1
|
Fei K, Andress BD, Kelly AM, Chasse DAD, McNulty AL. Meniscus gene expression profiling of inner and outer zone meniscus tissue compared to cartilage and passaged monolayer meniscus cells. Sci Rep 2024; 14:27423. [PMID: 39521910 PMCID: PMC11550462 DOI: 10.1038/s41598-024-78580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Meniscus injuries are common and while surgical strategies have improved, there is a need for alternative therapeutics to improve long-term outcomes and prevent post-traumatic osteoarthritis. Current research efforts in regenerative therapies and tissue engineering are hindered by a lack of understanding of meniscus cell biology and a poorly defined meniscus cell phenotype. This study utilized bulk RNA-sequencing to identify unique and overlapping transcriptomic profiles in cartilage, inner and outer zone meniscus tissue, and passaged inner and outer zone meniscus cells. The greatest transcriptomic differences were identified when comparing meniscus tissue to passaged monolayer cells (> 4,600 differentially expressed genes (DEGs)) and meniscus tissue to cartilage (> 3,100 DEGs). While zonal differences exist within the meniscus tissue (205 DEGs between inner and outer zone meniscus tissue), meniscus resident cells are more similar to each other than to either cartilage or passaged monolayer meniscus cells. Additionally, we identified and validated LUM, PRRX1, and SNTB1 as potential markers for meniscus tissue and ACTA2, TAGLN, SFRP2, and FSTL1 as novel markers for meniscus cell dedifferentiation. Our data contribute significantly to the current characterization of meniscus cells and provide an important foundation for future work in meniscus cell biology, regenerative medicine, and tissue engineering.
Collapse
Affiliation(s)
- Kaileen Fei
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Benjamin D Andress
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - A'nna M Kelly
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, DUMC Box 3093, Durham, NC, 27710, USA
| | - Dawn A D Chasse
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, DUMC Box 3093, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Duke University, DUMC Box 3093, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Fee BE, Fee LR, Menechella M, Affeldt B, Sprouse AR, Bounini A, Alwarawrah Y, Molloy CT, Ilkayeva OR, Prinz JA, Lenz DS, MacIver NJ, Rai P, Fessler MB, Coers J, Taylor GA. Type I interferon signaling and peroxisomal dysfunction contribute to enhanced inflammatory cytokine production in IRGM1-deficient macrophages. J Biol Chem 2024; 300:107883. [PMID: 39395806 DOI: 10.1016/j.jbc.2024.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
The human IRGM gene has been linked to inflammatory diseases including sepsis and Crohn's disease. Decreased expression of human IRGM, or the mouse orthologues Irgm1 and Irgm2, leads to increased production of a number of inflammatory chemokines and cytokines in vivo and/or in cultured macrophages. Prior work has indicated that increased cytokine production is instigated by metabolic alterations and changes in mitochondrial homeostasis; however, a comprehensive mechanism has not been elucidated. In the studies presented here, RNA deep sequencing and quantitative PCR were used to show that increases in cytokine production, as well as most changes in the transcriptional profile of Irgm1-/- bone marrow-derived macrophages (BMM), are dependent on increased type I IFN production seen in those cells. Metabolic alterations that drive increased cytokines in Irgm1-/- BMM - specifically increases in glycolysis and increased accumulation of acyl-carnitines - were unaffected by quenching type I IFN signaling. Dysregulation of peroxisomal homeostasis was identified as a novel upstream pathway that governs type I IFN production and inflammatory cytokine production. Collectively, these results enhance our understanding of the complex biochemical changes that are triggered by lack of Irgm1 and contribute to inflammatory disease seen with Irgm1-deficiency.
Collapse
Affiliation(s)
- Brian E Fee
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Lanette R Fee
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Menechella
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Bethann Affeldt
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Aemilia R Sprouse
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Amina Bounini
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Yazan Alwarawrah
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlyn T Molloy
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph A Prinz
- Duke University School of Medicine, Sequencing and Genomic Technologies, Durham, North Carolina, USA
| | - Devi Swain Lenz
- Duke University School of Medicine, Sequencing and Genomic Technologies, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Prashant Rai
- Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory A Taylor
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA; Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA.
| |
Collapse
|
3
|
Covert LT, Prinz JA, Swain-Lenz D, Dvergsten J, Truskey GA. Genetic changes from type I interferons and JAK inhibitors: clues to drivers of juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:SI240-SI248. [PMID: 38317053 PMCID: PMC11381683 DOI: 10.1093/rheumatology/keae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To better understand the pathogenesis of juvenile dermatomyositis (JDM), we examined the effect of the cytokines type I interferons (IFN I) and JAK inhibitor drugs (JAKi) on gene expression in bioengineered pediatric skeletal muscle. METHODS Myoblasts from three healthy pediatric donors were used to create three-dimensional skeletal muscle units termed myobundles. Myobundles were treated with IFN I, either IFNα or IFNβ. A subset of IFNβ-exposed myobundles was treated with JAKi tofacitinib or baricitinib. RNA sequencing analysis was performed on all myobundles. RESULTS Seventy-six myobundles were analysed. Principal component analysis showed donor-specific clusters of gene expression across IFNα and IFNβ-exposed myobundles in a dose-dependent manner. Both cytokines upregulated interferon response and proinflammatory genes; however, IFNβ led to more significant upregulation. Key downregulated pathways involved oxidative phosphorylation, fatty acid metabolism and myogenesis genes. Addition of tofacitinib or baricitinib moderated the gene expression induced by IFNβ, with partial reversal of upregulated inflammatory and downregulated myogenesis pathways. Baricitinib altered genetic profiles more than tofacitinib. CONCLUSION IFNβ leads to more pro-inflammatory gene upregulation than IFNα, correlating to greater decrease in contractile protein gene expression and reduced contractile force. JAK inhibitors, baricitinib more so than tofacitinib, partially reverse IFN I-induced genetic changes. Increased IFN I exposure in healthy bioengineered skeletal muscle leads to IFN-inducible gene expression, inflammatory pathway enrichment, and myogenesis gene downregulation, consistent with what is observed in JDM.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Joseph A Prinz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Devjanee Swain-Lenz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Tighe RM, Birukova A, Malakhau Y, Kobayashi Y, Vose AT, Chandramohan V, Cyphert-Daly JM, Cumming RI, Fradin Kirshner H, Tata PR, Ingram JL, Gunn MD, Que LG, Yu YRA. Altered ontogeny and transcriptomic signatures of tissue-resident pulmonary interstitial macrophages ameliorate allergic airway hyperresponsiveness. Front Immunol 2024; 15:1371764. [PMID: 38983858 PMCID: PMC11231371 DOI: 10.3389/fimmu.2024.1371764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Environmental exposures and experimental manipulations can alter the ontogenetic composition of tissue-resident macrophages. However, the impact of these alterations on subsequent immune responses, particularly in allergic airway diseases, remains poorly understood. This study aims to elucidate the significance of modified macrophage ontogeny resulting from environmental exposures on allergic airway responses to house dust mite (HDM) allergen. Methods We utilized embryonic lineage labeling to delineate the ontogenetic profile of tissue-resident macrophages at baseline and following the resolution of repeated lipopolysaccharide (LPS)-induced lung injury. We investigated differences in house dust mite (HDM)-induced allergy to assess the influence of macrophage ontogeny on allergic airway responses. Additionally, we employed single-cell RNA sequencing (scRNAseq) and immunofluorescent staining to characterize the pulmonary macrophage composition, associated pathways, and tissue localization. Results Our findings demonstrate that the ontogeny of homeostatic alveolar and interstitial macrophages is altered after the resolution from repeated LPS-induced lung injury, leading to the replacement of embryonic-derived by bone marrow-derived macrophages. This shift in macrophage ontogeny is associated with reduced HDM-induced allergic airway responses. Through scRNAseq and immunofluorescent staining, we identified a distinct subset of resident-derived interstitial macrophages expressing genes associated with allergic airway diseases, localized adjacent to terminal bronchi, and diminished by prior LPS exposure. Discussion These results suggest a pivotal role for pulmonary macrophage ontogeny in modulating allergic airway responses. Moreover, our findings highlight the implications of prior environmental exposures in shaping future immune responses and influencing the development of allergies. By elucidating the mechanisms underlying these phenomena, this study provides valuable insights into potential therapeutic targets for allergic airway diseases and avenues for further research into immune modulation and allergic disease prevention.
Collapse
Affiliation(s)
- Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC, United States
| | | | - Yuryi Malakhau
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University, Durham, NC, United States
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aaron T. Vose
- Department of Medicine, Duke University, Durham, NC, United States
| | | | | | - R. Ian Cumming
- Department of Medicine, Duke University, Durham, NC, United States
| | | | | | | | - Michael D. Gunn
- Department of Medicine, Duke University, Durham, NC, United States
| | - Loretta G. Que
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yen-Rei A. Yu
- Department of Medicine, Duke University, Durham, NC, United States
- Department of Medicine, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| |
Collapse
|
5
|
Snow KS, Raburn DJ, Price TM. Differential Gene Regulation of the Human Blastocyst Trophectoderm and Inner Cell Mass by Progesterone. Reprod Sci 2024; 31:1363-1372. [PMID: 38151652 DOI: 10.1007/s43032-023-01429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Knowledge of action of progesterone (P4) on the human preimplantation embryo is lacking. The objective of this study was to determine expression of a mitochondrial P4 receptor (PR-M) in the trophectoderm (TE) and the inner cell mass (ICM) of the human blastocyst and to determine P4-induced gene expression during growth from the cleavage to the blastocyst stage. Previously cryopreserved cleavage stage embryos were treated with P4 (10-6 M) or vehicle until blastocyst development. Cells from the TE and the ICM of dissected euploid embryos underwent RNA-seq analysis, while other embryos were used for analysis of nuclear PR (nPR) and PR-M expression.PR-M expression was confirmed in the TE, the ICM, and a human embryonic stem cell line (HESC). Conversely, nPR expression was absent in the TE and the ICM with low expression in the HESC line. RNA-seq analysis revealed P4 effects greater in the TE with 183 significant pathway changes compared to 27 in the ICM. The TE response included significant upregulation of genes associated with DNA replication, cell cycle phase transition and others, exemplified by a 7.6-fold increase in the cell proliferation gene, F-Box Associated Domain Containing. The majority of ICM pathways were downregulated including chromosome separation, centromere complex assembly and chromatin remodeling at centromere. This study confirms that human blastocysts express PR-M in both the TE and the ICM, but lack expression of nPR. P4-induced gene regulation differs greatly in the two cell fractions with the predominant effect of cell proliferation in the TE and not the ICM.
Collapse
Affiliation(s)
- Kathryn Shaia Snow
- Division of Reproductive Endocrinology and Infertility Department of Obstetrics and Gynecology, Duke University, 5601 Arringdon Park Dr Suite 210, Morrisville, NC, 27560, USA
| | - Douglas J Raburn
- Division of Reproductive Endocrinology and Infertility Department of Obstetrics and Gynecology, Duke University, 5601 Arringdon Park Dr Suite 210, Morrisville, NC, 27560, USA
| | - Thomas M Price
- Division of Reproductive Endocrinology and Infertility Department of Obstetrics and Gynecology, Duke University, 5601 Arringdon Park Dr Suite 210, Morrisville, NC, 27560, USA.
| |
Collapse
|
6
|
Bordeaux ZA, Reddy SV, Choi J, Braun G, McKeel J, Lu W, Yossef SM, Ma EZ, West CE, Kwatra SG, Kwatra MM. Transcriptomic and proteomic analysis of tumor suppressive effects of GZ17-6.02 against mycosis fungoides. Sci Rep 2024; 14:1955. [PMID: 38263212 PMCID: PMC10805783 DOI: 10.1038/s41598-024-52544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Jaimie McKeel
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Selina M Yossef
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Cameron E West
- Genzada Pharmaceuticals, Hutchinson, USA
- US Dermatology Partners, Wichita, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
7
|
Fuchs MA, Burke EJ, Latic N, Murray S, Li H, Sparks M, Abraham D, Zhang H, Rosenberg P, Hänzelmann S, Hausmann F, Huber T, Erben R, Fisher-Wellman K, Bursac N, Wolf M, Grabner A. Fibroblast Growth Factor (FGF) 23 and FGF Receptor 4 promote cardiac metabolic remodeling in chronic kidney disease. RESEARCH SQUARE 2023:rs.3.rs-3705543. [PMID: 38196615 PMCID: PMC10775858 DOI: 10.21203/rs.3.rs-3705543/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Chronic kidney disease (CKD) is a global health epidemic that significantly increases mortality due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiac injury in CKD. High serum levels of fibroblast growth factor (FGF) 23 in patients with CKD may contribute mechanistically to the pathogenesis of LVH by activating FGF receptor (FGFR) 4 signaling in cardiac myocytes. Mitochondrial dysfunction and cardiac metabolic remodeling are early features of cardiac injury that predate development of hypertrophy, but these mechanisms of disease have been insufficiently studied in models of CKD. Wild-type mice with CKD induced by adenine diet developed LVH that was preceded by morphological changes in mitochondrial structure and evidence of cardiac mitochondrial and metabolic dysfunction. In bioengineered cardio-bundles and neonatal rat ventricular myocytes grown in vitro, FGF23-mediated activation of FGFR4 caused a mitochondrial pathology, characterized by increased bioenergetic stress and increased glycolysis, that preceded the development of cellular hypertrophy. The cardiac metabolic changes and associated mitochondrial alterations in mice with CKD were prevented by global or cardiac-specific deletion of FGFR4. These findings indicate that metabolic remodeling and eventually mitochondrial dysfunction are early cardiac complications of CKD that precede structural remodeling of the heart. Mechanistically, FGF23-mediated activation of FGFR4 causes mitochondrial dysfunction, suggesting that early pharmacologic inhibition of FGFR4 might serve as novel therapeutic intervention to prevent development of LVH and heart failure in patients with CKD.
Collapse
Affiliation(s)
- Michaela A. Fuchs
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily J. Burke
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nejla Latic
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Susan Murray
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - Matthew Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis Abraham
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hengtao Zhang
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul Rosenberg
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sonja Hänzelmann
- Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Huber
- Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhold Erben
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital, Vienna, Austria
| | - Kelsey Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, Department of Physiology, East Carolina University, Greenville, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, USA
- Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Division of Nephrology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Huang Z, Byrd O, Tan S, Hu K, Knight B, Lo G, Taylor L, Wu Y, Berchuck A, Murphy SK. Periostin facilitates ovarian cancer recurrence by enhancing cancer stemness. Sci Rep 2023; 13:21382. [PMID: 38049490 PMCID: PMC10695946 DOI: 10.1038/s41598-023-48485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The lethality of epithelial ovarian cancer (OC) is largely due to a high rate of recurrence and development of chemoresistance, which requires synergy between cancer cells and the tumor microenvironment (TME) and is thought to involve cancer stem cells. Our analysis of gene expression microarray data from paired primary and recurrent OC tissues revealed significantly elevated expression of the gene encoding periostin (POSTN) in recurrent OC compared to matched primary tumors (p = 0.015). Secreted POSTN plays a role in the extracellular matrix, facilitating epithelial cell migration and tissue regeneration. We therefore examined how elevated extracellular POSTN, as we found is present in recurrent OC, impacts OC cell functions and phenotypes, including stemness. OC cells cultured with conditioned media with high levels of periostin (CMPOSTNhigh) exhibited faster migration (p = 0.0044), enhanced invasiveness (p = 0.006), increased chemoresistance (p < 0.05), and decreased apoptosis as compared to the same cells cultured with control medium (CMCTL). Further, CMPOSTNhigh-cultured OC cells exhibited an elevated stem cell side population (p = 0.027) along with increased expression of cancer stem cell marker CD133 relative to CMCTL-cultured cells. POSTN-transfected 3T3-L1 cells that were used to generate CMPOSTNhigh had visibly enhanced intracellular and extracellular lipids, which was also linked to increased OC cell expression of fatty acid synthetase (FASN) that functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors. Additionally, POSTN functions in the TME were linked to AKT pathway activities. The mean tumor volume in mice injected with CMPOSTNhigh-cultured OC cells was larger than that in mice injected with CMCTL-cultured OC cells (p = 0.0023). Taken together, these results show that elevated POSTN in the extracellular environment leads to more aggressive OC cell behavior and an increase in cancer stemness, suggesting that increased levels of stromal POSTN during OC recurrence contribute to more rapid disease progression and may be a novel therapeutic target. Furthermore, they also demonstrate the utility of having matched primary-recurrent OC tissues for analysis and support the need for better understanding of the molecular changes that occur with OC recurrence to develop ways to undermine those processes.
Collapse
Affiliation(s)
- Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
- Department of Obstetrics and Gynecology, Duke University Medical Center, 701 West Main Street, Suite 510, Duke, PO Box 90534, Durham, NC, 27701, USA.
| | - Olivia Byrd
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Sarah Tan
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Katrina Hu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Bailey Knight
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Gaomong Lo
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Lila Taylor
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Yuan Wu
- Biostatistics & Bioinformatics, Division of Biostatistics, Biostatistics & Bioinformatics, Duke University, Durham, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
9
|
Gibbs KD, Wang L, Yang Z, Anderson CE, Bourgeois JS, Cao Y, Gaggioli MR, Biel M, Puertollano R, Chen CC, Ko DC. Human variation impacting MCOLN2 restricts Salmonella Typhi replication by magnesium deprivation. CELL GENOMICS 2023; 3:100290. [PMID: 37228749 PMCID: PMC10203047 DOI: 10.1016/j.xgen.2023.100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Human genetic diversity can reveal critical factors in host-pathogen interactions. This is especially useful for human-restricted pathogens like Salmonella enterica serovar Typhi (S. Typhi), the cause of typhoid fever. One key defense during bacterial infection is nutritional immunity: host cells attempt to restrict bacterial replication by denying bacteria access to key nutrients or supplying toxic metabolites. Here, a cellular genome-wide association study of intracellular replication by S. Typhi in nearly a thousand cell lines from around the world-and extensive follow-up using intracellular S. Typhi transcriptomics and manipulation of magnesium availability-demonstrates that the divalent cation channel mucolipin-2 (MCOLN2 or TRPML2) restricts S. Typhi intracellular replication through magnesium deprivation. Mg2+ currents, conducted through MCOLN2 and out of endolysosomes, were measured directly using patch-clamping of the endolysosomal membrane. Our results reveal Mg2+ limitation as a key component of nutritional immunity against S. Typhi and as a source of variable host resistance.
Collapse
Affiliation(s)
- Kyle D. Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Zhuo Yang
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Caroline E. Anderson
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jeffrey S. Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Yanlu Cao
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Margaret R. Gaggioli
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, & Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Bordeaux ZA, Reddy SV, Lee K, Lu W, Choi J, Miller M, Roberts C, Pollizzi A, Kwatra SG, Kwatra MM. Differential Response of Mycosis Fungoides Cells to Vorinostat. Int J Mol Sci 2023; 24:ijms24098075. [PMID: 37175780 PMCID: PMC10179468 DOI: 10.3390/ijms24098075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL) and is characterized by epidermotrophism of malignant CD4+ T-lymphocytes. When MF advances to a recurrent stage, patients require treatment with systemic therapies such as vorinostat, a histone deacetylase inhibitor. While vorinostat has been shown to exhibit anti-tumor activity in MF, its exact molecular mechanism has yet to be fully discerned. In the present study, we examined the transcriptomic and proteomic profiles of vorinostat treatment in two MF cell lines, Myla 2059 and HH. We find that vorinostat downregulates CTLA-4, CXCR4, and CCR7 in both cell lines, but its effect on several key pathways differs between the two MF cell lines. For example, vorinostat upregulates CCL5, CCR5, and CXCL10 expression in Myla cells but downregulates CCL5 and CXCL10 expression in HH cells. Furthermore, vorinostat upregulates IFN-γ and IL-23 signaling and downregulates IL-6, IL-7, and IL-15 signaling in Myla cells but does not affect these pathways in HH cells. Although Myla and HH represent established MF cell lines, their distinct tumor origin from separate patients demonstrates that inherent phenotypic variations within the disease persist, underscoring the importance of using a variety of MF cells in the preclinical development of MF therapeutics.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Meghan Miller
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Callie Roberts
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anthony Pollizzi
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Xie S, Choudhari S, Wu CL, Abramson K, Corcoran D, Gregory SG, Thimmapuram J, Guilak F, Little D. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J 2023; 37:e22785. [PMID: 36794668 PMCID: PMC10561192 DOI: 10.1096/fj.202201413r] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.
Collapse
Affiliation(s)
- Shaojun Xie
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Sulbha Choudhari
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
- Advanced Biomedical Computational Science, Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD 2170
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14611
| | - Karen Abramson
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
| | - David Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, 101 Science Drive, Duke University Medical Center Box 3382, Durham, NC 27708
- Lineberger Bioinformatics Core, 5200 Marsico Hall, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
- Department of Neurology, Duke University School of Medicine, 311 Research Drive, Durham, NC 27710
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 4515 McKinley Ave., St. Louis, MO 63110
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis Missouri 63110
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, 2186 Lynn Hall, 625 Harrison St, West Lafayette, IN 47907-2026
| |
Collapse
|
12
|
Tighe RM, Birukova A, Malakhau Y, Kobayashi Y, Vose AT, Chandramohan V, Cyphert-Daly JM, Cumming RI, Kirshner HF, Tata PR, Ingram JL, Gunn MD, Que LG, Yu YRA. Allergic Asthma Responses Are Dependent on Macrophage Ontogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528861. [PMID: 36824904 PMCID: PMC9949163 DOI: 10.1101/2023.02.16.528861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The ontogenetic composition of tissue-resident macrophages following injury, environmental exposure, or experimental depletion can be altered upon re-establishment of homeostasis. However, the impact of altered resident macrophage ontogenetic milieu on subsequent immune responses is poorly understood. Hence, we assessed the effect of macrophage ontogeny alteration following return to homeostasis on subsequent allergic airway responses to house dust mites (HDM). Using lineage tracing, we confirmed alveolar and interstitial macrophage ontogeny and their replacement by bone marrow-derived macrophages following LPS exposure. This alteration in macrophage ontogenetic milieu reduced allergic airway responses to HDM challenge. In addition, we defined a distinct population of resident-derived interstitial macrophages expressing allergic airway disease genes, located adjacent to terminal bronchi, and reduced by prior LPS exposure. These findings support that the ontogenetic milieu of pulmonary macrophages is a central factor in allergic airway responses and has implications for how prior environmental exposures impact subsequent immune responses and the development of allergy.
Collapse
|
13
|
Dayanidhi DL, Somarelli JA, Mantyh JB, Rupprecht G, Roghani RS, Vincoff S, Shin I, Zhao Y, Kim SY, McCall S, Hong J, Hsu DS. Psymberin, a marine-derived natural product, induces cancer cell growth arrest and protein translation inhibition. Front Med (Lausanne) 2022; 9:999004. [PMID: 36743670 PMCID: PMC9894252 DOI: 10.3389/fmed.2022.999004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent form of cancer in the United States and results in over 50,000 deaths per year. Treatments for metastatic CRC are limited, and therefore there is an unmet clinical need for more effective therapies. In our prior work, we coupled high-throughput chemical screens with patient-derived models of cancer to identify new potential therapeutic targets for CRC. However, this pipeline is limited by (1) the use of cell lines that do not appropriately recapitulate the tumor microenvironment, and (2) the use of patient-derived xenografts (PDXs), which are time-consuming and costly for validation of drug efficacy. To overcome these limitations, we have turned to patient-derived organoids. Organoids are increasingly being accepted as a "standard" preclinical model that recapitulates tumor microenvironment cross-talk in a rapid, cost-effective platform. In the present work, we employed a library of natural products, intermediates, and drug-like compounds for which full synthesis has been demonstrated. Using this compound library, we performed a high-throughput screen on multiple low-passage cancer cell lines to identify potential treatments. The top candidate, psymberin, was further validated, with a focus on CRC cell lines and organoids. Mechanistic and genomics analyses pinpointed protein translation inhibition as a mechanism of action of psymberin. These findings suggest the potential of psymberin as a novel therapy for the treatment of CRC.
Collapse
Affiliation(s)
- Divya L. Dayanidhi
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Jason A. Somarelli
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - John B. Mantyh
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Gabrielle Rupprecht
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Roham Salman Roghani
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| | - Sophia Vincoff
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Iljin Shin
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Yiquan Zhao
- Department of Chemistry, Duke University, Durham, NC, United States
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Shannon McCall
- Department of Pathology, Duke University, Durham, NC, United States
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - David S. Hsu
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Center for Genomics and Computational Biology, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Deerhake ME, Cardakli ED, Shinohara ML. Dectin-1 signaling in neutrophils up-regulates PD-L1 and triggers ROS-mediated suppression of CD4 + T cells. J Leukoc Biol 2022; 112:1413-1425. [PMID: 36073780 PMCID: PMC9701158 DOI: 10.1002/jlb.3a0322-152rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Indexed: 01/04/2023] Open
Abstract
Dectin-1 is known to drive proinflammatory cytokine production by macrophages and dendritic cells which promotes Th17 CD4+ T cell responses in the setting of fungal infection. However, the role of Dectin-1 signaling in neutrophils and its impact on CD4+ T cells is not well understood. In this study, we found that neutrophils stimulated with a Dectin-1 agonist diminish CD4+ T cell viability in a rapid and reactive oxygen species (ROS)-dependent manner. Furthermore, Dectin-1 promoted neutrophil PD-L1 expression via Syk and Card9 signaling, along with other immune-checkpoint factors in a neutrophil-biased manner. Although neutrophil PD-L1 did not significantly impact disease severity in experimental autoimmune encephalomyelitis (EAE), we found that CNS-infiltrated neutrophils potently up-regulate PD-L1 expression. Furthermore, a subset of PD-L1+ neutrophils was also found to express MHC-II during EAE. In summary, we found that Dectin-1 elicits a biphasic neutrophil response in which (1) T-cell suppressive ROS is followed by (2) up-regulation of PD-L1 expression. This response may serve to limit excess CD4+ T cell-driven inflammation in infection or autoimmunity while preserving host-defense functions of neutrophils. Summary sentence: Mechanisms by which Dectin-1 signaling in neutrophils promotes a cellular phenotype with T cell-suppressive properties.
Collapse
Affiliation(s)
| | - Emre D. Cardakli
- Department of Immunology, Duke University School of
Medicine, Durham, NC 27710, USA
- Tri-Institutional MD-PhD Program, Weill Cornell
Medical College, Rockefeller University and Memorial Sloan Kettering Cancer Center,
New York, NY 10021, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of
Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology,
Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Langel SN, Garrido C, Phan C, Travieso T, Kirshner H, DeMarco T, Ma ZM, Reader JR, Olstad KJ, Sammak RL, Shaan Lakshmanappa Y, Roh JW, Watanabe J, Usachenko J, Immareddy R, Pollard R, Iyer SS, Permar S, Miller LA, Van Rompay KKA, Blasi M. Dam-Infant Rhesus Macaque Pairs to Dissect Age-Dependent Responses to SARS-CoV-2 Infection. Immunohorizons 2022; 6:851-863. [PMID: 36547390 PMCID: PMC10538284 DOI: 10.4049/immunohorizons.2200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.
Collapse
Affiliation(s)
- Stephanie N Langel
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Caroline Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Tatianna Travieso
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Helene Kirshner
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Katherine J Olstad
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Rebecca L Sammak
- California National Primate Research Center, University of California, Davis, Davis, CA
| | | | - Jamin W Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Graduate Group in Immunology, University of California, Davis, Davis, CA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Rachel Pollard
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
| | - Smita S Iyer
- California National Primate Research Center, University of California, Davis, Davis, CA
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Sallie Permar
- Department of Pediatrics, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY; and
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
16
|
Loganathan T, Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci 2022; 311:121118. [DOI: 10.1016/j.lfs.2022.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
17
|
Grassi S, Campuzano O, Coll M, Cazzato F, Iglesias A, Ausania F, Scarnicci F, Sarquella-Brugada G, Brugada J, Arena V, Oliva A, Brugada R. Eosinophilic Infiltration of the Sino-Atrial Node in Sudden Cardiac Death Caused by Long QT Syndrome. Int J Mol Sci 2022; 23:11666. [PMID: 36232963 PMCID: PMC9569895 DOI: 10.3390/ijms231911666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Sudden death is defined as the unexpected death of a healthy person that occurs within the first hour of the onset of symptoms or within 24 h of the victim being last seen alive. In some of these cases, rare deleterious variants of genes associated with inherited cardiac disorders can provide a highly probable explanation for the fatal event. We report the case of a 21-year-old obese woman who lost consciousness suddenly in a public place and was pronounced dead after hospital admission. Clinical autopsy showed an inconclusive gross examination, while in the histopathological analysis an eosinophilic inflammatory focus and interstitial fibrosis in the sino-atrial node were found. Molecular autopsy revealed an intronic variant in the KCNQ1 gene (c.683 + 5G > A), classified as likely pathogenic for long QT syndrome according to the guidelines provided by the American College of Medical Genetics and Genomics. Therefore, there were many anomalies that could have played a role in the causation of the sudden death, such as the extreme obesity, the cardiac anomalies and the KNCQ1 variant. This case depicts the difficult interpretation of rare cardiac structural abnormalities in subjects carrying rare variants responsible for inherited arrhythmic disorders and the challenge for the forensic pathologist to make causal inferences in the determinism of the unexpected decease.
Collapse
Affiliation(s)
- Simone Grassi
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Health Sciences, Section of Forensic Medical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Mònica Coll
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Francesca Cazzato
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Iglesias
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Francesco Ausania
- Department of Diagnostics and Public Health, Section of Forensic Medicine, University of Verona, 37122 Verona, Italy
| | - Francesca Scarnicci
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, 08950 Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital de Barcelona, 08950 Barcelona, Spain
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), 1105 AZ Amsterdam, The Netherlands
- Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00147 Rome, Italy
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiovascular Genetics Center, Institut d’Investigació Biomèdica Girona (IDIBGI), University of Girona, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| |
Collapse
|
18
|
Le Roux Ö, Pershing NLK, Kaltenbrun E, Newman NJ, Everitt JI, Baldelli E, Pierobon M, Petricoin EF, Counter CM. Genetically manipulating endogenous Kras levels and oncogenic mutations in vivo influences tissue patterning of murine tumorigenesis. eLife 2022; 11:e75715. [PMID: 36069770 PMCID: PMC9451540 DOI: 10.7554/elife.75715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.
Collapse
Affiliation(s)
- Özgün Le Roux
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole LK Pershing
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Erin Kaltenbrun
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole J Newman
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical CenterDurhamUnited States
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
19
|
Block CL, Eroglu O, Mague SD, Smith CJ, Ceasrine AM, Sriworarat C, Blount C, Beben KA, Malacon KE, Ndubuizu N, Talbot A, Gallagher NM, Chan Jo Y, Nyangacha T, Carlson DE, Dzirasa K, Eroglu C, Bilbo SD. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Rep 2022; 40:111161. [PMID: 35926455 PMCID: PMC9438555 DOI: 10.1016/j.celrep.2022.111161] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Gestational exposure to environmental toxins and socioeconomic stressors is epidemiologically linked to neurodevelopmental disorders with strong male bias, such as autism. We model these prenatal risk factors in mice by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly activates the maternal immune system. Only male offspring display long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions. Cellularly, prenatal stressors diminish microglial function within the anterior cingulate cortex, a central node of the social coding network, in males during early postnatal development. Precise inhibition of microglial phagocytosis within the anterior cingulate cortex (ACC) of wild-type (WT) mice during the same critical period mimics the impact of prenatal stressors on a male-specific behavior, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development. Block et al. show that combined exposure to air pollution and maternal stress during pregnancy activates the maternal immune system and induces male-specific impairments in social behavior and circuit connectivity in offspring. Cellularly, prenatal stressors diminish microglia phagocytic function, and inhibition of microglia phagocytosis phenocopies behavioral deficits from prenatal stressors.
Collapse
Affiliation(s)
- Carina L Block
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Oznur Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen D Mague
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | | | - Cameron Blount
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen A Beben
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Karen E Malacon
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Nkemdilim Ndubuizu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Austin Talbot
- Department of Statistical Science, Duke University, Durham, NC 27710, USA
| | - Neil M Gallagher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Young Chan Jo
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Timothy Nyangacha
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David E Carlson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Durham, NC 27710, USA; Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Integration of the Salmonella Typhimurium Methylome and Transcriptome Reveals That DNA Methylation and Transcriptional Regulation Are Largely Decoupled under Virulence-Related Conditions. mBio 2022; 13:e0346421. [PMID: 35658533 PMCID: PMC9239280 DOI: 10.1128/mbio.03464-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite being in a golden age of bacterial epigenomics, little work has systematically examined the plasticity and functional impacts of the bacterial DNA methylome. Here, we leveraged single-molecule, real-time sequencing (SMRT-seq) to examine the m6A DNA methylome of two Salmonella enterica serovar Typhimurium strains: 14028s and a ΔmetJ mutant with derepressed methionine metabolism, grown in Luria broth or medium that simulates the intracellular environment. We found that the methylome is remarkably static: >95% of adenosine bases retain their methylation status across conditions. Integration of methylation with transcriptomic data revealed limited correlation between changes in methylation and gene expression. Further, examination of the transcriptome in ΔyhdJ bacteria lacking the m6A methylase with the most dynamic methylation pattern in our data set revealed little evidence of YhdJ-mediated gene regulation. Curiously, despite G(m6A)TC motifs being particularly resistant to change across conditions, incorporating dam mutants into our analyses revealed two examples where changes in methylation and transcription may be linked across conditions. This includes the novel finding that the ΔmetJ motility defect may be partially driven by hypermethylation of the chemotaxis gene tsr. Together, these data redefine the S. Typhimurium epigenome as a highly stable system that has rare but important roles in transcriptional regulation. Incorporating these lessons into future studies will be critical as we progress through the epigenomic era.
Collapse
|
21
|
Stingl C, Dvergsten JA, Eng SWM, Yeung RSM, Fritzler MJ, Mason T, Crowson C, Voora D, Reed AM. Gene Expression Profiles of Treatment Response and Non-Response in Children With Juvenile Dermatomyositis. ACR Open Rheumatol 2022; 4:671-681. [PMID: 35616642 PMCID: PMC9374052 DOI: 10.1002/acr2.11445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Objective The study objective was to identify differences in gene expression between treatment responders (TRs) and treatment non‐responders (TNRs) diagnosed with juvenile dermatomyositis (JDM). Methods Gene expression analyses were performed using whole blood messenger RNA sequencing in patients with JDM (n = 17) and healthy controls (HCs; n = 10). Four analyses were performed (A1‐4) comparing differential gene expression and pathways analysis exploiting the timing of sample acquisition and the treatments received to perform these comparative analyses. Analyses were done at diagnosis and follow‐up, which averaged 7 months later in the cohort. Results At diagnosis, the expression of 10 genes differed between TRs and TNRs. Hallmark and canonical pathway analysis revealed 11 and 60 pathways enriched in TRs and 3 and 21 pathways enriched in TNRs, respectively. Pathway enrichment at diagnosis in TRs was strongest in pathways involved in metabolism, complement activation, and cell signaling as mediated by IL‐8, p38/microtubule associated protein kinases (MAPK)/extracellular signal‐regulated kinases (ERK), Phosphatidylinositol 3 Kinase Gamma (PI3Kγ), and the B cell receptor. Follow‐up hallmark and canonical pathway analysis showed that 2 and 14 pathways were enriched in TRs, whereas 24 and 123 pathways were enriched in treatment TNRs, respectively. Prior treatment with glucocorticoids significantly altered expression of 13 genes in the analysis of subjects at diagnosis with JDM as compared with HCs. Conclusion Numerous genes and pathways differ between TRs and TNRs at diagnosis and follow‐up. Prior treatment with glucocorticoids prior to specimen acquisition had a small effect on the performed analyses.
Collapse
Affiliation(s)
| | | | - Simon W M Eng
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rae S M Yeung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Snider DL, Park M, Murphy KA, Beachboard DC, Horner SM. Signaling from the RNA sensor RIG-I is regulated by ufmylation. Proc Natl Acad Sci U S A 2022; 119:e2119531119. [PMID: 35394863 PMCID: PMC9169834 DOI: 10.1073/pnas.2119531119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)–mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER–mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14–3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14–3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14–3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.
Collapse
Affiliation(s)
- Daltry L. Snider
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Moonhee Park
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Kristen A. Murphy
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Dia C. Beachboard
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Stacy M. Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
23
|
Choi J, Bordeaux ZA, McKeel J, Nanni C, Sutaria N, Braun G, Davis C, Miller MN, Alphonse MP, Kwatra SG, West CE, Kwatra MM. GZ17-6.02 Inhibits the Growth of EGFRvIII+ Glioblastoma. Int J Mol Sci 2022; 23:ijms23084174. [PMID: 35456993 PMCID: PMC9030248 DOI: 10.3390/ijms23084174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is amplified in over 50% of glioblastomas and promotes tumor formation and progression. However, attempts to treat glioblastoma with EGFR tyrosine kinase inhibitors have been unsuccessful thus far. The current standard of care is especially poor in patients with a constitutively active form of EGFR, EGFRvIII, which is associated with shorter survival time. This study examined the effect of GZ17-6.02, a novel anti-cancer agent undergoing phase 1 studies, on two EGFRvIII+ glioblastoma stem cells: D10-0171 and D317. In vitro analyses showed that GZ17-6.02 inhibited the growth of both D10-0171 and D317 cells with IC50 values of 24.84 and 28.28 µg/mL respectively. RNA sequencing and reverse phase protein array analyses revealed that GZ17-6.02 downregulates pathways primarily related to steroid synthesis and cell cycle progression. Interestingly, G17-6.02’s mechanism of action involves the downregulation of the recently identified glioblastoma super-enhancer genes WSCD1, EVOL2, and KLHDC8A. Finally, a subcutaneous xenograft model showed that GZ17-6.02 inhibits glioblastoma growth in vivo. We conclude that GZ17-6.02 is a promising combination drug effective at inhibiting the growth of a subset of glioblastomas and our data warrants further preclinical studies utilizing xenograft models to identify patients that may respond to this drug.
Collapse
Affiliation(s)
- Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.C.); (Z.A.B.); (N.S.); (M.P.A.); (S.G.K.)
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Zachary A. Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.C.); (Z.A.B.); (N.S.); (M.P.A.); (S.G.K.)
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Jaimie McKeel
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Cory Nanni
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Nishadh Sutaria
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.C.); (Z.A.B.); (N.S.); (M.P.A.); (S.G.K.)
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Cole Davis
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Meghan N. Miller
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.C.); (Z.A.B.); (N.S.); (M.P.A.); (S.G.K.)
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.C.); (Z.A.B.); (N.S.); (M.P.A.); (S.G.K.)
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA; (J.M.); (C.N.); (G.B.); (C.D.); (M.N.M.)
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-(919)-681-4782
| |
Collapse
|
24
|
Andress BD, Irwin RM, Puranam I, Hoffman BD, McNulty AL. A Tale of Two Loads: Modulation of IL-1 Induced Inflammatory Responses of Meniscal Cells in Two Models of Dynamic Physiologic Loading. Front Bioeng Biotechnol 2022; 10:837619. [PMID: 35299636 PMCID: PMC8921261 DOI: 10.3389/fbioe.2022.837619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Meniscus injuries are highly prevalent, and both meniscus injury and subsequent surgery are linked to the development of post-traumatic osteoarthritis (PTOA). Although the pathogenesis of PTOA remains poorly understood, the inflammatory cytokine IL-1 is elevated in synovial fluid following acute knee injuries and causes degradation of meniscus tissue and inhibits meniscus repair. Dynamic mechanical compression of meniscus tissue improves integrative meniscus repair in the presence of IL-1 and dynamic tensile strain modulates the response of meniscus cells to IL-1. Despite the promising observed effects of physiologic mechanical loading on suppressing inflammatory responses of meniscus cells, there is a lack of knowledge on the global effects of loading on meniscus transcriptomic profiles. In this study, we compared two established models of physiologic mechanical stimulation, dynamic compression of tissue explants and cyclic tensile stretch of isolated meniscus cells, to identify conserved responses to mechanical loading. RNA sequencing was performed on loaded and unloaded meniscus tissue or isolated cells from inner and outer zones, with and without IL-1. Overall, results from both models showed significant modulation of inflammation-related pathways with mechanical stimulation. Anti-inflammatory effects of loading were well-conserved between the tissue compression and cell stretch models for inner zone; however, the cell stretch model resulted in a larger number of differentially regulated genes. Our findings on the global transcriptomic profiles of two models of mechanical stimulation lay the groundwork for future mechanistic studies of meniscus mechanotransduction, which may lead to the discovery of novel therapeutic targets for the treatment of meniscus injuries.
Collapse
Affiliation(s)
| | - Rebecca M. Irwin
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Ishaan Puranam
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
- Department of Cell Biology, Duke University, Durham, NC, United States
| | - Amy L. McNulty
- Department of Pathology, Duke University, Durham, NC, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Amy L. McNulty,
| |
Collapse
|
25
|
Long JT, Leinroth A, Liao Y, Ren Y, Mirando AJ, Nguyen T, Guo W, Sharma D, Rouse D, Wu C, Cheah KSE, Karner CM, Hilton MJ. Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development. eLife 2022; 11:e76932. [PMID: 35179487 PMCID: PMC8893718 DOI: 10.7554/elife.76932] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/13/2022] [Indexed: 11/26/2022] Open
Abstract
Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow-associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single-cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow-associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte-derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.
Collapse
Affiliation(s)
- Jason T Long
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| | - Abigail Leinroth
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| | - Yihan Liao
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | - Yinshi Ren
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| | - Anthony J Mirando
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| | - Tuyet Nguyen
- Program of Developmental and Stem Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Wendi Guo
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| | - Douglas Rouse
- Division of Laboratory Animal Resources, Duke University School of MedicineDurhamUnited States
| | - Colleen Wu
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke University School of MedicineDurhamUnited States
| | | | - Courtney M Karner
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| | - Matthew J Hilton
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Orthopaedic Surgery, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
26
|
Langel SN, Kelly FL, Brass DM, Nagler AE, Carmack D, Tu JJ, Travieso T, Goswami R, Permar SR, Blasi M, Palmer SM. E-cigarette and food flavoring diacetyl alters airway cell morphology, inflammatory and antiviral response, and susceptibility to SARS-CoV-2. Cell Death Dis 2022; 8:64. [PMID: 35169120 PMCID: PMC8847558 DOI: 10.1038/s41420-022-00855-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Diacetyl (DA) is an α-diketone that is used to flavor microwave popcorn, coffee, and e-cigarettes. Occupational exposure to high levels of DA causes impaired lung function and obstructive airway disease. Additionally, lower levels of DA exposure dampen host defenses in vitro. Understanding DA’s impact on lung epithelium is important for delineating exposure risk on lung health. In this study, we assessed the impact of DA on normal human bronchial epithelial cell (NHBEC) morphology, transcriptional profiles, and susceptibility to SARS-CoV-2 infection. Transcriptomic analysis demonstrated cilia dysregulation, an increase in hypoxia and sterile inflammation associated pathways, and decreased expression of interferon-stimulated genes after DA exposure. Additionally, DA exposure resulted in cilia loss and increased hyaluronan production. After SARS-CoV-2 infection, both genomic and subgenomic SARS-CoV-2 RNA were increased in DA vapor- compared to vehicle-exposed NHBECs. This work suggests that transcriptomic and physiologic changes induced by DA vapor exposure damage cilia and increase host susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Stephanie N Langel
- Duke Center for Human Systems Immunology and Department of Surgery, Durham, NC, USA
| | - Francine L Kelly
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David M Brass
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Andrew E Nagler
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Dylan Carmack
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Tatianna Travieso
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA. .,Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA.
| | - Scott M Palmer
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
Yeh CH, Finney J, Okada T, Kurosaki T, Kelsoe G. Primary germinal center-resident T follicular helper cells are a physiologically distinct subset of CXCR5 hiPD-1 hi T follicular helper cells. Immunity 2022; 55:272-289.e7. [PMID: 35081372 PMCID: PMC8842852 DOI: 10.1016/j.immuni.2021.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells are defined by a Bcl6+CXCR5hiPD-1hi phenotype, but only a minor fraction of these reside in germinal centers (GCs). Here, we examined whether GC-resident and -nonresident Tfh cells share a common physiology and function. Fluorescently labeled, GC-resident Tfh cells in different mouse models were distinguished by low expression of CD90. CD90neg/lo GCTfh cells required antigen-specific, MHCII+ B cells to develop and stopped proliferating soon after differentiation. In contrast, nonresident, CD90hi Tfh (GCTfh-like) cells developed normally in the absence of MHCII+ B cells and proliferated continuously during primary responses. The TCR repertoires of both Tfh subsets overlapped initially but later diverged in association with dendritic cell-dependent proliferation of CD90hi GCTfh-like cells, suggestive of TCR-dependency seen also in TCR-transgenic adoptive transfer experiments. Furthermore, the transcriptomes of CD90neg/lo and CD90hi GCTfh-like cells were enriched in different functional pathways. Thus, GC-resident and nonresident Tfh cells have distinct developmental requirements and activities, implying distinct functions.
Collapse
Affiliation(s)
- Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joel Finney
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery and Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Ramos SA, Morton JJ, Yadav P, Reed B, Alizadeh SI, Shilleh AH, Perrenoud L, Jaggers J, Kappler J, Jimeno A, Russ HA. Generation of functional human thymic cells from induced pluripotent stem cells. J Allergy Clin Immunol 2022; 149:767-781.e6. [PMID: 34331993 PMCID: PMC8815270 DOI: 10.1016/j.jaci.2021.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The thymus is a glandular organ that is essential for the formation of the adaptive immune system by educating developing T cells. The thymus is most active during childhood and involutes around the time of adolescence, resulting in a severe reduction or absence of naive T-cell output. The ability to generate a patient-derived human thymus would provide an attractive research platform and enable the development of novel cell therapies. OBJECTIVES This study sought to systematically evaluate signaling pathways to develop a refined direct differentiation protocol that generates patient-derived thymic epithelial progenitor cells from multiple induced pluripotent stem cells (iPSCs) that can further differentiate into functional patient-derived thymic epithelial cells on transplantation into athymic nude mice. METHODS Directed differentiation of iPSC generated TEPs that were transplanted into nude mice. Between 14 and 19 weeks posttransplantation, grafts were removed and analyzed by flow cytometry, quantitative PCR, bulk RNA sequencing, and single-cell RNA sequencing for markers of thymic-cell and T-cell development. RESULTS A direct differentiation protocol that allows the generation of patient-derived thymic epithelial progenitor cells from multiple iPSC lines is described. On transplantation into athymic nude mice, patient-derived thymic epithelial progenitor cells further differentiate into functional patient-derived thymic epithelial cells that can facilitate the development of T cells. Single-cell RNA sequencing analysis of iPSC-derived grafts shows characteristic thymic subpopulations and patient-derived thymic epithelial cell populations that are indistinguishable from TECs present in primary neonatal thymus tissue. CONCLUSIONS These findings provide important insights and resources for researchers focusing on human thymus biology.
Collapse
Affiliation(s)
- Stephan A. Ramos
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John J. Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Prabha Yadav
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brendan Reed
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sheila I. Alizadeh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ali H. Shilleh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Loni Perrenoud
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - James Jaggers
- Surgery- Cardiothoracic department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - John Kappler
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA,Department of Biomedical Research, National Jewish Health, Denver CO 80206
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA,Correspondence to: Holger A. Russ, PhD, Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, 1775 Aurora Court, M20-4202G, Aurora, CO. 80045, Office: +1 303 724 8544, Cell: +1 415 933 9952, Lab phone: +1 303 724 0192, ; Antonio Jimeno, MD, PhD, University of Colorado Cancer Center & Charles C. Gates Center of Stem Cell Biology, Anschutz Medical Campus, 12801 East 17th Avenue, RC1S L18-8111, Aurora, CO 80045, Office: +1 303 724 2478, Lab phone: +1 303 724 6614,
| | - Holger A. Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA,Correspondence to: Holger A. Russ, PhD, Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, 1775 Aurora Court, M20-4202G, Aurora, CO. 80045, Office: +1 303 724 8544, Cell: +1 415 933 9952, Lab phone: +1 303 724 0192, ; Antonio Jimeno, MD, PhD, University of Colorado Cancer Center & Charles C. Gates Center of Stem Cell Biology, Anschutz Medical Campus, 12801 East 17th Avenue, RC1S L18-8111, Aurora, CO 80045, Office: +1 303 724 2478, Lab phone: +1 303 724 6614,
| |
Collapse
|
29
|
Goswami R, Russell VS, Tu JJ, Thomas C, Hughes P, Kelly F, Langel SN, Steppe J, Palmer SM, Haystead T, Blasi M, Permar SR. Oral Hsp90 inhibitor SNX-5422 attenuates SARS-CoV-2 replication and dampens inflammation in airway cells. iScience 2021; 24:103412. [PMID: 34786537 PMCID: PMC8579697 DOI: 10.1016/j.isci.2021.103412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently available SARS-CoV-2 therapeutics are targeted toward moderately to severely ill patients and require intravenous infusions, with limited options for exposed or infected patients with no or mild symptoms. Although vaccines have demonstrated protective efficacy, vaccine hesitancy and logistical distribution challenges will delay their ability to end the pandemic. Hence, there is a need for rapidly translatable, easy-to-administer-therapeutics that can prevent SARS-CoV-2 disease progression, when administered in the early stages of infection. We demonstrate that an orally bioavailable Hsp90 inhibitor, SNX-5422, currently in clinical trials as an anti-cancer therapeutic, inhibits SARS-CoV-2 replication in vitro at a high selectivity index. SNX-5422 treatment of human primary airway epithelial cells dampened expression of inflammatory pathways previously associated with poor SARS-CoV-2 disease outcomes. In addition, SNX-5422 interrupted expression of host factors demonstrated to be crucial for SARS-CoV-2 replication. Development of SNX-5422 as SARS-CoV-2-early-therapy will dampen disease severity, resulting in better clinical outcomes and reduced hospitalizations.
Collapse
Affiliation(s)
- Ria Goswami
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Veronica S. Russell
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Charlene Thomas
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York 10065, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francine Kelly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Justin Steppe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott M. Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
30
|
Fu W, Zhao MT, Driver LM, Schirmer AU, Yin Q, You S, Freedland SJ, DiGiovanni J, Drewry DH, Macias E. NUAK family kinase 2 is a novel therapeutic target for prostate cancer. Mol Carcinog 2021; 61:334-345. [PMID: 34818445 DOI: 10.1002/mc.23374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022]
Abstract
Current advancements in prostate cancer (PC) therapies have been successful in slowing PC progression and increasing life expectancy; however, there is still no curative treatment for advanced metastatic castration resistant PC (mCRPC). Most treatment options target the androgen receptor, to which many PCs eventually develop resistance. Thus, there is a dire need to identify and validate new molecular targets for treating PC. We found NUAK family kinase 2 (NUAK2) expression is elevated in PC and mCRPC versus normal tissue, and expression correlates with an increased risk of metastasis. Given this observation and because NUAK2, as a kinase, is actionable, we evaluated the potential of NUAK2 as a molecular target for PC. NUAK2 is a stress response kinase that also plays a role in activation of the YAP cotranscriptional oncogene. Combining pharmacological and genetic methods for modulating NUAK2, we found that targeting NUAK2 in vitro leads to reduction in proliferation, three-dimensional tumor spheroid growth, and matrigel invasion of PC cells. Differential gene expression analysis of PC cells treated NUAK2 small molecule inhibitor HTH-02-006 demonstrated that NUAK2 inhibition results in downregulation of E2F, EMT, and MYC hallmark gene sets after NUAK2 inhibition. In a syngeneic allograft model and in radical prostatectomy patient derived explants, NUAK2 inhibition slowed tumor growth and proliferation rates. Mechanistically, HTH-02-006 treatment led to inactivation of YAP and the downregulation of NUAK2 and MYC protein levels. Our results suggest that NUAK2 represents a novel actionable molecular target for PC that warrants further exploration.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Megan T Zhao
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lucy M Driver
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amelia U Schirmer
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qi Yin
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sungyong You
- Department of Biomedical Science, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J Freedland
- Department of Surgery and Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Durham VA Medical Center, Durham, North Carolina, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,UNC Lineberger Comprehensive Cancer Center, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Everardo Macias
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
31
|
Role of ribosomal RNA released from red cells in blood coagulation in zebrafish and humans. Blood Adv 2021; 5:4634-4647. [PMID: 34547768 PMCID: PMC8759119 DOI: 10.1182/bloodadvances.2020003325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Hemolysis releases 5.8S rRNA and activates blood coagulation in human and zebrafish via FXII and Hgfac, respectively. Only the 3'-end 26 nucleotides of 5.8S rRNA were necessary and sufficient for this activation.
Hemolytic disorders are characterized by hemolysis and are prone to thrombosis. It has previously been shown that the RNA released from damaged blood cells activates clotting. However, the nature of the RNA released from hemolysis is still elusive. We found that after hemolysis, red blood cells from both zebrafish and humans released RNA that contained mostly 5.8S ribosomal RNA (5.8S rRNA), This RNA activated coagulation in zebrafish and human plasmas. By using both natural and synthetic 5.8S rRNA and its truncated fragments, we found that the 3'-end 26-nucleotide-long RNA (3'-26 RNA) and its stem-loop secondary structure were necessary and sufficient for clotting activity. Corn trypsin inhibitor (CTI), a coagulation factor XII (FXII) inhibitor, blocked 3'-26 RNA–mediated coagulation activation in the plasma of both zebrafish and humans. CTI also inhibited zebrafish coagulation in vivo. 5.8S rRNA monoclonal antibody inhibited both 5.8S rRNA– and 3'-26 RNA–mediated zebrafish coagulation activity. Both 5.8S rRNA and 3'-26 RNA activated normal human plasma but did not activate FXII-deficient human plasma. Taken together, these results suggested that the activation of zebrafish plasma is via an FXII-like protein. Because zebrafish have no FXII and because hepatocyte growth factor activator (Hgfac) has sequence similarities to FXII, we knocked down the hgfac in adult zebrafish. We found that plasma from this knockdown fish does not respond to 3'-26 RNA. To summarize, we identified that an rRNA released in hemolysis activates clotting in human and zebrafish plasma. Furthermore, we showed that fish Hgfac plays a role in rRNA-mediated activation of coagulation.
Collapse
|
32
|
Belzberg M, Alphonse MP, Brown I, Williams KA, Khanna R, Ho B, Wongvibulsin S, Pritchard T, Roh YS, Sutaria N, Choi J, Jedrych J, Johnston AD, Sarkar K, Vasavda C, Meixiong J, Dillen C, Bondesgaard K, Paolini JF, Chen W, Corcoran D, Devos N, Kwatra MM, Chien AL, Archer NK, Garza LA, Dong X, Kang S, Kwatra SG. Prurigo Nodularis Is Characterized by Systemic and Cutaneous T Helper 22 Immune Polarization. J Invest Dermatol 2021; 141:2208-2218.e14. [PMID: 33771530 PMCID: PMC8384659 DOI: 10.1016/j.jid.2021.02.749] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Prurigo nodularis (PN) is an understudied, chronic inflammatory skin disease that disproportionately affects African Americans and presents with intensely pruritic nodules of unknown etiology. To better characterize the immune dysregulation in PN, PBMCs and skin biopsies were obtained from patients with PN and healthy subjects (majority African American) matched by age, race, and sex. Flow cytometric analysis of functional T-cell response comparing patients with PN with healthy subjects identified increased γδT cells (CD3+CD4-CD8-γδTCR+) and Vδ2+ γδT enrichment. Activated T cells demonstrated uniquely increased IL-22 cytokine expression in patients with PN compared with healthy controls. CD4+ and CD8+ T cells were identified as the source of increased circulating IL-22. Consistent with these findings, RNA sequencing of lesional PN skin compared with nonlesional PN skin and biopsy site‒matched control skin demonstrated robust upregulation of T helper (Th) 22‒related genes and signaling networks implicated in impaired epidermal differentiation. Th22‒related cytokine upregulation remained significant, with stratifications by race and biopsy site. Importantly, the expression of the IL-22 receptors IL22RA1 and IL22RA2 was significantly elevated in lesional PN skin. These results indicate that both systemic and cutaneous immune responses in patients with PN are skewed toward a Th22/IL-22 profile. PN may benefit from immunomodulatory therapies directed at Th22‒mediated inflammation.
Collapse
Affiliation(s)
- Micah Belzberg
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Martin Prince Alphonse
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Isabelle Brown
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kyle A Williams
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raveena Khanna
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Byron Ho
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shannon Wongvibulsin
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas Pritchard
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Youkyung Sophie Roh
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nishadh Sutaria
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Choi
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jaroslaw Jedrych
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew D Johnston
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, New York, New York, USA
| | - Kakali Sarkar
- Genetic Resources Core Facility, McKusick- Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chirag Vasavda
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jimmy Meixiong
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carly Dillen
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - John F Paolini
- Kiniksa Pharmaceuticals, Corp., Lexington, Massachusetts, USA
| | - Wei Chen
- Duke Center for Genomic and Computational Biology, Duke Medicine, Duke University, Durham, North Carolina, USA
| | - David Corcoran
- Duke Center for Genomic and Computational Biology, Duke Medicine, Duke University, Durham, North Carolina, USA
| | - Nicolas Devos
- Duke Center for Genomic and Computational Biology, Duke Medicine, Duke University, Durham, North Carolina, USA
| | - Madan M Kwatra
- Duke Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anna L Chien
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nathan K Archer
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xinzhong Dong
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sewon Kang
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shawn G Kwatra
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
33
|
Mariottoni P, Jiang SW, Prestwood CA, Jain V, Suwanpradid J, Whitley MJ, Coates M, Brown DA, Erdmann D, Corcoran DL, Gregory SG, Jaleel T, Zhang JY, Harris-Tryon TA, MacLeod AS. Single-Cell RNA Sequencing Reveals Cellular and Transcriptional Changes Associated With M1 Macrophage Polarization in Hidradenitis Suppurativa. Front Med (Lausanne) 2021; 8:665873. [PMID: 34504848 PMCID: PMC8421606 DOI: 10.3389/fmed.2021.665873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent abscesses, nodules, and sinus tracts in areas of high hair follicle and sweat gland density. These sinus tracts can present with purulent drainage and scar formation. Dysregulation of multiple immune pathways drives the complexity of HS pathogenesis and may account for the heterogeneity of treatment response in HS patients. Using transcriptomic approaches, including single-cell sequencing and protein analysis, we here characterize the innate inflammatory landscape of HS lesions. We identified a shared upregulation of genes involved in interferon (IFN) and antimicrobial defense signaling through transcriptomic overlap analysis of differentially expressed genes (DEGs) in datasets from HS skin, diabetic foot ulcers (DFUs), and the inflammatory stage of normal healing wounds. Overlap analysis between HS- and DFU-specific DEGs revealed an enrichment of gene signatures associated with monocyte/macrophage functions. Single-cell RNA sequencing further revealed monocytes/macrophages with polarization toward a pro-inflammatory M1-like phenotype and increased effector function, including antiviral immunity, phagocytosis, respiratory burst, and antibody-dependent cellular cytotoxicity. Specifically, we identified the STAT1/IFN-signaling axis and the associated IFN-stimulated genes as central players in monocyte/macrophage dysregulation. Our data indicate that monocytes/macrophages are a potential pivotal player in HS pathogenesis and their pathways may serve as therapeutic targets and biomarkers in HS treatment.
Collapse
Affiliation(s)
- Paula Mariottoni
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Simon W. Jiang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Courtney A. Prestwood
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Jutamas Suwanpradid
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Melodi Javid Whitley
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Margaret Coates
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - David A. Brown
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - Detlev Erdmann
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Tarannum Jaleel
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Jennifer Y. Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
| | - Tamia A. Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amanda S. MacLeod
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
34
|
Wongvibulsin S, Sutaria N, Kannan S, Alphonse MP, Belzberg M, Williams KA, Brown ID, Choi J, Roh YS, Pritchard T, Khanna R, Eseonu AC, Jedrych J, Dillen C, Kwatra MM, Chien AL, Archer N, Garza LA, Dong X, Kang S, Kwatra SG. Transcriptomic analysis of atopic dermatitis in African Americans is characterized by Th2/Th17-centered cutaneous immune activation. Sci Rep 2021; 11:11175. [PMID: 34045476 PMCID: PMC8160001 DOI: 10.1038/s41598-021-90105-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) often presents more severely in African Americans (AAs) and with greater involvement of extensor areas. To investigate immune signatures of AD in AAs with moderate to severe pruritus, lesional and non-lesional punch biopsies were taken from AA patients along with age-, race-, and sex-matched controls. Histology of lesional skin showed psoriasiform dermatitis and spongiotic dermatitis, suggesting both Th2 and Th17 activity. Gene Set Variation Analysis showed upregulation of Th2 and Th17 pathways in both lesional versus non-lesional and lesional versus control (p < 0.01), while Th1 and Th22 upregulation were observed in lesional versus control (p < 0.05). Evidence for a broad immune signature also was supported by upregulated Th1 and Th22 pathways, and clinically may represent greater severity of AD in AA. Furthermore, population-level analysis of data from TriNetX, a global federated health research network, revealed that AA AD patients had higher values for CRP, ferritin, and blood eosinophils compared to age-, sex-, and race-matched controls as well as white AD patients, suggesting broad systemic inflammation. Therefore, AA AD patients may feature broader immune activation than previously thought and may derive benefit from systemic immunomodulating therapies that modulate key drivers of multiple immune pathways.
Collapse
Affiliation(s)
- Shannon Wongvibulsin
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nishadh Sutaria
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Suraj Kannan
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Martin Prince Alphonse
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Micah Belzberg
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kyle A. Williams
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Isabelle D. Brown
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Justin Choi
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Youkyung Sophie Roh
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Thomas Pritchard
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Raveena Khanna
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amarachi C. Eseonu
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jaroslaw Jedrych
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Carly Dillen
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Madan M. Kwatra
- grid.26009.3d0000 0004 1936 7961Department of Anesthesiology, Duke University School of Medicine, Durham, NC USA
| | - Anna L. Chien
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nathan Archer
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Luis A. Garza
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xinzhong Dong
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sewon Kang
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Shawn G. Kwatra
- grid.21107.350000 0001 2171 9311Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
35
|
Zolfaghari Emameh R, Hosseini SN, Parkkila S. Application of beta and gamma carbonic anhydrase sequences as tools for identification of bacterial contamination in the whole genome sequence of inbred Wuzhishan minipig (Sus scrofa) annotated in databases. Database (Oxford) 2021; 2021:baab029. [PMID: 34003248 PMCID: PMC8130508 DOI: 10.1093/database/baab029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022]
Abstract
Sus scrofa or pig was domesticated thousands of years ago. Through various indigenous breeds, different phenotypes were produced such as Chinese inbred miniature minipig or Wuzhishan pig (WZSP), which is broadly used in the life and medical sciences. The whole genome of WZSP was sequenced in 2012. Through a bioinformatics study of pig carbonic anhydrase (CA) sequences, we detected some β- and γ-class CAs among the WZSP CAs annotated in databases, while β- or γ-CAs had not previously been described in vertebrates. This finding urged us to analyze the quality of whole genome sequence of WZSP for the possible bacterial contamination. In this study, we used bioinformatics methods and web tools such as UniProt, European Bioinformatics Institute, National Center for Biotechnology Information, Ensembl Genome Browser, Ensembl Bacteria, RSCB PDB and Pseudomonas Genome Database. Our analysis defined that pig has 12 classical α-CAs and 3 CA-related proteins. Meanwhile, it was approved that the detected CAs in WZSP are categorized in the β- and γ-CA families, which belong to Pseudomonas spp. and Acinetobacter spp. The protein structure study revealed that the identified β-CA sequence from WZSP belongs to Pseudomonas aeruginosa with PDB ID: 5JJ8, and the identified γ-CA sequence from WZSP belongs to P. aeruginosa with PDB ID: 3PMO. Bioinformatics and computational methods accompanied with bacterial-specific markers, such as 16S rRNA and β- and γ-class CA sequences, can be used to identify bacterial contamination in mammalian DNA samples.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
36
|
Grassi S, Vidal MC, Campuzano O, Arena V, Alfonsetti A, Rossi SS, Scarnicci F, Iglesias A, Brugada R, Oliva A. Sudden Death without a Clear Cause after Comprehensive Investigation: An Example of Forensic Approach to Atypical/Uncertain Findings. Diagnostics (Basel) 2021; 11:diagnostics11050886. [PMID: 34067575 PMCID: PMC8156818 DOI: 10.3390/diagnostics11050886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Sudden death (SD) is defined as the unexpected natural death occurred within an hour after the onset of symptoms or from the last moment the subject has been seen in a healthy condition. Brugada syndrome (BrS) is one of the most remarkable cardiac causes of SD among young people. We report the case of a 20-year-old man who suddenly died after reportedly having smoked cannabis. Autopsy, toxicology, and genetic testing were performed. Autopsy found a long and thick myocardial bridging (MB) at 2 cm from the beginning of the left anterior descending coronary artery. Furthermore, at the histopathological examination, fibrosis and disarray in myocardial area above the MB, fatty tissue in the right ventricle and fibrosis of the sino-atrial node area were found. Toxicology testing was inconclusive, while genetic testing found a rare missense variant of the TTN gene, classified as likely benign, and a variant of unknown significance in the SLMAP gene (a gene that can be associated with BrS). Hence, despite several atypical features were found, no inference on the cause of the death could be made under current evidence.
Collapse
Affiliation(s)
- Simone Grassi
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.A.); (S.S.R.); (F.S.); (A.O.)
- Correspondence: ; Tel.: +39-0630154398
| | - Mònica Coll Vidal
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17290 Salt, Girona, Spain; (M.C.V.); (O.C.); (A.I.); (R.B.)
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17290 Salt, Girona, Spain; (M.C.V.); (O.C.); (A.I.); (R.B.)
| | - Vincenzo Arena
- Institute of Anatomical Pathology, Department of Woman and Child Health and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Alessandro Alfonsetti
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.A.); (S.S.R.); (F.S.); (A.O.)
| | - Sabina Strano Rossi
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.A.); (S.S.R.); (F.S.); (A.O.)
| | - Francesca Scarnicci
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.A.); (S.S.R.); (F.S.); (A.O.)
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17290 Salt, Girona, Spain; (M.C.V.); (O.C.); (A.I.); (R.B.)
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17290 Salt, Girona, Spain; (M.C.V.); (O.C.); (A.I.); (R.B.)
| | - Antonio Oliva
- Section of Legal Medicine, Department of Health Surveillance and Bioethics, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.A.); (S.S.R.); (F.S.); (A.O.)
| |
Collapse
|
37
|
Wang J, Zhou CJ, Khodabukus A, Tran S, Han SO, Carlson AL, Madden L, Kishnani PS, Koeberl DD, Bursac N. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol 2021; 4:524. [PMID: 33953320 PMCID: PMC8100136 DOI: 10.1038/s42003-021-02059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/31/2021] [Indexed: 01/24/2023] Open
Abstract
In Pompe disease, the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA) causes skeletal and cardiac muscle weakness, respiratory failure, and premature death. While enzyme replacement therapy using recombinant human GAA (rhGAA) can significantly improve patient outcomes, detailed disease mechanisms and incomplete therapeutic effects require further studies. Here we report a three-dimensional primary human skeletal muscle ("myobundle") model of infantile-onset Pompe disease (IOPD) that recapitulates hallmark pathological features including reduced GAA enzyme activity, elevated glycogen content and lysosome abundance, and increased sensitivity of muscle contractile function to metabolic stress. In vitro treatment of IOPD myobundles with rhGAA or adeno-associated virus (AAV)-mediated hGAA expression yields increased GAA activity and robust glycogen clearance, but no improvements in stress-induced functional deficits. We also apply RNA sequencing analysis to the quadriceps of untreated and AAV-treated GAA-/- mice and wild-type controls to establish a Pompe disease-specific transcriptional signature and reveal novel disease pathways. The mouse-derived signature is enriched in the transcriptomic profile of IOPD vs. healthy myobundles and partially reversed by in vitro rhGAA treatment, further confirming the utility of the human myobundle model for studies of Pompe disease and therapy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sang-Oh Han
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Aaron L Carlson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Ma X, Zhao H, Yan H, Sheng M, Cao Y, Yang K, Xu H, Xu W, Gao Z, Su Z. Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data. Comput Struct Biotechnol J 2021; 19:2708-2718. [PMID: 34093986 PMCID: PMC8131310 DOI: 10.1016/j.csbj.2021.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Bamboo, one of the most crucial nontimber forest resources worldwide, has the capacity for rapid growth. In recent years, the genome of moso bamboo (Phyllostachys edulis) has been decoded, and a large amount of transcriptome data has been published. In this study, we generated the genome-wide profiles of the histone modification H3K4me3 in leaf, stem, and root tissues of bamboo. The trends in the distribution patterns were similar to those in rice. We developed a processing pipeline for predicting novel transcripts to refine the structural annotation of the genome using H3K4me3 ChIP-seq data and 29 RNA-seq datasets. As a result, 12,460 novel transcripts were predicted in the bamboo genome. Compared with the transcripts in the newly released version 2.0 of the bamboo genome, these novel transcripts are tissue-specific and shorter, and most have a single exon. Some representative novel transcripts were validated by semiquantitative RT-PCR and qRT-PCR analyses. Furthermore, we put these novel transcripts back into the ChIP-seq analysis pipeline and discovered that the percentages of H3K4me3 in genic elements were increased. Overall, this work integrated transcriptomic data and epigenomic data to refine the annotation of the genome in order to discover more functional genes and study bamboo growth and development, and the application of this predicted pipeline may help refine the structural annotation of the genome in other species.
Collapse
Affiliation(s)
- Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hansheng Zhao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kebin Yang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hao Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Xu X, Liu S, Yang Z, Zhao X, Deng Y, Zhang G, Pang J, Zhao C, Zhang W. A systematic review of computational methods for predicting long noncoding RNAs. Brief Funct Genomics 2021; 20:162-173. [PMID: 33754153 DOI: 10.1093/bfgp/elab016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Accurately and rapidly distinguishing long noncoding RNAs (lncRNAs) from transcripts is prerequisite for exploring their biological functions. In recent years, many computational methods have been developed to predict lncRNAs from transcripts, but there is no systematic review on these computational methods. In this review, we introduce databases and features involved in the development of computational prediction models, and subsequently summarize existing state-of-the-art computational methods, including methods based on binary classifiers, deep learning and ensemble learning. However, a user-friendly way of employing existing state-of-the-art computational methods is in demand. Therefore, we develop a Python package ezLncPred, which provides a pragmatic command line implementation to utilize nine state-of-the-art lncRNA prediction methods. Finally, we discuss challenges of lncRNA prediction and future directions.
Collapse
|
40
|
Deerhake ME, Danzaki K, Inoue M, Cardakli ED, Nonaka T, Aggarwal N, Barclay WE, Ji RR, Shinohara ML. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 2021; 54:484-498.e8. [PMID: 33581044 PMCID: PMC7956124 DOI: 10.1016/j.immuni.2021.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.
Collapse
MESH Headings
- Animals
- Astrocytes/immunology
- Brain/pathology
- CARD Signaling Adaptor Proteins/metabolism
- Cell Communication
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Galectins/metabolism
- Gene Expression Regulation
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myeloid Cells/immunology
- Neurogenic Inflammation/immunology
- Oncostatin M/genetics
- Oncostatin M/metabolism
- Oncostatin M Receptor beta Subunit/metabolism
- Peptide Fragments/immunology
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- M Elizabeth Deerhake
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Keiko Danzaki
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Emre D Cardakli
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Toshiaki Nonaka
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William E Barclay
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
41
|
Blawas AM, Ware KE, Schmaltz E, Zheng L, Spruance J, Allen AS, West N, Devos N, Corcoran DL, Nowacek DP, Eward WC, Fahlman A, Somarelli JA. An integrated comparative physiology and molecular approach pinpoints mediators of breath-hold capacity in dolphins. Evol Med Public Health 2021; 9:420-430. [PMID: 35169481 PMCID: PMC8833867 DOI: 10.1093/emph/eoab036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background and objectives
Ischemic events, such as ischemic heart disease and stroke, are the number one cause of death globally. Ischemia prevents blood, carrying essential nutrients and oxygen, from reaching tissues, leading to cell and tissue death, and eventual organ failure. While humans are relatively intolerant to ischemic events, other species, such as marine mammals, have evolved a unique tolerance to chronic ischemia/reperfusion during apneic diving. To identify possible molecular features of an increased tolerance for apnea, we examined changes in gene expression in breath-holding dolphins.
Methodology
Here, we capitalized on the adaptations possesed by bottlenose dolphins (Tursiops truncatus) for diving as a comparative model of ischemic stress and hypoxia tolerance to identify molecular features associated with breath holding. Given that signals in the blood may influence physiological changes during diving, we used RNA-Seq and enzyme assays to examine time-dependent changes in gene expression in the blood of breath-holding dolphins.
Results
We observed time-dependent upregulation of the arachidonate 5-lipoxygenase (ALOX5) gene and increased lipoxygenase activity during breath holding. ALOX5 has been shown to be activated during hypoxia in rodent models, and its metabolites, leukotrienes, induce vasoconstriction.
Conclusions and implications
The upregulation of ALOX5 mRNA occurred within the calculated aerobic dive limit of the species, suggesting that ALOX5 may play a role in the dolphin’s physiological response to diving, particularly in a pro-inflammatory response to ischemia and in promoting vasoconstriction. These observations pinpoint a potential molecular mechanism by which dolphins, and perhaps other marine mammals, respond to the prolonged breath holds associated with diving.
Collapse
Affiliation(s)
- Ashley M Blawas
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Emma Schmaltz
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Larry Zheng
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | - Jacob Spruance
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Austin S Allen
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
| | | | - Nicolas Devos
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Douglas P Nowacek
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC, USA
- Pratt School of Engineering, Duke University, Durham, NC, USA
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Andreas Fahlman
- Global Diving Research, Inc., Ottawa, ON, Canada
- Research Department, Fundación Oceanogrāfic de la Comunitat Valenciana, Valencia, Spain
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
42
|
Maddala R, Gao J, Mathias RT, Lewis TR, Arshavsky VY, Levine A, Backer JM, Bresnick AR, Rao PV. Absence of S100A4 in the mouse lens induces an aberrant retina-specific differentiation program and cataract. Sci Rep 2021; 11:2203. [PMID: 33500475 PMCID: PMC7838418 DOI: 10.1038/s41598-021-81611-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
S100A4, a member of the S100 family of multifunctional calcium-binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in differentiating fiber cells of the ocular lens and that S100A4 (-/-) knockout mice develop late-onset cortical cataracts. Transcriptome profiling of lenses from S100A4 (-/-) mice revealed a robust increase in the expression of multiple photoreceptor- and Müller glia-specific genes, as well as the olfactory sensory neuron-specific gene, S100A5. This aberrant transcriptional profile is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of differentially expressed genes in S100A4 (-/-) lenses identified Crx and Nrl transcription factors as the most significant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high-density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this finding, we further documented that S100A4 (-/-) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, our findings suggest that S100A4 suppresses the expression of retinal genes during lens differentiation plausibly via a mechanism involving changes in histone methylation.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony-Brook, NY, USA
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony-Brook, NY, USA
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adriana Levine
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
43
|
Huffman KM, Andonian BJ, Abraham DM, Bareja A, Lee DE, Katz LH, Huebner JL, Kraus WE, White JP. Exercise protects against cardiac and skeletal muscle dysfunction in a mouse model of inflammatory arthritis. J Appl Physiol (1985) 2021; 130:853-864. [PMID: 33411638 DOI: 10.1152/japplphysiol.00576.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory arthritis impacting primarily joints and cardiac and skeletal muscle. RA's distinct impact on cardiac and skeletal muscle tissue is suggested by studies showing that new RA pharmacologic agents strongly improve joint inflammation, but have little impact on RA-associated mortality, cardiovascular disease, and sarcopenia. Thus, the objective is to understand the distinct effects of RA on cardiac and skeletal muscle, and to therapeutically target these tissues through endurance-based exercise as a way to improve RA mortality and morbidity. We utilize the well-characterized RA mouse model, the K/BxN mouse, to investigate cardiac and skeletal muscle pathologies, including the use of wheel-running exercise to mitigate these pathologies. Strikingly, we found that K/BxN mice, like patients with RA, also exhibit both cardiac and skeletal muscle myopathies that were correlated with circulating IL-6 levels. Three months of wheel-running exercise significantly improved K/BxN joint swelling and reduced systemic IL-6 concentrations. Importantly, there were morphological, gene expression, and functional improvements in both the skeletal muscle and cardiac myopathies with exercise. The K/BxN mouse model of RA recapitulated important RA clinical comorbidities, including altered joint, cardiac and skeletal muscle function. These morphological, molecular, and functional alterations were mitigated with regular exercise, thus suggesting exercise as a potential therapeutic intervention to lessen disease activity in the joint and the peripheral tissues, including the heart and skeletal muscle.NEW & NOTEWORTHY RA, even when controlled, is associated with skeletal muscle weakness and greater risk of cardiovascular disease (CVD). Using exercise as a therapeutic against, the progression of RA is often avoided due to fear of worsening RA pathology. We introduce the K/BxN mouse as an RA model to study both myocardial and skeletal muscle dysfunction. We show that endurance exercise can improve joint, cardiac, and skeletal muscle function in K/BxN mice, suggesting exercise may be beneficial for patients with RA.
Collapse
Affiliation(s)
- Kim M Huffman
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, North Carolina
| | - Brian J Andonian
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Dennis M Abraham
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Lauren H Katz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina.,UNC Adams School of Dentistry, Chapel Hill, North Carolina
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - William E Kraus
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, North Carolina
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
44
|
Yu S, Galeffi F, Rodriguiz RM, Wang Z, Shen Y, Lyu J, Li R, Bernstock JD, Johnson KR, Liu S, Sheng H, Turner DA, Wetsel WC, Paschen W, Yang W. Small ubiquitin-like modifier 2 (SUMO2) is critical for memory processes in mice. FASEB J 2020; 34:14750-14767. [PMID: 32910521 DOI: 10.1096/fj.202000850rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation (SUMOylation), a posttranslational modification, modulates almost all major cellular processes. Mounting evidence indicates that SUMOylation plays a crucial role in maintaining and regulating neural function, and importantly its dysfunction is implicated in cognitive impairment in humans. We have previously shown that simultaneously silencing SUMO1-3 expression in neurons negatively affects cognitive function. However, the roles of the individual SUMOs in modulating cognition and the mechanisms that link SUMOylation to cognitive processes remain unknown. To address these questions, in this study, we have focused on SUMO2 and generated a new conditional Sumo2 knockout mouse line. We found that conditional deletion of Sumo2 predominantly in forebrain neurons resulted in marked impairments in various cognitive tests, including episodic and fear memory. Our data further suggest that these abnormalities are attributable neither to constitutive changes in gene expression nor to alterations in neuronal morphology, but they involve impairment in dynamic SUMOylation processes associated with synaptic plasticity. Finally, we provide evidence that dysfunction on hippocampal-based cognitive tasks was associated with a significant deficit in the maintenance of hippocampal long-term potentiation in Sumo2 knockout mice. Collectively, these data demonstrate that protein conjugation by SUMO2 is critically involved in cognitive processes.
Collapse
Affiliation(s)
- Shu Yu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Francesca Galeffi
- Research and Surgery Services, Durham VAMC, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA
| | - Zhuoran Wang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yuntian Shen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jingjun Lyu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ran Li
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Shuai Liu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Research and Surgery Services, Durham VAMC, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - William C Wetsel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
45
|
Marinello WP, Mohseni ZS, Cunningham SJ, Crute C, Huang R, Zhang JJ, Feng L. Perfluorobutane sulfonate exposure disrupted human placental cytotrophoblast cell proliferation and invasion involving in dysregulating preeclampsia related genes. FASEB J 2020; 34:14182-14199. [PMID: 32901980 DOI: 10.1096/fj.202000716rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
We reported that maternal PFBS, an emerging pollutant, exposure is positively associated with preeclampsia which can result from aberrant trophoblasts invasion and subsequent placental ischemia. In this study, we investigated the effects of PFBS on trophoblasts proliferation/invasion and signaling pathways. We exposed a human trophoblast line, HTR8/SVneo, to PFBS. Cell viability, proliferation, and cell cycle were evaluated by the MTS assay, Ki-67 staining, and flow cytometry, respectively. We assessed cell migration and invasion with live-cell imaging-based migration assay and matrigel invasion assay, respectively. Signaling pathways were examined by Western blot, RNA-seq, and qPCR. PFBS exposure interrupted cell proliferation and invasion in a dose-dependent manner. PFBS (100 μM) did not cause cell death but instead significant cell proliferation without cell cycle disruption. PFBS (10 and 100 μM) decreased cell migration and invasion, while PFBS (0.1 μM) significantly increased cell invasion but not migration. Further, RNA-seq analysis identified dysregulated HIF-1α target genes that are relevant to cell proliferation/invasion and preeclampsia, while Western Blot data showed the activation of HIF-1α, but not Notch, ERK1/2, (PI3K)AKT, and P38 pathways. PBFS exposure altered trophoblast cell proliferation/invasion which might be mediated by preeclampsia-related genes, suggesting a possible association between prenatal PFBS exposure and adverse placentation.
Collapse
Affiliation(s)
- William P Marinello
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Zahra S Mohseni
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah J Cunningham
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Christine Crute
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Rong Huang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Jun J Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Transcriptional profile of spinal dynorphin-lineage interneurons in the developing mouse. Pain 2020; 160:2380-2397. [PMID: 31166300 DOI: 10.1097/j.pain.0000000000001636] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mounting evidence suggests that the spinal dorsal horn (SDH) contains multiple subpopulations of inhibitory interneurons that play distinct roles in somatosensory processing, as exemplified by the importance of spinal dynorphin-expressing neurons for the suppression of mechanical pain and chemical itch. Although it is clear that GABAergic transmission in the SDH undergoes significant alterations during early postnatal development, little is known about the maturation of discrete inhibitory "microcircuits" within the region. As a result, the goal of this study was to elucidate the gene expression profile of spinal dynorphin (pDyn)-lineage neurons throughout life. We isolated nuclear RNA specifically from pDyn-lineage SDH interneurons at postnatal days 7, 21, and 80 using the Isolation of Nuclei Tagged in Specific Cell Types (INTACT) technique, followed by RNA-seq analysis. Over 650 genes were ≥2-fold enriched in adult pDyn nuclei compared with non-pDyn spinal cord nuclei, including targets with known relevance to pain such as galanin (Gal), prepronociceptin (Pnoc), and nitric oxide synthase 1 (Nos1). In addition, the gene encoding a membrane-bound guanylate cyclase, Gucy2d, was identified as a novel and highly selective marker of the pDyn population within the SDH. Differential gene expression analysis comparing pDyn nuclei across the 3 ages revealed sets of genes that were significantly upregulated (such as Cartpt, encoding cocaine- and amphetamine-regulated transcript peptide) or downregulated (including Npbwr1, encoding the receptor for neuropeptides B/W) during postnatal development. Collectively, these results provide new insight into the potential molecular mechanisms underlying the known age-dependent changes in spinal nociceptive processing and pain sensitivity.
Collapse
|
47
|
Schmitt HM, Johnson WM, Aboobakar IF, Strickland S, Gomez-Caraballo M, Parker M, Finnegan L, Corcoran DL, Skiba NP, Allingham RR, Hauser MA, Stamer WD. Identification and activity of the functional complex between hnRNPL and the pseudoexfoliation syndrome-associated lncRNA, LOXL1-AS1. Hum Mol Genet 2020; 29:1986-1995. [PMID: 32037441 PMCID: PMC7390937 DOI: 10.1093/hmg/ddaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Individuals with pseudoexfoliation (PEX) syndrome exhibit various connective tissue pathologies associated with dysregulated extracellular matrix homeostasis. PEX glaucoma is a common, aggressive form of open-angle glaucoma resulting from the deposition of fibrillary material in the conventional outflow pathway. However, the molecular mechanisms that drive pathogenesis and genetic risk remain poorly understood. PEX glaucoma-associated single-nucleotide polymorphisms are located in and affect activity of the promoter of LOXL1-AS1, a long non-coding RNA (lncRNA). Nuclear and non-nuclear lncRNAs regulate a host of biological processes, and when dysregulated, contribute to disease. Here we report that LOXL1-AS1 localizes to the nucleus where it selectively binds to the mRNA processing protein, heterogeneous nuclear ribonucleoprotein-L (hnRNPL). Both components of this complex are critical for the regulation of global gene expression in ocular cells, making LOXL1-AS1 a prime target for investigation in PEX syndrome and glaucoma.
Collapse
Affiliation(s)
- Heather M Schmitt
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - William M Johnson
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Inas F Aboobakar
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701 USA
| | - María Gomez-Caraballo
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Megan Parker
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Laura Finnegan
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
- School of Genetics and Microbiology, Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David L Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke University, Duke University CIEMAS, Durham, NC 27708, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701 USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Duke Eye Center AERI Rm 4014, Durham, NC 27710, USA
| |
Collapse
|
48
|
Mutations in FAM50A suggest that Armfield XLID syndrome is a spliceosomopathy. Nat Commun 2020; 11:3698. [PMID: 32703943 PMCID: PMC7378245 DOI: 10.1038/s41467-020-17452-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3′ alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development. Armfield X-linked disability (XLID) disorder has previously been linked to a locus in Xq28. Here, the authors report rare missense variants in FAM50A at Xq28, show that FAM50A interacts with the spliceosome, and that mis-splicing is enriched in knockout zebrafish suggesting it is a spliceosomopathy.
Collapse
|
49
|
Zhang J, Zhang J, Tao R, Jiang L, Chen L, Li X, Li C, Zhang S. A newly devised multiplex assay of novel polymorphic non-CODIS STRs as a valuable tool for forensic application. Forensic Sci Int Genet 2020; 48:102341. [PMID: 32599549 DOI: 10.1016/j.fsigen.2020.102341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022]
Abstract
DNA profiling that relies on sets of highly polymorphic autosomal STR markers is widely used in the forensic field for human identification and paternity testing. However, the number of markers that are included in the STR kits that are currently available is insufficient to conclusively prove or disprove a relationship between individuals, especially when complex family scenarios are suspected or indirect analyses are required. In these cases, it becomes necessary to increase the number of loci under analysis to reach an adequate likelihood ratio (LR). In this study, we discovered 18 new autosomal non-CODIS STR loci (D1S1616, D1S1608, D2S437, D3S2457, D4S2406, D4S3249, D5S2843, D5S2501, D6S1010, D8S1039, D12S1301, D14S586, D15S815, SHGC-145653, CHLC.GATA14D12, D1S1603, HUMUT7148, and CHLC.GATA84D07) by web scanning and experimental screening. On the basis of this discovery, we developed a novel multiplex typing system named the "SiFaSTR 21plex_NCII Typing System" comprising 1) the 18 non-CODIS autosomal STRs mentioned above, 2) a CODIS locus of D2S1338, and 3) Amelogenin and DYS391. A forensic developmental validation, including sensitivity, species specificity, concordance, reproducibility, sample suitability, testing stability, and mixture testing, was performed following SWGDAM. The results of the validation studies indicated that this system is accurate, reliable and suitable for human DNA profiling. The sensitivity study of the system demonstrated that a full profile was obtainable with DNA as low as 125 pg. Species specificity was proven by the lack of cross-reactivity with a series of common animal species. The stability study demonstrated that 1 ng of control DNA could be fully genotyped with concentrations of haematin ≤ 150 μM, indigotin ≤ 5000 ng/μl, urea ≤ 16000 ng/μl, nigrosine ≤ 100 ng/μl and humic acid ≤ 20 ng/μl. In the mixture test, all of the minor alleles could be called at mixed ratios of 1:1, 1:3 and 3:1. We also investigated the allelic frequencies and forensic parameters of the included markers in 259 Chinese Han individuals. The forensic efficiency parameters, including the total power of discrimination (TDP) and the combined exclusion power in duos (CPEduos) and in trios (CPEtrios) of the system were calculated to be greater than 0.9999999, 0.9997347 and 0.9999997, respectively. This result proved that the system is suitable for human identification and paternity testing. The 18 newly discovered non-CODIS STRs and the developed system will be a valuable supplementary tool for the forensic community and will help solve complex paternity cases, evolutionary studies and population investigations.
Collapse
Affiliation(s)
- Jiashuo Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, PR China
| | - Jingyi Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; Department of Forensic Science, Medical School of Soochow University, Suzhou, 215123, PR China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China; Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | - Lei Jiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China
| | - Liqin Chen
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010030, PR China
| | - Xuebo Li
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, PR China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China.
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, PR China.
| |
Collapse
|
50
|
Grassi S, Campuzano O, Coll M, Brión M, Arena V, Iglesias A, Carracedo Á, Brugada R, Oliva A. Genetic variants of uncertain significance: How to match scientific rigour and standard of proof in sudden cardiac death? Leg Med (Tokyo) 2020; 45:101712. [PMID: 32361481 DOI: 10.1016/j.legalmed.2020.101712] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
Abstract
In many SCD cases, in particular in pediatric age, autopsy can be completely negative and then a post-mortem genetic testing (molecular autopsy) is indicated. In NGS era finding new/rare variants is extremely frequent and, when only variants of unknown significance are found, molecular autopsy fails to find a cause of death. We describe the emblematic case of the sudden death of a 7-year-old girl. We performed a full-body micro-CT analysis, an accurate autopsy, a serum tryptase test and toxicological tests. Since the only macroscopic abnormality we found was a myocardial bridging (length: 1,1 cm, thickness: 0,5 cm) of the left anterior descending coronary artery, a molecular autopsy has been performed. NGS analysis on victim DNA detected rare variants in DPP6, MYH7, SCN2B and NOTCH1 and segregation analysis was then achieved. On the basis of ACMG/AMP (clinical) guidelines, all the found variants were classified as of unknown significance. In other words, both the macroscopic and genetic anomalies we found were of uncertain significance and then the autopsy failed to find the cause of the death. Our case raises three main discussion points: (a) economical, ethical and legal limitations of genetic investigation; (b) risk that genetic testing does not succeed in finding a certain cause of the death; (c) absence of specific guidelines to face the problem of VUS in forensic cases.
Collapse
Affiliation(s)
- Simone Grassi
- Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain; Department of Biochemistry and Molecular Genetics, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Mònica Coll
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - María Brión
- Genetics of Cardiovascular and Ophthalmological Diseases, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Genomic Medicine, University of Santiago de Compostela, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Vincenzo Arena
- Institute of Anatomical Pathology, Catholic University, Rome, Italy
| | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
| | - Ángel Carracedo
- Genomic Medicine, University of Santiago de Compostela, IDIS, CIBERER, Santiago de Compostela, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Centro Investigación Biomédica Red Enfermedades Cardiovasculares, Madrid, Spain; Cardiology Service, Hospital Josep Trueta, Girona, Spain
| | - Antonio Oliva
- Institute of Public Health, Section of Legal Medicine, Catholic University, Rome, Italy.
| |
Collapse
|