prediction has been dramatically enhanced. In this paper, we present GraphLoc, a deep learning model that predicts the localization of proteins at the subcellular level. The cores of the model are a graph convolutional neural network module and a multi-head attention module. The protein topology graph is constructed based on a contact map predicted from protein sequences, which is used as the input of the GCN module to take full advantage of the structural information of proteins. Multi-head attention module learns the weighted contribution of different amino acids to subcellular localization in different feature representation subspaces. Experiments on the benchmark dataset show that the performance of our model is better than others. The code can be accessed at https://github.com/GoodGuy398/GraphLoc . The proposed GraphLoc model consists of three parts. The first part is a graph convolutional network (GCN) module, which utilizes the predicted contact maps to construct protein graph, taking benefit of protein information accordingly. The second part is the multi-head attention module, which learns the weighted contribution of different amino acids in different feature representation subspace, and weighted average the feature map across all amino acid nodes. The last part is a fully connected layer that maps the flatten graph representation vector to another vector with a category number dimension, followed by a softmax layer to predict the protein subcellular localization.
Collapse
Affiliation(s)
- Tianhao Zhang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Jiawei Gu
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Zeyu Wang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Chunguo Wu
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China
| | - Yanchun Liang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China
| | - Xiaohu Shi
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China.
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China.
| |
Collapse
|
26
|
Varghese DM, Nussinov R, Ahmad S. Predictive modeling of moonlighting DNA-binding proteins. NAR Genom Bioinform 2022; 4:lqac091. [PMID: 36474806 PMCID: PMC9716651 DOI: 10.1093/nargab/lqac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 09/10/2024] Open
Abstract
Moonlighting proteins are multifunctional, single-polypeptide chains capable of performing multiple autonomous functions. Most moonlighting proteins have been discovered through work unrelated to their multifunctionality. We believe that prediction of moonlighting proteins from first principles, that is, using sequence, predicted structure, evolutionary profiles, and global gene expression profiles, for only one functional class of proteins in a single organism at a time will significantly advance our understanding of multifunctional proteins. In this work, we investigated human moonlighting DNA-binding proteins (mDBPs) in terms of properties that distinguish them from other (non-moonlighting) proteins with the same DNA-binding protein (DBP) function. Following a careful and comprehensive analysis of discriminatory features, a machine learning model was developed to assess the predictability of mDBPs from other DBPs (oDBPs). We observed that mDBPs can be discriminated from oDBPs with high accuracy of 74% AUC of ROC using these first principles features. A number of novel predicted mDBPs were found to have literature support for their being moonlighting and others are proposed as candidates, for which the moonlighting function is currently unknown. We believe that this work will help in deciphering and annotating novel moonlighting DBPs and scale up other functions. The source codes and data sets used for this work are freely available at https://zenodo.org/record/7299265#.Y2pO3ctBxPY.
Collapse
Affiliation(s)
- Dana Mary Varghese
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ruth Nussinov
- Computational Structural Biology Section, Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
27
|
Vasu K, Khan D, Ramachandiran I, Blankenberg D, Fox P. Analysis of nested alternate open reading frames and their encoded proteins. NAR Genom Bioinform 2022; 4:lqac076. [PMID: 36267124 PMCID: PMC9580016 DOI: 10.1093/nargab/lqac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, ‘alt-proteins’ lack sequence homology with host ORF-derived proteins. We show global amino acid frequencies, and consequent biochemical characteristics of Alt-ORFs nested within host ORFs (nAlt-ORFs), are genetically-driven, and predicted by summation of frequencies of hundreds of encompassing host codon-pairs. Analysis of 101 human nAlt-ORFs of length ≥150 codons confirms the theoretical predictions, revealing an extraordinarily high median isoelectric point (pI) of 11.68, due to anomalous charged amino acid levels. Also, nAlt-ORF proteins exhibit a >2-fold preference for reading frame 2 versus 3, predicted mitochondrial and nuclear localization, and elevated codon adaptation index indicative of natural selection. Our results provide a theoretical and conceptual framework for exploration of these largely unannotated, but potentially significant, alternative ORFs and their encoded proteins.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Correspondence may also be addressed to Daniel Blankenberg. Tel: +1 216 444 4336;
| | - Paul L Fox
- To whom correspondence should be addressed. Tel: +1 216 444 8053; Fax: +1 216 444 9404;
| |
Collapse
|
28
|
Zhang H, Li Z, Xu G, Bai G, Zhang P, Zhai N, Zheng Q, Chen Q, Liu P, Jin L, Zhou H. Genome-wide identification and characterization of NPF family reveals NtNPF6.13 involving in salt stress in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:999403. [PMID: 36311086 PMCID: PMC9608447 DOI: 10.3389/fpls.2022.999403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Proteins of the Nitrate Transporter 1/Peptide Transporter (NPF) family transport a diverse variety of substrates, such as nitrate, peptides, hormones and chloride. In this study, a systematic analysis of the tobacco (Nicotiana tabacum) NPF family was performed in the cultivated 'K326'. In total, 143 NtNPF genes were identified and phylogenetically classified into eight subfamilies, NPF1 to NPF8, based on the classification of NPF families in other plant species. The chromosomal locations and structures of the NtNPF genes were analyzed. The expression profiles of NtNPF genes under NaCl stress were analyzed to screen the possible NPF genes involving in chloride regulation in tobacco. Most NtNPF6 genes responded to salt stress in the roots and leaves. The expression of NtNPF6.13 was significantly down-regulated after salt stress for 12h. The chloride content was reduced in the roots of ntnpf6.13 mutant. These findings support the participation of NtNPF6.13 in chloride uptake. Several other NtNPF genes that play potential roles in chloride metabolism of tobacco require further study.
Collapse
Affiliation(s)
- Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Ge Bai
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Peipei Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
29
|
Zhu P, Wu X, Zhang RY, Hsu CC, Zhang ZY, Tao WA. An Integrated Proteomic Strategy to Identify SHP2 Substrates. J Proteome Res 2022; 21:2515-2525. [PMID: 36103635 PMCID: PMC9597472 DOI: 10.1021/acs.jproteome.2c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatases play an essential role in normal cell physiology and the development of diseases such as cancer. The innate challenges associated with studying protein phosphatases have limited our understanding of their substrates, molecular mechanisms, and unique functions within highly coordinated networks. Here, we introduce a novel strategy using substrate-trapping mutants coupled with quantitative proteomics methods to identify physiological substrates of Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) in a high-throughput manner. The technique integrates three parallel mass spectrometry-based proteomics experiments, including affinity isolation of substrate-trapping mutant complex using wild-type and SHP2 KO cells, in vivo global quantitative phosphoproteomics, and in vitro phosphatase reaction. We confidently identified 18 direct substrates of SHP2 in the epidermal growth factor receptor signaling pathways, including both known and novel SHP2 substrates. Docking protein 1 was further validated using biochemical assays as a novel SHP2 substrate, providing a mechanism for SHP2-mediated Ras activation. This advanced workflow improves the systemic identification of direct substrates of protein phosphatases, facilitating our understanding of the equally important roles of protein phosphatases in cellular signaling.
Collapse
Affiliation(s)
- Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Özsarı G, Rifaioglu AS, Atakan A, Doğan T, Martin MJ, Çetin Atalay R, Atalay V. SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins. Bioinformatics 2022; 38:4226-4229. [PMID: 35801913 DOI: 10.1093/bioinformatics/btac458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/08/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
SUMMARY Accurate prediction of the subcellular locations (SLs) of proteins is a critical topic in protein science. In this study, we present SLPred, an ensemble-based multi-view and multi-label protein subcellular localization prediction tool. For a query protein sequence, SLPred provides predictions for nine main SLs using independent machine-learning models trained for each location. We used UniProtKB/Swiss-Prot human protein entries and their curated SL annotations as our source data. We connected all disjoint terms in the UniProt SL hierarchy based on the corresponding term relationships in the cellular component category of Gene Ontology and constructed a training dataset that is both reliable and large scale using the re-organized hierarchy. We tested SLPred on multiple benchmarking datasets including our-in house sets and compared its performance against six state-of-the-art methods. Results indicated that SLPred outperforms other tools in the majority of cases. AVAILABILITY AND IMPLEMENTATION SLPred is available both as an open-access and user-friendly web-server (https://slpred.kansil.org) and a stand-alone tool (https://github.com/kansil/SLPred). All datasets used in this study are also available at https://slpred.kansil.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gökhan Özsarı
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey.,Department of Computer Engineering, Niğde Ömer Halisdemir University, Niğde 51240, Turkey
| | - Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, İskenderun Technical University, Hatay 31200, Turkey.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Ahmet Atakan
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey.,Department of Computer Engineering, Erzincan Binali Yıldırım University, Erzincan 24002, Turkey
| | - Tunca Doğan
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Hinxton CB10 1SD, UK
| | - Rengül Çetin Atalay
- Graduate School of Informatics Middle East Technical University, Ankara 06800, Turkey.,Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
31
|
Nguyen PT, Wacker T, Brown AJP, da Silva Dantas A, Shekhova E. Understanding the Role of Nitronate Monooxygenases in Virulence of the Human Fungal Pathogen Aspergillus fumigatus. J Fungi (Basel) 2022; 8:736. [PMID: 35887491 PMCID: PMC9323177 DOI: 10.3390/jof8070736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Aspergillus fumigatus is the leading cause of the fungal invasive disease called aspergillosis, which is associated with a high mortality rate that can reach 50% in some groups of immunocompromised individuals. The increasing prevalence of azole-resistant A. fumigatus isolates, both in clinical settings and the environment, highlights the importance of discovering new fungal virulence factors that can potentially become targets for novel antifungals. Nitronate monooxygenases (Nmos) represent potential targets for antifungal compounds as no orthologs of those enzymes are present in humans. Nmos catalyse the denitrification of nitroalkanes, thereby detoxifying these mediators of nitro-oxidative stress, and therefore we tested whether Nmos provide protection for A. fumigatus against host-imposed stresses at sites of infection. The results of inhibition zone assays indicated that Nmo2 and Nmo5 are not essential for the oxidative stress resistance of A. fumigatus in vitro. In addition, the resazurin-based metabolic activity assay revealed that the growth of mutants lacking the nmo2 or nmo5 genes was only slightly reduced in the presence of 0.05 mM peroxynitrite. Nevertheless, both Nmo2 and Nmo5 were shown to contribute to defense against murine bone marrow-derived macrophages, and this was no longer observed when NADPH oxidase, the main generator of reactive oxygen species during infection, was inhibited in macrophages. Furthermore, we revealed that Nnmos promote the virulence of the fungus in the Galleria mellonella model of infection. Both nmo2 and nmo5 knock-out strains were less virulent than the wild-type control as recorded 72 h post-infection. Our results indicate that Nmos play a role in the virulence of A. fumigatus.
Collapse
|
32
|
Cong H, Liu H, Cao Y, Chen Y, Liang C. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism. Interdiscip Sci 2022; 14:421-438. [PMID: 35066812 DOI: 10.1007/s12539-021-00496-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
As an important research field in bioinformatics, protein subcellular location prediction is critical to reveal the protein functions and provide insightful information for disease diagnosis and drug development. Predicting protein subcellular locations remains a challenging task due to the difficulty of finding representative features and robust classifiers. Many feature fusion methods have been widely applied to tackle the above issues. However, they still suffer from accuracy loss due to feature redundancy. Furthermore, multiple protein subcellular locations prediction is more complicated since it is fundamentally a multi-label classification problem. The traditional binary classifiers or even multi-class classifiers cannot achieve satisfactory results. This paper proposes a novel method for protein subcellular location prediction with both single and multiple sites based on deep convolutional neural networks. Specifically, we first obtain the integrated features by simultaneously considering the pseudo amino acid, amino acid index distribution, and physicochemical property. We then adopt deep convolutional neural networks to extract high-dimensional features from the fused feature, removing the redundant preliminary features and gaining better representations of the raw sequences. Moreover, we use the self-attention mechanism and a customized loss function to ensure that the model is more inclined to positive data. In addition, we use random k-label sets to reduce the number of prediction labels. Meanwhile, we employ a hybrid strategy of over-sampling and under-sampling to tackle the data imbalance problem. We compare our model with three representative classification alternatives. The experiment results show that our model achieves the best performance in terms of accuracy, demonstrating the efficacy of the proposed model.
Collapse
Affiliation(s)
- Hanhan Cong
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China
| | - Hong Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
- Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China.
| | - Yi Cao
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network Based Intelligent, Computing University of Jinan, Jinan, China
| | - Yuehui Chen
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network Based Intelligent, Computing University of Jinan, Jinan, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Hong La V. Genome-Wide Identification and Analysis of Heat Shock Protein 70 Family in Theobroma cacao. Pak J Biol Sci 2022; 25:608-618. [PMID: 36098167 DOI: 10.3923/pjbs.2022.608.618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> In plants, the 70 kDa heat shock proteins (Hsp70-s) play important roles during growth and development and in response to stresses. This study aimed to provide comprehensive information on the <i>Hsp70 </i>family in cocoa (<i>Theobroma cacao</i>), one of the most important tropical perennial cash crops worldwide. <b>Materials and Methods:</b> A basic local alignment search tool (TBLASTN) against the cocoa genome was performed using <i>Arabidopsis</i> Hsp70-s as queries to detect TcHsp70-s. Sequence analyses were carried out by various bioinformatics tools. <b>Results:</b> A total of 18 members of the <i>Hsp70</i> family has been detected and characterized in the cocoa genome. All general properties, such as physic-chemical parameters, gene structure, phylogenetic tree and sub-cellular localization, were determined using a variety of bioinformatics tools. The expression patterns of the <i>TcHsp70</i> genes in different stages of the zygotic and somatic embryos were investigated. In addition, expression profiles of the <i>TcHsp70</i> genes under <i>Phytophthora megakarya</i> inoculation were analyzed. <b>Conclusion:</b> The results of this study revealed the features and expression analyses of <i>Hsp70</i> genes in cocoa. These findings could provide a strong foundation for further research of the <i>TcHsp70</i> family, which could aid in the development and stress tolerance of cocoa species.
Collapse
|
34
|
Norero NS, Rey Burusco MF, D’Ippólito S, Décima Oneto CA, Massa GA, Castellote MA, Feingold SE, Guevara MG. Genome-Wide Analyses of Aspartic Proteases on Potato Genome ( Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040544. [PMID: 35214878 PMCID: PMC8875628 DOI: 10.3390/plants11040544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR.
Collapse
Affiliation(s)
- Natalia Sigrid Norero
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - María Florencia Rey Burusco
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
- Faculty of Agricultural Sciences, University National of Mar del Plata, Balcarce B7620, Argentina
| | - Sebastián D’Ippólito
- Institute of Biological Research, University of Mar del Plata (IIB-UNMdP), Mar del Plata B7600, Argentina;
- National Scientific and Technical Research Council, Argentina (CONICET), Buenos Aires C1499, Argentina
| | - Cecilia Andrea Décima Oneto
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - Gabriela Alejandra Massa
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
- Faculty of Agricultural Sciences, University National of Mar del Plata, Balcarce B7620, Argentina
| | - Martín Alfredo Castellote
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - Sergio Enrique Feingold
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - María Gabriela Guevara
- Institute of Biological Research, University of Mar del Plata (IIB-UNMdP), Mar del Plata B7600, Argentina;
- National Scientific and Technical Research Council, Argentina (CONICET), Buenos Aires C1499, Argentina
- Correspondence: or
| |
Collapse
|
35
|
Tu Y, Lei H, Shen HB, Yang Y. SIFLoc: a self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Brief Bioinform 2022; 23:6527276. [DOI: 10.1093/bib/bbab605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Abstract
With the rapid growth of high-resolution microscopy imaging data, revealing the subcellular map of human proteins has become a central task in the spatial proteome. The cell atlas of the Human Protein Atlas (HPA) provides precious resources for recognizing subcellular localization patterns at the cell level, and the large-scale annotated data enable learning via advanced deep neural networks. However, the existing predictors still suffer from the imbalanced class distribution and the lack of labeled data for minor classes. Thus, it is necessary to develop new methods for coping with these issues. We leverage the self-supervised learning protocol to address these problems. Especially, we propose a pre-training scheme to enhance the conventional supervised learning framework called SIFLoc. The pre-training is featured by a hybrid data augmentation method and a modified contrastive loss function, aiming to learn good feature representations from microscopic images. The experiments are performed on a large-scale immunofluorescence microscopic image dataset collected from the HPA database. Using the same deep neural networks as the classifier, the model pre-trained via SIFLoc not only outperforms the model without pre-training by a large margin but also shows advantages over the state-of-the-art self-supervised learning methods. Especially, SIFLoc improves the prediction accuracy for minor organelles significantly.
Collapse
Affiliation(s)
- Yanlun Tu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Houchao Lei
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Hong-Bin Shen
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
36
|
Jin Y, Yang Y. ProtPlat: an efficient pre-training platform for protein classification based on FastText. BMC Bioinformatics 2022; 23:66. [PMID: 35148686 PMCID: PMC8832758 DOI: 10.1186/s12859-022-04604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background For the past decades, benefitting from the rapid growth of protein sequence data in public databases, a lot of machine learning methods have been developed to predict physicochemical properties or functions of proteins using amino acid sequence features. However, the prediction performance often suffers from the lack of labeled data. In recent years, pre-training methods have been widely studied to address the small-sample issue in computer vision and natural language processing fields, while specific pre-training techniques for protein sequences are few. Results In this paper, we propose a pre-training platform for representing protein sequences, called ProtPlat, which uses the Pfam database to train a three-layer neural network, and then uses specific training data from downstream tasks to fine-tune the model. ProtPlat can learn good representations for amino acids, and at the same time achieve efficient classification. We conduct experiments on three protein classification tasks, including the identification of type III secreted effectors, the prediction of subcellular localization, and the recognition of signal peptides. The experimental results show that the pre-training can enhance model performance effectively and ProtPlat is competitive to the state-of-the-art predictors, especially for small datasets. We implement the ProtPlat platform as a web service (https://compbio.sjtu.edu.cn/protplat) that is accessible to the public. Conclusions To enhance the feature representation of protein amino acid sequences and improve the performance of sequence-based classification tasks, we develop ProtPlat, a general platform for the pre-training of protein sequences, which is featured by a large-scale supervised training based on Pfam database and an efficient learning model, FastText. The experimental results of three downstream classification tasks demonstrate the efficacy of ProtPlat. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04604-2.
Collapse
Affiliation(s)
- Yuan Jin
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, 200240, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, 200240, China.
| |
Collapse
|
37
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
38
|
Lamelas L, Valledor L, López-Hidalgo C, Cañal MJ, Meijón M. Nucleus and chloroplast: A necessary understanding to overcome heat stress in Pinus radiata. PLANT, CELL & ENVIRONMENT 2022; 45:446-458. [PMID: 34855991 DOI: 10.1111/pce.14238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The recovery and maintenance of plant homeostasis under stressful environments are complex processes involving organelle crosstalk for a coordinated cellular response. Here, we revealed through nuclear and chloroplast subcellular proteomics, biochemical cell profiles and targeted transcriptomics how chloroplasts and nuclei developed their responses under increased temperatures in a long-lived species (Pinus radiata). Parallel to photosynthetic impairment and reactive oxygen species production in the chloroplast, a DNA damage response was triggered in the nucleus followed by an altered chromatin conformation. In addition, in the nuclei, we found several proteins, such as HEMERA or WHIRLY, which change their locations from the chloroplasts to the nuclei carrying the stress message. Additionally, our data showed a deep rearrangement of RNA metabolism in both organelles, revealing microRNAs and AGO1 as potential regulators of the acclimation mechanisms. Altogether, our study highlights the synchronisation among the different stages required for thermotolerance acquisition in P. radiata, pointing out the role of chromatin conformation and posttranscriptional gene regulation in overcoming heat stress and assuring plant survival for the following years.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
39
|
Viet La H, Duc Chu H, Thi Ha Q, Huyen Tran TT, Van Tong H, Van Tran T, Ngoc Le QT, Thu Bui HT, Bang Cao P. SWEET Gene Family in Sugar Beet ( Beta vulgaris): Genome-Wide Survey, Phylogeny and Expression Analysis. Pak J Biol Sci 2022; 25:387-395. [PMID: 35638508 DOI: 10.3923/pjbs.2022.387.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> The SWEET (Sugars Will Eventually be Exported Transporter) proteins play important roles in modulating the growth and development processes in plants. However, little information is available on the SWEET family in sugar beet (<i>Beta vulgaris</i>). The objectives of this present study were to genome-wide identify and characterize the BvSWEET family in sugar beet. <b>Materials and Methods:</b> Based on the available genome, proteome and transcriptome databases of sugar beet, various computational tools have been used to analyze the nucleotide and full-length protein sequences of members of the BvSWEET family. <b>Results:</b> A total of 16 members of the BvSWEET family has been identified in sugar beet at the genome-wide scale. Structural analysis indicated that the BvSWEET family exhibited variable characteristics. Furthermore, the BvSWEET family in sugar beet could be categorized into four distinct groups like in other plant species. Of our interest, we found that some <i>BvSWEET</i> genes exhibited strongly preferential expression in major organs/tissues under adverse environmental stimuli. <b>Conclusion:</b> The results provided a comprehensive foundation for further functional characterization of the <i>BvSWEET </i>gene family.
Collapse
|
40
|
Chen Q, Zhang X, Fang Y, Wang B, Xu S, Zhao K, Zhang J, Fang J. Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 13:820439. [PMID: 35401601 PMCID: PMC8990856 DOI: 10.3389/fpls.2022.820439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 05/10/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.
Collapse
Affiliation(s)
- Qinchang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaosi Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Jisen Zhang,
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- *Correspondence: Jingping Fang,
| |
Collapse
|
41
|
Gao T, Mo Z, Tang L, Yu X, Du G, Mao Y. Heat Shock Protein 20 Gene Superfamilies in Red Algae: Evolutionary and Functional Diversities. FRONTIERS IN PLANT SCIENCE 2022; 13:817852. [PMID: 35371130 PMCID: PMC8966773 DOI: 10.3389/fpls.2022.817852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/11/2022] [Indexed: 05/05/2023]
Abstract
Heat shock protein 20 (Hsp20) genes play important roles in plant growth, development, and response to environmental stress. However, the Hsp20 gene family has not yet been systematically investigated, and its function in red algae (Rhodophyta) remains poorly understood. Herein, we characterized Hsp20 gene families in red algae by studying gene structure, conserved motifs, phylogenetic relationships, chromosome location, gene duplication, cis-regulatory elements, and expression profiles. In this study, 97 Hsp20 genes were identified using bioinformatic methods and classified into 13 subfamilies based on phylogenetic relationships. Phylogenetic analysis revealed that Hsp20 genes might have a polyphyletic origin and a complex evolutionary pattern. Gene structure analysis revealed that most Hsp20 genes possessed no introns, and all Hsp20 genes contained a conserved α-crystalline domain in the C-terminal region. Conserved motif analysis revealed that Hsp20 genes belonging to the same subfamily shared similar motifs. Gene duplication analysis demonstrated that tandem and segmental duplication events occurred in these gene families. Additionally, these gene families in red algae might have experienced strong purifying selection pressure during evolution, and Hsp20 genes in Pyropia yezoensis, Pyropia haitanensis, and Porphyra umbilicalis were highly evolutionarily conserved. The cis-elements of phytohormone-, light-, stress-responsive, and development-related were identified in the red algal Hsp20 gene promoter sequences. Finally, using Py. yezoensis, as a representative of red algae, the Hsp20 gene expression profile was explored. Based on the RNA-seq data, Py. yezoensis Hsp20 (PyyHsp20) genes were found to be involved in Py. yezoensis responses against abiotic and biotic stresses and exhibited diverse expression patterns. Moreover, PyyHsp20 is involved in Py. yezoensis growth and development and revealed spatial and temporal expression patterns. These results provide comprehensive and valuable information on Hsp20 gene families in red algae and lay a foundation for their functional characterization. In addition, our study provides new insights into the evolution of Hsp20 gene families in red algae and will help understand the adaptability of red algae to diverse environments.
Collapse
Affiliation(s)
- Tian Gao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lei Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
- Yazhou Bay Innovation Research Institute, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources of Hainan Province, Hainan Tropical Ocean University, Sanya, China
- *Correspondence: Yunxiang Mao,
| |
Collapse
|
42
|
Dahro B, Wang Y, Alhag A, Li C, Guo D, Liu JH. Genome-wide identification and expression profiling of invertase gene family for abiotic stresses tolerance in Poncirus trifoliata. BMC PLANT BIOLOGY 2021; 21:559. [PMID: 34823468 PMCID: PMC8614057 DOI: 10.1186/s12870-021-03337-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
43
|
Stärk H, Dallago C, Heinzinger M, Rost B. Light attention predicts protein location from the language of life. BIOINFORMATICS ADVANCES 2021; 1:vbab035. [PMID: 36700108 PMCID: PMC9710637 DOI: 10.1093/bioadv/vbab035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 01/28/2023]
Abstract
Summary Although knowing where a protein functions in a cell is important to characterize biological processes, this information remains unavailable for most known proteins. Machine learning narrows the gap through predictions from expert-designed input features leveraging information from multiple sequence alignments (MSAs) that is resource expensive to generate. Here, we showcased using embeddings from protein language models for competitive localization prediction without MSAs. Our lightweight deep neural network architecture used a softmax weighted aggregation mechanism with linear complexity in sequence length referred to as light attention. The method significantly outperformed the state-of-the-art (SOTA) for 10 localization classes by about 8 percentage points (Q10). So far, this might be the highest improvement of just embeddings over MSAs. Our new test set highlighted the limits of standard static datasets: while inviting new models, they might not suffice to claim improvements over the SOTA. Availability and implementation The novel models are available as a web-service at http://embed.protein.properties. Code needed to reproduce results is provided at https://github.com/HannesStark/protein-localization. Predictions for the human proteome are available at https://zenodo.org/record/5047020. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Hannes Stärk
- Department of Informatics, Bioinformatics & Computational Biology—i12, TUM (Technical University of Munich), 85748 Munich, Germany
| | - Christian Dallago
- Department of Informatics, Bioinformatics & Computational Biology—i12, TUM (Technical University of Munich), 85748 Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), 85748 Munich, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics & Computational Biology—i12, TUM (Technical University of Munich), 85748 Munich, Germany
- TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), 85748 Munich, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology—i12, TUM (Technical University of Munich), 85748 Munich, Germany
- Institute for Advanced Study (TUM-IAS), 85748 Munich, Germany
- TUM School of Life Sciences Weihenstephan (WZW), Freising, Germany
| |
Collapse
|
44
|
Jiang Y, Wang D, Wang W, Xu D. Computational methods for protein localization prediction. Comput Struct Biotechnol J 2021; 19:5834-5844. [PMID: 34765098 PMCID: PMC8564054 DOI: 10.1016/j.csbj.2021.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
The accurate annotation of protein localization is crucial in understanding protein function in tandem with a broad range of applications such as pathological analysis and drug design. Since most proteins do not have experimentally-determined localization information, the computational prediction of protein localization has been an active research area for more than two decades. In particular, recent machine-learning advancements have fueled the development of new methods in protein localization prediction. In this review paper, we first categorize the main features and algorithms used for protein localization prediction. Then, we summarize a list of protein localization prediction tools in terms of their coverage, characteristics, and accessibility to help users find suitable tools based on their needs. Next, we evaluate some of these tools on a benchmark dataset. Finally, we provide an outlook on the future exploration of protein localization methods.
Collapse
Affiliation(s)
- Yuexu Jiang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Weiwei Wang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
45
|
Chen B, Sun Y, Tian Z, Fu G, Pei X, Pan Z, Nazir MF, Song S, Li H, Wang X, Qin N, Shang J, Miao Y, He S, Du X. GhGASA10-1 promotes the cell elongation in fiber development through the phytohormones IAA-induced. BMC PLANT BIOLOGY 2021; 21:448. [PMID: 34615467 PMCID: PMC8493757 DOI: 10.1186/s12870-021-03230-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/23/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. RESULTS To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10-1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10-1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10-1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10-1 promotes cell elongation. Interestingly, GhGASA10-1 was upregulated by IAA at fiber elongation stages. CONCLUSION We propose that GhGASA10-1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10-1 in cotton fiber development.
Collapse
Affiliation(s)
- Baojun Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Yaru Sun
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Song Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Ning Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China
| | - Jiandong Shang
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000, Anyang, China.
| |
Collapse
|
46
|
Lv A, Wen W, Fan N, Su L, Zhou P, An Y. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:441-458. [PMID: 34363255 DOI: 10.1111/tpj.15451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A SK3 -type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1-OE) and decreased upon MsDHN1 suppression (MsDHN1-RNAi) in seedlings or hairy roots of alfalfa compared with the wild-type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
47
|
Navarro JA, Saiz-Bonilla M, Sanchez-Navarro JA, Pallas V. The mitochondrial and chloroplast dual targeting of a multifunctional plant viral protein modulates chloroplast-to-nucleus communication, RNA silencing suppressor activity, encapsidation, pathogenesis and tissue tropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:197-218. [PMID: 34309112 DOI: 10.1111/tpj.15435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 05/22/2023]
Abstract
Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.
Collapse
Affiliation(s)
- Jose A Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Maria Saiz-Bonilla
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Jesus A Sanchez-Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Vicente Pallas
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| |
Collapse
|
48
|
Jiang Y, Wang D, Yao Y, Eubel H, Künzler P, Møller IM, Xu D. MULocDeep: A deep-learning framework for protein subcellular and suborganellar localization prediction with residue-level interpretation. Comput Struct Biotechnol J 2021; 19:4825-4839. [PMID: 34522290 PMCID: PMC8426535 DOI: 10.1016/j.csbj.2021.08.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prediction of protein localization plays an important role in understanding protein function and mechanisms. In this paper, we propose a general deep learning-based localization prediction framework, MULocDeep, which can predict multiple localizations of a protein at both subcellular and suborganellar levels. We collected a dataset with 44 suborganellar localization annotations in 10 major subcellular compartments—the most comprehensive suborganelle localization dataset to date. We also experimentally generated an independent dataset of mitochondrial proteins in Arabidopsis thaliana cell cultures, Solanum tuberosum tubers, and Vicia faba roots and made this dataset publicly available. Evaluations using the above datasets show that overall, MULocDeep outperforms other major methods at both subcellular and suborganellar levels. Furthermore, MULocDeep assesses each amino acid’s contribution to localization, which provides insights into the mechanism of protein sorting and localization motifs. A web server can be accessed at http://mu-loc.org.
Collapse
Affiliation(s)
- Yuexu Jiang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, Columbia, MO, USA
| | - Yifu Yao
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, Columbia, MO, USA
| | - Holger Eubel
- Institute of Plant Genetics, Leibniz University Hannover, Hannover, Germany
| | - Patrick Künzler
- Institute of Plant Genetics, Leibniz University Hannover, Hannover, Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, Columbia, MO, USA
| |
Collapse
|
49
|
Pépin N, Hebert FO, Joly DL. Genome-Wide Characterization of the MLO Gene Family in Cannabis sativa Reveals Two Genes as Strong Candidates for Powdery Mildew Susceptibility. FRONTIERS IN PLANT SCIENCE 2021; 12:729261. [PMID: 34589104 PMCID: PMC8475652 DOI: 10.3389/fpls.2021.729261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Cannabis sativa is increasingly being grown around the world for medicinal, industrial, and recreational purposes. As in all cultivated plants, cannabis is exposed to a wide range of pathogens, including powdery mildew (PM). This fungal disease stresses cannabis plants and reduces flower bud quality, resulting in significant economic losses for licensed producers. The Mildew Locus O (MLO) gene family encodes plant-specific proteins distributed among conserved clades, of which clades IV and V are known to be involved in susceptibility to PM in monocots and dicots, respectively. In several studies, the inactivation of those genes resulted in durable resistance to the disease. In this study, we identified and characterized the MLO gene family members in five different cannabis genomes. Fifteen Cannabis sativa MLO (CsMLO) genes were manually curated in cannabis, with numbers varying between 14, 17, 19, 18, and 18 for CBDRx, Jamaican Lion female, Jamaican Lion male, Purple Kush, and Finola, respectively (when considering paralogs and incomplete genes). Further analysis of the CsMLO genes and their deduced protein sequences revealed that many characteristics of the gene family, such as the presence of seven transmembrane domains, the MLO functional domain, and particular amino acid positions, were present and well conserved. Phylogenetic analysis of the MLO protein sequences from all five cannabis genomes and other plant species indicated seven distinct clades (I through VII), as reported in other crops. Expression analysis revealed that the CsMLOs from clade V, CsMLO1 and CsMLO4, were significantly upregulated following Golovinomyces ambrosiae infection, providing preliminary evidence that they could be involved in PM susceptibility. Finally, the examination of variation within CsMLO1 and CsMLO4 in 32 cannabis cultivars revealed several amino acid changes, which could affect their function. Altogether, cannabis MLO genes were identified and characterized, among which candidates potentially involved in PM susceptibility were noted. The results of this study will lay the foundation for further investigations, such as the functional characterization of clade V MLOs as well as the potential impact of the amino acid changes reported. Those will be useful for breeding purposes in order to develop resistant cultivars.
Collapse
Affiliation(s)
- Noémi Pépin
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
| | - Francois Olivier Hebert
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
- Institut National des Cannabinoïdes, Montréal, QC, Canada
| | - David L. Joly
- Centre d’Innovation et de Recherche sur le Cannabis, Université de Moncton, Département de biologie, Moncton, NB, Canada
| |
Collapse
|
50
|
Hu XL, Lu H, Hassan MM, Zhang J, Yuan G, Abraham PE, Shrestha HK, Villalobos Solis MI, Chen JG, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Cheng ZMM, Yang X. Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. HORTICULTURE RESEARCH 2021; 8:130. [PMID: 34059650 PMCID: PMC8167165 DOI: 10.1038/s41438-021-00570-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 05/02/2023]
Abstract
Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zong-Ming Max Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Xiaohan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|