1
|
Demirci S, Khan MBN, Hinojosa G, Le A, Leonard A, Essawi K, Gudmundsdottir B, Liu X, Zeng J, Inam Z, Chu R, Uchida N, Araki D, London E, Butt H, Maitland SA, Bauer DE, Wolfe SA, Larochelle A, Tisdale JF. Ex vivo culture resting time impacts transplantation outcomes of genome-edited human hematopoietic stem and progenitor cells in xenograft mouse models. Cytotherapy 2024; 26:641-648. [PMID: 38506770 PMCID: PMC11127784 DOI: 10.1016/j.jcyt.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
Ex vivo resting culture is a standard procedure following genome editing in hematopoietic stem and progenitor cells (HSPCs). However, prolonged culture may critically affect cell viability and stem cell function. We investigated whether varying durations of culture resting times impact the engraftment efficiency of human CD34+ HSPCs edited at the BCL11A enhancer, a key regulator in the expression of fetal hemoglobin. We employed electroporation to introduce CRISPR-Cas9 components for BCL11A enhancer editing and compared outcomes with nonelectroporated (NEP) and electroporated-only (EP) control groups. Post-electroporation, we monitored cell viability, death rates, and the frequency of enriched hematopoietic stem cell (HSC) fractions (CD34+CD90+CD45RA- cells) over a 48-hour period. Our findings reveal that while the NEP group showed an increase in cell numbers 24 hours post-electroporation, both EP and BCL11A-edited groups experienced significant cell loss. Although CD34+ cell frequency remained high in all groups for up to 48 hours post-electroporation, the frequency of the HSC-enriched fraction was significantly lower in the EP and edited groups compared to the NEP group. In NBSGW xenograft mouse models, both conditioned with busulfan and nonconditioned, we found that immediate transplantation post-electroporation led to enhanced engraftment without compromising editing efficiency. Human glycophorin A+ (GPA+) red blood cells (RBCs) sorted from bone marrow of all BCL11A edited mice exhibited similar levels of γ-globin expression, regardless of infusion time. Our findings underscore the critical importance of optimizing the culture duration between genome editing and transplantation. Minimizing this interval may significantly enhance engraftment success and minimize cell loss without compromising editing efficiency. These insights offer a pathway to improve the success rates of genome editing in HSPCs, particularly for conditions like sickle cell disease.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA..
| | | | - Gabriela Hinojosa
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anh Le
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA.; St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Khaled Essawi
- College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Bjorg Gudmundsdottir
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xiong Liu
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jing Zeng
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts, USA
| | - Zaina Inam
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Daisuke Araki
- CMTB, NHLBI/Regenerative Therapies for Inherited Blood Disorders, NIH, Bethesda, Maryland, USA
| | - Evan London
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Henna Butt
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Stacy A Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Daniel E Bauer
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Andre Larochelle
- CMTB, NHLBI/Regenerative Therapies for Inherited Blood Disorders, NIH, Bethesda, Maryland, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch (CMTB), National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes, and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA..
| |
Collapse
|
2
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Pavel-Dinu M, Borna S, Bacchetta R. Rare immune diseases paving the road for genome editing-based precision medicine. Front Genome Ed 2023; 5:1114996. [PMID: 36846437 PMCID: PMC9945114 DOI: 10.3389/fgeed.2023.1114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing platform heralds a new era of gene therapy. Innovative treatments for life-threatening monogenic diseases of the blood and immune system are transitioning from semi-random gene addition to precise modification of defective genes. As these therapies enter first-in-human clinical trials, their long-term safety and efficacy will inform the future generation of genome editing-based medicine. Here we discuss the significance of Inborn Errors of Immunity as disease prototypes for establishing and advancing precision medicine. We will review the feasibility of clustered regularly interspaced short palindromic repeats-based genome editing platforms to modify the DNA sequence of primary cells and describe two emerging genome editing approaches to treat RAG2 deficiency, a primary immunodeficiency, and FOXP3 deficiency, a primary immune regulatory disorder.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Simon Borna
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Rosa Bacchetta
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
4
|
Porteus MH, Pavel-Dinu M, Pai SY. A Curative DNA Code for Hematopoietic Defects: Novel Cell Therapies for Monogenic Diseases of the Blood and Immune System. Hematol Oncol Clin North Am 2022; 36:647-665. [PMID: 35773054 PMCID: PMC9365196 DOI: 10.1016/j.hoc.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3040B, MC 5462, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford Medical School, Lokey Stem Cell Research Building, G3045, MC 5175, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, 10 Center Drive, MSC 1102, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
6
|
Ferrari S, Vavassori V, Canarutto D, Jacob A, Castiello MC, Javed AO, Genovese P. Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Front Genome Ed 2021; 3:618378. [PMID: 34713250 PMCID: PMC8525369 DOI: 10.3389/fgeed.2021.618378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), Milano-Bicocca University, Monza, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Pavani G, Amendola M. Targeted Gene Delivery: Where to Land. Front Genome Ed 2021; 2:609650. [PMID: 34713234 PMCID: PMC8525409 DOI: 10.3389/fgeed.2020.609650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-editing technologies have the potential to correct most genetic defects involved in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can correct most of the mutations affecting the same gene with a single therapeutic strategy (gene replacement) or provide novel functions to edited cells (gene addition). Targeting a selected genomic harbor can reduce insertional mutagenesis risk, while enabling the exploitation of endogenous promoters, or selected chromatin contexts, to achieve specific transgene expression levels/patterns and the modulation of disease-modifier genes. In this review, we will discuss targeted gene insertion and the advantages and limitations of different genomic harbors currently under investigation for various gene therapy applications.
Collapse
Affiliation(s)
- Giulia Pavani
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| | - Mario Amendola
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| |
Collapse
|
8
|
Pavani G, Amendola M. Corrigendum: Targeted Gene Delivery: Where to Land. Front Genome Ed 2021; 3:682171. [PMID: 34714297 PMCID: PMC8525382 DOI: 10.3389/fgeed.2021.682171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giulia Pavani
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| | - Mario Amendola
- INTEGRARE, UMR_S951, Genethon, Inserm, Univ Evry, Univ Paris-Saclay, Evry, France
| |
Collapse
|
9
|
Clinically relevant gene editing in hematopoietic stem cells for the treatment of pyruvate kinase deficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:237-248. [PMID: 34485608 PMCID: PMC8399088 DOI: 10.1016/j.omtm.2021.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (PKLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.
Collapse
|
10
|
Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:153-183. [PMID: 34175041 DOI: 10.1016/bs.pmbts.2021.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-hemoglobinopathies are the most common monogenic disorders worldwide and are caused by mutations in the β-globin locus altering the production of adult hemoglobin (HbA). Transplantation of autologous hematopoietic stem cells (HSCs) corrected by lentiviral vector-mediated addition of a functional β-like globin raised new hopes to treat sickle cell disease and β-thalassemia patients; however, the low expression of the therapeutic gene per vector copy is often not sufficient to fully correct the patients with a severe clinical phenotype. Recent advances in the genome editing field brought new possibilities to cure β-hemoglobinopathies by allowing the direct modification of specific endogenous loci. Double-strand breaks (DSBs)-inducing nucleases (i.e., ZFNs, TALENs and CRISPR-Cas9) or DSB-free tools (i.e., base and prime editing) have been used to directly correct the disease-causing mutations, restoring HbA expression, or to reactivate the expression of the fetal hemoglobin (HbF), which is known to alleviate clinical symptoms of β-hemoglobinopathy patients. Here, we describe the different genome editing tools, their application to develop therapeutic approaches to β-hemoglobinopathies and ongoing clinical trials using genome editing strategies.
Collapse
Affiliation(s)
- Mégane Brusson
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France.
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France.
| |
Collapse
|
11
|
Ben-Skowronek I. IPEX Syndrome: Genetics and Treatment Options. Genes (Basel) 2021; 12:323. [PMID: 33668198 PMCID: PMC7995986 DOI: 10.3390/genes12030323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
(1) Background: IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome characterizes a complex autoimmune reaction beginning in the perinatal period, caused by a dysfunction of the transcription factor forkhead box P3 (FOXP3). (2) Objectives: Studies have shown the clinical, immunological, and molecular heterogeneity of patients with IPEX syndrome. The symptoms, treatment, and survival were closely connected to the genotype of the IPEX syndrome. Recognition of the kind of mutation is important for the diagnostics of IPEX syndrome in newborns and young infants, as well as in prenatal screening. The method of choice for treatment is hematopoietic stem cell transplantation and immunosuppressive therapy. In children, supportive therapy for refractory diarrhea is very important, as well as replacement therapy of diabetes mellitus type 1 (DMT1) and other endocrinopathies. In the future, genetic engineering methods may be of use in the successful treatment of IPEX syndrome. (3) Conclusions: The genetic defects determine a diagnostic approach and prognosis, making the knowledge of the genetics of IPEX syndrome fundamental to introducing novel treatment methods.
Collapse
MESH Headings
- Allografts
- Animals
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Diarrhea/diagnosis
- Diarrhea/genetics
- Diarrhea/metabolism
- Diarrhea/therapy
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/therapy
- Hematopoietic Stem Cell Transplantation
- Humans
- Immune System Diseases/congenital
- Immune System Diseases/diagnosis
- Immune System Diseases/genetics
- Immune System Diseases/metabolism
- Immune System Diseases/therapy
- Infant
- Infant, Newborn
- Male
- Mutation
Collapse
Affiliation(s)
- Iwona Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
12
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
13
|
Gabr H, El Ghamrawy MK, Almaeen AH, Abdelhafiz AS, Hassan AOS, El Sissy MH. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem Cell Res Ther 2020; 11:390. [PMID: 32912325 PMCID: PMC7488347 DOI: 10.1186/s13287-020-01876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background β-Thalassemias represent a group of genetic disorders caused by human hemoglobin beta (HBB) gene mutations. The radical curative approach is to correct the mutations causing the disease. CRISPR-CAS9 is a novel gene-editing technology that can be used auspiciously for the treatment of these disorders. The study aimed to investigate the utility of CRISPR-CAS9 for gene modification of hematopoietic stem cells in β-thalassemia with IVS-1-110 mutation. Methods and results We successfully isolated CD34+ cells from peripheral blood of β-thalassemia patients with IVS-1-110 mutation. The cells were transfected with Cas9 endonuclease together with guide RNA to create double-strand breaks and knock out the mutation. The mutation-corrected CD34+ cells were subjected to erythroid differentiation by culturing in complete media containing erythropoietin. Conclusion CRISPR/Cas-9 is an effective tool for gene therapy that will broaden the spectrum of therapy and potentially improve the outcomes of β-thalassemia.
Collapse
Affiliation(s)
- Hala Gabr
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | - Aya Osama Saad Hassan
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Hamdi El Sissy
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
14
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2020; 9:543-546. [PMID: 32329241 PMCID: PMC7180293 DOI: 10.1002/sctm.20-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 11/11/2022] Open
|
15
|
Jia W, Jia S, Chen P, He Y. Construction and Analysis of a Long Non-Coding RNA (lncRNA)-Associated ceRNA Network in β-Thalassemia and Hereditary Persistence of Fetal Hemoglobin. Med Sci Monit 2019; 25:7079-7086. [PMID: 31541070 PMCID: PMC6767942 DOI: 10.12659/msm.915946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Higher fetal hemoglobin (HbF) levels can ameliorate the clinical severity of β-thalassemia. The use of integrative strategies to combine results from gene microarray expression profiling, experimental evidence, and bioinformatics helps reveal functional long noncoding RNAs (lncRNAs) in β-thalassemia and HbF induction. Material/Methods In a previous study, a microarray profiling was performed of 7 individuals with high HbF levels and 7 normal individuals. Thirteen paired samples were used for validation. lncRNA NR_001589 and uc002fcj.1 were chosen for further research. The quantitative reverse transcription-PCR was used to detect the expression levels of 2 lncRNAs. The Spearman correlation test was employed. The nuclear and cytoplasmic distribution experiment in K562 cells was used to verify the subcellular localization of 2 lncRNAs. Potential relationships among lncRNAs, predicted microRNAs (miRNAs), and target gene HBG1/2 were based on competitive endogenous RNA theory and bioinformatics analysis. Results Average expression levels of NR_001589 and uc002fcj.1 were significantly higher in the high-HbF group than in the control group. A positive correlation existed between NR_001589, uc002fcj.1, and HbF. The expression of NR_001589 was in both the cytoplasm and the nucleus, mostly (77%) in the cytoplasm. The expression of uc002fcj.1 was in both the cytoplasm and the nucleus; the cytoplasmic proportion was 43% of the total amount. A triple lncRNA-miRNA-mRNA network was established. Conclusions Novel candidate genetic factors associated with the HBG1/2 expression were identified. Further functional investigation of NR_001589 and uc002fcj.1 can help deepen the understanding of molecular mechanisms in β-thalassemia.
Collapse
Affiliation(s)
- Wenguang Jia
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| | - Siyuan Jia
- Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ping Chen
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| | - Yunyan He
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China (mainland)
| |
Collapse
|
16
|
Ghiaccio V, Chappell M, Rivella S, Breda L. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Mol Diagn Ther 2019; 23:173-186. [PMID: 30701409 DOI: 10.1007/s40291-019-00383-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inherited monogenic disorders such as beta-hemoglobinopathies (BH) are fitting candidates for treatment via gene therapy by gene transfer or gene editing. The reported safety and efficacy of lentiviral vectors in preclinical studies have led to the development of several clinical trials for the addition of a functional beta-globin gene. Across trials, dozens of transfusion-dependent patients with sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT) have been treated via gene therapy and have achieved reduced transfusion requirements. While overall results are encouraging, the outcomes appear to be strongly influenced by the level of lentiviral integration in transduced cells after engraftment, as well as the underlying genotype resulting in thalassemia. In addition, the method of procurement of hematopoietic stem cells can affect their quality and thus the outcome of gene therapy both in SCD and TDT. This suggests that new studies aimed at maximizing the number of corrected cells with long-term self-renewal potential are crucial to ensure successful treatment for every patient. Recent advancements in gene transfer and bone marrow transplantation have improved the success of this approach, and the results obtained by using these strategies demonstrated significant improvement of gene transfer outcome in patients. The advent of new gene-editing technologies has suggested additional therapeutic options. These are primarily focused on correcting the defective beta-globin gene or editing the expression of genes or genomic segments that regulate fetal hemoglobin synthesis. In this review, we aim to establish the potential benefits of gene therapy for BH, to summarize the status of the ongoing trials, and to discuss the possible improvement or direction for future treatments.
Collapse
Affiliation(s)
- Valentina Ghiaccio
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Maxwell Chappell
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stefano Rivella
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laura Breda
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Romero Z, Lomova A, Said S, Miggelbrink A, Kuo CY, Campo-Fernandez B, Hoban MD, Masiuk KE, Clark DN, Long J, Sanchez JM, Velez M, Miyahira E, Zhang R, Brown D, Wang X, Kurmangaliyev YZ, Hollis RP, Kohn DB. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Mol Ther 2019; 27:1389-1406. [PMID: 31178391 DOI: 10.1016/j.ymthe.2019.05.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the β-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.
Collapse
Affiliation(s)
- Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anastasia Lomova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Suzanne Said
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Miggelbrink
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katelyn E Masiuk
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle N Clark
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Long
- Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie M Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam Velez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric Miyahira
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruixue Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, HHMI, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Pavel-Dinu M, Wiebking V, Dejene BT, Srifa W, Mantri S, Nicolas CE, Lee C, Bao G, Kildebeck EJ, Punjya N, Sindhu C, Inlay MA, Saxena N, DeRavin SS, Malech H, Roncarolo MG, Weinberg KI, Porteus MH. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 2019; 10:1634. [PMID: 30967552 PMCID: PMC6456568 DOI: 10.1038/s41467-019-09614-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy, we achieve up to 20% targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45%) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum, our study provides specificity, toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Volker Wiebking
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Beruh T Dejene
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Waracharee Srifa
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sruthi Mantri
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carmencita E Nicolas
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ciaran Lee
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Eric J Kildebeck
- Center for Engineering Innovation, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Niraj Punjya
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Camille Sindhu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Matthew A Inlay
- Department of Cellular and Molecular Biosciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Nivedita Saxena
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Suk See DeRavin
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Harry Malech
- Laboratory of Host Defenses, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kenneth I Weinberg
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Jafari H, Hesami S, Safi M, Ghasemi F, Banan M. Expression and hydroxyurea-triggered induction of EGFP upon CRISPR/Cas9-mediated integration into the γ-globin gene of K562 cells. Biotechnol Lett 2019; 41:691-700. [DOI: 10.1007/s10529-019-02671-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/27/2019] [Indexed: 02/08/2023]
|
20
|
Abstract
Designer nucleases are versatile tools for genome modification and therapy development and have gained widespread accessibility with the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology. Prokaryotic RNA-guided nucleases of CRISPR/Cas type, since first being adopted as editing tools in eukaryotic cells, have experienced rapid uptake and development. Diverse modes of delivery by viral and non-viral vectors and ongoing discovery and engineering of new CRISPR/Cas-type tools with alternative target site requirements, cleavage patterns and DNA- or RNA-specific action continue to expand the versatility of this family of nucleases. CRISPR/Cas-based molecules may also act without double-strand breaks as DNA base editors or even without single-stranded cleavage, be it as epigenetic regulators, transcription factors or RNA base editors, with further scope for discovery and development. For many potential therapeutic applications of CRISPR/Cas-type molecules and their derivatives, efficiencies still need to be improved and safety issues addressed, including those of preexisting immunity against Cas molecules, off-target activity and recombination and sequence alterations relating to double-strand-break events. This review gives a concise overview of current CRISPR/Cas tools, applications, concerns and trends.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
21
|
Ghassemi B, Shamsara M, Soleimani M, Kiani J, Rassoulzadegan M. Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing. Anal Biochem 2019; 568:31-40. [PMID: 30593779 DOI: 10.1016/j.ab.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/06/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
Animal models possess undeniable utility for progress on biomedical research projects and developmental and disease studies. Transgenic mouse models recreating specific disease phenotypes associated with β-hemoglobinopathies have been developed previously. However, traditional methods for gene targeting in mouse using embryonic stem cells (ESCs) are laborious and time consuming. Recently, CRISPR has been developed to facilitate and improve genomic modifications in mouse or isogenic cell lines. Applying CRISPR to gene modification eliminates the time consuming steps of traditional approach including selection of targeted ESC clones and production of chimeric mouse. This study shows that microinjection of a plasmid DNA encoding Cas9 protein along with dual sgRNAs specific to Hbb-bs gene (hemoglobin, beta adult s chain) enables breaking target sequences at exons 2 and 3 positions. The injections led to a knockout allele with efficiency around 10% for deletion of exons 2 and 3 and 20% for indel mutation.
Collapse
Affiliation(s)
- Bita Ghassemi
- Department of Transgenic Animal Science, Stem Cell Technology Research Center, Tehran, Iran.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Minoo Rassoulzadegan
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France, Inserm UMR1091, CNRS UMR7277, Nice, France.
| |
Collapse
|
22
|
Chu C, Yang Z, Yang J, Yan L, Si C, Kang Y, Chen Z, Chen Y, Ji W, Niu Y. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases. BMC Biotechnol 2019; 19:7. [PMID: 30646876 PMCID: PMC6334428 DOI: 10.1186/s12896-018-0494-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Non-human primate (NHP) models can closely mimic human physiological functions and are therefore highly valuable in biomedical research. Genome editing is now developing rapidly due to the precision and efficiency offered by engineered site-specific endonuclease-based systems, such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) system. It has been demonstrated that these programmable nucleases can introduce genetic changes in embryos from many species including NHPs. In 2014, we reported the first genetic editing of macaques using TALENs and CRISPR/Cas9. Subsequently, we characterized the phenotype of a methyl CpG binding protein 2 (MECP2)-mutant cynomolgus monkey model of Rett syndrome generated using the TALEN approach. These efforts not only accelerated the advance of modeling genetic diseases in NHPs, but also encouraged us to develop specific gene knock-in monkeys. In this study, we assess the possibility of homologous recombination (HR)-mediated gene replacement using TALENs in monkeys, and generate preimplantation embryos carrying an EmGFP fluorescent reporter constructed in the OCT4 gene. Result We assembled a pair of TALENs specific to the first exon of the OCT4 gene and constructed a donor vector consisting of the homology arms cloned from the monkey genome DNA, flanking an EmGFP cassette. Next, we co-injected the TALENs-coding plasmid and donor plasmid into the cytoplasm of 122 zygotes 6–8 h after fertilization. Sequencing and immunofluorescence revealed that the OCT4-EmGFP knock-in allele had been successfully generated by TALENs-mediated HR at an efficiency of 11.3% (7 out of 62) or 11.1% (1 out of 9), respectively, in monkey embryos. Conclusion We have successfully, for the first time, obtained OCT4-EmGFP knock-in monkey embryos via HR mediated by TALENs. Our results suggest that gene targeting through TALEN-assisted HR is a useful approach to introduce precise genetic modification in NHPs. Electronic supplementary material The online version of this article (10.1186/s12896-018-0494-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chu Chu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhaohui Yang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiayin Yang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China
| | - Li Yan
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenyang Si
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yu Kang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhenzhen Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
23
|
Charlesworth CT, Camarena J, Cromer MK, Vaidyanathan S, Bak RO, Carte JM, Potter J, Dever DP, Porteus MH. Priming Human Repopulating Hematopoietic Stem and Progenitor Cells for Cas9/sgRNA Gene Targeting. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:89-104. [PMID: 30195800 PMCID: PMC6023838 DOI: 10.1016/j.omtn.2018.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
Abstract
Engineered nuclease-mediated gene targeting through homologous recombination (HR) in hematopoietic stem and progenitor cells (HSPCs) has the potential to treat a variety of genetic hematologic and immunologic disorders. Here, we identify critical parameters to reproducibly achieve high frequencies of RNA-guided (single-guide RNA [sgRNA]; CRISPR)-Cas9 nuclease (Cas9/sgRNA) and rAAV6-mediated HR at the β-globin (HBB) locus in HSPCs. We identified that by transducing HSPCs with rAAV6 post-electroporation, there was a greater than 2-fold electroporation-aided transduction (EAT) of rAAV6 endocytosis with roughly 70% of the cell population having undergone transduction within 2 hr. When HSPCs are cultured at low densities (1 × 105 cells/mL) prior to HBB targeting, HSPC expansion rates are significantly positively correlated with HR frequencies in vitro as well as in repopulating cells in immunodeficient NSG mice in vivo. We also show that culturing fluorescence-activated cell sorting (FACS)-enriched HBB-targeted HSPCs at low cell densities in the presence of the small molecules, UM171 and SR1, stimulates the expansion of gene-edited HSPCs as measured by higher engraftment levels in immunodeficient mice. This work serves not only as an optimized protocol for genome editing HSPCs at the HBB locus for the treatment of β-hemoglobinopathies but also as a foundation for editing HSPCs at other loci for both basic and translational research.
Collapse
Affiliation(s)
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Jason M Carte
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA 92008, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Vanuytsel K, Matte T, Leung A, Naing ZH, Morrison T, Chui DHK, Steinberg MH, Murphy GJ. Induced pluripotent stem cell-based mapping of β-globin expression throughout human erythropoietic development. Blood Adv 2018; 2:1998-2011. [PMID: 30108108 PMCID: PMC6093724 DOI: 10.1182/bloodadvances.2018020560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/09/2018] [Indexed: 02/01/2023] Open
Abstract
Robust β-globin expression in erythroid cells derived from induced pluripotent stem cells (iPSCs) increases the resolution with which red blood cell disorders such as sickle cell disease and β thalassemia can be modeled in vitro. To better quantify efforts in augmenting β-globin expression, we report the creation of a β-globin reporter iPSC line that allows for the mapping of β-globin expression throughout human erythropoietic development in real time at single-cell resolution. Coupling this tool with single-cell RNA sequencing (scRNAseq) identified features that distinguish β-globin-expressing cells and allowed for the dissection of the developmental and maturational statuses of iPSC-derived erythroid lineage cells. Coexpression of embryonic, fetal, and adult globins in individual cells indicated that these cells correspond to a yolk sac erythromyeloid progenitor program of hematopoietic development, representing the onset of definitive erythropoiesis. Within this developmental program, scRNAseq analysis identified a gradient of erythroid maturation, with β-globin-expressing cells showing increased maturation. Compared with other cells, β-globin-expressing cells showed a reduction in transcripts coding for ribosomal proteins, increased expression of members of the ubiquitin-proteasome system recently identified to be involved in remodeling of the erythroid proteome, and upregulation of genes involved in the dynamic translational control of red blood cell maturation. These findings emphasize that definitively patterned iPSC-derived erythroblasts resemble their postnatal counterparts in terms of gene expression and essential biological processes, confirming their potential for disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Kim Vanuytsel
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Taylor Matte
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Amy Leung
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Zaw Htut Naing
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Tasha Morrison
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
| | - David H K Chui
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
| | - Martin H Steinberg
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
| | - George J Murphy
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| |
Collapse
|
25
|
Fang Y, Cheng Y, Lu D, Gong X, Yang G, Gong Z, Zhu Y, Sang X, Fan S, Zhang J, Zeng F. Treatment of β 654 -thalassaemia by TALENs in a mouse model. Cell Prolif 2018; 51:e12491. [PMID: 30070404 DOI: 10.1111/cpr.12491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES This study explored whether TALENs-mediated non-homologous end joining (NHEJ) targeting the mutation site can correct the aberrant β-globin RNA splicing, and ameliorate the β-thalassaemia phenotype in β654 mice. MATERIAL AND METHODS TALENs vectors targeted to the human β-globin gene (HBB) IVS2-654C >T mutation in a mouse model were constructed and selected to generate double heterozygous TALENs+ /β654 mice. The gene editing and off-target effects were analysed by sequencing analysis. β-globin expression was identified by RT-PCR and Western blot analysis. Various clinical indices including haematologic parameters and tissue pathology were examined to determine the therapeutic effect in these TALENs+ /β654 mice. RESULTS Sequencing analysis revealed that the HBB IVS2-654C >T point mutation was deleted in over 50% of the TALENs+ /β654 mice tested, and off-target effects were not detected. RT-PCR and Western blot analysis confirmed the expression of normal β-globin in TALENs+ /β654 mice. The haematologic parameters were significantly improved as compared with their affected littermates. The proportion of nucleated cells in bone marrow was considerably decreased, splenomegaly with extramedullary haematopoiesis was reduced, and significant decreases in iron deposition were seen in spleen and liver of the TALENs+ /β654 mice. CONCLUSION These results suggest effective treatment of the anaemia phenotype in TALENs+ /β654 mice following deletion of the mutation site by TALENs, demonstrating a simple and straightforward strategy for gene therapy of β654 -thalassaemia in the future.
Collapse
Affiliation(s)
- Yudan Fang
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yan Cheng
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Lu
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Xiuli Gong
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Zhijuan Gong
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yiwen Zhu
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Xiao Sang
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Shuyue Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingzhi Zhang
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Embryo Molecular Biology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Bak RO, Gomez-Ospina N, Porteus MH. Gene Editing on Center Stage. Trends Genet 2018; 34:600-611. [PMID: 29908711 DOI: 10.1016/j.tig.2018.05.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Smithies et al. (1985) and Jasin and colleagues (1994) provided proof of concept that homologous recombination (HR) could be applied to the treatment of human disease and that its efficiency could be improved by the induction of double-strand breaks (DSBs). A key advance was the discovery of engineered nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like (TAL) effector nucleases (TALENs), that can generate site-specific DSBs. The democratization and widespread use of genome editing was enabled by the discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 nuclease system. While genome editing using ZFNs and TALENs has already reached clinical trials, the pace at which genome editing enters human trials is bound to accelerate in the next several years with multiple promising preclinical studies heralding cures for monogenic diseases that are currently difficult to manage or even incurable. Here we review recent advances and current limitations and discuss the path forward using genome editing to understand, treat, and cure genetic diseases.
Collapse
Affiliation(s)
- Rasmus O Bak
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus C., Denmark; Department of Biomedicine, Aarhus University, DK-8000 Aarhus C., Denmark
| | | | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Abstract
Sickle cell disease is the most prevalent monogenic disorder worldwide and curative therapies are limited to hematopoietic stem cell transplant to the few with matched donors. Gene therapy has curative potential, whereby autologous hematopoietic stem cells are genetically modified and transplanted, which would not be limited by matched donors, resulting in 1-time, life-long correction devoid of immune side effects. Significant progress has been made to clinically translate gene therapy for sickle cell disease using lentivirus vectors carrying antisickling genes. This review focuses on the current state of the field, factors that determine clinical success, gene editing, and future prospects.
Collapse
Affiliation(s)
- Rajeswari Jayavaradhan
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Mail Location 7013, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Pathobiology and Molecular Medicine Graduate Program, Mail Location: 0529, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Mail Location 7013, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Pathobiology and Molecular Medicine Graduate Program, Mail Location: 0529, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA.
| |
Collapse
|
28
|
Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol Cell 2018; 70:801-813.e6. [PMID: 29804829 PMCID: PMC5993873 DOI: 10.1016/j.molcel.2018.04.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.
Collapse
Affiliation(s)
- Eva K Brinkman
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marcel de Haas
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Hanna A Holland
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Zhang Y, Zhang Z, Ge W. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J Biol Chem 2018; 293:6611-6622. [PMID: 29500194 DOI: 10.1074/jbc.ra117.001080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Indexed: 11/06/2022] Open
Abstract
Homology-directed recombination (HDR)-mediated genome editing is a powerful approach for both basic functional study and disease modeling. Although some studies have reported HDR-mediated precise editing in nonrodent models, the efficiency of establishing pure mutant animal lines that carry specific amino acid substitutions remains low. Furthermore, because the efficiency of nonhomologous end joining (NHEJ)-induced insertion and deletion (indel) mutations is normally much higher than that of HDR-induced point mutations, it is often difficult to identify the latter in the background of indel mutations. Using zebrafish as the model organism and Y box-binding protein 1 (Ybx1/ybx1) as the model molecule, we have established an efficient platform for precise CRISPR/Cas9-mediated gene editing in somatic cells, yielding an efficiency of up to 74% embryos. Moreover, we established a procedure for screening germline transmission of point mutations out of indel mutations even when germline transmission efficiency was low (<2%). To further improve germline transmission of HDR-induced point mutations, we optimized several key factors that may affect HDR efficiency, including the type of DNA donor, suppression of NHEJ, stimulation of HDR pathways, and use of Cas9 protein instead of mRNA. The optimized combination of these factors significantly increased the efficiency of germline transmission of point mutation up to 25%. In summary, we have developed an efficient procedure for creating point mutations and differentiating mutant individuals from those carrying knockouts of entire genes.
Collapse
Affiliation(s)
- Yibo Zhang
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiwei Zhang
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- From the Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
30
|
Bachtarzi H. Ex vivo and in vivo genome editing: a regulatory scientific framework from early development to clinical implementation. Regen Med 2017; 12:1015-1030. [PMID: 29243558 DOI: 10.2217/rme-2017-0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in human genome science have paved the way to a new class of human gene therapies based on gene editing, with the potential to provide a long-lasting curative strategy for many debilitating and complex disorders, for which there is an unmet medical need. Therapeutic genome editing encompasses both ex vivo and in vivo gene correction modalities, for which similar and also application-specific considerations apply, which dictate the overall strategy to be followed from a scientific, clinical and regulatory perspective. Here, the major regulatory barriers to successful clinical implementation are discussed, together with the key issues to be considered for generating safe (minimizing risks of tumorigenesis and off-target effects) and effective gene editing-based medicines for application in regenerative medicine.
Collapse
|
31
|
Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol 2017; 180:630-643. [PMID: 29193029 DOI: 10.1111/bjh.15038] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The major β-haemoglobinopathies, sickle cell disease and β-thalassaemia, represent the most common monogenic disorders worldwide and a steadily increasing global disease burden. Allogeneic haematopoietic stem cell transplantation, the only curative therapy, is only applied to a small minority of patients. Common clinical management strategies act mainly downstream of the root causes of disease. The observation that elevated fetal haemoglobin expression ameliorates these disorders has motivated longstanding investigations into the mechanisms of haemoglobin switching. Landmark studies over the last decade have led to the identification of two potent transcriptional repressors of γ-globin, BCL11A and ZBTB7A. These regulators act with additional trans-acting epigenetic repressive complexes, lineage-defining factors and developmental programs to silence fetal haemoglobin by working on cis-acting sequences at the globin gene loci. Rapidly advancing genetic technology is enabling researchers to probe deeply the interplay between the molecular players required for γ-globin (HBG1/HBG2) silencing. Gene therapies may enable permanent cures with autologous modified haematopoietic stem cells that generate persistent fetal haemoglobin expression. Ultimately rational small molecule pharmacotherapies to reactivate HbF could extend benefits widely to patients.
Collapse
Affiliation(s)
- Divya S Vinjamur
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stuart H Orkin
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
32
|
Cai L, Bai H, Mahairaki V, Gao Y, He C, Wen Y, Jin YC, Wang Y, Pan RL, Qasba A, Ye Z, Cheng L. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Transl Med 2017; 7:87-97. [PMID: 29164808 PMCID: PMC5746148 DOI: 10.1002/sctm.17-0066] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Beta-thalassemia is one of the most common recessive genetic diseases, caused by mutations in the HBB gene. Over 200 different types of mutations in the HBB gene containing three exons have been identified in patients with β-thalassemia (β-thal) whereas a homozygous mutation in exon 1 causes sickle cell disease (SCD). Novel therapeutic strategies to permanently correct the HBB mutation in stem cells that are able to expand and differentiate into erythrocytes producing corrected HBB proteins are highly desirable. Genome editing aided by CRISPR/Cas9 and other site-specific engineered nucleases offers promise to precisely correct a genetic mutation in the native genome without alterations in other parts of the human genome. Although making a sequence-specific nuclease to enhance correction of a specific HBB mutation by homology-directed repair (HDR) is becoming straightforward, targeting various HBB mutations of β-thal is still challenging because individual guide RNA as well as a donor DNA template for HDR of each type of HBB gene mutation have to be selected and validated. Using human induced pluripotent stem cells (iPSCs) from two β-thal patients with different HBB gene mutations, we devised and tested a universal strategy to achieve targeted insertion of the HBB cDNA in exon 1 of HBB gene using Cas9 and two validated guide RNAs. We observed that HBB protein production was restored in erythrocytes derived from iPSCs of two patients. This strategy of restoring functional HBB gene expression will be able to correct most types of HBB gene mutations in β-thal and SCD. Stem Cells Translational Medicine 2018;7:87-97.
Collapse
Affiliation(s)
- Liuhong Cai
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Division of Hematology, Department of Medicine, Baltimore, Maryland, USA.,Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Bai
- Division of Hematology, Department of Medicine, Baltimore, Maryland, USA.,Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vasiliki Mahairaki
- Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongxing Gao
- Division of Hematology, Department of Medicine, Baltimore, Maryland, USA.,Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chaoxia He
- Division of Hematology, Department of Medicine, Baltimore, Maryland, USA.,Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanfei Wen
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Center for Reproductive Medicine, Jiangmen Hospital, Sun Yat-sen University, Jiangmen, People's Republic of China
| | - You-Chuan Jin
- Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - You Wang
- Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Public Health Studies, Johns Hopkins University Krieger School of Art and Science, Baltimore, Maryland, USA
| | - Rachel L Pan
- Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Armaan Qasba
- Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Zhaohui Ye
- Division of Hematology, Department of Medicine, Baltimore, Maryland, USA.,Division of Cellular and Gene Therapies, Gene Transfer and Immunogenicity Branch, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Baltimore, Maryland, USA.,Stem Cell Program in the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Kuhn A, Ackermann M, Mussolino C, Cathomen T, Lachmann N, Moritz T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci Rep 2017; 7:15195. [PMID: 29123113 PMCID: PMC5680188 DOI: 10.1038/s41598-017-14566-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary pulmonary alveolar proteinosis (herPAP) constitutes a rare, life threatening lung disease characterized by the inability of alveolar macrophages to clear the alveolar airspaces from surfactant phospholipids. On a molecular level, the disorder is defined by a defect in the CSF2RA gene coding for the GM-CSF receptor alpha-chain (CD116). As therapeutic options are limited, we currently pursue a cell and gene therapy approach aiming for the intrapulmonary transplantation of gene-corrected macrophages derived from herPAP-specific induced pluripotent stem cells (herPAP-iPSC) employing transcriptional activator-like effector nucleases (TALENs). Targeted insertion of a codon-optimized CSF2RA-cDNA driven by the hybrid cytomegalovirus (CMV) early enhancer/chicken beta actin (CAG) promoter into the AAVS1 locus resulted in robust expression of the CSF2RA gene in gene-edited herPAP-iPSCs as well as thereof derived macrophages. These macrophages displayed typical morphology, surface phenotype, phagocytic and secretory activity, as well as functional CSF2RA expression verified by STAT5 phosphorylation and GM-CSF uptake studies. Thus, our study provides a proof-of-concept, that TALEN-mediated integration of the CSF2RA gene into the AAVS1 safe harbor locus in patient-specific iPSCs represents an efficient strategy to generate functionally corrected monocytes/macrophages, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of herPAP.
Collapse
Affiliation(s)
- Alexandra Kuhn
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. .,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
34
|
He Y, Luo J, Chen Y, Zhou X, Yu S, Jin L, Xiao X, Jia S, Liu Q. ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β-thalassaemia. Mol Genet Genomics 2017; 293:207-216. [DOI: 10.1007/s00438-017-1377-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
35
|
Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. eLife 2017; 6:e27873. [PMID: 28956530 PMCID: PMC5656432 DOI: 10.7554/elife.27873] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Precise and efficient manipulation of genes is crucial for understanding the molecular mechanisms that govern human hematopoiesis and for developing novel therapies for diseases of the blood and immune system. Current methods do not enable precise engineering of complex genotypes that can be easily tracked in a mixed population of cells. We describe a method to multiplex homologous recombination (HR) in human hematopoietic stem and progenitor cells and primary human T cells by combining rAAV6 donor delivery and the CRISPR/Cas9 system delivered as ribonucleoproteins (RNPs). In addition, the use of reporter genes allows FACS-purification and tracking of cells that have had multiple alleles or loci modified by HR. We believe this method will enable broad applications not only to the study of human hematopoietic gene function and networks, but also to perform sophisticated synthetic biology to develop innovative engineered stem cell-based therapeutics.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of PediatricsStanford UniversityStanfordUnited States
| | - Daniel P Dever
- Department of PediatricsStanford UniversityStanfordUnited States
| | - Andreas Reinisch
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | - David Cruz Hernandez
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | - Ravindra Majeti
- Department of Medicine, Division of HematologyStanford UniversityStanfordUnited States
- Department of Medicine, Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordUnited States
- Department of Medicine, Cancer InstituteStanford UniversityStanfordUnited States
| | | |
Collapse
|
36
|
Chattong S, Ruangwattanasuk O, Yindeedej W, Setpakdee A, Manotham K. CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven repair-mediated locus-specific knock-in of an artificial β-globin gene. Gene Ther 2017; 24:425-432. [DOI: 10.1038/gt.2017.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/21/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
|
37
|
Genome Editing for the β-Hemoglobinopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:203-217. [DOI: 10.1007/978-1-4939-7299-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
38
|
Tabebordbar M, Cheng J, Wagers AJ. Therapeutic Gene Editing in Muscles and Muscle Stem Cells. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 2017; 32:42-61. [PMID: 28049282 PMCID: PMC5214730 DOI: 10.3904/kjim.2016.198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.
Collapse
Affiliation(s)
- Eun Ji Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ki Ho Kang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Ji Hyeon Ju, M.D. Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6893 Fax: +82-2-3476-2274 E-mail:
| |
Collapse
|
40
|
Mansilla-Soto J, Riviere I, Boulad F, Sadelain M. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Hum Gene Ther 2016; 27:295-304. [PMID: 27021486 DOI: 10.1089/hum.2016.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade.
Collapse
Affiliation(s)
- Jorge Mansilla-Soto
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Isabelle Riviere
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Farid Boulad
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York.,2 Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Michel Sadelain
- 1 Center for Cell Engineering, Memorial Sloan Kettering Cancer Center , New York, New York
| |
Collapse
|
41
|
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, Uchida N, Hendel A, Narla A, Majeti R, Weinberg KI, Porteus MH. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 2016; 539:384-389. [PMID: 27820943 PMCID: PMC5898607 DOI: 10.1038/nature20134] [Citation(s) in RCA: 637] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies.
Collapse
Affiliation(s)
- Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Andreas Reinisch
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Gabriel Washington
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Nivi Saxena
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Alec B Wilkens
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Nobuko Uchida
- Stem Cells, Inc. 7707 Gateway Blvd., Suite 140, Newark, California 94560, USA
| | - Ayal Hendel
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Anupama Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
| | - Kenneth I Weinberg
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
42
|
Ludwig LS, Khajuria RK, Sankaran VG. Emerging cellular and gene therapies for congenital anemias. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:332-348. [PMID: 27792859 DOI: 10.1002/ajmg.c.31529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc.
Collapse
|
43
|
Bialk P, Sansbury B, Rivera-Torres N, Bloh K, Man D, Kmiec EB. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides. Sci Rep 2016; 6:32681. [PMID: 27609304 PMCID: PMC5016854 DOI: 10.1038/srep32681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.
Collapse
Affiliation(s)
- Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Brett Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Dula Man
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
44
|
Senís E, Mockenhaupt S, Rupp D, Bauer T, Paramasivam N, Knapp B, Gronych J, Grosse S, Windisch MP, Schmidt F, Theis FJ, Eils R, Lichter P, Schlesner M, Bartenschlager R, Grimm D. TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Res 2016; 45:e3. [PMID: 27614072 PMCID: PMC5224498 DOI: 10.1093/nar/gkw805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Successful RNAi applications depend on strategies allowing robust and persistent expression of minimal gene silencing triggers without perturbing endogenous gene expression. Here, we propose a novel avenue which is integration of a promoterless shmiRNA, i.e. a shRNA embedded in a micro-RNA (miRNA) scaffold, into an engineered genomic miRNA locus. For proof-of-concept, we used TALE or CRISPR/Cas9 nucleases to site-specifically integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr locus in hepatoma cells, with the aim to obtain cellular clones that are genetically protected against HCV infection. Using reporter assays, Northern blotting and qRT-PCR, we confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality in selected cellular progeny. Moreover, we employed a comprehensive battery of PCR, cDNA/miRNA profiling and whole genome sequencing analyses to validate targeted integration of a single shmiRNA molecule at the expected position, and to rule out deleterious effects on the genomes or transcriptomes of the engineered cells. Importantly, a subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNAi expression technologies benefits numerous applications, from miRNA, genome and transgenesis research, to human gene therapy.
Collapse
Affiliation(s)
- Elena Senís
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Stefan Mockenhaupt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tobias Bauer
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Medical Faculty Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jan Gronych
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Stefanie Grosse
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marc P Windisch
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Florian Schmidt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Department of Mathematics, Technische Universität München, Garching, 85748, Germany
| | - Roland Eils
- BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany.,Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, 69120, Germany
| | - Peter Lichter
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
45
|
Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, Young CS, Mojadidi M, Fitz-Gibbon S, Cooper AR, Lill GR, Urbinati F, Campo-Fernandez B, Bjurstrom CF, Pellegrini M, Hollis RP, Kohn DB. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Mol Ther 2016; 24:1561-9. [PMID: 27406980 PMCID: PMC5113113 DOI: 10.1038/mt.2016.148] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
Targeted genome editing technology can correct the sickle cell disease mutation of the β-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the β-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Dianne Lumaquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Caroline Y Kuo
- Division of Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Joseph Long
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
- Biology Department, California State University, Northridge, California, USA
| | - Michelle Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Courtney S Young
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Molecular Biology Interdepartmental PhD Program (MBIDP), University of California, Los Angeles, California, USA
| | - Michelle Mojadidi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - Aaron R Cooper
- Molecular Biology Interdepartmental PhD Program (MBIDP), University of California, Los Angeles, California, USA
| | - Georgia R Lill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Fabrizia Urbinati
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Carmen F Bjurstrom
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, California, USA
| |
Collapse
|
46
|
Tasan I, Jain S, Zhao H. Use of genome-editing tools to treat sickle cell disease. Hum Genet 2016; 135:1011-28. [PMID: 27250347 PMCID: PMC5002234 DOI: 10.1007/s00439-016-1688-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/11/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in genome-editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next-generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD, but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review, we will discuss the three programmable nucleases that are commonly used for genome-editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy.
Collapse
Affiliation(s)
- Ipek Tasan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Surbhi Jain
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
47
|
Zhou Y, Liu Y, Hussmann D, Brøgger P, Al-Saaidi RA, Tan S, Lin L, Petersen TS, Zhou GQ, Bross P, Aagaard L, Klein T, Rønn SG, Pedersen HD, Bolund L, Nielsen AL, Sørensen CB, Luo Y. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci 2016; 73:2543-63. [PMID: 26755436 PMCID: PMC11108510 DOI: 10.1007/s00018-015-2128-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/09/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Programmable DNA nucleases such as TALENs and CRISPR/Cas9 are emerging as powerful tools for genome editing. Dual-fluorescent surrogate systems have been demonstrated by several studies to recapitulate DNA nuclease activity and enrich for genetically edited cells. In this study, we created a single-strand annealing-directed, dual-fluorescent surrogate reporter system, referred to as C-Check. We opted for the Golden Gate Cloning strategy to simplify C-Check construction. To demonstrate the utility of the C-Check system, we used the C-Check in combination with TALENs or CRISPR/Cas9 in different scenarios of gene editing experiments. First, we disrupted the endogenous pIAPP gene (3.0 % efficiency) by C-Check-validated TALENs in primary porcine fibroblasts (PPFs). Next, we achieved gene-editing efficiencies of 9.0-20.3 and 4.9 % when performing single- and double-gene targeting (MAPT and SORL1), respectively, in PPFs using C-Check-validated CRISPR/Cas9 vectors. Third, fluorescent tagging of endogenous genes (MYH6 and COL2A1, up to 10.0 % frequency) was achieved in human fibroblasts with C-Check-validated CRISPR/Cas9 vectors. We further demonstrated that the C-Check system could be applied to enrich for IGF1R null HEK293T cells and CBX5 null MCF-7 cells with frequencies of nearly 100.0 and 86.9 %, respectively. Most importantly, we further showed that the C-Check system is compatible with multiplexing and for studying CRISPR/Cas9 sgRNA specificity. The C-Check system may serve as an alternative dual-fluorescent surrogate tool for measuring DNA nuclease activity and enrichment of gene-edited cells, and may thereby aid in streamlining programmable DNA nuclease-mediated genome editing and biological research.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Yong Liu
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Dianna Hussmann
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Peter Brøgger
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Rasha Abdelkadhem Al-Saaidi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200, Aarhus N, Denmark
| | - Shuang Tan
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
- Shenzhen Key Laboratory for Anti-aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Trine Skov Petersen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Guang Qian Zhou
- Shenzhen Key Laboratory for Anti-aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200, Aarhus N, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Tino Klein
- Department of Histology, Gubra A/S, 2970, Hørsholm, Denmark
| | - Sif Groth Rønn
- Department of Incretin and Obesity Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | - Lars Bolund
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
- BGI-Shenzhen, Shenzhen, 518083, China
- The Danish Regenerative Engineering Alliance for Medicine (DREAM), Aarhus University, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - Charlotte Brandt Sørensen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and University Hospital, 8200, Aarhus N, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark.
- Department of Incretin and Obesity Research, Novo Nordisk A/S, 2760, Måløv, Denmark.
- The Danish Regenerative Engineering Alliance for Medicine (DREAM), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
48
|
Goodman MA, Malik P. The potential of gene therapy approaches for the treatment of hemoglobinopathies: achievements and challenges. Ther Adv Hematol 2016; 7:302-315. [PMID: 27695619 DOI: 10.1177/2040620716653729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hemoglobinopathies, including β-thalassemia and sickle cell disease (SCD), are a heterogeneous group of commonly inherited disorders affecting the function or levels of hemoglobin. Disease phenotype can be severe with substantial morbidity and mortality. Bone marrow transplantation is curative, but limited to those patients with an appropriately matched donor. Genetic therapy, which utilizes a patient's own cells, is thus an attractive therapeutic option. Numerous therapies are currently in clinical trials or in development, including therapies utilizing gene replacement therapy using lentiviruses and the latest gene editing techniques. In addition, methods are being developed that may be able to expand gene therapies to those with poor access to medical care, potentially significantly decreasing the global burden of disease.
Collapse
Affiliation(s)
- Michael A Goodman
- Division of Experimental Hematology and Cancer Biology,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
49
|
Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 2016; 135:993-1010. [PMID: 27314256 DOI: 10.1007/s00439-016-1696-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.
Collapse
|
50
|
|