1
|
Zou S, Liu J, Zhao K, Zhu X, Zhang B, Liu Z, Zheng Y. Metabolic engineering of Escherichia coli for enhanced production of D-pantothenic acid. BIORESOURCE TECHNOLOGY 2024; 412:131352. [PMID: 39186986 DOI: 10.1016/j.biortech.2024.131352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
D-pantothenic acid (D-PA) is an essential vitamin that has been widely used in various industries. However, the low productivity caused by slow D-PA production in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating methyl recycle were employed in E. coli to enhance D-PA production. First, a self-induced promoter-mediated dynamic regulation of D-PA degradation pathway was carried out to improve D-PA accumulation. Then, to drive more carbon flux into D-PA synthesis, the key nodes of the R-pantoate pathway which encoded the essential enzyme were integrated into the genome. Subsequently, the further increase in D-PA production was achieved by promoting the regeneration of methyl donor. The strain L11T produced 86.03 g/L D-PA with a productivity of 0.797 g/L/h, which presented the highest D-PA titer and productivity to date. The strategies could be applied to constructing cell factories for producing other bio-based products.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinlong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Kuo Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xintao Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Peng Y, Moffat JG, DuPai C, Kofoed EM, Skippington E, Modrusan Z, Gloor SL, Clark K, Xu Y, Li S, Chen L, Liu X, Wu P, Harris SF, Wang S, Crawford TD, Li CS, Liu Z, Wai J, Tan MW. Differential effects of inosine monophosphate dehydrogenase (IMPDH/GuaB) inhibition in Acinetobacter baumannii and Escherichia coli. J Bacteriol 2024; 206:e0010224. [PMID: 39235234 PMCID: PMC11500612 DOI: 10.1128/jb.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - John G. Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Cory DuPai
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, California, USA
| | - Susan L. Gloor
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Shuxuan Li
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry D. Crawford
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Chun Sing Li
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
3
|
Ezekiel KS, Downs DM. Purine limitation prevents the exogenous pyridoxal 5'-phosphate accumulation of Salmonella enterica yggS mutants. Microbiol Spectr 2024:e0207524. [PMID: 39436136 DOI: 10.1128/spectrum.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
YggS belongs to the highly conserved pyridoxal 5'-phosphate (PLP) binding protein family (COG0325) that is found in all domains of life. Though no precise biochemical activity or molecular mechanism has been determined for this protein, an involvement in vitamin B6 homeostasis has been demonstrated in multiple organisms. In Salmonella enterica, loss of YggS results in altered B6 vitamer pools, including an accumulation of PLP in the growth medium. Transposon mutagenesis identified an insertion upstream of purC (encoding 5'-phosphoribosyl-5-aminoimidazole-4-N-succinocarboxamide synthetase, EC 6.3.2.6) that eliminated accumulation of PLP in the spent medium. Genetic characterization of the insertion showed the causative effect was reduced expression of purC, which limited purine biosynthesis. Data herein shows that purine limitation decreased the exogenous accumulation of B6 vitamers of a yggS mutant but did not suppress other yggS mutant phenotypes. Neither limitation for ATP, regulation by PurR, or decreased growth rate, all of which are direct consequences of purine limitation, prevented exogenous B6 vitamer accumulation of a yggS mutant. This work establishes a relationship between the status of purine biosynthesis and the impact of a yggS mutation. It lays the foundation for continued efforts to identify the physiological role of YggS and its homologs. IMPORTANCE Pyridoxal 5'-phosphate is the active form of vitamin B6 and is an essential cofactor in all domains of life. PLP can be synthesized de novo or salvaged from the environment from one of the six B6 vitamers. B6 vitamer levels appear to be tightly regulated, and alterations in their levels can have deleterious effects, most notably being the development of B6-dependent epilepsy in humans. YggS homologs are broadly conserved across multiple organisms and considered to be involved in maintaining B6 homeostasis, though no specific mechanism has been defined. The current study showed that the exogenous accumulation of PLP caused by a lack of YggS can be prevented by purine limitation. The demonstration that purine limitation impacts exogenous PLP accumulation separates one consequence of a yggS mutation for further study and contributes to continuing efforts to define the biochemical and physiological roles of the COG0325 family of proteins.
Collapse
Affiliation(s)
- Kailey S Ezekiel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Zhang X, Niu P, Liu H, Fang H. Production of pyrimidine nucleosides in microbial systems via metabolic engineering: Theoretical analysis research and prospects. Biotechnol Adv 2024; 75:108419. [PMID: 39053562 DOI: 10.1016/j.biotechadv.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Pyrimidine nucleosides, as intermediate materials of significant commercial value, find extensive applications in the pharmaceutical industry. However, the current production of pyrimidine nucleosides largely relies on chemical synthesis, creating environmental problems that do not align with sustainable development goals. Recent progress in systemic metabolic engineering and synthetic biology has enabled the synthesis of natural products like pyrimidine nucleosides through microbial fermentation, offering a more sustainable alternative. Nevertheless, the intricate and tightly regulated biosynthetic pathways involved in the microbial production of pyrimidine nucleosides pose a formidable challenge. This study focuses on metabolic engineering and synthetic biology strategies aimed at enhancing pyrimidine nucleoside production. These strategies include gene modification, transcriptional regulation, metabolic flux analysis, cofactor balance optimization, and transporter engineering. Finally, this research highlights the challenges involved in the further development of pyrimidine nucleoside-producing strains and offers potential solutions in order to provide theoretical guidance for future research endeavors in this field.
Collapse
Affiliation(s)
- Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Pilian Niu
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
5
|
Zheng J, Liu H, Zhang J, Yu B. De Novo Biosynthesis of L-Azetidine-2-Carboxylic Acid in Escherichia coli Strains for Powdery Mildew Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39353152 DOI: 10.1021/acs.jafc.4c06730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
L-Azetidine-2-carboxylic acid (L-Aze), a natural nonproteinogenic amino acid found widely in plants, has recently been identified as an environmentally friendly agent for controlling powdery mildew with low toxicity. In this study, a biological route for L-Aze production via the methionine salvage pathway (Yang Cycle) was first in silico designed for Escherichia coli. Subsequently, systematic engineering strategies were employed to enhance the production efficiency, including the enhancement of the 5-phosphoribosyl 1-pyrophosphate (PRPP) supply, construction of the ATP-adenine cycle, and engineering of the strain's resistance to L-Aze. The final strain produced L-Aze from glucose with a titer of 568.5 mg/L. The antifungal activity of the produced L-Aze in the fermentation broth was also confirmed for treating powdery mildew in cucurbits. This approach not only provides a sustainable and green route for pesticide production to control powdery mildew but also expands our understanding of the exogenous construction of the Yang Cycle in E. coli.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxiang Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, China
| | - Jiwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, China
| | - Bo Yu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Huang SW, Lim SK, Yu YA, Pan YC, Lien WJ, Mou CY, Hu CMJ, Mou KY. Overcoming the nutritional immunity by engineering iron-scavenging bacteria for cancer therapy. eLife 2024; 12:RP90798. [PMID: 38747577 PMCID: PMC11095936 DOI: 10.7554/elife.90798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.
Collapse
Affiliation(s)
- Sin-Wei Huang
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - See-Khai Lim
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Yao-An Yu
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Yi-Chung Pan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Wan-Ju Lien
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan UniversityTaipeiTaiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| |
Collapse
|
7
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R. Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y. Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Kronborg K, Zhang YE. cAMP competitively inhibits periplasmic phosphatases to coordinate nutritional growth with competence of Haemophilus influenzae. J Biol Chem 2023; 299:105404. [PMID: 38229398 PMCID: PMC10694654 DOI: 10.1016/j.jbc.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024] Open
Abstract
Most naturally competent bacteria tightly regulate the window of the competent state to maximize their ecological fitness under specific conditions. Development of competence by Haemophilus influenzae strain Rd KW20 is stimulated by cAMP and inhibited by purine nucleotides, respectively. In contrast, cAMP inhibits cell growth, but nucleotides are important for KW20 growth. However, the mechanisms underlying the abovementioned reciprocal effects are unclear. Here, we first identified a periplasmic acid phosphatase AphAEc of Escherichia coli as a new cAMP-binding protein. We show cAMP competitively inhibits the phosphatase activities of AphAEc and its homolog protein AphAHi in the KW20 strain. Furthermore, we found cAMP inhibits two other periplasmic nonspecific phosphatases, NadNHi (which provides the essential growth factor V, NAD) and HelHi (eP4, which converts NADP to NAD) in KW20. We demonstrate cAMP inhibits cell growth rate, especially via NadNHi. On the other hand, the inhibitory effect of purine nucleotide AMP on competence was abolished in the triple deletion mutant ΔhelHiΔnadNHiΔaphAHi, but not in the single, double deletion or complemented strains. Adenosine, however, still inhibited the competence of the triple deletion mutant, demonstrating the crucial role of the three phosphatases in converting nucleotides to nucleosides and thus inhibiting KW20 competence. Finally, cAMP restored the competence inhibited by GMP in a dose-dependent manner, but not competence inhibited by guanosine. Altogether, we uncovered these three periplasmic phosphatases as the key players underlying the antagonistic effects of cAMP and purine nucleotides on both cell growth and competence development of H. influenzae.
Collapse
Affiliation(s)
- Kristina Kronborg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Xiao L, Jin J, Song K, Qian X, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Shen L, Cui Y, Yao W, Cui Y, Song Y. Regulatory Functions of PurR in Yersinia pestis: Orchestrating Diverse Biological Activities. Microorganisms 2023; 11:2801. [PMID: 38004812 PMCID: PMC10673613 DOI: 10.3390/microorganisms11112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The bacterium Yersinia pestis has developed various strategies to sense and respond to the complex stresses encountered during its transmission and pathogenic processes. PurR is a common transcriptional regulator of purine biosynthesis among microorganisms, and it modulates the transcription level of the pur operon to suppress the production of hypoxanthine nucleotide (IMP). This study aims to understand the functions and regulatory mechanisms of purR in Y. pestis. Firstly, we constructed a purR knockout mutant of Y. pestis strain 201 and compared certain phenotypes of the null mutant (201-ΔpurR) and the wild-type strain (201-WT). The results show that deleting purR has no significant impact on the biofilm formation, growth rate, or viability of Y. pestis under different stress conditions (heat and cold shock, high salinity, and hyperosmotic pressure). Although the cytotoxicity of the purR knockout mutant on HeLa and 293 cells is reduced, the animal-challenging test found no difference of the virulence in mice between 201-ΔpurR and 201-WT. Furthermore, RNA-seq and EMSA analyses demonstrate that PurR binds to the promoter regions of at least 15 genes in Y. pestis strain 201, primarily involved in purine biosynthesis, along with others not previously observed in other bacteria. Additionally, RNA-seq results suggest the presence of 11 potential operons, including a newly identified co-transcriptional T6SS cluster. Thus, aside from its role as a regulator of purine biosynthesis, purR in Y. pestis may have additional regulatory functions.
Collapse
Affiliation(s)
- Liting Xiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Zhulin Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Ziyao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| | - Yajun Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.X.); (X.Q.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (J.J.); (Y.W.); (Z.S.); (Z.X.); (Y.L.); (Y.Z.); (L.S.); (Y.C.); (W.Y.)
| |
Collapse
|
10
|
Feng Y, Chang SK, Portnoy DA. The major role of Listeria monocytogenes folic acid metabolism during infection is the generation of N-formylmethionine. mBio 2023; 14:e0107423. [PMID: 37695058 PMCID: PMC10653936 DOI: 10.1128/mbio.01074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/12/2023] Open
Abstract
IMPORTANCE Folic acid is an essential vitamin for bacteria, plants, and animals. The lack of folic acid leads to various consequences such as a shortage of amino acids and nucleotides that are fundamental building blocks for life. Though antifolate drugs are widely used for antimicrobial treatments, the underlying mechanism of bacterial folate deficiency during infection is unclear. This study compares the requirements of different folic acid end-products during the infection of Listeria monocytogenes, a facultative intracellular pathogen of animals and humans. The results reveal the critical importance of N-formylmethionine, the amino acid used by bacteria to initiate protein synthesis. This work extends the current understanding of folic acid metabolism in pathogens and potentially provides new insights into antifolate drug development in the future.
Collapse
Affiliation(s)
- Ying Feng
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Shannon K. Chang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Béchade B, Cabuslay CS, Hu Y, Mendonca CM, Hassanpour B, Lin JY, Su Y, Fiers VJ, Anandarajan D, Lu R, Olson CJ, Duplais C, Rosen GL, Moreau CS, Aristilde L, Wertz JT, Russell JA. Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. THE ISME JOURNAL 2023; 17:1751-1764. [PMID: 37558860 PMCID: PMC10504363 DOI: 10.1038/s41396-023-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont-Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)-and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Christian S Cabuslay
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Caroll M Mendonca
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Bahareh Hassanpour
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Y Lin
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Yangzhou Su
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Valerie J Fiers
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Dharman Anandarajan
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Richard Lu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Chandler J Olson
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Christophe Duplais
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - John T Wertz
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Grucela PK, Fuhrer T, Sauer U, Chao Y, Zhang YE. Ribose 5-phosphate: the key metabolite bridging the metabolisms of nucleotides and amino acids during stringent response in Escherichia coli? MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:141-144. [PMID: 37395996 PMCID: PMC10311079 DOI: 10.15698/mic2023.07.799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
The bacterial stringent response and its effector alarmone guanosine penta- or tetra - phosphates (p)ppGpp are vital for bacterial tolerance and survival of various stresses in environments (including antibiotics) and host cells (virulence). (p)ppGpp does so by binding to its numerous target proteins and reprograming bacterial transcriptome to tune down the synthesis of nucleotides and rRNA/tRNA, and up-regulate amino acid biosynthesis genes. Recent identification of more novel (p)ppGpp direct binding proteins in Escherichia coli and their deep studies have unveiled unprecedented details of how (p)ppGpp coordinates the nucleotide and amino acid metabolic pathways upon stringent response; however, the mechanistic link between nucleotide and amino acid metabolisms remains still incompletely understood. Here we propose the metabolite ribose 5'-phosphate as the key link between nucleotide and amino acid metabolisms and a working model integrating both the transcriptional and metabolic effects of (p)ppGpp on E. coli physiological adaptation during the stringent response.
Collapse
Affiliation(s)
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Everett Zhang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Zhang X, Cao Y, Liu Y, Lei Y, Zhai R, Chen W, Shi G, Jin JM, Liang C, Tang SY. Designing glucose utilization "highway" for recombinant biosynthesis. Metab Eng 2023; 78:235-247. [PMID: 37394056 DOI: 10.1016/j.ymben.2023.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
cAMP receptor protein (CRP) is known as a global regulatory factor mainly mediating carbon source catabolism. Herein, we successfully engineered CRP to develop microbial chassis cells with improved recombinant biosynthetic capability in minimal medium with glucose as single carbon source. The obtained best-performing cAMP-independent CRPmu9 mutant conferred both faster cell growth and a 133-fold improvement in expression level of lac promoter in presence of 2% glucose, compared with strain under regulation of CRPwild-type. Promoters free from "glucose repression" are advantageous for recombinant expression, as glucose is a frequently used inexpensive carbon source in high-cell-density fermentations. Transcriptome analysis demonstrated that the CRP mutant globally rewired cell metabolism, displaying elevated tricarboxylic acid cycle activity; reduced acetate formation; increased nucleotide biosynthesis; and improved ATP synthesis, tolerance, and stress-resistance activity. Metabolites analysis confirmed the enhancement of glucose utilization with the upregulation of glycolysis and glyoxylate-tricarboxylic acid cycle. As expected, an elevated biosynthetic capability was demonstrated with vanillin, naringenin and caffeic acid biosynthesis in strains regulated by CRPmu9. This study has expanded the significance of CRP optimization into glucose utilization and recombinant biosynthesis, beyond the conventionally designated carbon source utilization other than glucose. The Escherichiacoli cell regulated by CRPmu9 can be potentially used as a beneficial chassis for recombinant biosynthesis.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufeng Cao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China
| | - Yanyan Lei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixue Zhai
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guizhi Shi
- Yingsheng (Beijing) Biotechnology Co., Ltd., Beijing, 100081, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Cai X, Qin J, Li X, Yuan T, Yan B, Cai J. LipR functions as an intracellular pH regulator in Bacillus thuringiensis under glucose conditions. MLIFE 2023; 2:58-72. [PMID: 38818337 PMCID: PMC10989752 DOI: 10.1002/mlf2.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 06/01/2024]
Abstract
Intracellular pH critically affects various biological processes, and an appropriate cytoplasmic pH is essential for ensuring bacterial growth. Glucose is the preferred carbon source for most heterotrophs; however, excess glucose often causes the accumulation of acidic metabolites, lowering the intracellular pH and inhibiting bacterial growth. Bacillus thuringiensis can effectively cope with glucose-induced stress; unfortunately, little is known about the regulators involved in this process. Here, we document that the target of the dual-function sRNA YhfH, the lipR gene, encodes a LacI-family transcription factor LipR as an intracellular pH regulator when B. thuringiensis BMB171 is suddenly exposed to glucose. Under glucose conditions, lipR deletion leads to early growth arrest by causing a rapid decrease in intracellular pH (~5.4). Then, the direct targets and a binding motif (GAWAWCRWTWTCAT) of LipR were identified based on the electrophoretic mobility shift assay, the DNase-I footprinting assay, and RNA sequencing, and the gapN gene encoding a key enzyme in glycolysis was directly inhibited by LipR. Furthermore, Ni2+ is considered a possible effector for LipR. In addition to YhfH, the lipR expression was coregulated by itself, CcpA, and AbrB. Our study reveals that LipR plays a balancing role between glucose metabolism and intracellular pH in B. thuringiensis subjected to glucose stress.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- School of Life Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Jiaxin Qin
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Xuelian Li
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Taoxiong Yuan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Bing Yan
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
| | - Jun Cai
- Department of Microbiology, College of Life SciencesNankai UniversityTianjinChina
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjinChina
- Tianjin Key Laboratory of Microbial Functional GenomicsTianjinChina
| |
Collapse
|
15
|
Fu B, Ying J, Chen Q, Zhang Q, Lu J, Zhu Z, Yu P. Enhancing the biosynthesis of riboflavin in the recombinant Escherichia coli BL21 strain by metabolic engineering. Front Microbiol 2023; 13:1111790. [PMID: 36726568 PMCID: PMC9885008 DOI: 10.3389/fmicb.2022.1111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, to construct the riboflavin-producing strain R1, five key genes, ribA, ribB, ribC, ribD, and ribE, were cloned and ligated to generate the plasmid pET-AE, which was overexpressed in Escherichia coli BL21. The R1 strain accumulated 182.65 ± 9.04 mg/l riboflavin. Subsequently, the R2 strain was constructed by the overexpression of zwf harboring the constructed plasmid pAC-Z in the R1 strain. Thus, the level of riboflavin in the R2 strain increased to 319.01 ± 20.65 mg/l (74.66% increase). To further enhance ribB transcript levels and riboflavin production, the FMN riboswitch was deleted from E. coli BL21 with CRISPR/Cas9 to generate the R3 strain. The R4 strain was constructed by cotransforming pET-AE and pAC-Z into the R3 strain. Compared to those of E. coli BL21, the ribB transcript levels of R2 and R4 improved 2.78 and 3.05-fold, respectively. The R4 strain accumulated 437.58 ± 14.36 mg/l riboflavin, increasing by 37.17% compared to the R2 strain. These results suggest that the deletion of the FMN riboswitch can improve the transcript level of ribB and facilitate riboflavin production. A riboflavin titer of 611.22 ± 11.25 mg/l was achieved under the optimal fermentation conditions. Ultimately, 1574.60 ± 109.32 mg/l riboflavin was produced through fed-batch fermentation with 40 g/l glucose. This study contributes to the industrial production of riboflavin by the recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,*Correspondence: Ping Yu,
| |
Collapse
|
16
|
Bang I, Khanh Nong L, Young Park J, Thi Le H, Mok Lee S, Kim D. ChEAP: ChIP-exo analysis pipeline and the investigation of Escherichia coli RpoN protein-DNA interactions. Comput Struct Biotechnol J 2022; 21:99-104. [PMID: 36544470 PMCID: PMC9735260 DOI: 10.1016/j.csbj.2022.11.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Genome-scale studies of the bacterial regulatory network have been leveraged by declining sequencing cost and advances in ChIP (chromatin immunoprecipitation) methods. Of which, ChIP-exo has proven competent with its near-single base-pair resolution. While several algorithms and programs have been developed for different analytical steps in ChIP-exo data processing, there is a lack of effort in incorporating them into a convenient bioinformatics pipeline that is intuitive and publicly available. In this paper, we developed ChIP-exo Analysis Pipeline (ChEAP) that executes the one-step process, starting from trimming and aligning raw sequencing reads to visualization of ChIP-exo results. The pipeline was implemented on the interactive web-based Python development environment - Jupyter Notebook, which is compatible with the Google Colab cloud platform to facilitate the sharing of codes and collaboration among researchers. Additionally, users could exploit the free GPU and CPU resources allocated by Colab to carry out computing tasks regardless of the performance of their local machines. The utility of ChEAP was demonstrated with the ChIP-exo datasets of RpoN sigma factor in E. coli K-12 MG1655. To analyze two raw data files, ChEAP runtime was 2 min and 25 s. Subsequent analyses identified 113 RpoN binding sites showing a conserved RpoN binding pattern in the motif search. ChEAP application in ChIP-exo data analysis is extensive and flexible for the parallel processing of data from various organisms.
Collapse
Affiliation(s)
- Ina Bang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang- Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea,Schools of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea,Corresponding author at: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
17
|
Gene Networks and Pathways Involved in Escherichia coli Response to Multiple Stressors. Microorganisms 2022; 10:microorganisms10091793. [PMID: 36144394 PMCID: PMC9501238 DOI: 10.3390/microorganisms10091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Stress response helps microorganisms survive extreme environmental conditions and host immunity, making them more virulent or drug resistant. Although both reductionist approaches investigating specific genes and systems approaches analyzing individual stress conditions are being used, less is known about gene networks involved in multiple stress responses. Here, using a systems biology approach, we mined hundreds of transcriptomic data sets for key genes and pathways involved in the tolerance of the model microorganism Escherichia coli to multiple stressors. Specifically, we investigated the E. coli K-12 MG1655 transcriptome under five stresses: heat, cold, oxidative stress, nitrosative stress, and antibiotic treatment. Overlaps of transcriptional changes between studies of each stress factor and between different stressors were determined: energy-requiring metabolic pathways, transport, and motility are typically downregulated to conserve energy, while genes related to survival, bona fide stress response, biofilm formation, and DNA repair are mainly upregulated. The transcription of 15 genes with uncharacterized functions is higher in response to multiple stressors, which suggests they may play pivotal roles in stress response. In conclusion, using rank normalization of transcriptomic data, we identified a set of E. coli stress response genes and pathways, which could be potential targets to overcome antibiotic tolerance or multidrug resistance.
Collapse
|
18
|
Radoš D, Donati S, Lempp M, Rapp J, Link H. Homeostasis of the biosynthetic E. coli metabolome. iScience 2022; 25:104503. [PMID: 35754712 PMCID: PMC9218372 DOI: 10.1016/j.isci.2022.104503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022] Open
Abstract
Metabolite concentrations vary across conditions and such metabolome changes are relevant for metabolic and gene regulation. Here, we used LC-MS/MS to explore metabolite concentration changes in Escherichia coli. We measured 101 primary metabolites in 19 experimental conditions that include various nutrients and stresses. Many metabolites showed little variation across conditions and only few metabolites correlated with the growth rate. The least varying metabolites were nucleotides (e.g. UTP had 10% variation) and amino acids (e.g. methionine had 13% variation). These results show that E. coli maintains protein and RNA building blocks within narrow concentration ranges, thus indicating that many feedback mechanisms in biosynthetic pathways contribute to end-product homeostasis. 101 E coli metabolites were measured in 19 conditions Biosynthetic end-products vary little between conditions Few metabolites correlate with the growth rate Metabolome data identify active regulatory metabolites
Collapse
Affiliation(s)
- Dušica Radoš
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Lempp
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Gagarinova A, Hosseinnia A, Rahmatbakhsh M, Istace Z, Phanse S, Moutaoufik MT, Zilocchi M, Zhang Q, Aoki H, Jessulat M, Kim S, Aly KA, Babu M. Auxotrophic and prototrophic conditional genetic networks reveal the rewiring of transcription factors in Escherichia coli. Nat Commun 2022; 13:4085. [PMID: 35835781 PMCID: PMC9283627 DOI: 10.1038/s41467-022-31819-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial transcription factors (TFs) are widely studied in Escherichia coli. Yet it remains unclear how individual genes in the underlying pathways of TF machinery operate together during environmental challenge. Here, we address this by applying an unbiased, quantitative synthetic genetic interaction (GI) approach to measure pairwise GIs among all TF genes in E. coli under auxotrophic (rich medium) and prototrophic (minimal medium) static growth conditions. The resulting static and differential GI networks reveal condition-dependent GIs, widespread changes among TF genes in metabolism, and new roles for uncharacterized TFs (yjdC, yneJ, ydiP) as regulators of cell division, putrescine utilization pathway, and cold shock adaptation. Pan-bacterial conservation suggests TF genes with GIs are co-conserved in evolution. Together, our results illuminate the global organization of E. coli TFs, and remodeling of genetic backup systems for TFs under environmental change, which is essential for controlling the bacterial transcriptional regulatory circuits. The bacterium E. coli has around 300 transcriptional factors, but the functions of many of them, and the interactions between their respective regulatory networks, are unclear. Here, the authors study genetic interactions among all transcription factor genes in E. coli, revealing condition-dependent interactions and roles for uncharacterized transcription factors.
Collapse
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada.
| |
Collapse
|
20
|
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, Michel H. Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism. EMBO J 2022; 41:e109990. [PMID: 35698912 PMCID: PMC9475539 DOI: 10.15252/embj.2021109990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.
Collapse
Affiliation(s)
- Radhika Khera
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Centre for molecular modelling, Ghent University, Zwijnaarde, Belgium
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK.,Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Joerg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Cornelia Muenke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Li Z, Nees M, Bettenbrock K, Rinas U. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess. Microb Cell Fact 2022; 21:67. [PMID: 35449049 PMCID: PMC9027384 DOI: 10.1186/s12934-022-01787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization). Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01787-4.
Collapse
Affiliation(s)
- Zhaopeng Li
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany.
| |
Collapse
|
22
|
Abstract
Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.
Collapse
|
23
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
24
|
Liu S, Hu W, Wang Z, Chen T. Rational Engineering of Escherichia coli for High-Level Production of Riboflavin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12241-12249. [PMID: 34623820 DOI: 10.1021/acs.jafc.1c04471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Riboflavin is widely used as a food additive. Here, multiple strategies were used to increase riboflavin production in Escherichia coli LS31T. First, purR deletion and co-overexpression of fbp, purF, prs, gmk, and ndk genes resulted in an increase of 18.6% in riboflavin titer (reaching 729.7 mg/L). Second, optimization of reduced nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide ratio and respiratory chain activity in LS31T increased the titer up to 1020.2 mg/L. Third, the expression level of the guaC gene in LS31T was downregulated by ribosome binding site replacement, and the riboflavin production was increased by 10.6% to 658.5 mg/L. Then, all the favorable modifications were integrated together, and the resulting strain LS72T produced 1339 mg/L of riboflavin. Moreover, the riboflavin titer of LS72T reached 21 g/L in fed-batch cultivation, with a yield of 110 mg riboflavin/g glucose. To our knowledge, both the riboflavin titer and yield obtained in fed-batch fermentation are the highest ones among all the rationally engineered strains.
Collapse
Affiliation(s)
- Shuang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenya Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
25
|
Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Commun Biol 2021; 4:991. [PMID: 34413462 PMCID: PMC8376909 DOI: 10.1038/s42003-021-02516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Many genes in bacterial genomes are of unknown function, often referred to as y-genes. Recently, the analytic methods have divided bacterial transcriptomes into independently modulated sets of genes (iModulons). Functionally annotated iModulons that contain y-genes lead to testable hypotheses to elucidate y-gene function. The inversely correlated expression of a putative transporter gene, ydhC, relative to purine biosynthetic genes, has led to the hypothesis that it encodes a purine-related transporter and revealed a LysR-family regulator, YdhB, with a predicted 23-bp palindromic binding motif. RNA-Seq analysis of a ydhB knockout mutant confirmed the YdhB-dependent activation of ydhC in the presence of adenosine. The deletion of either the ydhC or the ydhB gene led to a substantially decreased growth rate for E. coli in minimal medium with adenosine, inosine, or guanosine as the nitrogen source. Taken together, we provide clear evidence that YdhB activates the expression of the ydhC gene that encodes a purine transporter in E. coli. We propose that the genes ydhB and ydhC be re-named as punR and punC, respectively. Rodionova et al. find that the putative transporter gene, ydhC and its regulator ydhB are involved in purine transportation and that the expression of the ydhC gene is activated by the YdhB in E. coli. The authors suggest renaming the regulator PunR and the transporter PunC, respectively.
Collapse
|
26
|
Freddolino PL, Amemiya HM, Goss TJ, Tavazoie S. Dynamic landscape of protein occupancy across the Escherichia coli chromosome. PLoS Biol 2021; 19:e3001306. [PMID: 34170902 PMCID: PMC8282354 DOI: 10.1371/journal.pbio.3001306] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Free-living bacteria adapt to environmental change by reprogramming gene expression through precise interactions of hundreds of DNA-binding proteins. A predictive understanding of bacterial physiology requires us to globally monitor all such protein-DNA interactions across a range of environmental and genetic perturbations. Here, we show that such global observations are possible using an optimized version of in vivo protein occupancy display technology (in vivo protein occupancy display-high resolution, IPOD-HR) and present a pilot application to Escherichia coli. We observe that the E. coli protein-DNA interactome organizes into 2 distinct prototypic features: (1) highly dynamic condition-dependent transcription factor (TF) occupancy; and (2) robust kilobase scale occupancy by nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. We show that occupancy dynamics across a range of conditions can rapidly reveal the global transcriptional regulatory organization of a bacterium. Beyond discovery of previously hidden regulatory logic, we show that these observations can be utilized to computationally determine sequence specificity models for the majority of active TFs. Our study demonstrates that global observations of protein occupancy combined with statistical inference can rapidly and systematically reveal the transcriptional regulatory and structural features of a bacterial genome. This capacity is particularly crucial for non-model bacteria that are not amenable to routine genetic manipulation.
Collapse
Affiliation(s)
- Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Haley M. Amemiya
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Thomas J. Goss
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| |
Collapse
|
27
|
Zhao T, Xu L, Zhao L, Zhang H, Li Y, Zhang Y. BtsT/ BtsS is involved in glyoxylate transport in E. coli and its mutations facilitated glyoxylate utilization. Biochem Biophys Res Commun 2021; 551:71-77. [PMID: 33721833 DOI: 10.1016/j.bbrc.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
Glyoxylate is an important chemical and is also an intermediate involved in metabolic pathways of living microorganisms. However, it cannot be rapidly utilized by many microbes. We observed a very long lag phase (up to 120 h) when E. coli is growing in a mineral medium supplemented with 50 mM glyoxylate. To better understand this strange growth pattern on glyoxylate and accelerate glyoxylate utilization, a random genomic library of E. coli was transformed into E. coli BW25113, and mutants that showed significantly shortened lag phase on glyoxylate were obtained. Interestingly, mutations in BtsT/BtsS, a two component system that is involved in pyruvate transport, were found to be a common feature in all mutants retrieved. We further demonstrated, through reverse engineering, that the mutations in BtsT/BtsS can indeed increase glyoxylate uptake. Growth experiments with different concentration of glyoxylate also showed the higher the concentration of glyoxylate, the shorter the lag phase. These new findings thus increased our understanding on microbial utilization of glyoxylate.
Collapse
Affiliation(s)
- Tongxing Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liru Xu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Sastry AV, Hu A, Heckmann D, Poudel S, Kavvas E, Palsson BO. Independent component analysis recovers consistent regulatory signals from disparate datasets. PLoS Comput Biol 2021; 17:e1008647. [PMID: 33529205 PMCID: PMC7888660 DOI: 10.1371/journal.pcbi.1008647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/17/2021] [Accepted: 12/18/2020] [Indexed: 01/03/2023] Open
Abstract
The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of existing data. Here, we show that the underlying structure of the E. coli transcriptome, as determined by Independent Component Analysis (ICA), is conserved across multiple independent datasets, including both RNA-seq and microarray datasets. We subsequently combined five transcriptomics datasets into a large compendium containing over 800 expression profiles and discovered that its underlying ICA-based structure was still comparable to that of the individual datasets. With this understanding, we expanded our analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables deep analysis of disparate data to uncover new insights that were not visible in the individual datasets. Cells adapt to diverse environments by regulating gene expression. Genome-wide measurements of gene expression levels have exponentially increased in recent years, but successful integration and analysis of these datasets are limited. Recently, we showed that independent component analysis (ICA), a signal deconvolution algorithm, can separate a large bacterial gene expression dataset into groups of co-regulated genes. This previous study focused on data generated by a standardized pipeline and did not address whether ICA extracts the same quantitative co-expression signals across expression profiling platforms. In this study, we show that ICA finds similar co-regulation patterns underlying multiple gene expression datasets and can be used as a tool to integrate and interpret diverse datasets. Using a dataset containing over 3,000 expression profiles, we predicted three new regulons and characterized their activities. Since large, standardized expression datasets only exist for a few bacterial strains, these results broaden the possible applications of this tool to better understand transcriptional regulation across a wide range of microbes.
Collapse
Affiliation(s)
- Anand V. Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Alyssa Hu
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - David Heckmann
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Erol Kavvas
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
29
|
Genome-wide Identification of DNA-protein Interaction to Reconstruct Bacterial Transcription Regulatory Network. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Malkowski SN, Atilho RM, Greenlee EB, Weinberg CE, Breaker RR. A rare bacterial RNA motif is implicated in the regulation of the purF gene whose encoded enzyme synthesizes phosphoribosylamine. RNA (NEW YORK, N.Y.) 2020; 26:1838-1846. [PMID: 32843366 PMCID: PMC7668255 DOI: 10.1261/rna.077313.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 05/31/2023]
Abstract
The Fibro-purF motif is a putative structured noncoding RNA domain that was discovered previously in species of Fibrobacter by using comparative sequence analysis methods. An updated bioinformatics search yielded a total of only 30 unique-sequence representatives, exclusively found upstream of the purF gene that codes for the enzyme amidophosphoribosyltransferase. This enzyme synthesizes the compound 5-phospho-D-ribosylamine (PRA), which is the first committed step in purine biosynthesis. The consensus model for Fibro-purF motif RNAs includes a predicted three-stem junction that carries numerous conserved nucleotide positions within the regions joining the stems. This architecture appears to be of sufficient size and complexity for the formation of the ligand-binding aptamer portion of a riboswitch. In this study, we conducted biochemical analyses of a representative Fibro-purF motif RNA to confirm that the RNA generally folds according to the predicted consensus model. However, due to the instability of PRA, binding of this ligand candidate by the RNA could not be directly assessed. Genetic analyses were used to demonstrate that Fibro-purF motif RNAs regulate gene expression in accordance with predicted PRA concentrations. These findings indicate that Fibro-purF motif RNAs are genetic regulation elements that likely suppress PRA biosynthesis when sufficient levels of this purine precursor are present.
Collapse
Affiliation(s)
- Sarah N Malkowski
- Department of Chemistry, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ruben M Atilho
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Etienne B Greenlee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Christina E Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
31
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
32
|
Kyle Bennett R, Agee A, Har JRG, von Hagel B, Antoniewicz MR, Papoutsakis ET. Regulatory interventions improve the biosynthesis of limiting amino acids from methanol carbon to improve synthetic methylotrophy in Escherichia coli. Biotechnol Bioeng 2020; 118:43-57. [PMID: 32876943 DOI: 10.1002/bit.27549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022]
Abstract
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, that is, the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. We targeted global and local amino acid regulatory networks. Those include removal of amino acid allosteric feedback inhibition (argAH15Y , ilvAL447F , hisGE271K , leuAG462D , proBD107N , thrAS345F , trpES40F ), knockouts of transcriptional repressors (ihfA, metJ); and overexpression of amino acid biosynthetic operons (hisGDCBHAFI, leuABCD, thrABC, trpEDCBA) and transcriptional regulators (crp, purR). Compared to the parent methylotrophic E. coli strain that was unable to synthesize these amino acids from methanol carbon, these strategies resulted in improved biosynthesis of limiting proteinogenic amino acids (histidine, leucine, lysine, methionine, phenylalanine, threonine, tyrosine) from methanol carbon. In several cases, improved amino acid biosynthesis from methanol carbon led to improvements in methylotrophic growth in methanol minimal medium supplemented with a small amount of yeast extract. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via global and local regulatory modifications.
Collapse
Affiliation(s)
- Robert Kyle Bennett
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Alec Agee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jie R G Har
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Bryan von Hagel
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
33
|
Efficient ammonia production from food by-products by engineered Escherichia coli. AMB Express 2020; 10:150. [PMID: 32809073 PMCID: PMC7434829 DOI: 10.1186/s13568-020-01083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/08/2020] [Indexed: 12/22/2022] Open
Abstract
Ammonia is used as a fertilizer for agriculture, chemical raw material, and carrier for transporting hydrogen, and with economic development, the demand for ammonia has increased. The Haber-Bosch process, which is the main method for producing ammonia, can produce ammonia with high efficiency. However, since it consumes a large amount of fossil energy, it is necessary to develop an alternative method for producing ammonia with less environmental impact. Ammonia production from food by-products is an appealing production process owing to unused resource usage, including waste, and mild reaction conditions. However, when food by-products and biomass are used as feedstocks, impurities often reduce productivity. Using metabolic profiling, glucose was identified as a potential inhibitor of ammonia production from impure food by-products. We constructed the recombinant Escherichia coli, in which glucose uptake was reduced by ptsG gene disruption and amino acid catabolism was promoted by glnA gene disruption. Ammonia production efficiency from okara, a food by-product, was improved in this strain; 35.4 mM ammonia was produced (47% yield). This study might provide a strategy for efficient ammonia production from food by-products.
Collapse
|
34
|
Duggal Y, Fontaine BM, Dailey DM, Ning G, Weinert EE. RNase I Modulates Escherichia coli Motility, Metabolism, and Resistance. ACS Chem Biol 2020; 15:1996-2004. [PMID: 32551492 DOI: 10.1021/acschembio.0c00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteria are constantly adapting to their environment by sensing extracellular factors that trigger production of intracellular signaling molecules, known as second messengers. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified in Escherichia coli and have emerged as possible novel signaling molecules. 2',3'-cNMPs are produced through endonucleolytic cleavage of short RNAs by the T2 endoribonuclease, RNase I; however, the physiological roles of RNase I remain unclear. Our transcriptomic analysis suggests that RNase I is involved in modulating numerous cellular processes, including nucleotide metabolism, motility, acid sensitivity, metal homeostasis, and outer membrane morphology. Through a combination of deletion strain and inhibitor studies, we demonstrate that RNase I plays a previously unknown role in E. coli stress resistance by affecting pathways that are part of the defense mechanisms employed by bacteria when introduced to external threats, including antibiotics. Thus, this work provides insight into the emerging roles of RNase I in bacterial signaling and physiology and highlights the potential of RNase I as a target for antibacterial adjuvants.
Collapse
Affiliation(s)
- Yashasvika Duggal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin M. Fontaine
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Deanna M. Dailey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gang Ning
- Microscopy Facility, Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Emily E. Weinert
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
35
|
The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat Commun 2019; 10:5536. [PMID: 31797920 PMCID: PMC6892915 DOI: 10.1038/s41467-019-13483-w] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022] Open
Abstract
Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome. Mechanistic insight into the regulation of transcriptional modules remains scarce. Here, the authors identify statistically independent gene sets by applying independent component analysis to a high-quality E. coli RNA-seq data compendium and find that most gene sets represent the effects of specific transcriptional regulators.
Collapse
|
36
|
Ethanol Adaptation Strategies in Salmonella enterica Serovar Enteritidis Revealed by Global Proteomic and Mutagenic Analyses. Appl Environ Microbiol 2019; 85:AEM.01107-19. [PMID: 31375481 DOI: 10.1128/aem.01107-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/21/2019] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is able to adapt to sublethal concentrations of ethanol, which subsequently induce tolerance of this pathogen to normally lethal ethanol challenges. This work aims to elucidate the underlying ethanol adaptation mechanisms of S Enteritidis by proteomic and mutagenic analyses. The global proteomic response of S Enteritidis to ethanol adaptation (5% ethanol for 1 h) was determined by isobaric tags for relative and absolute quantification (iTRAQ), and it was found that a total of 138 proteins were differentially expressed in ethanol-adapted cells compared to nonadapted cells. A total of 56 upregulated proteins were principally associated with purine metabolism and as transporters for glycine betaine, phosphate, d-alanine, thiamine, and heme, whereas 82 downregulated proteins were mainly involved in enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence. Moreover, mutagenic analysis further revealed the functions of two highly upregulated proteins belonging to purine metabolism (HiuH, 5-hydroxyisourate hydrolase) and glycine betaine transport (ProX, glycine betaine-binding periplasmic protein) pathways. Deletion of either hiuH or proX resulted in the development of a stronger ethanol tolerance response, suggesting negative regulatory roles in ethanol adaptation. Collectively, this work suggests that S Enteritidis employs multiple strategies to coordinate ethanol adaptation.IMPORTANCE Stress adaptation in foodborne pathogens has been recognized as a food safety concern since it may compromise currently employed microbial intervention strategies. While adaptation to sublethal levels of ethanol is able to induce ethanol tolerance in foodborne pathogens, the molecular mechanism underlying this phenomenon is poorly characterized. Hence, global proteomic analysis and mutagenic analysis were conducted in the current work to understand the strategies employed by Salmonella enterica subsp. enterica serovar Enteritidis to respond to ethanol adaptation. It was revealed that coordinated regulation of multiple pathways involving metabolism, ABC transporters, regulators, enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence was responsible for the development of ethanol adaptation response in this pathogen. Such knowledge will undoubtedly contribute to the development and implementation of more-effective food safety interventions.
Collapse
|
37
|
Sause WE, Balasubramanian D, Irnov I, Copin R, Sullivan MJ, Sommerfield A, Chan R, Dhabaria A, Askenazi M, Ueberheide B, Shopsin B, van Bakel H, Torres VJ. The purine biosynthesis regulator PurR moonlights as a virulence regulator in Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:13563-13572. [PMID: 31217288 PMCID: PMC6613142 DOI: 10.1073/pnas.1904280116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogen Staphylococcus aureus colonizes and infects a variety of different sites within the human body. To adapt to these different environments, S. aureus relies on a complex and finely tuned regulatory network. While some of these networks have been well-elucidated, the functions of more than 50% of the transcriptional regulators in S. aureus remain unexplored. Here, we assess the contribution of the LacI family of metabolic regulators to staphylococcal virulence. We found that inactivating the purine biosynthesis regulator purR resulted in a strain that was acutely virulent in bloodstream infection models in mice and in ex vivo models using primary human neutrophils. Remarkably, these enhanced pathogenic traits are independent of purine biosynthesis, as the purR mutant was still highly virulent in the presence of mutations that disrupt PurR's canonical role. Through the use of transcriptomics coupled with proteomics, we revealed that a number of virulence factors are differentially regulated in the absence of purR Indeed, we demonstrate that PurR directly binds to the promoters of genes encoding virulence factors and to master regulators of virulence. These results guided us into further ex vivo and in vivo studies, where we discovered that S. aureus toxins drive the death of human phagocytes and mice, whereas the surface adhesin FnbA contributes to the increased bacterial burden observed in the purR mutant. Thus, S. aureus repurposes a metabolic regulator to directly control the expression of virulence factors, and by doing so, tempers its pathogenesis.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Irnov Irnov
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Richard Copin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Mitchell J Sullivan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexis Sommerfield
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Avantika Dhabaria
- Proteomics Laboratory, New York University School of Medicine, New York, NY 10016
- Division of Advanced Research, New York University School of Medicine, New York, NY 10016
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- Biomedical Hosting LLC, Arlington, MA 02474
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University School of Medicine, New York, NY 10016
- Division of Advanced Research, New York University School of Medicine, New York, NY 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
38
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
39
|
Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Dräger A, Chen K, Sastry AV, Fang X, Mih N, Yang L, Eichner J, Cho BK, Kim D, Palsson BO. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res 2018; 46:10682-10696. [PMID: 30137486 PMCID: PMC6237786 DOI: 10.1093/nar/gky752] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023] Open
Abstract
Transcriptional regulation enables cells to respond to environmental changes. Of the estimated 304 candidate transcription factors (TFs) in Escherichia coli K-12 MG1655, 185 have been experimentally identified, but ChIP methods have been used to fully characterize only a few dozen. Identifying these remaining TFs is key to improving our knowledge of the E. coli transcriptional regulatory network (TRN). Here, we developed an integrated workflow for the computational prediction and comprehensive experimental validation of TFs using a suite of genome-wide experiments. We applied this workflow to (i) identify 16 candidate TFs from over a hundred uncharacterized genes; (ii) capture a total of 255 DNA binding peaks for ten candidate TFs resulting in six high-confidence binding motifs; (iii) reconstruct the regulons of these ten TFs by determining gene expression changes upon deletion of each TF and (iv) identify the regulatory roles of three TFs (YiaJ, YdcI, and YeiE) as regulators of l-ascorbate utilization, proton transfer and acetate metabolism, and iron homeostasis under iron-limited conditions, respectively. Together, these results demonstrate how this workflow can be used to discover, characterize, and elucidate regulatory functions of uncharacterized TFs in parallel.
Collapse
Affiliation(s)
- Ye Gao
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ilyas Kabimoldayev
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathan Mih
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes Eichner
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
| | - Byung-Kwan Cho
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghyuk Kim
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018; 9:3796. [PMID: 30228271 PMCID: PMC6143558 DOI: 10.1038/s41467-018-06219-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Biological regulatory network architectures are multi-scale in their function and can adaptively acquire new functions. Gene knockout (KO) experiments provide an established experimental approach not just for studying gene function, but also for unraveling regulatory networks in which a gene and its gene product are involved. Here we study the regulatory architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE) to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema describing the process of adaptation whereby perturbations in metabolite concentrations lead regulatory networks to produce suboptimal states, whose function is subsequently altered and re-optimized through acquisition of mutations during ALE. These results indicate that metabolite levels, through metabolite-transcription factor interactions, have a dominant role in determining the function of a multi-scale regulatory architecture that has been molded by evolution. The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function.
Collapse
|
41
|
McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO. Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial Perturbation of the Transcriptome. Front Microbiol 2018; 9:1793. [PMID: 30131786 PMCID: PMC6090065 DOI: 10.3389/fmicb.2018.01793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has emerged as a new approach with which to pursue fundamental biological inquiries and, in particular, new insights into the systemic function of a gene product. Two E. coli knockout strains were constructed: one that blocked the Pentose Phosphate Pathway (gnd KO) and one that decoupled the TCA cycle from electron transport (sdhCDAB KO). Despite major perturbations in central metabolism, minimal growth rate changes were found in the two knockout strains. More surprisingly, many similarities were found in their initial transcriptomic states that could be traced to similarly perturbed metabolites despite the differences in the network location of the gene perturbations and concomitant re-routing of pathway fluxes around these perturbations. However, following ALE, distinct metabolomic and transcriptomic states were realized. These included divergent flux and gene expression profiles in the gnd and sdhCDAB KOs to overcome imbalances in NADPH production and nitrogen/sulfur assimilation, respectively, that were not obvious limitations of growth in the unevolved knockouts. Therefore, this work demonstrates that ALE provides a productive approach to reveal novel insights of gene function at a systems level that cannot be found by observing the fresh knockout alone.
Collapse
Affiliation(s)
- Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
42
|
Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl Acad Sci U S A 2018; 115:E4796-E4805. [PMID: 29728462 PMCID: PMC6003448 DOI: 10.1073/pnas.1722055115] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Organisms must constantly make regulatory decisions in response to a change in cellular state or environment. However, while the catalog of genomes expands rapidly, we remain ignorant about how the genes in these genomes are regulated. Here, we show how a massively parallel reporter assay, Sort-Seq, and information-theoretic modeling can be used to identify regulatory sequences. We then use chromatography and mass spectrometry to identify the regulatory proteins that bind these sequences. The approach results in quantitative base pair-resolution models of promoter mechanism and was shown in both well-characterized and unannotated promoters in Escherichia coli. Given the generality of the approach, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in a wide range of bacteria. Gene regulation is one of the most ubiquitous processes in biology. However, while the catalog of bacterial genomes continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused efforts using low-throughput methods. Here, we take a first step toward multipromoter dissection and show how a combination of massively parallel reporter assays, mass spectrometry, and information-theoretic modeling can be used to dissect multiple bacterial promoters in a systematic way. We show this approach on both well-studied and previously uncharacterized promoters in the enteric bacterium Escherichia coli. In all cases, we recover nucleotide-resolution models of promoter mechanism. For some promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical models describing input–output relationships. Given the generality of the approach presented here, it opens up the possibility of quantitatively dissecting the mechanisms of promoter function in E. coli and a wide range of other bacteria.
Collapse
|
43
|
Lama A, Drennan SL, Johnson RC, Rubenstein GL, Cambronne ED. Identification of Conserved ABC Importers Necessary for Intracellular Survival of Legionella pneumophila in Multiple Hosts. Front Cell Infect Microbiol 2017; 7:485. [PMID: 29250489 PMCID: PMC5714930 DOI: 10.3389/fcimb.2017.00485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
It is established that the human pathogen Legionella pneumophila becomes significantly augmented for infection of macrophages after intracellular growth in amoebae when compared to like-strains cultivated in laboratory media. Based on this observation, we reasoned that the most critical virulence determinants of L.p. are expressed by responding to stimuli generated by the protozoan host specifically; a process we term "protozoan-priming." We sought to identify L.p. virulence factors that were required for replication in amoebae in order to highlight the genes necessary for production of the most infectious form of the bacterium. Using a transposon mutagenesis screen, we successfully identified 12 insertions that produced bacteria severely attenuated for growth in amoebae, while retaining a functional Dot/Icm type IVb secretion system. Seven of these insertion mutants were found dispensable for growth in macrophages, revealing attractive therapeutic targets that reside upstream of the pathogen-human interface. Two candidates identified, lpg0730 and lpg0122 were required for survival and replication in amoebae and macrophage host cells. Both genes are conserved among numerous important human pathogenic bacteria that can persist or replicate in amoebae. Each gene encodes a component of an ATP binding cassette (ABC) transport complex of unknown function. We demonstrate the lpg0730 ortholog in Francisella tularensis subsp. novicida to be essential for colonization of both protozoan and mammalian host cells, highlighting conserved survival mechanisms employed by bacteria that utilize protozoa as an environmental reservoir for replication.
Collapse
Affiliation(s)
- Amrita Lama
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Samuel L Drennan
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Rudd C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Grace L Rubenstein
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Eric D Cambronne
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
44
|
Fang X, Sastry A, Mih N, Kim D, Tan J, Yurkovich JT, Lloyd CJ, Gao Y, Yang L, Palsson BO. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities. Proc Natl Acad Sci U S A 2017; 114:10286-10291. [PMID: 28874552 PMCID: PMC5617254 DOI: 10.1073/pnas.1702581114] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN-probably the best characterized TRN-several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism's TRN from disparate data types.
Collapse
Affiliation(s)
- Xin Fang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093
| | - Anand Sastry
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093
| | - Nathan Mih
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Program, University of California at San Diego, La Jolla, CA 92093
| | - Donghyuk Kim
- Department of Genetic Engineering, Kyung Hee University, Yongin 17104, South Korea
| | - Justin Tan
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093
| | - James T Yurkovich
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Program, University of California at San Diego, La Jolla, CA 92093
| | - Colton J Lloyd
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093
| | - Ye Gao
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| | - Laurence Yang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093;
| | - Bernhard O Palsson
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093;
- Bioinformatics and Systems Biology Program, University of California at San Diego, La Jolla, CA 92093
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Horsholm, Denmark
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
45
|
The Response to 2-Aminoacrylate Differs in Escherichia coli and Salmonella enterica, despite Shared Metabolic Components. J Bacteriol 2017; 199:JB.00140-17. [PMID: 28461448 DOI: 10.1128/jb.00140-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
The metabolic network of an organism includes the sum total of the biochemical reactions present. In microbes, this network has an impeccable ability to sense and respond to perturbations caused by internal or external stimuli. The metabolic potential (i.e., network structure) of an organism is often drawn from the genome sequence, based on the presence of enzymes deemed to indicate specific pathways. Escherichia coli and Salmonella enterica are members of the Enterobacteriaceae family of Gram-negative bacteria that share the majority of their metabolic components and regulatory machinery as the "core genome." In S. enterica, the ability of the enamine intermediate 2-aminoacrylate (2AA) to inactivate a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes has been established in vivo In this study, 2AA metabolism and the consequences of its accumulation were investigated in E. coli The data showed that despite the conservation of all relevant enzymes, S. enterica and E. coli differed in both the generation and detrimental consequences of 2AA. In total, these findings suggest that the structure of the metabolic network surrounding the generation and response to endogenous 2AA stress differs between S. enterica and E. coliIMPORTANCE This work compared the metabolic networks surrounding the endogenous stressor 2-aminoacrylate in two closely related members of the Enterobacteriaceae The data showed that despite the conservation of all relevant enzymes in this metabolic node, the two closely related organisms diverged in their metabolic network structures. This work highlights how a set of conserved components can generate distinct network architectures and how this can impact the physiology of an organism. This work defines a model to expand our understanding of the 2-aminoacrylate stress response and the differences in metabolic structures and cellular milieus between S. enterica and E. coli.
Collapse
|
46
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
47
|
De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo. J Bacteriol 2016; 198:2001-2015. [PMID: 27161118 DOI: 10.1128/jb.00051-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5'-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from riboswitch regulation were identified. We found that in animal models of infection, the purine salvage pathway is insufficient for S. aureus survival in the absence of de novo guanine biosynthesis. These data suggest targeting the de novo guanine biosynthesis pathway may have therapeutic utility in the treatment of S. aureus infections.
Collapse
|
48
|
Transcriptome Analysis of Escherichia coli during dGTP Starvation. J Bacteriol 2016; 198:1631-44. [PMID: 27002130 DOI: 10.1128/jb.00218-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Our laboratory recently discovered that Escherichia coli cells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving an E. coli optA1 gpt strain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses of actively growing optA1 gpt cells subjected to hypoxanthine deprivation for increasing periods. The data show that upon Hx withdrawal, the optA1 gpt strain displays a diminished ability to derepress the de novo purine biosynthesis genes, likely due to internal guanine accumulation. The impairment in fully inducing the purR regulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS response was observed, supporting the concept of replication stress as a final cause of death. No evidence was observed in the starved cells for the participation of other stress responses, including the rpoS-mediated global stress response, reinforcing the lack of feedback of replication stress to the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient was observed for expression of genes located near the replication origin relative to those located toward the replication terminus. IMPORTANCE Control of the supply of the building blocks (deoxynucleoside triphosphates [dNTPs]) for DNA replication is important for ensuring genome integrity and cell viability. When cells are starved specifically for one of the four dNTPs, dGTP, the process of DNA replication is disturbed in a manner that can lead to eventual death. In the present study, we investigated the transcriptional changes in the bacterium E. coli during dGTP starvation. The results show increasing DNA replication stress with an increased time of starvation, as evidenced by induction of the bacterial SOS system, as well as a notable lack of induction of other stress responses that could have saved the cells from cell death by slowing down cell growth.
Collapse
|
49
|
Thompson AP, O'Neill I, Smith EJ, Catchpole J, Fagan A, Burgess KEV, Carmody RJ, Clarke DJ. Glycolysis and pyrimidine biosynthesis are required for replication of adherent-invasive Escherichia coli in macrophages. MICROBIOLOGY-SGM 2016; 162:954-965. [PMID: 27058922 DOI: 10.1099/mic.0.000289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adherent-invasive Escherichia coli (AIEC) have been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory bowel condition. It has been proposed that AIEC-infected macrophages produce high levels of pro-inflammatory cytokines thus contributing to the inflammation observed in CD. AIEC can replicate in macrophages and we wanted to determine if bacterial replication was linked to the high level of cytokine production associated with AIEC-infected macrophages. Therefore, we undertook a genetic analysis of the metabolic requirements for AIEC replication in the macrophage and we show that AIEC replication in this niche is dependent on bacterial glycolysis. In addition, our analyses indicate that AIEC have access to a wide range of nutrients in the macrophage, although the levels of purines and pyrimidines do appear to be limiting. Finally, we show that the macrophage response to AIEC infection is indistinguishable from the response to the non-replicating glycolysis mutant (ΔpfkAB) and a non-pathogenic strain of E. coli, MG1655. Therefore, AIEC does not appear to subvert the normal macrophage response to E. coli during infection.
Collapse
Affiliation(s)
- Aoife P Thompson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Ian O'Neill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Emma J Smith
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - John Catchpole
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Ailis Fagan
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Karl E V Burgess
- Glasgow Polyomics, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | | | - David J Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Peters JP, Mogil LS, McCauley MJ, Williams MC, Maher LJ. Mechanical properties of base-modified DNA are not strictly determined by base stacking or electrostatic interactions. Biophys J 2015; 107:448-459. [PMID: 25028886 DOI: 10.1016/j.bpj.2014.04.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 02/08/2023] Open
Abstract
This work probes the mystery of what balance of forces creates the extraordinary mechanical stiffness of DNA to bending and twisting. Here we explore the relationship between base stacking, functional group occupancy of the DNA minor and major grooves, and DNA mechanical properties. We study double-helical DNA molecules substituting either inosine for guanosine or 2,6-diaminopurine for adenine. These DNA variants, respectively, remove or add an amino group from the DNA minor groove, with corresponding changes in hydrogen-bonding and base stacking energy. Using the techniques of ligase-catalyzed cyclization kinetics, atomic force microscopy, and force spectroscopy with optical tweezers, we show that these DNA variants have bending persistence lengths within the range of values reported for sequence-dependent variation of the natural DNA bases. Comparison with seven additional DNA variants that modify the DNA major groove reveals that DNA bending stiffness is not correlated with base stacking energy or groove occupancy. Data from circular dichroism spectroscopy indicate that base analog substitution can alter DNA helical geometry, suggesting a complex relationship among base stacking, groove occupancy, helical structure, and DNA bend stiffness.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lauren S Mogil
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Micah J McCauley
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - L James Maher
- Department of Biochemistry and Molecular Biology and Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota.
| |
Collapse
|