1
|
Mazzone E, Aresu L. Comprehensive Analysis of Microsatellite Instability in Canine Cancers: Implications for Comparative Oncology and Personalized Veterinary Medicine. Animals (Basel) 2024; 14:2484. [PMID: 39272269 PMCID: PMC11394029 DOI: 10.3390/ani14172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Microsatellite instability (MSI) is a crucial feature in cancer biology, yet its prevalence and significance in canine cancers remain largely unexplored. This study conducted a comprehensive analysis of MSI across 10 distinct canine cancer histotypes using whole-exome sequencing data from 692 tumor-normal sample pairs. MSI was detected in 64% of tumors, with prevalence varying significantly among cancer types. B-cell lymphomas exhibited the highest MSI burden, contrasting with human studies. A novel "MSI-burden" score was developed, correlating significantly with tumor mutational burden. MSI-high (MSI-H) tumors showed elevated somatic mutation counts compared to MSI-low and microsatellite stable tumors. The study identified 3632 recurrent MSI-affected genomic regions across cancer types. Notably, seven of the ten cancer types exhibited MSI-H tumors, with prevalence ranging from 1.5% in melanomas to 37% in B-cell lymphomas. These findings highlight the potential importance of MSI in canine cancer biology and suggest opportunities for targeted therapies, particularly immunotherapies. The high prevalence of MSI in canine cancers, especially in B-cell lymphomas, warrants further investigation into its mechanistic role and potential as a biomarker for prognosis and treatment response.
Collapse
Affiliation(s)
- Eugenio Mazzone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| |
Collapse
|
2
|
Hytönen MK, Viitanen S, Hundi S, Donner J, Lohi H, Kaukonen M. A frameshift deletion in F8 associated with hemophilia A in Labrador Retriever dogs. Anim Genet 2023; 54:606-612. [PMID: 37438956 DOI: 10.1111/age.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Hemophilia A is the most common inherited coagulation factor disorder in dogs. It manifests as excessive bleeding resulting from pathogenic variants in the X-chromosomal F8 gene encoding coagulation factor VIII (FVIII) protein. In this study, we performed careful clinical phenotyping to confirm hemophilia A in two distinct Labrador Retriever (LR) pedigrees. Whole-genome sequencing on an affected dog from litter 1 identified a case-specific frameshift deletion variant in F8 predicted to cause a premature stop codon (c.2923_2924del, p.(E975Kfs*8)). This variant was hemizygous in all the affected males from litter 1 (n = 3), while all the unaffected LRs in the pedigree were heterozygous or wild-type (n = 22). Additionally, screened samples from 199 LRs were all found to be wild-type. As a result of this study, a gene test can now be developed to screen dogs before breeding to prevent further cases. However, it is important to note that the affected LR with decreased FVIII activity from litter 2 was wild-type for the identified deletion variant, and no segregating F8 variants were detected when this dog's DNA sample was whole-genome sequenced. Thus, the cause of decreased FVIII activity in this dog remains to be unraveled in future studies.
Collapse
Affiliation(s)
- Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Sanna Viitanen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
3
|
Rodrigues L, Watson J, Feng Y, Lewis B, Harvey G, Post G, Megquier K, White ME, Lambert L, Miller A, Lopes C, Zhao S. Shared hotspot mutations in oncogenes position dogs as an unparalleled comparative model for precision therapeutics. Sci Rep 2023; 13:10935. [PMID: 37414794 PMCID: PMC10325973 DOI: 10.1038/s41598-023-37505-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Naturally occurring canine cancers have remarkable similarities to their human counterparts. To better understand these similarities, we investigated 671 client-owned dogs from 96 breeds with 23 common tumor types, including those whose mutation profile are unknown (anal sac carcinoma and neuroendocrine carcinoma) or understudied (thyroid carcinoma, soft tissue sarcoma and hepatocellular carcinoma). We discovered mutations in 50 well-established oncogenes and tumor suppressors, and compared them to those reported in human cancers. As in human cancer, TP53 is the most commonly mutated gene, detected in 22.5% of canine tumors overall. Canine tumors share mutational hotspots with human tumors in oncogenes including PIK3CA, KRAS, NRAS, BRAF, KIT and EGFR. Hotspot mutations with significant association to tumor type include NRAS G61R and PIK3CA H1047R in hemangiosarcoma, ERBB2 V659E in pulmonary carcinoma, and BRAF V588E (equivalent of V600E in humans) in urothelial carcinoma. Our findings better position canines as a translational model of human cancer to investigate a wide spectrum of targeted therapies.
Collapse
Affiliation(s)
- Lucas Rodrigues
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA.
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Benjamin Lewis
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Garrett Harvey
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Gerald Post
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Kate Megquier
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michelle E White
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Lindsay Lambert
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Aubrey Miller
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Christina Lopes
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA.
| |
Collapse
|
4
|
Dog-human translational genomics: state of the art and genomic resources. J Appl Genet 2022; 63:703-716. [PMID: 36074326 DOI: 10.1007/s13353-022-00721-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Innovative models for medical research are strongly required nowadays. Convincing evidence supports dog as the most suitable spontaneous model for several human genetic diseases. Decades of studies on dog genome allowed the identification of hundreds of mutations causing genetic disorders, many of which are proposed as counterparts responsible for human diseases. Traditionally, the murine model is the most extensively used in human translational research. However, this species shows large physiological differences from humans, and it is kept under a controlled artificial environment. Conversely, canine genetic disorders often show pathophysiological and clinical features highly resembling the human counterpart. In addition, dogs share the same environment with humans; therefore, they are naturally exposed to many risk factors. Thus, different branches of translational medicine aim to study spontaneously occurring diseases in dogs to provide a more reliable model for human disorders. This review offers a comprehensive overview of the knowledge and resources available today for all the researchers involved in the field of dog-human translational medicine. Some of the main successful examples from dog-human translational genomics are reported, such as the canine association studies which helped to identify the causal mutation in the human counterpart. We also illustrated the ongoing projects aiming to create public canine big datasets. Finally, specific online databases are discussed along with several information resources that can speed up clinical translational research.
Collapse
|
5
|
Giannuzzi D, Marconato L, Fanelli A, Licenziato L, De Maria R, Rinaldi A, Rotta L, Rouquet N, Birolo G, Fariselli P, Mensah AA, Bertoni F, Aresu L. The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications. Lab Anim (NY) 2022; 51:191-202. [PMID: 35726023 DOI: 10.1038/s41684-022-00998-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Laura Marconato
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy.
| |
Collapse
|
6
|
Reicher V, Bálint A, Újváry D, Gácsi M. Non-invasive sleep EEG measurement in hand raised wolves. Sci Rep 2022; 12:9792. [PMID: 35697910 PMCID: PMC9191399 DOI: 10.1038/s41598-022-13643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Sleep research greatly benefits from comparative studies to understand the underlying physiological and environmental factors affecting the different features of sleep, also informing us about the possible evolutionary changes shaping them. Recently, the domestic dog became an exceedingly valuable model species in sleep studies, as the use of non-invasive polysomnography methodologies enables direct comparison with human sleep data. In this study, we applied the same polysomnography protocol to record the sleep of dog’s closest wild relative, the wolf. We measured the sleep of seven captive (six young and one senior), extensively socialized wolves using a fully non-invasive sleep EEG methodology, originally developed for family dogs. We provide the first descriptive analysis of the sleep macrostructure and NREM spectral power density of wolves using a completely non-invasive methodology. For (non-statistical) comparison, we included the same sleep data of similarly aged dogs. Although our sample size was inadequate to perform statistical analyses, we suggest that it may form the basis of an international, multi-site collection of similar samples using our methodology, allowing for generalizable, unbiased conclusions. As we managed to register both macrostructural and spectral sleep data, our procedure appears to be suitable for collecting valid data in other species too, increasing the comparability of non-invasive sleep studies.
Collapse
Affiliation(s)
- Vivien Reicher
- Department of Ethology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary. .,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.
| | - Anna Bálint
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Dóra Újváry
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.,Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
7
|
Wu J, Yonezawa T, Kishino H. Molecular Evolutionary Rate Predicts Intraspecific Genetic Polymorphism and Species-Specific Selection. Genes (Basel) 2022; 13:genes13040708. [PMID: 35456514 PMCID: PMC9031814 DOI: 10.3390/genes13040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
It is unknown what determines genetic diversity and how genetic diversity is associated with various biological traits. In this work, we provide insight into these issues. By comparing genetic variation of 14,671 mammalian gene trees with thousands of individual human, chimpanzee, gorilla, mouse, and dog/wolf genomes, we found that intraspecific genetic diversity can be predicted by long-term molecular evolutionary rates rather than de novo mutation rates. This relationship was established during the early stage of mammalian evolution. Moreover, we developed a method to detect fluctuations of species-specific selection on genes based on the deviations of intraspecific genetic diversity predicted from long-term rates. We showed that the evolution of epithelial cells, rather than connective tissue, mainly contributed to morphological evolution of different species. For humans, evolution of the immune system and selective sweeps caused by infectious diseases are the most representative examples of adaptive evolution.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193, Japan
- Correspondence: (J.W.); (H.K.)
| | - Takahiro Yonezawa
- Faculty of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034, Japan;
| | - Hirohisa Kishino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo Ward, Tokyo 113-8657, Japan
- The Research Institute of Evolutionary Biology, Tokyo 138-0098, Japan
- AI/Data Science Social Implementation Laboratory, Chuo University, Tokyo 112-8551, Japan
- Correspondence: (J.W.); (H.K.)
| |
Collapse
|
8
|
Cronise KE, Das S, Hernandez BG, Regan DP, Dailey DD, McGeachan RI, Lana SE, Page RL, Gustafson DL, Duval DL. Characterizing the molecular and immune landscape of canine bladder cancer. Vet Comp Oncol 2022; 20:69-81. [PMID: 34021685 PMCID: PMC8606617 DOI: 10.1111/vco.12740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
Transitional cell carcinoma (TCC), also known as urothelial carcinoma, is the most common bladder cancer in humans and dogs. Approximately one-quarter of human TCCs are muscle-invasive and associated with a high risk of death from metastasis. Canine TCC (cTCC) tumours are typically high-grade and muscle-invasive. Shared similarities in risk factors, histopathology, and clinical presentation suggest that cTCC may serve as a model for the assessment of novel therapeutics that may inform therapies for human muscle-invasive TCC. The goal of this study was to characterize cTCC at the molecular level to identify drivers of oncogenesis and druggable targets. We performed whole exome sequencing (WES) of 11 cTCC tumours and three matched normal samples, identifying 583 variants in protein-coding genes. The most common variant was a V-to-E missense mutation in BRAF, identified in 4 out of 11 samples (36%) via WES. Sanger sequencing identified BRAF variants in 8 out of the same 11 cTCC samples, as well as in 22 out of 32 formalin-fixed paraffin embedded (FFPE) cTCC samples, suggesting an overall prevalence of 70%. RNA-Seq was performed to compare the gene expression profiles of cTCC tumours to normal bladder tissue. cTCC tumours exhibited up-regulation of genes involved in the cell cycle, DNA repair, and antiviral immunity. We also analysed the immune landscape of cTCC using immune gene signatures and immunohistochemical analysis. A subset of tumours had characteristics of a hot tumour microenvironment and exhibited high expression of signatures associated with complete response to PD-1/PD-L1 blockade in human bladder cancer.
Collapse
Affiliation(s)
- Kathryn E. Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Sunetra Das
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Belen G. Hernandez
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel P. Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Deanna D. Dailey
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Robert I. McGeachan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Susan E. Lana
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rodney L. Page
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel L. Gustafson
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dawn L. Duval
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA,University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Christen M, de le Roi M, Jagannathan V, Becker K, Leeb T. MYO5A Frameshift Variant in a Miniature Dachshund with Coat Color Dilution and Neurological Defects Resembling Human Griscelli Syndrome Type 1. Genes (Basel) 2021; 12:genes12101479. [PMID: 34680875 PMCID: PMC8535926 DOI: 10.3390/genes12101479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
A 1-month-old, female, smooth-haired miniature Dachshund with dilute color and neurological defects was investigated. The aim of this study was to characterize the clinical signs, histopathological changes and underlying genetic defect. The puppy had visible coat color dilution and was unable to hold its head on its own or to remain in a stable prone position for an extended period. Histopathological examination revealed an accumulation of clumped melanin and deposition of accumulated keratin within the hair follicles, accompanied by dermal pigmentary incontinence. These dermatological changes were compatible with the histopathology described in dogs with an MLPH-related dilute coat color. We sequenced the genome of the affected dog and compared the data to 795 control genomes. MYO5A, coding for myosin VA, was investigated as the top functional candidate gene. This search revealed a private homozygous frameshift variant in MYO5A, XM_022412522.1:c.4973_4974insA, predicted to truncate 269 amino acids (13.8%) of the wild type myosin VA protein, XP_022268230.1:p.(Asn1658Lysfs*28). The genotypes of the index family showed the expected co-segregation with the phenotype and the mutant allele was absent from 142 additionally genotyped, unrelated Dachshund dogs. MYO5A loss of function variants cause Griscelli type 1 syndrome in humans, lavender foal in horses and the phenotype of the dilute mouse mutant. Based on the available data, together with current knowledge on other species, we propose the identified MYO5A frameshift insertion as a candidate causative variant for the observed dermatological and neurological signs in the investigated dog.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.d.l.R.); (K.B.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.d.l.R.); (K.B.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
- Correspondence: ; Tel.: +41-31-684-23-26
| |
Collapse
|
10
|
Alsaihati BA, Ho KL, Watson J, Feng Y, Wang T, Dobbin KK, Zhao S. Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds. Nat Commun 2021; 12:4670. [PMID: 34344882 PMCID: PMC8333103 DOI: 10.1038/s41467-021-24836-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Spontaneous canine cancers are valuable but relatively understudied and underutilized models. To enhance their usage, we reanalyze whole exome and genome sequencing data published for 684 cases of >7 common tumor types and >35 breeds, with rigorous quality control and breed validation. Our results indicate that canine tumor alteration landscape is tumor type-dependent, but likely breed-independent. Each tumor type harbors major pathway alterations also found in its human counterpart (e.g., PI3K in mammary tumor and p53 in osteosarcoma). Mammary tumor and glioma have lower tumor mutational burden (TMB) (median < 0.5 mutations per Mb), whereas oral melanoma, osteosarcoma and hemangiosarcoma have higher TMB (median ≥ 1 mutations per Mb). Across tumor types and breeds, TMB is associated with mutation of TP53 but not PIK3CA, the most mutated genes. Golden Retrievers harbor a TMB-associated and osteosarcoma-enriched mutation signature. Here, we provide a snapshot of canine mutations across major tumor types and breeds.
Collapse
Affiliation(s)
- Burair A Alsaihati
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Kun-Lin Ho
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Kevin K Dobbin
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Deletion of the SELENOP gene leads to CNS atrophy with cerebellar ataxia in dogs. PLoS Genet 2021; 17:e1009716. [PMID: 34339417 PMCID: PMC8360551 DOI: 10.1371/journal.pgen.1009716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated a hereditary cerebellar ataxia in Belgian Shepherd dogs. Affected dogs developed uncoordinated movements and intention tremor at two weeks of age. The severity of clinical signs was highly variable. Histopathology demonstrated atrophy of the CNS, particularly in the cerebellum. Combined linkage and homozygosity mapping in a family with four affected puppies delineated a 52 Mb critical interval. The comparison of whole genome sequence data of one affected dog to 735 control genomes revealed a private homozygous structural variant in the critical interval, Chr4:66,946,539_66,963,863del17,325. This deletion includes the entire protein coding sequence of SELENOP and is predicted to result in complete absence of the encoded selenoprotein P required for selenium transport into the CNS. Genotypes at the deletion showed the expected co-segregation with the phenotype in the investigated family. Total selenium levels in the blood of homozygous mutant puppies of the investigated litter were reduced to about 30% of the value of a homozygous wildtype littermate. Genotyping >600 Belgian Shepherd dogs revealed an additional homozygous mutant dog. This dog also suffered from pronounced ataxia, but reached an age of 10 years. Selenop-/- knock-out mice were reported to develop ataxia, but their histopathological changes were less severe than in the investigated dogs. Our results demonstrate that deletion of the SELENOP gene in dogs cause a defect in selenium transport associated with CNS atrophy and cerebellar ataxia (CACA). The affected dogs represent a valuable spontaneous animal model to gain further insights into the pathophysiological consequences of CNS selenium deficiency. We studied a form of inherited ataxia in a family of Belgian Shepherd dogs that we termed CNS atrophy and cerebellar ataxia (CACA). Clinical signs were evident at 2 weeks of age and the affected puppies had to be euthanized at 4 weeks of age. The pedigree of the index family with 4 affected and 4 unaffected puppies suggested autosomal recessive inheritance. Using a purely positional cloning approach, we identified a complete deletion of the SELENOP gene as the most likely causative variant. SELENOP encodes selenoprotein P, a protein with multiple selenocysteine residues, which is required for the transport of selenium into the CNS. Selenium measurements in affected dogs demonstrated blood selenium levels of about 30% compared to normal control dogs. Genotyping a cohort of additional Belgian Shepherd dogs with unexplained ataxia identified another CACA case that had a relatively stable clinical condition and reached an age of 10 years. Selenop-/- knock-out mice show a related but not identical ataxia phenotype. Our finding of a SELENOP gene deletion in CACA affected dogs identifies a spontaneous animal model to gain further insights into the pathophysiological consequences of CNS selenium deficiency.
Collapse
|
12
|
Wang G, Wu M, Durham AC, Mason NJ, Roth DB. Canine Oncopanel: A capture-based, NGS platform for evaluating the mutational landscape and detecting putative driver mutations in canine cancers. Vet Comp Oncol 2021; 20:91-101. [PMID: 34286913 DOI: 10.1111/vco.12746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
Canine cancer, a significant cause of mortality in domestic dogs, is a powerful comparative model for human cancers. Revealing genetic alterations driving the oncogenesis of canine cancers holds great potential to deepen our understanding of the cancer biology, guide therapeutic development, and improve cancer management in both dogs and people. Next generation sequencing (NGS) based-diagnostic panels have been routinely used in human oncology for the identification of clinically-actionable mutations, enabling tailored treatments based on the individual's unique mutation profiles. Here, we report the development of a comprehensive canine cancer gene panel, the Canine Oncopanel, using a hybridization capture-based targeted NGS method. The Canine Oncopanel allows deep sequencing of 283 cancer genes and the detection of somatic mutations within these genes. Vigorous optimization was performed to achieve robust, high-standard performance using metrics of similar cancer panels in human oncology as benchmarks. Validation of the Canine Oncopanel on reference tumour samples with known mutations demonstrated that it can detect variants previously identified by alternative methods, with high accuracy and sensitivity. Putative drivers were detected in over 90% of clinical samples, showing high sensitivity. The Canine Oncopanel is suitable to map mutation profiles and identify putative driver mutations across common and rare cancer types in dogs. The data generated by the Canine Oncopanel presents a rich resource of putative oncogenic driver mutations and potential clinically relevant markers, paving the way for personalized diagnostics and precision medicine in canine oncology.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ming Wu
- Service and Support, Illumina, San Diego, California, USA
| | - Amy C Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Wong K, Ludwig L, Krijgsman O, Adams DJ, Wood GA, van der Weyden L. Comparison of the oncogenomic landscape of canine and feline hemangiosarcoma shows novel parallels with human angiosarcoma. Dis Model Mech 2021; 14:dmm049044. [PMID: 34296746 PMCID: PMC8319545 DOI: 10.1242/dmm.049044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023] Open
Abstract
Angiosarcoma (AS) is a highly aggressive tumor of blood and lymphatic vessels in humans that shares many similarities with spontaneously occurring hemangiosarcoma (HSA) in dogs and cats. To investigate the genetic suitability of HSA as a model for AS, we sequenced ∼1000 cancer genes in 41 cases of HSA and matched germline tissue: 15 canine visceral HSAs, 13 canine skin HSAs and 13 feline skin HSAs. Analysis of visceral HSAs from dogs presenting with concurrent splenic and cardiac neoplasms showed that the tumors were not independent primaries, consistent with the highly metastatic nature of HSA. Comparison of HSA to AS revealed that several driver genes were recurrently mutated in both species, such as TP53, PIK3CA, ATRX, GRIN2A and LRP1B. Similar to AS, a UV mutational signature was found in a subset of canine cutaneous HSAs and both species show differing mutational profiles between tissue sites. Our characterization of canine and feline HSA demonstrates many important parallels to AS and provides hope that future studies on these cancers will benefit of all three species.
Collapse
Affiliation(s)
- Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Latasha Ludwig
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | - Oscar Krijgsman
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
14
|
Gola C, Giannuzzi D, Rinaldi A, Iussich S, Modesto P, Morello E, Buracco P, Aresu L, De Maria R. Genomic and Transcriptomic Characterization of Canine Osteosarcoma Cell Lines: A Valuable Resource in Translational Medicine. Front Vet Sci 2021; 8:666838. [PMID: 34079834 PMCID: PMC8165228 DOI: 10.3389/fvets.2021.666838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OSA) represents the most common primary bone tumor in dogs and is characterized by a highly aggressive behavior. Cell lines represent one of the most suitable and reproducible pre-clinical models, and therefore the knowledge of their molecular landscape is mandatory to investigate oncogenic mechanisms and drug response. The present study aims at determining variants, putative driver genes, and gene expression aberrations by integrating whole-exome and RNA sequencing. For this purpose, eight canine OSA cell lines and one matched pair of primary tumor and normal tissue were analyzed. Overall, cell lines revealed a mean tumor mutational burden of 9.6 mutations/Mb (range 3.9–16.8). Several known oncogenes and tumor suppressor genes, such as ALK, MYC, and MET, were prioritized as having a likely role in canine OSA. Mutations in eight genes, previously described as human OSA drivers and including TP53, PTCH1, MED12, and PI3KCA, were retrieved in our cell lines. When variants were cross-referenced with human OSA driver mutations, the E273K mutation of TP53 was identified in the Wall cell line and tumor sample. The transcriptome profiling detected two possible p53 inactivation mechanisms in the Wall cell line on the one hand, and in D17 and D22 on the other. Moreover, MET overexpression, potentially leading to MAPK/ERK pathway activation, was observed in D17 and D22 cell lines. In conclusion, our data provide the molecular characterization of a large number of canine OSA cell lines, allowing future investigations on potential therapeutic targets and associated biomarkers. Notably, the Wall cell line represents a valuable model to empower prospective in vitro studies both in human and in dogs, since the TP53 driver mutation was maintained during cell line establishment and was widely reported as a mutation hotspot in several human cancers.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padua, Padua, Italy
| | - Andrea Rinaldi
- Faculty of Biomedical Sciences, Institute of Oncology Research, Universit'a della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Selina Iussich
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria, and Valle d'Aosta, Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Turin, Italy
| | | |
Collapse
|
15
|
Chu S, Skidmore ZL, Kunisaki J, Walker JR, Griffith M, Griffith OL, Bryan JN. Unraveling the chaotic genomic landscape of primary and metastatic canine appendicular osteosarcoma with current sequencing technologies and bioinformatic approaches. PLoS One 2021; 16:e0246443. [PMID: 33556121 PMCID: PMC7870011 DOI: 10.1371/journal.pone.0246443] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Osteosarcoma is a rare disease in children but is one of the most common cancers in adult large breed dogs. The mutational landscape of both the primary and pulmonary metastatic tumor in two dogs with appendicular osteosarcoma (OSA) was comprehensively evaluated using an automated whole genome sequencing, exome and RNA-seq pipeline that was adapted for this study for use in dogs. Chromosomal lesions were the most common type of mutation. The mutational landscape varied substantially between dogs but the lesions within the same patient were similar. Copy number neutral loss of heterozygosity in mutant TP53 was the most significant driver mutation and involved a large region in the middle of chromosome 5. Canine and human OSA is characterized by loss of cell cycle checkpoint integrity and DNA damage response pathways. Mutational profiling of individual patients with canine OSA would be recommended prior to targeted therapy, given the heterogeneity seen in our study and previous studies.
Collapse
Affiliation(s)
- Shirley Chu
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America
- * E-mail:
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Jason Kunisaki
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
| | - Malachi Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
- Department of Medicine, Washington University, St. Louis, MO, United States of America
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO, United States of America
- Department of Medicine, Washington University, St. Louis, MO, United States of America
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
16
|
Kyöstilä K, Niskanen JE, Arumilli M, Donner J, Hytönen MK, Lohi H. Intronic variant in POU1F1 associated with canine pituitary dwarfism. Hum Genet 2021; 140:1553-1562. [PMID: 33550451 PMCID: PMC8519942 DOI: 10.1007/s00439-021-02259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
The anterior pituitary gland secretes several endocrine hormones, essential for growth, reproduction and other basic physiological functions. Abnormal development or function of the pituitary gland leads to isolated or combined pituitary hormone deficiency (CPHD). At least 30 genes have been associated with human CPHD, including many transcription factors, such as POU1F1. CPHD occurs spontaneously also in mice and dogs. Two affected breeds have been reported in dogs: German Shepherds with a splice defect in the LHX3 gene and Karelian Bear Dogs (KBD) with an unknown genetic cause. We obtained samples from five KBDs presenting dwarfism and abnormal coats. A combined analysis of genome-wide association and next-generation sequencing mapped the disease to a region in chromosome 31 and identified a homozygous intronic variant in the fourth exon of the POU1F1 gene in the affected dogs. The identified variant, c.605-3C>A, resided in the splice region and was predicted to affect splicing. The variant's screening in three new prospective cases, related breeds, and ~ 8000 dogs from 207 breeds indicated complete segregation in KBDs with a carrier frequency of 8%, and high breed-specificity as carriers were found at a low frequency only in Lapponian Herders, a related breed. Our study establishes a novel canine model for CPHD with a candidate POU1F1 defect.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
17
|
Denyer AL, Catchpole B, Davison LJ. Genetics of canine diabetes mellitus part 2: Current understanding and future directions. Vet J 2021; 270:105612. [PMID: 33641811 DOI: 10.1016/j.tvjl.2021.105612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
Part 1 of this 2-part review outlined the importance of disease classification in diabetes genetic studies, as well as the ways in which genetic variants may contribute to risk of a complex disease within an individual, or within a particular group of individuals. Part 2, presented here, describes in more detail our current understanding of the genetics of canine diabetes mellitus compared to our knowledge of the human disease. Ongoing work to improve our knowledge, using new technologies, is also introduced.
Collapse
Affiliation(s)
- Alice L Denyer
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Lucy J Davison
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
18
|
Cortellari M, Bionda A, Talenti A, Ceccobelli S, Attard G, Lasagna E, Crepaldi P, Liotta L. Genomic variability of Cirneco dell’Etna and the genetic distance with other dog breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1873076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Matteo Cortellari
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, University of Milan, Milano, Italy
| | - Arianna Bionda
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, University of Milan, Milano, Italy
| | - Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, Msida, Malta
- Ministry for Agriculture, Fisheries and Animal Rights, Agency for the Governance of Agricultural Bio-Resources, Marsa, Malta
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Paola Crepaldi
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, University of Milan, Milano, Italy
| | - Luigi Liotta
- Dipartimento di Scienze Veterinarie, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Bergström A, Frantz L, Schmidt R, Ersmark E, Lebrasseur O, Girdland-Flink L, Lin AT, Storå J, Sjögren KG, Anthony D, Antipina E, Amiri S, Bar-Oz G, Bazaliiskii VI, Bulatović J, Brown D, Carmagnini A, Davy T, Fedorov S, Fiore I, Fulton D, Germonpré M, Haile J, Irving-Pease EK, Jamieson A, Janssens L, Kirillova I, Horwitz LK, Kuzmanovic-Cvetković J, Kuzmin Y, Losey RJ, Dizdar DL, Mashkour M, Novak M, Onar V, Orton D, Pasarić M, Radivojević M, Rajković D, Roberts B, Ryan H, Sablin M, Shidlovskiy F, Stojanović I, Tagliacozzo A, Trantalidou K, Ullén I, Villaluenga A, Wapnish P, Dobney K, Götherström A, Linderholm A, Dalén L, Pinhasi R, Larson G, Skoglund P. Origins and genetic legacy of prehistoric dogs. Science 2020; 370:557-564. [PMID: 33122379 PMCID: PMC7116352 DOI: 10.1126/science.aba9572] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Ryan Schmidt
- School of Archaeology and Earth Institute, University College Dublin, Dublin, Ireland
- CIBIO-InBIO, University of Porto, Campus de Vairão, Portugal
| | - Erik Ersmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Linus Girdland-Flink
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- Liverpool John Moores University, Liverpool, UK
| | - Audrey T Lin
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jan Storå
- Stockholm University, Stockholm, Sweden
| | | | - David Anthony
- Hartwick College, Oneonta, NY, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ekaterina Antipina
- Institute of Archaeology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Sarieh Amiri
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | | | | | | | | | - Alberto Carmagnini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tom Davy
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Sergey Fedorov
- North-Eastern Federal University, Yakutsk, Russian Federation
| | - Ivana Fiore
- Bioarchaeology Service, Museo delle Civiltà, Rome, Italy
- Environmental and Evolutionary Biology Doctoral Program, Sapienza University of Rome, Rome, Italy
| | | | | | - James Haile
- University of Copenhagen, Copenhagen, Denmark
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Lundbeck GeoGenetics Centre, The Globe Institute, Copenhagen, Denmark
| | - Alexandra Jamieson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | | | - Yaroslav Kuzmin
- Sobolev Institute of Geology and Mineralogy of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
- Tomsk State University, Tomsk, Russian Federation
| | | | | | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Vedat Onar
- Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | | | - Maja Pasarić
- Institute of Ethnology and Folklore Research, Zagreb, Croatia
| | | | | | | | - Hannah Ryan
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | | | | | | | - Katerina Trantalidou
- Hellenic Ministry of Culture & Sports, Athens, Greece
- University of Thessaly, Argonauton & Philellinon, Volos, Greece
| | - Inga Ullén
- National Historical Museums, Stockholm, Sweden
| | - Aritza Villaluenga
- Consolidated Research Group on Prehistory (IT-1223-19), University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain
| | - Paula Wapnish
- Pennsylvania State University, University Park, PA, USA
| | - Keith Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
- School of Philosophical and Historical Inquiry, Faculty of Arts and Social Sciences, University of Sydney, Sydney, NSW, Australia
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
- Stockholm University, Stockholm, Sweden
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 18C, Stockholm, Sweden
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Buckley RM, Davis BW, Brashear WA, Farias FHG, Kuroki K, Graves T, Hillier LW, Kremitzki M, Li G, Middleton RP, Minx P, Tomlinson C, Lyons LA, Murphy WJ, Warren WC. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet 2020; 16:e1008926. [PMID: 33090996 PMCID: PMC7581003 DOI: 10.1371/journal.pgen.1008926] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models. The practice of genomic medicine is predicated on the availability of a high quality reference genome and an understanding of the impact of genome variation. Such resources have lead to countless discoveries in humans, however by working exclusively within the framework of human genetics, our potential for understanding diseases biology is limited, as similar analyses in other species have often lead to novel insights. The generation of Felis_catus_9.0, a new high quality reference genome for the domestic cat, helps facilitate the expansion of genomic medicine into the Felis lineage. Using Felis_catus_9.0 we analyze the landscape of genomic variation from a collection of 54 cats within the context of human gene constraint. The distribution of variant impacts in cats is correlated with patterns of gene constraint in humans, indicating the utility of this reference for identifying novel mutations that cause phenotypes relevant to human and cat health. Moreover, structural variant analysis revealed a novel variant for feline dwarfism in UGDH, a gene that has not been associated with dwarfism in any other species, suggesting a role for UGDH in cases of undiagnosed dwarfism in humans.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley A. Brashear
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Kei Kuroki
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tina Graves
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - LaDeana W. Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | | | - Patrick Minx
- Donald Danforth Plant Science, St Louis, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley C. Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Letko A, Minor KM, Jagannathan V, Seefried FR, Mickelson JR, Oliehoek P, Drögemüller C. Genomic diversity and population structure of the Leonberger dog breed. Genet Sel Evol 2020; 52:61. [PMID: 33054768 PMCID: PMC7557023 DOI: 10.1186/s12711-020-00581-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Leonberger is a giant dog breed formed in the 1850s in Germany. Its post-World War II popularity has resulted in a current global population of ~ 30,000 dogs. The breed has predispositions to neurodegenerative disorders and cancer, which is likely due in large part to limited genetic diversity. However, to date there is no scientific literature on the overall demography and genomic architecture of this breed. RESULTS We assessed extensive pedigree records, SNP array genotype data, and whole-genome sequences (WGS) on 142,072, 1203 and 39 Leonberger dogs, respectively. Pedigree analyses identified 22 founder animals and revealed an apparent popular sire effect. The average pedigree-based inbreeding coefficient of 0.29 and average kinship of 0.31 show a dramatic loss of genetic diversity. The observed average life span decreased over time from 9.4 years in 1989 to 7.7 years in 2004. A global health survey confirmed a high prevalence of cancer and neurological disorders. Analysis of SNP-based runs of homozygosity (ROH) identified 125,653 ROH with an average length of 5.88 Mb, and confirmed an average inbreeding coefficient of 0.28. Genome-wide filtering of the WGS data revealed 28 non-protein-changing variants that were present in all Leonberger individuals and a list of 22 potentially pathogenic variants for neurological disorders of which 50% occurred only in Leonbergers and 50% occurred rarely in other breeds. Furthermore, one of the two mtDNA haplogroups detected was present in one dog only. CONCLUSIONS The increasing size of the Leonberger population has been accompanied by a considerable loss of genetic diversity after the bottleneck that occurred in the 1940s due to the intensive use of popular sires resulting in high levels of inbreeding. This might explain the high prevalence of certain disorders; however, genomic data provide no evidence for fixed coding variants that explain these predispositions. The list of candidate causative variants for polyneuropathy needs to be further evaluated. Preserving the current genetic diversity is possible by increasing the number of individuals for breeding while restricting the number of litters per sire/dam. In addition, outcrossing would help optimize long-term genetic diversity and contribute to the sustainability and health of the population.
Collapse
Affiliation(s)
- Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Katie M. Minor
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108 USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | - James R. Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108 USA
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
22
|
Koller D, Kubinyi E, Elek Z, Nemeth H, Miklosi A, Sasvari-Szekely M, Ronai Z. The molecular effect of a polymorphic microRNA binding site of Wolfram syndrome 1 gene in dogs. BMC Genet 2020; 21:82. [PMID: 32723293 PMCID: PMC7390163 DOI: 10.1186/s12863-020-00879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Although the molecular function of wolframin remains unclear, the lack of this protein is known to cause stress in the endoplasmic reticulum. Some variants in the Wolfram Syndrome 1 gene (WFS1) were associated with various neuropsychiatric disorders in humans, such as aggressiveness, impulsivity and anxiety. Results Here we present an in silico study predicting a single nucleotide polymorphism (rs852850348) in the canine WFS1 gene which was verified by direct sequencing and was genotyped by a PCR-based technique. We found that the rs852850348 polymorphism is located in a putative microRNA (cfa-miR-8834a and cfa-miR-1838) binding site. Therefore, the molecular effect of allelic variants was studied in a luciferase reporter system that allowed assessing gene expression. We demonstrated that the variant reduced the activity of the reporter protein expression in an allele-specific manner. Additionally, we performed a behavioral experiment and investigated the association with this locus to different performance in this test. Association was found between food possessivity and the studied WFS1 gene polymorphism in the Border collie breed. Conclusions Based on our findings, the rs852850348 locus might contribute to the genetic risk of possessivity behavior of dogs in at least one breed and might influence the regulation of wolframin expression.
Collapse
Affiliation(s)
- Dora Koller
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary. .,Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary. .,Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Eniko Kubinyi
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary.,Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Elek
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Helga Nemeth
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Adam Miklosi
- Comparative Ethology Research Group, MTA-ELTE, Budapest, Hungary.,Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Maria Sasvari-Szekely
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsolt Ronai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Abstract
The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
24
|
Kim TM, Yang IS, Seung BJ, Lee S, Kim D, Ha YJ, Seo MK, Kim KK, Kim HS, Cheong JH, Sur JH, Nam H, Kim S. Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat Commun 2020; 11:3616. [PMID: 32680987 PMCID: PMC7367841 DOI: 10.1038/s41467-020-17458-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Genomic and precision medicine research has afforded notable advances in human cancer treatment, yet applicability to other species remains uncertain. Through whole-exome and transcriptome analyses of 191 spontaneous canine mammary tumors (CMTs) that exhibit the archetypal features of human breast cancers, we found a striking resemblance of genomic characteristics including frequent PIK3CA mutations (43.1%), aberrations of the PI3K-Akt pathway (61.7%), and key genes involved in cancer initiation and progression. We also identified three gene expression-based CMT subtypes, one of which segregated with basal-like human breast cancer subtypes with activated epithelial-to-mesenchymal transition, low claudin expression, and unfavorable disease prognosis. A relative lack of ERBB2 amplification and Her2-enrichment subtype in CMT denoted species-specific molecular mechanisms. Taken together, our results elucidate cross-species oncogenic signatures for a better understanding of universal and context-dependent mechanisms in breast cancer development and provide a basis for precision diagnostics and therapeutics for domestic dogs.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Medical Informatics and Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - In Seok Yang
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Byung-Joon Seung
- Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Sejoon Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Dohyun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Yoo-Jin Ha
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ka-Kyung Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Ho Cheong
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
25
|
Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer. Nat Commun 2020; 11:3059. [PMID: 32546718 PMCID: PMC7297733 DOI: 10.1038/s41467-020-16765-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.
Collapse
|
26
|
Jónás D, Sándor S, Tátrai K, Egyed B, Kubinyi E. A Preliminary Study to Investigate the Genetic Background of Longevity Based on Whole-Genome Sequence Data of Two Methuselah Dogs. Front Genet 2020; 11:315. [PMID: 32373156 PMCID: PMC7176982 DOI: 10.3389/fgene.2020.00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Aging is the largest risk factor in many diseases and mortality alike. As the elderly population is expected to increase at an accelerating rate in the future, these phenomena will pose a growing socio-economic burden on societies. To successfully cope with this challenge, a deeper understanding of aging is crucial. In many aspects, the companion dog is an increasingly popular model organism to study aging, with the promise of producing results that are more applicable to humans than the findings that come from the studies of classical model organisms. In this preliminary study we used the whole-genome sequence of two extremely old dogs - age: 22 and 27 years (or 90-135% more, than the average lifespan of dogs) - in order to make the first steps to understand the genetic background of extreme longevity in dogs. We identified more than ∼80 1000 novel SNPs in the two dogs (7500 of which overlapped between them) when compared to three publicly available canine SNP databases, which included SNP information from850 dogs. Most novel mutations (∼52000 SNPs) were identified at non-coding regions, while 4.6% of the remaining SNPs (n∼1600) were at exons, including 670 missense variants - 76 of which overlapped between the two animals - across 472 genes. Based on their gene ontologies, these genes were related - among others - to gene transcription/translation and its regulation, to immune response and the nervous system in general. We also detected 12 loss-of-function mutations, although their actual effect is unclear. Several genetic pathways were also identified, which pathways may be tempting candidates to be investigated in large sample sizes in order to confirm their relevance in extreme longevity in dogs (and possibly, in humans). We hypothesize a possible link between extreme longevity and the regulation of gene transcription/translation, which hypothesis should be further investigated in the future. This phenomenon could define an interesting direction for future research aiming to better understand longevity. The presented preliminary results highlight the utility of the companion dog in the study of the genetic background of longevity and aging.
Collapse
Affiliation(s)
- Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Enikö Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
27
|
Linek M, Doelle M, Leeb T, Bauer A, Leuthard F, Henkel J, Bannasch D, Jagannathan V, Welle MM. ATP2A2 SINE Insertion in an Irish Terrier with Darier Disease and Associated Infundibular Cyst Formation. Genes (Basel) 2020; 11:genes11050481. [PMID: 32354065 PMCID: PMC7291265 DOI: 10.3390/genes11050481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
A 4-month-old female Irish Terrier presented with a well demarcated ulcerative and crusting lesion in the right ear canal. Histological analysis revealed epidermal hyperplasia with severe acantholysis affecting all suprabasal layers of the epidermis, which prompted a presumptive diagnosis of canine Darier disease. The lesion was successfully treated by repeated laser ablation of the affected epidermis. Over the course of three years, the dog additionally developed three dermal nodules of up to 4 cm in diameter that were excised and healed without complications. Histology of the excised tissue revealed multiple infundibular cysts extending from the upper dermis to the subcutis. The cysts were lined by squamous epithelium, which presented with abundant acantholysis of suprabasal keratinocytes. Infundibular cysts represent a novel finding not previously reported in Darier patients. Whole genome sequencing of the affected dog was performed, and the functional candidate genes for Darier disease (ATP2A2) and Hailey-Hailey disease (ATP2C1) were investigated. The analysis revealed a heterozygous SINE insertion into the ATP2A2 gene, at the end of intron 14, close to the boundary of exon 15. Analysis of the ATP2A2 mRNA from skin of the affected dog demonstrated a splicing defect and marked allelic imbalance, suggesting nonsense-mediated decay of the resulting aberrant transcripts. As Darier disease in humans is caused by haploinsufficiency of ATP2A2, our genetic findings are in agreement with the clinical and histopathological data and support the diagnosis of canine Darier disease.
Collapse
Affiliation(s)
- Monika Linek
- AniCura Tierärztliche Spezialisten, 22043 Hamburg, Germany; (M.L.); (M.D.)
| | - Maren Doelle
- AniCura Tierärztliche Spezialisten, 22043 Hamburg, Germany; (M.L.); (M.D.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
- Correspondence: ; Tel.: +41-31-631-23-26
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Fabienne Leuthard
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Jan Henkel
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Danika Bannasch
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.B.); (F.L.); (J.H.); (D.B.); (V.J.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
| | - Monika M. Welle
- Dermfocus, University of Bern, 3001 Bern, Switzerland;
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
28
|
Gurtner C, Hug P, Kleiter M, Köhler K, Dietschi E, Jagannathan V, Leeb T. YARS2 Missense Variant in Belgian Shepherd Dogs with Cardiomyopathy and Juvenile Mortality. Genes (Basel) 2020; 11:genes11030313. [PMID: 32183361 PMCID: PMC7140874 DOI: 10.3390/genes11030313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Dog puppy loss by the age of six to eight weeks after normal development is relatively uncommon. Necropsy findings in two spontaneously deceased Belgian Shepherd puppies indicated an abnormal accumulation of material in several organs. A third deceased puppy exhibited mild signs of an inflammation in the central nervous system and an enteritis. The puppies were closely related, raising the suspicion of a genetic cause. Pedigree analysis suggested a monogenic autosomal recessive inheritance. Combined linkage and homozygosity mapping assigned the most likely position of a potential genetic defect to 13 genome segments totaling 82 Mb. The genome of an affected puppy was sequenced and compared to 645 control genomes. Three private protein changing variants were found in the linked and homozygous regions. Targeted genotyping in 96 Belgian Shepherd dogs excluded two of these variants. The remaining variant, YARS2:1054G>A or p.Glu352Lys, was perfectly associated with the phenotype in a cohort of 474 Belgian Shepherd dogs. YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase 2 and the predicted amino acid change replaces a negatively charged and evolutionary conserved glutamate at the surface of the tRNA binding domain of YARS2 with a positively charged lysine. Human patients with loss-of-function variants in YARS2 suffer from myopathy, lactic acidosis, and sideroblastic anemia 2, a disease with clinical similarities to the phenotype of the studied dogs. The carrier frequency was 27.2% in the tested Belgian Shepherd dogs. Our data suggest YARS2:1054G>A as the candidate causative variant for the observed juvenile mortality.
Collapse
Affiliation(s)
- Corinne Gurtner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland;
| | - Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
| | - Miriam Kleiter
- Department/Hospital for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Elisabeth Dietschi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
- Correspondence: ; Tel.: +41-31-631-23-26
| |
Collapse
|
29
|
Leeb T, Leuthard F, Jagannathan V, Kiener S, Letko A, Roosje P, Welle MM, Gailbreath KL, Cannon A, Linek M, Banovic F, Olivry T, White SD, Batcher K, Bannasch D, Minor KM, Mickelson JR, Hytönen MK, Lohi H, Mauldin EA, Casal ML. A Missense Variant Affecting the C-Terminal Tail of UNC93B1 in Dogs with Exfoliative Cutaneous Lupus Erythematosus (ECLE). Genes (Basel) 2020; 11:E159. [PMID: 32028618 PMCID: PMC7074252 DOI: 10.3390/genes11020159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/20/2023] Open
Abstract
Cutaneous lupus erythematosus (CLE) in humans encompasses multiple subtypes that exhibit a wide array of skin lesions and, in some cases, are associated with the development of systemic lupus erythematosus (SLE). We investigated dogs with exfoliative cutaneous lupus erythematosus (ECLE), a dog-specific form of chronic CLE that is inherited as a monogenic autosomal recessive trait. A genome-wide association study (GWAS) with 14 cases and 29 controls confirmed a previously published result that the causative variant maps to chromosome 18. Autozygosity mapping refined the ECLE locus to a 493 kb critical interval. Filtering of whole genome sequence data from two cases against 654 controls revealed a single private protein-changing variant in this critical interval, UNC93B1:c.1438C>A or p.Pro480Thr. The homozygous mutant genotype was exclusively observed in 23 ECLE affected German Shorthaired Pointers and an ECLE affected Vizsla, but absent from 845 controls. UNC93B1 is a transmembrane protein located in the endoplasmic reticulum and endolysosomes, which is required for correct trafficking of several Toll-like receptors (TLRs). The p.Pro480Thr variant is predicted to affect the C-terminal tail of the UNC93B1 that has recently been shown to restrict TLR7 mediated autoimmunity via an interaction with syndecan binding protein (SDCBP). The functional knowledge on UNC93B1 strongly suggests that p.Pro480Thr is causing ECLE in dogs. These dogs therefore represent an interesting spontaneous model for human lupus erythematosus. Our results warrant further investigations of whether genetic variants affecting the C-terminus of UNC93B1 might be involved in specific subsets of CLE or SLE cases in humans and other species.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (F.L.); (V.J.); (S.K.); (A.L.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
| | - Fabienne Leuthard
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (F.L.); (V.J.); (S.K.); (A.L.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (F.L.); (V.J.); (S.K.); (A.L.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
| | - Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (F.L.); (V.J.); (S.K.); (A.L.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
| | - Anna Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (F.L.); (V.J.); (S.K.); (A.L.)
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
| | - Petra Roosje
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Monika M. Welle
- Dermfocus, University of Bern, 3001 Bern, Switzerland; (P.R.); (M.M.W.)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | | | | | - Monika Linek
- AniCura Tierärztliche Spezialisten, 22043 Hamburg, Germany;
| | - Frane Banovic
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| | - Stephen D. White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Kevin Batcher
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (K.B.); (D.B.)
| | - Danika Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (K.B.); (D.B.)
| | - Katie M. Minor
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.M.); (J.R.M.)
| | - James R. Mickelson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (K.M.M.); (J.R.M.)
| | - Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.K.H.); (H.L.)
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Elizabeth A. Mauldin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.M.); (M.L.C.)
| | - Margret L. Casal
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.M.); (M.L.C.)
| |
Collapse
|
30
|
Li Q, Qi J, Qin X, Dou W, Lei T, Hu A, Jia R, Jiang G, Zou X, Long Q, Xu L, Peng A, Yao L, Chen S, He Y. CitGVD: a comprehensive database of citrus genomic variations. HORTICULTURE RESEARCH 2020; 7:12. [PMID: 32025315 PMCID: PMC6994598 DOI: 10.1038/s41438-019-0234-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/09/2019] [Accepted: 12/05/2019] [Indexed: 05/29/2023]
Abstract
Citrus is one of the most important commercial fruit crops worldwide. With the vast genomic data currently available for citrus fruit, genetic relationships, and molecular markers can be assessed for the development of molecular breeding and genomic selection strategies. In this study, to permit the ease of access to these data, a web-based database, the citrus genomic variation database (CitGVD, http://citgvd.cric.cn/home) was developed as the first citrus-specific comprehensive database dedicated to genome-wide variations including single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs). The current version (V1.0.0) of CitGVD is an open-access resource centered on 1,493,258,964 high-quality genomic variations and 84 phenotypes of 346 organisms curated from in-house projects and public resources. CitGVD integrates closely related information on genomic variation annotations, related gene annotations, and details regarding the organisms, incorporating a variety of built-in tools for data accession and analysis. As an example, CitGWAS can be used for genome-wide association studies (GWASs) with SNPs and phenotypic data, while CitEVOL can be used for genetic structure analysis. These features make CitGVD a comprehensive web portal and bioinformatics platform for citrus-related studies. It also provides a model for analyzing genome-wide variations for a wide range of crop varieties.
Collapse
Affiliation(s)
- Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Jingjing Qi
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Xiujuan Qin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Wanfu Dou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Tiangang Lei
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Anhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Ruirui Jia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guojin Jiang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Qin Long
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Aihong Peng
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Lixiao Yao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| | - Yongrui He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, 400712 Chongqing, China
| |
Collapse
|
31
|
Jagannathan V, Drögemüller C, Leeb T. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 2019; 50:695-704. [PMID: 31486122 PMCID: PMC6842318 DOI: 10.1111/age.12834] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.
Collapse
Affiliation(s)
- V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Quist EM, Doan R, Pool RR, Porter BF, Bannasch DL, Dindot SV. Identification of a Candidate Mutation in the COL1A2 Gene of a Chow Chow With Osteogenesis Imperfecta. J Hered 2019; 109:308-314. [PMID: 29036614 DOI: 10.1093/jhered/esx074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic disease that occurs in humans and animals. Individuals with OI exhibit signs of extreme bone fragility and osteopenia with frequent fractures and perinatal lethality in severe cases. In this study, we report the clinical diagnosis of OI in a dog and the use of targeted next-generation sequencing to identify a candidate autosomal dominant mutation in the COL1A2 gene. A 5-month-old male Chow Chow was examined with a fractured left humerus and resolving, bilateral femoral fractures. Radiographs revealed generalized osteopenia and bilateral humeral, radial, and femoral fractures. Targeted next-generation sequencing of genes associated with OI in humans (COL1A1, COL1A2, LEPRE1, SERPINH1, and CRTAP) revealed a G>A heterozygous mutation in the splice donor site of exon 18 of the COL1A2 gene (c.936 + 1G>A). The splice donor mutation was not detected among 91 control dogs representing 21 breeds. A comparative analysis of exon 18 and the exon-intron junction further showed that the mutated splice donor site is conserved among vertebrates. Altogether, these findings reveal a candidate autosomal splice donor site mutation causing OI in an individual Chow Chow.
Collapse
Affiliation(s)
- Erin M Quist
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Roy R Pool
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Brian F Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA
| | - Scott V Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX
| |
Collapse
|
33
|
TSEN54 missense variant in Standard Schnauzers with leukodystrophy. PLoS Genet 2019; 15:e1008411. [PMID: 31584937 PMCID: PMC6795476 DOI: 10.1371/journal.pgen.1008411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/16/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
We report a hereditary leukodystrophy in Standard Schnauzer puppies. Clinical signs occurred shortly after birth or started at an age of under 4 weeks and included apathy, dysphoric vocalization, hypermetric ataxia, intension tremor, head tilt, circling, proprioceptive deficits, seizures and ventral strabismus consistent with a diffuse intracranial lesion. Magnetic resonance imaging revealed a diffuse white matter disease without mass effect. Macroscopically, the cerebral white matter showed a gelatinous texture in the centrum semiovale. A mild hydrocephalus internus was noted. Histopathologically, a severe multifocal reduction of myelin formation and moderate diffuse edema without inflammation was detected leading to the diagnosis of leukodystrophy. Combined linkage analysis and homozygosity mapping in two related families delineated critical intervals of approximately 29 Mb. The comparison of whole genome sequence data of one affected Standard Schnauzer to 221 control genomes revealed a single private homozygous protein changing variant in the critical intervals, TSEN54:c.371G>A or p.(Gly124Asp). TSEN54 encodes the tRNA splicing endonuclease subunit 54. In humans, several variants in TSEN54 were reported to cause different types of pontocerebellar hypoplasia. The genotypes at the c.371G>A variant were perfectly associated with the leukodystrophy phenotype in 12 affected Standard Schnauzers and almost 1000 control dogs from different breeds. These results suggest that TSEN54:c.371G>A causes the leukodystrophy. The identification of a candidate causative variant enables genetic testing so that the unintentional breeding of affected Standard Schnauzers can be avoided in the future. Our findings extend the known genotype-phenotype correlation for TSEN54 variants. Various hereditary diseases of the cerebral white matter occur in humans and dogs. We describe a new leukodystrophy in Standard Schnauzers. Genetic mapping and whole genome sequence analysis identified a likely candidate causative variant in the TSEN54 gene encoding tRNA splicing endonuclease 54. These results provide new information about the role of TSEN54 in cell metabolism and the development of the central nervous system in the late gestational and early post-natal period. The affected dogs potentially represent a translational large animal model for similar leukoencephalopathies in human medicine. The clinical phenotype in Schnauzers included multifocal central nervous system signs. A holistic pathogenically driven understanding of disease initiation and perpetuation requires a solid analysis of the underlying genetics and characterization of the disease phenotype at the clinical and cellular as well as sub-cellular level. In contrast to the canine phenotype with a predominant manifestation in the cerebrum white matter, other TSEN54 variants in humans have been reported to result in a different pathological phenotype characterized by pontocerebellar hypoplasia. The differences between humans and dogs underscore the need for comparative analysis at the clinical, pathological and molecular level to understand species-specific protein mediated pathways, interactions and outcomes.
Collapse
|
34
|
Identification of Two Independent COL5A1 Variants in Dogs with Ehlers-Danlos Syndrome. Genes (Basel) 2019; 10:genes10100731. [PMID: 31546637 PMCID: PMC6826881 DOI: 10.3390/genes10100731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 12/04/2022] Open
Abstract
The Ehlers–Danlos syndromes (EDS) are a heterogeneous group of heritable disorders affecting connective tissues. The mutations causing the various forms of EDS in humans are well characterized, but the genetic mutations causing EDS-like clinical pathology in dogs are not known, thus hampering accurate clinical diagnosis. Clinical analysis of two independent cases of skin hyperextensibility and fragility, one with pronounced joint hypermobility was suggestive of EDS. Whole-genome sequencing revealed de novo mutations of COL5A1 in both cases, confirming the diagnosis of the classical form of EDS. The heterozygous COL5A1 p.Gly1013ValfsTer260 mutation characterized in case 1 introduced a premature termination codon and would be expected to result in α1(V) mRNA nonsense-mediated mRNA decay and collagen V haploinsufficiency. While mRNA was not available from this dog, ultrastructural analysis of the dermis demonstrated variability in collagen fibril diameter and the presence of collagen aggregates, termed ‘collagen cauliflowers’, consistent with COL5A1 mutations underlying classical EDS. In the second case, DNA sequencing demonstrated a p.Gly1571Arg missense variant in the COL5A1 gene. While samples were not available for further analysis, such a glycine substitution would be expected to destabilize the strict molecular structure of the collagen V triple helix and thus affect protein stability and/or integration of the mutant collagen into the collagen V/collagen I heterotypic dermal fibrils. This is the first report of genetic variants in the COL5A1 gene causing the clinical presentation of EDS in dogs. These data provided further evidence of the important role of collagen V in dermal collagen fibrillogenesis. Importantly, from the clinical perspective, we showed the utility of DNA sequencing, combined with the established clinical criteria, in the accurate diagnosis of EDS in dogs.
Collapse
|
35
|
NME5 frameshift variant in Alaskan Malamutes with primary ciliary dyskinesia. PLoS Genet 2019; 15:e1008378. [PMID: 31479451 PMCID: PMC6743793 DOI: 10.1371/journal.pgen.1008378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia in humans and several domestic animal species. Typical clinical findings are chronic recurrent infections of the respiratory tract and fertility problems. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by PCD. The parents were unaffected suggesting autosomal recessive inheritance. Linkage and homozygosity mapping defined critical intervals comprising ~118 Mb. Whole genome sequencing of one case and comparison to 601 control genomes identified a disease associated frameshift variant, c.43delA, in the NME5 gene encoding a sparsely characterized protein associated with ciliary function. Nme5-/- knockout mice exhibit doming of the skull, hydrocephalus and sperm flagellar defects. The genotypes at NME5:c.43delA showed the expected co-segregation with the phenotype in the Alaskan Malamute family. An additional unrelated Alaskan Malamute with PCD and hydrocephalus that became available later in the study was also homozygous mutant at the NME5:c.43delA variant. The mutant allele was not present in more than 1000 control dogs from different breeds. Immunohistochemistry demonstrated absence of the NME5 protein from nasal epithelia of an affected dog. We therefore propose NME5:c.43delA as the most likely candidate causative variant for PCD in Alaskan Malamutes. These findings enable genetic testing to avoid the unintentional breeding of affected dogs in the future. Furthermore, the results of this study identify NME5 as a novel candidate gene for unsolved human PCD and/or hydrocephalus cases. Motile cilia are required for clearing mucous, infectious agents and inhaled dust from the airways. Primary ciliary dyskinesia (PCD) is a hereditary defect of motile cilia. Clinical findings may include recurrent airway infections, fertility problems, and sometimes hydrocephalus. We analyzed an Alaskan Malamute family, in which two out of six puppies were affected by an autosomal recessive form of PCD. Whole genome sequencing of an affected dog identified a one base pair deletion in the NME5 gene, c.43delA, leading to an early frame-shift and premature stop codon. Later in the study, we became aware of a previously published Alaskan Malamute with PCD involving respiratory infections and hydrocephalus. We observed perfect concordance of the NME5 genotypes with the PCD phenotype in all three affected Alaskan Malamutes and more than 1000 controls. The fact that the third case, which had no documented close relationship to the initial two cases, was homozygous for the same rare mutant NME5 allele, strongly supports our hypothesis that NME5:c.43delA causes the PCD phenotype. We confirmed absence of NME5 protein expression in nasal epithelium of an affected dog. Our results enable genetic testing in dogs and identify NME5 as novel candidate gene for unsolved human PCD cases.
Collapse
|
36
|
Lorch G, Sivaprakasam K, Zismann V, Perdigones N, Contente-Cuomo T, Nazareno A, Facista S, Wong S, Drenner K, Liang WS, Amann JM, Sinicropi-Yao SL, Koenig MJ, La Perle K, Whitsett TG, Murtaza M, Trent JM, Carbone DP, Hendricks WPD. Identification of Recurrent Activating HER2 Mutations in Primary Canine Pulmonary Adenocarcinoma. Clin Cancer Res 2019; 25:5866-5877. [PMID: 31431454 DOI: 10.1158/1078-0432.ccr-19-1145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Naturally occurring primary canine lung cancers share clinicopathologic features with human lung cancers in never-smokers, but the genetic underpinnings of canine lung cancer are unknown. We have charted the genomic landscape of canine lung cancer and performed functional characterization of novel, recurrent HER2 (ERBB2) mutations occurring in canine pulmonary adenocarcinoma (cPAC). EXPERIMENTAL DESIGN We performed multiplatform genomic sequencing of 88 primary canine lung tumors or cell lines. Additionally, in cPAC cell lines, we performed functional characterization of HER2 signaling and evaluated mutation-dependent HER2 inhibitor drug dose-response. RESULTS We discovered somatic, coding HER2 point mutations in 38% of cPACs (28/74), but none in adenosquamous (cPASC, 0/11) or squamous cell (cPSCC, 0/3) carcinomas. The majority (93%) of HER2 mutations were hotspot V659E transmembrane domain (TMD) mutations comparable to activating mutations at this same site in human cancer. Other HER2 mutations were located in the extracellular domain and TMD. HER2 V659E was detected in the plasma of 33% (2/6) of dogs with localized HER2 V659E tumors. HER2 V659E cPAC cell lines displayed constitutive phosphorylation of AKT and significantly higher sensitivity to the HER2 inhibitors lapatinib and neratinib relative to HER2-wild-type cell lines (IC50 < 200 nmol/L in HER2 V659E vs. IC50 > 2,500 nmol/L in HER2 WT). CONCLUSIONS This study creates a foundation for molecular understanding of and drug development for canine lung cancer. These data also establish molecular contexts for comparative studies in dogs and humans of low mutation burden, never-smoker lung cancer, and mutant HER2 function and inhibition.
Collapse
Affiliation(s)
- Gwendolen Lorch
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | | | | | | | | | | | | | - Shukmei Wong
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Kevin Drenner
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Joseph M Amann
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Sara L Sinicropi-Yao
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Michael J Koenig
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | - Krista La Perle
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | | | | | | | - David P Carbone
- Department of Internal Medicine, James Thoracic Center, The Ohio State University, Columbus, Ohio
| | | |
Collapse
|
37
|
Kim KK, Seung BJ, Kim D, Park HM, Lee S, Song DW, Lee G, Cheong JH, Nam H, Sur JH, Kim S. Whole-exome and whole-transcriptome sequencing of canine mammary gland tumors. Sci Data 2019; 6:147. [PMID: 31413331 PMCID: PMC6694171 DOI: 10.1038/s41597-019-0149-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Studies of naturally occurring cancers in dogs, which share many genetic and environmental factors with humans, provide valuable information as a comparative model for studying the mechanisms of human cancer pathogenesis. While individual and small-scale studies of canine cancers are underway, more generalized multi-omics studies have not been attempted due to the lack of large-scale and well-controlled genomic data. Here, we produced reliable whole-exome and whole-transcriptome sequencing data of 197 canine mammary cancers and their matched controls, annotated with rich clinical and biological features. Our dataset provides useful reference points for comparative analysis with human cancers and for developing novel diagnostic and therapeutic technologies for cancers in pet dogs.
Collapse
Affiliation(s)
- Ka-Kyung Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Byung-Joon Seung
- Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dohyun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gunho Lee
- Graduate Program for Nanomedical Science, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Ho Cheong
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
38
|
Hug P, Anderegg L, Kehl A, Jagannathan V, Leeb T. AKNA Frameshift Variant in Three Dogs with Recurrent Inflammatory Pulmonary Disease. Genes (Basel) 2019; 10:E567. [PMID: 31357536 PMCID: PMC6723478 DOI: 10.3390/genes10080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023] Open
Abstract
We investigated three related Rough Collies with recurrent inflammatory pulmonary disease. The clinical symptoms were similar to primary ciliary dyskinesia (PCD). However, the affected dogs did not carry any known pathogenic PCD variants. Pedigree analysis suggested a recessive mode of inheritance. Combined linkage and homozygosity mapping in three cases and seven non-affected family members delineated 19 critical intervals on 10 chromosomes comprising a total of 99 Mb. The genome of one affected dog was sequenced and compared to 601 control genomes. We detected only a single private homozygous protein-changing variant in the critical intervals. The detected variant was a 4 bp deletion, c.2717_2720delACAG, in the AKNA gene encoding the AT-hook transcription factor. It causes a frame-shift introducing a premature stop codon and truncates 37% of the open reading frame, p.(Asp906Alafs*173). We genotyped 88 Rough Collies consisting of family members and unrelated individuals. All three available cases were homozygous for the mutant allele and all 85 non-affected dogs were either homozygous wildtype (n = 67) or heterozygous (n = 18). AKNA modulates inflammatory immune responses. Akna-/- knockout mice die shortly after birth due to systemic autoimmune inflammatory processes including lung inflammation that is accompanied by enhanced leukocyte infiltration and alveolar destruction. The perfect genotype-phenotype association and the comparative functional data strongly suggest that the detected AKNA:c.2717_2720delACAG variant caused the observed severe airway inflammation in the investigated dogs. Our findings enable genetic testing, which can be used to avoid the unintentional breeding of affected puppies.
Collapse
Affiliation(s)
- Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Linda Anderegg
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
39
|
Ostrander EA, Wang GD, Larson G, vonHoldt BM, Davis BW, Jagannathan V, Hitte C, Wayne RK, Zhang YP. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev 2019; 6:810-824. [PMID: 31598383 PMCID: PMC6776107 DOI: 10.1093/nsr/nwz049] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Brian W Davis
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
40
|
A SIX6 Nonsense Variant in Golden Retrievers with Congenital Eye Malformations. Genes (Basel) 2019; 10:genes10060454. [PMID: 31207931 PMCID: PMC6628151 DOI: 10.3390/genes10060454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Causative genetic variants for more than 30 heritable eye disorders in dogs have been reported. For other clinically described eye disorders, the genetic cause is still unclear. We investigated four Golden Retriever litters segregating for highly variable congenital eye malformations. Several affected puppies had unilateral or bilateral retina dysplasia and/or optic nerve hypoplasia. The four litters shared the same father or grandfather suggesting a heritable condition with an autosomal dominant mode of inheritance. The genome of one affected dog was sequenced and compared to 601 control genomes. A heterozygous private nonsense variant, c.487C>T, was found in the SIX6 gene. This variant is predicted to truncate about a third of the open reading frame, p.(Gln163*). We genotyped all available family members and 464 unrelated Golden Retrievers. All three available cases were heterozygous. Five additional close relatives including the common sire were also heterozygous, but did not show any obvious eye phenotypes. The variant was absent from the 464 unrelated Golden Retrievers and 17 non-affected siblings of the cases. The SIX6 protein is a homeobox transcription factor with a known role in eye development. In humans and other species, SIX6 loss of function variants were reported to cause congenital eye malformations. This strongly suggests that the c.487C>T variant detected contributed to the observed eye malformations. We hypothesize that the residual amount of functional SIX6 protein likely to be expressed in heterozygous dogs is sufficient to explain the observed incomplete penetrance and the varying severity of the eye defects in the affected dogs.
Collapse
|
41
|
Das S, Idate R, Cronise KE, Gustafson DL, Duval DL. Identifying Candidate Druggable Targets in Canine Cancer Cell Lines Using Whole-Exome Sequencing. Mol Cancer Ther 2019; 18:1460-1471. [PMID: 31175136 DOI: 10.1158/1535-7163.mct-18-1346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Cancer cell culture has been a backbone in cancer research, in which analysis of human cell line mutational profiles often correlates with oncogene addiction and drug sensitivity. We have conducted whole-exome sequence analyses on 33 canine cancer cell lines from 10 cancer types to identify somatic variants that contribute to pathogenesis and therapeutic sensitivity. A total of 66,344 somatic variants were identified. Mutational load ranged from 15.79 to 129.37 per Mb, and 13.2% of variants were located in protein-coding regions (PCR) of 5,085 genes. PCR somatic variants were identified in 232 genes listed in the Cancer Gene Census (COSMIC). Cross-referencing variants with human driving mutations on cBioPortal identified 61 variants as candidate cancer drivers in 30 cell lines. The most frequently mutated cancer driver was TP53 (15 mutations in 12 cell lines). No drivers were identified in three cell lines. We identified 501 non-COSMIC genes with PCR variants that functionally annotate with COSMIC genes. These genes frequently mapped to the KEGG MAPK and PI3K-AKT pathways. We evaluated the cell lines for ERK1/2 and AKT(S473) phosphorylation and sensitivity to the MEK1/2 inhibitor, trametinib. Twelve of the 33 cell lines were trametinib-sensitive (IC50 < 32 nmol/L), all 12 exhibited constitutive or serum-activated ERK1/2 phosphorylation, and 8 carried MAPK pathway cancer driver variants: NF1(2), BRAF(3), N/KRAS(3). This functionally annotated database of canine cell line variants will inform hypothesis-driven preclinical research to support the use of companion animals in clinical trials to test novel combination therapies.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Kathryn E Cronise
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
42
|
Schmutz I, Jagannathan V, Bartenschlager F, Stein VM, Gruber AD, Leeb T, Katz ML. ATP13A2 missense variant in Australian Cattle Dogs with late onset neuronal ceroid lipofuscinosis. Mol Genet Metab 2019; 127:95-106. [PMID: 30956123 PMCID: PMC6548654 DOI: 10.1016/j.ymgme.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by progressive neurodegeneration and declines in neurological functions. Pathogenic sequence variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been found to occur in 11 dog breeds in which they result in progressive neurological disorders similar to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic interventions for these disorders. In most NCLs, the onset of neurological signs occurs in childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants in ATP13A2 which encodes a putative transmembrane ion transporter important for lysosomal function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with a progressive neurological disorder with an onset of clinical signs at approximately 6 years of age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high frequency of the mutant allele in this breed suggests that further screening for this variant should identify additional homozygous dogs and indicates that it would be advisable to perform such screening prior to breeding Australian Cattle Dogs.
Collapse
Affiliation(s)
- Isabelle Schmutz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Florian Bartenschlager
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Veronika M Stein
- Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Achim D Gruber
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Martin L Katz
- Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
43
|
Brunner MAT, Rüfenacht S, Bauer A, Erpel S, Buchs N, Braga-Lagache S, Heller M, Leeb T, Jagannathan V, Wiener DJ, Welle MM. Bald thigh syndrome in sighthounds-Revisiting the cause of a well-known disease. PLoS One 2019; 14:e0212645. [PMID: 30794648 PMCID: PMC6386255 DOI: 10.1371/journal.pone.0212645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 01/17/2023] Open
Abstract
Bald thigh syndrome is a common hair loss disorder in sighthounds. Numerous possible causes, including environmental conditions, trauma, stress, endocrinopathies and genetic components have been proposed, but only endocrinopathies have been ruled out scientifically. The overall goal of our study was to identify the cause of bald thigh syndrome and the pathological changes associated with it. We approached this aim by comparing skin biopsies and hair shafts of affected and control dogs microscopically as well as by applying high-throughput technologies such as genomics, transcriptomics and proteomics. While the histology is rather unspecific in most cases, trichogram analysis and scanning electron microscopy revealed severe structural abnormalities in hair shafts of affected dogs. This finding is supported by the results of the transcriptomic and proteomic profiling where genes and proteins important for differentiation of the inner root sheath and the assembly of a proper hair shaft were downregulated. Transcriptome profiling revealed a downregulation of genes encoding 23 hair shaft keratins and 51 keratin associated proteins, as well as desmosomal cadherins and several actors of the BMP signaling pathway which is important for hair shaft differentiation. The lower expression of keratin 71 and desmocollin 2 on the mRNA level in skin biopsies corresponded with a decreased protein expression in the hair shafts of affected dogs. The genetic analysis revealed a missense variant in the IGFBP5 gene homozygous in all available Greyhounds and other sighthounds. Further research is required to clarify whether the IGFBP5 variant represents a predisposing genetic risk factor. We conclude from our results that structural defects in the hair shafts are the cause for this well-known disease and these defects are associated with a downregulation of genes and proteins essential for hair shaft formation. Our data add important knowledge to further understand the molecular mechanisms of HF morphogenesis and alopecia in dogs.
Collapse
Affiliation(s)
- Magdalena A. T. Brunner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| | | | - Anina Bauer
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Susanne Erpel
- Nano Imaging Lab, SNI, University of Basel, Basel, Switzerland
| | - Natasha Buchs
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Tosso Leeb
- DermFocus, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique J. Wiener
- Department of Veterinary Pathobiology, Texas A&M University, College Station, United States of America
| | - Monika M. Welle
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
A homozygous missense variant in the alkaline phosphatase gene ALPL is associated with a severe form of canine hypophosphatasia. Sci Rep 2019; 9:973. [PMID: 30700765 PMCID: PMC6353930 DOI: 10.1038/s41598-018-37801-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Inherited skeletal disorders affect both humans and animals. In the current study, we have performed series of clinical, pathological and genetic examinations to characterize a previously unreported skeletal disease in the Karelian Bear Dog (KBD) breed. The disease was recognized in seven KBD puppies with a variable presentation of skeletal hypomineralization, growth retardation, seizures and movement difficulties. Exome sequencing of one affected dog revealed a homozygous missense variant (c.1301T > G; p.V434G) in the tissue non-specific alkaline phosphatase gene, ALPL. The identified recessive variant showed full segregation with the disease in a cohort of 509 KBDs with a carrier frequency of 0.17 and was absent from 303 dogs from control breeds. In humans, recessive and dominant ALPL mutations cause hypophosphatasia (HPP), a metabolic bone disease with highly heterogeneous clinical manifestations, ranging from lethal perinatal hypomineralization to a relatively mild dental disease. Our study reports the first naturally occurring HPP in animals, resembling the human infantile form. The canine HPP model may serve as a preclinical model while a genetic test will assist in breeding programs.
Collapse
|
45
|
Wong K, van der Weyden L, Schott CR, Foote A, Constantino-Casas F, Smith S, Dobson JM, Murchison EP, Wu H, Yeh I, Fullen DR, Joseph N, Bastian BC, Patel RM, Martincorena I, Robles-Espinoza CD, Iyer V, Kuijjer ML, Arends MJ, Brenn T, Harms PW, Wood GA, Adams DJ. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun 2019; 10:353. [PMID: 30664638 PMCID: PMC6341101 DOI: 10.1038/s41467-018-08081-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023] Open
Abstract
Mucosal melanoma is a rare and poorly characterized subtype of human melanoma. Here we perform a cross-species analysis by sequencing tumor-germline pairs from 46 primary human muscosal, 65 primary canine oral and 28 primary equine melanoma cases from mucosal sites. Analysis of these data reveals recurrently mutated driver genes shared between species such as NRAS, FAT4, PTPRJ, TP53 and PTEN, and pathogenic germline alleles of BRCA1, BRCA2 and TP53. We identify a UV mutation signature in a small number of samples, including human cases from the lip and nasal mucosa. A cross-species comparative analysis of recurrent copy number alterations identifies several candidate drivers including MDM2, B2M, KNSTRN and BUB1B. Comparison of somatic mutations in recurrences and metastases to those in the primary tumor suggests pervasive intra-tumor heterogeneity. Collectively, these studies suggest a convergence of some genetic changes in mucosal melanomas between species but also distinctly different paths to tumorigenesis.
Collapse
Affiliation(s)
- Kim Wong
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Courtney R Schott
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Alastair Foote
- Rossdales Equine Hospital and Diagnostic Centre, High Street, Newmarket, Suffolk, CB8 8JS, UK
| | - Fernando Constantino-Casas
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Sionagh Smith
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Jane M Dobson
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Hong Wu
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Douglas R Fullen
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Nancy Joseph
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd Juriquilla 3001, Santiago de Querétaro, 76230, Mexico
| | - Vivek Iyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marieke L Kuijjer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, 0349, Oslo, Norway
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Thomas Brenn
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2L 2K8, Canada
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
46
|
Zhang Z, Zhao W, Xiao J, Bao Y, Wang F, Hao L, Zhu J, Chen T, Zhang S, Chen X, Tang B, Zhou Q, Wang Z, Dong L, Wang Y, Ma Y, Wang F, Zhang Z, Wang Z, Chen M, Tian D, Li C, Dong L, Teng X, Tang B, Du Z, Yuan N, Zeng J, Zhang Z, Wang J, Shi S, Zhang Y, Wang Q, Pan M, Qian Q, Song S, Niu G, Li M, Xia L, Zou D, Zhang Y, Sang J, Li M, Zhang Y, Wang P, Wang F, Zhang Y, Gao Q, Xiao J, Hao L, Liang F, Li M, Zou D, Li R, Liu L, Cao J, Sang J, Zou D, Li M, Abbasi AA, Shireen H, Wang P, Zhang Y, Li Z, Wang Q, Xia L, Xiong Z, Jiang M, Guo T, Li Z, Zhang H, Pan M, Ma L, Li M, Niu G, Xia L, Zou D, Zhang Y, Sang J, Li Z, Gao R, Li R, Zhang T, Bao Y, Zhang Z, Tang B, Zhou Q, Dong L, Li W, Zhang X, Lan L, Zhai S, Bao Y, Zhang Y, Wang G, Zhao W, Sang J, Wang Z, Zou D, Zhang Y, Hao L, Bao Y, Zhang Z, Zhao W, Xiao J, Lan L, Xue Y, Sun Y, Yu L, Zhai S, Sun M, Chen H, Zhang Z, Zhao W, Xiao J, Bao Y, Song S, Hao L, Li R, Ma L, Wang Y, Tang B, Chen M, Hu H, Guo AY, Lin S, Xue Y, Wang C, Xue Y, Ning W, Xue Y, Zhang Y, Xue Y, Luo H, Gao F, Guo Y, Xue Y, Zhang Q, Guo AY, Zhou J, Xue Y, Huang Z, Cui Q, Miao YR, Guo AY, Ruan C, Xue Y, Yuan C, Chen M, Jinpu J, Gao G, Xu H, Xue Y, Li Y, Li CY, Tang Q, Guo AY, Peng D, Deng W. Database Resources of the BIG Data Center in 2019. Nucleic Acids Res 2019; 47:D8-D14. [PMID: 30365034 PMCID: PMC6323991 DOI: 10.1093/nar/gky993] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of multi-omics data generated at unprecedented scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big data integration and value-added curation. Resources with significant updates in the past year include BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Science Wikis (a catalog of biological knowledge wikis for community annotations) and IC4R (Information Commons for Rice). Newly released resources include EWAS Atlas (a knowledgebase of epigenome-wide association studies), iDog (an integrated omics data resource for dog) and RNA editing resources (for editome-disease associations and plant RNA editosome, respectively). To promote biodiversity and health big data sharing around the world, the Open Biodiversity and Health Big Data (BHBD) initiative is introduced. All of these resources are publicly accessible at http://bigd.big.ac.cn.
Collapse
|
47
|
Tang B, Zhou Q, Dong L, Li W, Zhang X, Lan L, Zhai S, Xiao J, Zhang Z, Bao Y, Zhang YP, Wang GD, Zhao W. iDog: an integrated resource for domestic dogs and wild canids. Nucleic Acids Res 2019; 47:D793-D800. [PMID: 30371881 PMCID: PMC6323916 DOI: 10.1093/nar/gky1041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The domestic dog (Canis lupus familiaris) is indisputably one of man's best friends. It is also a fundamental model for many heritable human diseases. Here, we present iDog (http://bigd.big.ac.cn/idog), the first integrated resource dedicated to domestic dogs and wild canids. It incorporates a variety of omics data, including genome sequences assemblies for dhole and wolf, genomic variations extracted from hundreds of dog/wolf whole genomes, phenotype/disease traits curated from dog research communities and public resources, gene expression profiles derived from published RNA-Seq data, gene ontology for functional annotation, homolog gene information for multiple organisms and disease-related literature. Additionally, iDog integrates sequence alignment tools for data analyses and a genome browser for data visualization. iDog will not only benefit the global dog research community, but also provide access to a user-friendly consolidation of dog information to a large number of dog enthusiasts.
Collapse
Affiliation(s)
- Bixia Tang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhou
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Dong
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wulue Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiangquan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Lan
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zhai
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingfa Xiao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiming Bao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Ping Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Guo-Dong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenming Zhao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Ní Leathlobhair M, Perri AR, Irving-Pease EK, Witt KE, Linderholm A, Haile J, Lebrasseur O, Ameen C, Blick J, Boyko AR, Brace S, Cortes YN, Crockford SJ, Devault A, Dimopoulos EA, Eldridge M, Enk J, Gopalakrishnan S, Gori K, Grimes V, Guiry E, Hansen AJ, Hulme-Beaman A, Johnson J, Kitchen A, Kasparov AK, Kwon YM, Nikolskiy PA, Lope CP, Manin A, Martin T, Meyer M, Myers KN, Omura M, Rouillard JM, Pavlova EY, Sciulli P, Sinding MHS, Strakova A, Ivanova VV, Widga C, Willerslev E, Pitulko VV, Barnes I, Gilbert MTP, Dobney KM, Malhi RS, Murchison EP, Larson G, Frantz LAF. The evolutionary history of dogs in the Americas. Science 2018; 361:81-85. [PMID: 29976825 PMCID: PMC7116273 DOI: 10.1126/science.aao4776] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/26/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023]
Abstract
Dogs were present in the Americas before the arrival of European colonists, but the origin and fate of these precontact dogs are largely unknown. We sequenced 71 mitochondrial and 7 nuclear genomes from ancient North American and Siberian dogs from time frames spanning ~9000 years. Our analysis indicates that American dogs were not derived from North American wolves. Instead, American dogs form a monophyletic lineage that likely originated in Siberia and dispersed into the Americas alongside people. After the arrival of Europeans, native American dogs almost completely disappeared, leaving a minimal genetic legacy in modern dog populations. The closest detectable extant lineage to precontact American dogs is the canine transmissible venereal tumor, a contagious cancer clone derived from an individual dog that lived up to 8000 years ago.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angela R Perri
- Department of Archaeology, Durham University, Durham, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Evan K Irving-Pease
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kelsey E Witt
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Anna Linderholm
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Anthropology, Texas A&M University, College Station, TX, USA
| | - James Haile
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ophelie Lebrasseur
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Carly Ameen
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Jeffrey Blick
- Department of Government and Sociology, Georgia College and State University, Milledgeville, GA, USA
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | | | | | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Jacob Enk
- Arbor Biosciences, Ann Arbor, MI, USA
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Vaughan Grimes
- Department of Archaeology, Memorial University, Queen's College, St. John's, Canada
| | - Eric Guiry
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
| | - Ardern Hulme-Beaman
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - John Johnson
- Department of Anthropology, Santa Barbara Museum of Natural History, Santa Barbara, CA, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Aleksei K Kasparov
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Young-Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pavel A Nikolskiy
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Geological Institute, Russian Academy of Sciences, Moscow, Russia
| | | | - Aurélie Manin
- Department of Archaeology, BioArCh, University of York, York, UK
- UMR 7209, Archéozoologie, Archéobotanique, Muséum National d'Histoire Naturelle, Paris, France
| | - Terrance Martin
- Research and Collections Center, Illinois State Museum, Springfield, IL, USA
| | - Michael Meyer
- Touray & Meyer Veterinary Clinic, Serrekunda, Gambia
| | - Kelsey Noack Myers
- Glenn A. Black Laboratory of Anthropology, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Omura
- Department of Mammalogy, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jean-Marie Rouillard
- Arbor Biosciences, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elena Y Pavlova
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
- Arctic & Antarctic Research Institute, St. Petersburg, Russia
| | - Paul Sciulli
- Department of Anthropology, Ohio State University, Columbus, OH, USA
| | - Mikkel-Holger S Sinding
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- The Qimmeq Project, University of Greenland, Nuussuaq, Greenland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Christopher Widga
- Center of Excellence in Paleontology, East Tennessee State University, Gray, TN, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V Pitulko
- Institute for the History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, UK
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Keith M Dobney
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
- Department of Archaeology, University of Aberdeen, Aberdeen, UK
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
| | - Laurent A F Frantz
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
49
|
Collaborating genomic, transcriptomic and microbiomic alterations lead to canine extreme intestinal polyposis. Oncotarget 2018; 9:29162-29179. [PMID: 30018743 PMCID: PMC6044369 DOI: 10.18632/oncotarget.25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Extreme intestinal polyposis in pet dogs has not yet been reported in literature. We identified a dog patient who developed numerous intestinal polyps, with the severity resembling human classic familial adenomatous polyposis (FAP), except the jejunum-ileum junction being the most polyp-dense. We investigated this dog, in comparison with 22 other dogs with spontaneous intestinal tumors but no severe polyposis, and with numerous published human cancers. We found, not APC mutation, but three other alteration pathways as likely reasons of this canine extreme polyposis. First, somatic truncation mutation W411X of FBXW7, a component of an E3 ubiquitin ligase, over-activates MYC and cell cycle-promoting network, accelerating crypt cell proliferation. Second, genes of protein trafficking and localization are downregulated, likely associated with germline mutation G406D of STAMBPL1, a K63-deubiquitinase, and MYC network activation. This inhibits epithelial apical-basolateral polarity establishment, preventing crypt cell differentiation. Third, Bacteroides uniformis, a commensal gut anaerobe, thrives and expresses abundantly thioredoxin and nitroreductase. These bacterial products could reduce oxidative stress linked to host germline mutation R51X of CYB5RL, a cytochrome b5 reductase homologue, decreasing cell death. Our work emphasizes the close collaboration of alterations across the genome, transcriptome and microbiome in promoting tumorigenesis.
Collapse
|
50
|
A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy. G3-GENES GENOMES GENETICS 2018; 8:1545-1554. [PMID: 29491033 PMCID: PMC5940147 DOI: 10.1534/g3.118.200084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several enzymes are involved in fatty acid oxidation, which is a key process in mitochondrial energy production. Inherited defects affecting any step of fatty acid oxidation can result in clinical disease. We present here an extended family of German Hunting Terriers with 10 dogs affected by clinical signs of exercise induced weakness, muscle pain, and suspected rhabdomyolysis. The combination of clinical signs, muscle histopathology and acylcarnitine analysis with an elevated tetradecenoylcarnitine (C14:1) peak suggested a possible diagnosis of acyl-CoA dehydrogenase very long chain deficiency (ACADVLD). Whole genome sequence analysis of one affected dog and 191 controls revealed a nonsense variant in the ACADVL gene encoding acyl-CoA dehydrogenase very long chain, c.1728C>A or p.(Tyr576*). The variant showed perfect association with the phenotype in the 10 affected and more than 500 control dogs of various breeds. Pathogenic variants in the ACADVL gene have been reported in humans with similar myopathic phenotypes. We therefore considered the detected variant to be the most likely candidate causative variant for the observed exercise induced myopathy. To our knowledge, this is the first description of this disease in dogs, which we propose to name exercise induced metabolic myopathy (EIMM), and the identification of the first canine pathogenic ACADVL variant. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring.
Collapse
|