1
|
Gao S, Sun Y, Jia S, Meng C. Transcriptome analysis unveils PLSCR1 associated with microglial polarization in neuropathic pain. Gene 2025; 933:148961. [PMID: 39312982 DOI: 10.1016/j.gene.2024.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Neuropathic pain (NP) continues to be a significant problem that lacks effective treatment. Our study sought to explore a new promising gene target for the treatment of NP. Differential and enrichment analyses were performed on 24,197 genes and 12,088 genes from the NP microglial microarray and sequencing dataset. Candidate differentially expressed genes (DEGs), functions, and signaling pathways that are closely related to NP were identified by analyzing the bioinformatic results. For in vivo experiments, mice were divided into the sham and NP groups. The expressions of DEGs were validated to screen out the NP hub genes. For in vitro experiments, the hub genes in resting M0-BV2 and polarized M1-BV2 microglia were examined by immunofluorescence, flow cytometry, and qRT-PCR. DEGs in the NP microarray and sequencing data shared five candidate genes, CD244, MEGF9, PCGF2, PLSCR1, and NECAB2. The results of the in vivo experiment showed that the NP model group exhibited higher expression of PLSCR1 and MEGF9 compared to the sham group. The enrichment results of the DEGs revealed the biological processes of "response to lipopolysaccharide". PLSCR1 was highly expressed in the lipopolysaccharide-induced M1-BV2 microglia. PLSCR1 is a potential gene associated with microglial polarization in NP. These findings provide a new view on understanding the pathogenesis mechanism of NP.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Spine, Affiliated Hospital of Jining Medical University, Jining 272029, China; Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuyan Sun
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Shu Jia
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Chunyang Meng
- Department of Spine, Affiliated Hospital of Jining Medical University, Jining 272029, China.
| |
Collapse
|
2
|
Yang Y, Shen J, Deng P, Chen P. Mechanism investigation of Forsythoside A against esophageal squamous cell carcinoma in vitro and in vivo. Cancer Biol Ther 2024; 25:2380023. [PMID: 39046082 PMCID: PMC11271126 DOI: 10.1080/15384047.2024.2380023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
CONTEXT Forsythoside A (FSA) was extracted from Forsythia suspensa, a traditional Chinese medicine, which has been demonstrated to exert anti-inflammatory, antibacterial, and other pharmacological effects. However, the anticancer effect of FSA in esophageal squamous cell carcinoma (ESCC) has not been documented. OBJECTIVE The present study aimed to elucidate the mechanism of FSA against ESCC. MATERIALS AND METHODS Network pharmacology and molecular docking were employed to predict the mechanism. FSA was utilized to treat ESCC cell lines KYSE450 and KYSE30, followed by CCK-8 assay, cell cloning formation assay, flow cytometry, Western blot, RNA-seq analysis, and subsequent in vivo experiments. RESULTS Network pharmacology and molecular docking predicted that the therapeutic effect of FSA in ESCC is mediated through proteins such as BCL2 and BAX, influencing KEGG pathways associated with apoptosis. In vitro experiments showed that FSA inhibited cell proliferation and plate clone formation, promoted cell apoptosis and impacted the cell cycle distribution of G2/M phase by regulating BCL2, BAX, and p21. Further RNA-seq in KYSE450 cells showed that FSA regulated the expression of 223 genes, specifically affecting the biological process of epidermal development. In vivo experiments showed that gastric administration of FSA resulted in notable reductions in both tumor volume and weight by regulating BCL2, BAX, and p21. 16S rRNA sequencing showed that FSA led to significant changes of beta diversity. Abundance of 11 specific bacterial taxa were considerably changed following administration of FSA. CONCLUSIONS This study presents a novel candidate drug against ESCC and establishes a foundation for future clinical application.
Collapse
Affiliation(s)
- Yingying Yang
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Junru Shen
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Peiyuan Deng
- School of Life Sciences, Zhengzhou Normal University, Zhengzhou, People’s Republic of China
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
3
|
Yang Y, Zhao A, Wang T, Tang Q, Qi S, Shi X, Wang F, Gao Y. Identification of driving genes of recurrent miscarriage based on transcriptome sequencing and immunoinfiltration analysis. Int Immunopharmacol 2024; 143:113095. [PMID: 39395380 DOI: 10.1016/j.intimp.2024.113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/14/2024]
Abstract
AIMS Recurrent miscarriage (RM) plagues 1 %-5 % women of childbearing age. Facing the limitations of clinical treatment, its pathological mechanism remains to be clarified. METHODS Decidual tissues of three induced abortions and three RM were collected for transcriptome sequencing. The pathological features of RM were identified by differential expression genes (DEGs) analysis, GSEA, GO and KEGG analysis, and a protein-protein interaction network was constructed for DEGs, and six algorithms were used to identify hub genes. In addition, the immune characteristics of RM patients were identified by CIBERSORT, and the correlation between them and hub genes was analyzed. Furthermore, in single-cell level, different cells were grouped according to the expression level of hub genes, and the expression ratio and abundance of hub genes in different cells and their regulation on cell function were explored. RESULTS Transcriptome sequencing of patients with RM showed that a large number of genes were down-regulated, which was related to fibroblast proliferation, epithelial cell migration, female pregnancy and cell chemotaxis. Fifteen hub genes were identified by constructing a protein-protein interaction network, among which DUSP1, NR4A1 and THBS1 were involved in cell migration and chemotaxis. Immune cell infiltration analysis showed that the infiltration of T cells, macrophages and NK cells was abnormal, and there was a significant correlation with hub genes. Moreover, we found that compared with the expression of DUSP1, the non-expression of DUSP1 will reduce the extracellular matrix formation of fibroblasts and the chemotaxis of macrophages. At the same time, it is worth noting that the expression ratio and abundance of hub genes are decreased in epithelial cells, fibroblasts, macrophages and NK cells. Furthermore, single-cell analysis and in vitro and in vivo experiments show that DUSP1 and NR4A1 are low-expressed in different cells of RM patients, which is accompanied by the inhibition of fibroblast proliferation and macrophage chemotaxis. Drug prediction and screening based on hub genes show that Cinobufagin and calmidazolium are expected to be candidate drugs for RM. CONCLUSION Hub genes such as DUSP1, NR4A1 and THBS1 participate in RM by regulating epithelial cell migration, fibroblast proliferation and macrophage chemotaxis, which will provide new insight for the diagnosis and targeted therapy of RM.
Collapse
Affiliation(s)
- Yijun Yang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Ai Zhao
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Ting Wang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Qi Tang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Suwan Qi
- Affiliated Women's Hospital of Jiangnan University, China
| | - Xiaoling Shi
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China
| | - Fei Wang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China.
| | - Yingchun Gao
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, China.
| |
Collapse
|
4
|
Qin H, Wang Q, Xu J, Zeng H, Liu J, Yu F, Yang J. Integrative analysis of anoikis-related genes prognostic signature with immunotherapy and identification of CDKN3 as a key oncogene in lung adenocarcinoma. Int Immunopharmacol 2024; 143:113282. [PMID: 39383787 DOI: 10.1016/j.intimp.2024.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Anoikis, a form of programmed cell death induced by loss of cell contact, is closely associated with tumor invasion and metastasis, making it highly significant in lung cancer research. We examined the expression patterns and prognostic relevance of Anoikis-related genes (ARGs) in lung adenocarcinoma (LUAD) using the TCGA-LUAD database. This study identified molecular subtypes associated with Anoikis in LUAD and conducted functional enrichment analyses. We constructed an ARG risk score using univariate least absolute shrinkage and selection operator (LASSO) Cox regression, validated externally with GEO datasets and clinical samples. The clinical applicability of the prognostic model was evaluated using nomograms, calibration curves, decision curve analysis (DCA), and time-dependent AUC assessments. We identified four prognostically significant genes (PLK1, SLC2A1, CDKN3, PHLDA2) and two ARG-related molecular subtypes. ARGs were generally upregulated in LUAD and correlated with multiple pathways including the cell cycle and DNA replication. The prognostic model indicated that the low-risk group had better outcomes and significant correlations with clinicopathological features, tumor microenvironment, immune therapy responses, drug sensitivity, and pan-RNA epigenetic modification-related genes. Patients with low-risk LUAD were potential beneficiaries of immune checkpoint inhibitor (ICI) therapy. Prognostic ARGs' distribution and expression across various immune cell types were further analyzed using single-cell RNA sequencing. The pivotal role of CDKN3 in LUAD was confirmed through qRT-PCR and gene knockout experiments, demonstrating that CDKN3 knockdown inhibits tumor cell proliferation, migration, and invasion. Additionally, we constructed a ceRNA network involving CDKN3/hsa-miR-26a-5p/SNHG6, LINC00665, DUXAP8, and SLC2A1/hsa-miR-218-5p/RNASEH1-AS1, providing new insights for personalized and immune therapy decisions in LUAD patients.
Collapse
Affiliation(s)
- Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Qichang Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Hefei 238001, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
5
|
Wu CC, Ge JY, Huang XY, Liu XM, Liao Y, Zhang SJ, Wu L, Chen XF, Yu B. Isosilybin A exhibits anti-inflammatory properties in rosacea by inhibiting MAPK pathway and M1 macrophage polarization. Int Immunopharmacol 2024; 143:113323. [PMID: 39405940 DOI: 10.1016/j.intimp.2024.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Rosacea is a chronic inflammatory skin disease, which is prone to flares and requires continuous management and treatment. However, long-term use of drugs can lead to additional adverse drug reactions. Based on the comorbid relationship between rosacea and Parkinson's disease, bioinformatics and network pharmacology analysis were used to identify a safer drug for rosacea. It has been demonstrated that ISA has an ameliorative impact on the symptoms of Parkinson's disease. The results demonstrated that ISA exhibited anti-inflammatory properties, including reducing erythema areas and inflammatory cell infiltration in rosacea-like mice models, and inhibiting the expression of inflammatory factors in cellular inflammation models. Furthermore, the anti-inflammatory effect of ISA was associated with inhibition of the Erk, p38 and NF-κB signaling pathways and inhibition of macrophage polarization to M1 type. In addition, molecular docking and drug affinity responsive target stability experiment results indicated that VEGFA and RELA were the direct targets of ISA in the treatment for rosacea. In conclusion, these results suggested that ISA may be a potential therapeutic agent for rosacea.
Collapse
Affiliation(s)
- Chen-Chen Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Jing-Yao Ge
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong Province, China
| | - Xin-Yue Huang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong Province, China
| | - Xiao-Ming Liu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Yan Liao
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Shui-Jing Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Lin Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| | - Xiao-Fan Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong Province, China.
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China; Institute of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
6
|
Jin D, Tu X, Xu W, Zheng H, Zeng J, Bi P, Yang R, Li Y, Ni J, Zhu C, Chen H, Yu D, Wan F. Identification and validation of diagnostic markers related to immunogenic cell death and infiltration of immune cells in diabetic nephropathy. Int Immunopharmacol 2024; 143:113236. [PMID: 39378654 DOI: 10.1016/j.intimp.2024.113236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
INTRODUCTION Immunogenic cell death (ICD) is a unique cell death triggered by chemotherapy. However, studies elucidating the potential therapeutic role of ICD and the underlying mechanism in diabetic nephropathy (DN) are limited. METHODS WGCNA was conducted on the human kidney biopsy data linked to DN, analyzing gene sets associated with ICD. Gene Set Enrichment Analysis and Gene Set Variation Analysis were utilized to examine the discrepancy in biological function. We used Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes, and the GeneMANIA database to investigate the function of the signature genes. An analysis using the receiver operating characteristic (ROC) was conducted to validate the diagnostic value of hub genes. Additionally, immune infiltration-related analyses were also performed. In conclusion, we examined the association between the glomerular filtration rate, serum creatinine, and hub genes. Hub genes were validated by immunohistochemistry using db/db mice kidneys. RESULTS WGCNA revealed that the targets in the turquoise unit (1674 genes) exhibited the highest positive correlation with ICD. Furthermore, 4222 statistically significant DEGs were identified when comparing the DN and healthy control groups. Significantly, the KEGG pathway enrichment analysis indicated a connection between ICD and the nuclear factor-kappa B signaling pathway and the synthesis of cytokines (tumor necrosis factor superfamily). ROC analysis revealed that 16 hub genes exhibited strong discriminatory potential as biomarkers for DN. Therefore, immunohistochemical validation, with the potential involvement of chemokines (CCL11, CCR2, CCR7, CX3CR1, CXCL10, CXCL12, and CXCR5) and immune cells (CD3G, CD5, and CD247) may be crucial for the diagnosis and therapy of DN. CONCLUSIONS DKK3, NR4A1, NR4A2, VEGFA, and DUSP1 may be associated with the development of DN. The pathogenesis of DN may specifically involve chemokines (CCL11, CCR2, CCR7, CX3CR1, CXCL10, CXCL12, and CXCR5) and immune cells (CD3G, CD5, and CD247), with LCP2 playing a significant role.
Collapse
Affiliation(s)
- De Jin
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Xiao Tu
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Wanyue Xu
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Honghui Zheng
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Jiali Zeng
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Peng Bi
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Ruchun Yang
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Yayu Li
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Jun Ni
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China
| | - Caifeng Zhu
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China.
| | - Hongyu Chen
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China.
| | - Dongrong Yu
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China.
| | - Feng Wan
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310007, Zhejiang, China.
| |
Collapse
|
7
|
Pan R, Zhang Y, Cheng Y, Wu Z, Liu J, Chen Z, Wang J, Zhang X, Wang H, Feng S, Zheng X. Identification of UNC5B as a novel aggressive biomarker for osteosarcoma based on basement membrane genes. Gene 2024; 930:148871. [PMID: 39154972 DOI: 10.1016/j.gene.2024.148871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The prognosis of patients with metastatic osteosarcoma is poor, and the variation of basement membrane genes (BMGs) is associated with cancer metastasis. However, the role of BMGs in osteosarcoma has been poorly studied. METHODS BMGs were collected and differentially expressed BMGs (DE-BMGs) were found through difference analysis. DE-BMGs were further screened by univariate Cox regression and Lasso regression analyses, and six key BMGs were identified and defined as basement membrane genes signatures (BMGS). Then, BMGS was used to construct the osteosarcoma BMGS risk score system, and the osteosarcoma patients were divided into high- and low-risk groups based on the median risk score. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE scores were used to investigate the differences in immune infiltration between the two scoring groups. Additionally, we investigated whether UNC5B affects various features in tumors by bioinformatic analysis and whether UNC5B was involved in multiple biological functions of osteosarcoma cells by wound healing assay, transwell assay, and western blot. RESULTS The osteosarcoma BMGS risk score reliably predicts the risk of metastasis, patient prognosis, and immunity. UNC5B expression was elevated in osteosarcoma, and correlated with various characteristics such as immune infiltration, prognosis, and drug sensitivity. In vitro assays showed that UNC5B knockdown reduced osteosarcoma cells' capacity for migration and invasion, and EMT process. CONCLUSION A novel BMGS risk score system that can effectively predict the prognosis of osteosarcoma was developed and validated. The UNC5B gene in this system is one of the key aggressive biomarkers of osteosarcoma.
Collapse
Affiliation(s)
- Ruilin Pan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yiming Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yanmei Cheng
- Department of Cardiothoracic Surgery ICU, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zelin Wu
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jin Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zihang Chen
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China; Department of Psychology, Li Ka Shing Faculty of Medicine, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Science and Technology Planning Project of Guangzhou, Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Department of Pharmacy, The First Affiliated Hospital, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Science and Technology Planning Project of Guangzhou, Jinan University, Guangzhou, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China.
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, The Ministry of Science and Technology & Guangdong Province, Department of Developmental and Regenerative Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, International Base of Collaboration for Science and Technology (JNU), institute of Aging and Regenerative Medicine, School of Life Science & Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Huang J, Wang X, Zeng Y, Xu H, Zhang S, Ding Z, Guo R. Identification of key mitochondria-related genes and their potential crosstalk role with immune pattern in Idiopathic pulmonary fibrosis. Gene 2024; 930:148840. [PMID: 39147114 DOI: 10.1016/j.gene.2024.148840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) stands out as a life-threatening and one of the most severe interstitial lung diseases. The pathogenesis of IPF is not fully understood, while recent studies have highlighted the association of mitochondrial dysfunction with IPF. This study is dedicated to pinpointing crucial genes related to mitochondria that potentially impact the advancement of IPF, thereby offering new perspectives on the pathogenesis of this condition. METHODS The Gene Expression Omnibus (GEO) database was utilized to download three datasets (GSE32537, GSE92592, and GSE150910), following which a comprehensive analysis was conducted to identify differentially expressed mitochondria-related genes (DEMTRGs) in the IPF lung tissues. Subsequently, GO and KEGG enrichment analysis of the DEMTRGs was performed. Next, external datasets and in vivo experiments were performed to validate their expression. Additionally, a Logistic regression model based on key DEMTRGs was constructed, and the model's ability to distinguish between IPF and controls was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). Finally, gene set enrichment analysis (GSEA) and CIBERSORT algorithm were conducted. RESULTS We identified five key DEMTRGs (ALDH18A1, ALDH1B1, MCCC1, ACAT1, and PDHA1), ALDH18A1 and ALDH1B1 exhibited upregulated expression levels, whereas MCCC1, ACAT1, and PDHA1 showed downregulation in the lung tissue of individuals with IPF. The expression levels of these key DEMTRGs were validated by an independent external dataset (GSE53845) and the bleomycin-induced pulmonary fibrosis mice. In addition, the ROCs indicated that the diagnostic model constructed based on key DEMTRGs could effectively distinguish between IPF and controls (AUC>0.8). GSEA analysis and immune-related analysis shed light on the potential mechanisms through which these key DEMTRGs influence IPF. CONCLUSION Our research has pinpointed key genes associated with mitochondria that may ultimately contribute to the progression of IPF by exerting regulatory effects on mitochondrial function, thereby influencing multiple cellular processes.
Collapse
Affiliation(s)
- Jun Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Huilin Xu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Siyi Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhigang Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
9
|
Xiong J, Chen G, Lin B, Zhong L, Jiang X, Lu H. Integrative analysis of single-Cell RNA sequencing and experimental validation in the study of abdominal aortic aneurysm progression. Gene 2024; 929:148820. [PMID: 39103059 DOI: 10.1016/j.gene.2024.148820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a complex vascular disorder characterized by the progressive dilation of the abdominal aorta, with a high risk of rupture and mortality. Understanding the cellular interactions and molecular mechanisms underlying AAA development is critical for identifying potential therapeutic targets. METHODS This study utilized datasets GSE197748, GSE164678 and GSE183464 from the GEO database, encompassing bulk and single-cell RNA sequencing data from AAA and control samples. We performed principal component analysis, differential expression analysis, and functional enrichment analysis to identify key pathways involved in AAA. Cell-cell interactions were investigated using CellPhoneDB, focusing on fibroblasts, vascular smooth muscle cells (VSMCs), and macrophages. We further validated our findings using a mouse model of AAA induced by porcine pancreatic enzyme infusion, followed by gene expression analysis and co-immunoprecipitation experiments. RESULTS Our analysis revealed significant alterations in gene expression profiles between AAA and control samples, with a pronounced immune response and cell adhesion pathways being implicated. Single-cell RNA sequencing data highlighted an increased proportion of pro-inflammatory macrophages, along with changes in the composition of fibroblasts and VSMCs in AAA. CellPhoneDB analysis identified critical ligand-receptor interactions, notably collagen type I alpha 1 chain (COL1A1)/COL1A2-CD18 and thrombospondin 1 (THBS1)-CD3, suggesting complex communication networks between fibroblasts and VSMCs. In vivo experiments confirmed the upregulation of these genes in AAA mice and demonstrated the functional interaction between COL1A1/COL1A2 and CD18. CONCLUSION The interaction between fibroblasts and VSMCs, mediated by specific ligand-receptor pairs such as COL1A1/COL1A2-CD18 and THBS1-CD3, plays a pivotal role in AAA pathogenesis.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Mice
- Single-Cell Analysis/methods
- Humans
- Sequence Analysis, RNA/methods
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Macrophages/metabolism
- Disease Progression
- Fibroblasts/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Gene Expression Profiling/methods
- Cell Communication/genetics
- Collagen Type I/genetics
- Collagen Type I/metabolism
Collapse
Affiliation(s)
- Jie Xiong
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China
| | - Guojun Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Beiyou Lin
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China
| | - Lintao Zhong
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China
| | - Xiaofei Jiang
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China.
| | - Hongyun Lu
- Department of Cardiology, Zhuhai Hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai 519000, China.
| |
Collapse
|
10
|
Voordes GHD, Voors AA, Hoegl A, Madsen CT, van Essen BJ, Ouwerkerk W, Tromp J, de la Rambelje MA, Grønborg M, Refsgaard JC, Lang CC, Barascuk-Michaelsen N, Damman K. Clinical and proteomic profiles of chronic kidney disease in heart failure with reduced and preserved ejection fraction. Int J Cardiol 2024; 417:132580. [PMID: 39306286 DOI: 10.1016/j.ijcard.2024.132580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is prevalent and related to poor clinical outcomes in patients with heart failure (HF). The pathophysiology of CKD in HF with a reduced ejection fraction (HFrEF) and HF with a preserved ejection fraction (HFpEF) is not well defined. In this study we compared clinical and proteomic profiles of CKD between patients with HFrEF and HFpEF. METHODS We included 478 patients of the Scottish BIOSTAT-CHF cohort, of which 246 had HFrEF and 232 had HFpEF. CKD was defined as an eGFR <60 mL/min/1.73m2. We compared HFrEF-patients with CKD to HFpEF-patients with CKD using logistic- and Cox-regression. We performed a differential expression analysis using 6376 proteins. RESULTS The prevalence of CKD was 36 % and 32 % in patients with HFpEF and HFrEF, respectively. CKD patients were on average 7 years older. BMI, higher NT-proBNP, ACE-inhibitors, HDL-cholesterol and Stroke were associated with CKD- patients with HFrEF. In HFpEF, CKD was associated with MRA-use and higher platelet count. CKD was associated with increased risk of death or heart failure hospitalization (HR 1.82, p < 0.001), with similar effect in HFrEF and HFpEF. The pattern of differentially expressed proteins between patients with and without CKD was similar in both HF-groups. CONCLUSION Clinical profiles related to CKD- patients with HFrEF were different from CKD-patients with HFrEF. CKD was associated with an increased risk of death or heart failure hospitalization, which was not different between HFpEF and HFrEF. Patterns of circulating proteins were similar between CKD-patients with HFpEF and HFrEF, suggesting no major differences in CKD-pathophysiology.
Collapse
Affiliation(s)
- Geert H D Voordes
- University of Groningen, Department of Cardiology, UMC Groningen, the Netherlands
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, UMC Groningen, the Netherlands
| | | | | | - Bart J van Essen
- University of Groningen, Department of Cardiology, UMC Groningen, the Netherlands
| | - Wouter Ouwerkerk
- Department of Dermatology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands; Saw Swee Hock School of Public Health and National University of Singapore and National University Health System, Singapore
| | - Jasper Tromp
- University of Groningen, Department of Cardiology, UMC Groningen, the Netherlands; Saw Swee Hock School of Public Health and National University of Singapore and National University Health System, Singapore; Duke-NUS Medical School Singapore, Singapore
| | | | | | | | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | | | - Kevin Damman
- University of Groningen, Department of Cardiology, UMC Groningen, the Netherlands.
| |
Collapse
|
11
|
Yin QZ, Liu YJ, Zhang Q, Xi SY, Yang TB, Li JP, Gao J. Overexpression of Basonuclin Zinc Finger Protein 2 in stromal cell is related to mesenchymal phenotype and immunosuppression of mucinous colorectal adenocarcinoma. Int Immunopharmacol 2024; 142:113184. [PMID: 39306894 DOI: 10.1016/j.intimp.2024.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Mucinous carcinoma (MC) is a distinct histologic subtype of colorectal cancer (CRC) that is less studied and associated with poor prognosis. This study aimed to identify MC-specific therapeutic targets and biomarkers to improve the prognosis of this aggressive disease. METHODS CRC samples from The Cancer Genome Atlas (TCGA) were categorized into MC and non-MC (NMC) groups based on histologic type. A multi-scale embedded gene co-expression network analysis (MEGENA) was constructed to identify gene modules associated with the MC group. The potential functions of Basonuclin Zinc Finger Protein 2 (BNC2) were further analyzed using the Biomarker Exploration for Solid Tumors (BEST) database. In vivo and in vitro experiments were conducted to validate the predicted results. RESULTS We identified the stromal component-related gene, BNC2, in the MC population. This gene is associated with a shorter progression-free interval (PFI) in CRC patients. BNC2 promotes FAP (encoding Fibroblast Activation Protein Alpha) transcription in cancer-associated fibroblasts (CAFs) and is involved in angiogenesis through two pathways. Additionally, BNC2 enhances tumor cell invasiveness in a CAF-dependent manner. Patients with high BNC2 expression benefited less from immunotherapy compared to those with low BNC2 expression. CONCLUSIONS Our study highlights the clinical importance of BNC2 in MC, and targeting BNC2 on stromal cells (fibroblasts and endothelial cells) may be an effective strategy for treating MC.
Collapse
Affiliation(s)
- Qing-Zhong Yin
- Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Qian Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Song-Yang Xi
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu 212000, China
| | - Tian-Bao Yang
- Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Ju Gao
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, Jiangsu 225009, China; Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
12
|
Yue D, Wang R, Zhao Y, Wu B, Li S, Zeng W, Wan S, Liu L, Dai Y, Shi Y, Xu R, Yang Z, Wang X, Zou Y. Investigating the molecular mechanisms between type 1 diabetes and mild cognitive impairment using bioinformatics analysis, with a focus on immune response. Int Immunopharmacol 2024; 142:113256. [PMID: 39340997 DOI: 10.1016/j.intimp.2024.113256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The immune system is involved in the development and progression of several diseases. Type 1 diabetes mellitus (T1DM), an autoimmune disorder, influences the progression of several other conditions; however, the link between T1DM and mild cognitive impairment (MCI) remains unclear. This study investigated the underlying immune response mechanisms that contribute to the development and progression of T1DM and MCI. Microarray datasets for MCI (GSE63060) and T1DM (GSE30208) were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the limma package. To explore the functional implications of these DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted using ClusterProfiler. Protein-protein interaction networks for the DEGs were constructed using the STRING database and visualized using Cytoscape. The Molecular Complex Detection algorithm was used to analyze DEGs. Immune cell infiltration in patients with T1DM and MCI was analyzed using the xCell method. Gene set enrichment analysis was used to gain in-depth insights into the functional characteristics of T1DM and MCI. Immune-related genes were obtained from the GeneCards and ImmPort databases. Machine learning algorithms were used to identify potential hub genes associated with immunity for T1DM and MCI diagnosis, and the diagnostic value was assessed using the receiver operating characteristic curve. The identified genes were validated using quantitative polymerase chain reaction. In the T1DM and MCI datasets, 610 DEGs showed consistent trends, of which 232 and 378 were upregulated and downregulated, respectively. Immune response analysis revealed significant changes in the immune cells associated with MCI and T1DM. Using immune-related genes, DEGs, and machine learning techniques, we identified CD3D in the MCI and T1DM groups. We observed a gradual decline in the cognitive function of mice with T1DM as the disease progressed. CD3D expression increased with increasing disease severity; CD3D primarily affected CD4+ T cells. This study revealed a complex interaction between T1DM and MCI, providing novel insights into the intricate relationship between immune dysregulation and cognitive impairment and expanding our understanding of these two interconnected disorders. These findings will facilitate the development of therapeutic interventions and identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Dongxu Yue
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Runze Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Yanli Zhao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Bangxu Wu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, PR China
| | - Shanshan Wan
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lifang Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Yating Dai
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Yuling Shi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Ruobing Xu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Zhihong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China.
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China.
| | - Yingying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China.
| |
Collapse
|
13
|
Yang D, Wang X, Sun Y, Shao Y, Shi X. Identification and experimental validation of genes associated with programmed cell death in dendritic cells of the thyroid tissue in Hashimoto's thyroiditis. Int Immunopharmacol 2024; 142:113083. [PMID: 39260305 DOI: 10.1016/j.intimp.2024.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Hashimoto's thyroiditis (HT) is a chronic autoimmune disorder. As antigen-presenting cells, dendritic cells(DCs) play a pivotal role in inducing programmed cell death (PCD) types, contributing to immune disorders. This study aimed to identify genes associated with multiple PCD pathways in dendritic cells within the thyroid tissue of patients with HT. METHODS The single-cell RNA-sequencing dataset HRA001684 was obtained from the National Genomics Data Center (NGDC) to calculate the area under the curve (AUC) scores for PCD-related genes. Additionally, mRNA sequencing datasets GSE138198 and HRA001684 were sourced from the Gene Expression Omnibus(GEO) and NGDC, respectively. Differentially expressed genes (DEGs) were identified by comparing normal and HT groups in GSE138198 and HRA001684. The intersection of these DEGs with PCD-related genes led to the identification of 17 PCD-related DEGs(PCDDEGs). RESULTS AUC scores revealed that DCs in HT exhibited significantly elevated levels of necroptosis, ferroptosis, pyroptosis, autophagy, and PANoptosis, expressing six key PCDDEGs: TNFAIP3, CYBB, PTPN6, STAT1, TGFB1, and NLRP3. These genes displayed an AUC>0.8 for HT in the GSE29315, GSE138198, and HRA001684 datasets, confirming their diagnostic accuracy. Moreover, their expression was positively correlated with the serum levels of thyroid peroxidase and thyroglobulin antibodies, while the expression of all PCDDEGs was negatively correlated with the abundance of thyroid follicular epithelial cells. qRT-PCR, WB, IHC, and IF experiments further confirmed the differences in PCDDEGs gene and protein levels in HT patients. DISCUSSION These findings highlight the crucial role of DCs in mediating PCD within the thyroid tissues of HT patients. The identified PCDDEGs-TNFAIP3, CYBB, PTPN6, STAT1, TGFB1, and NLRP3-may significantly contribute to HT pathogenesis through PCD pathways.
Collapse
Affiliation(s)
- Dongyu Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Xichang Wang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Ying Shao
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, PR China.
| |
Collapse
|
14
|
Zhang W, Zhang P, Wang X, Lin Y, Xu H, Mao R, Zhu S, Lin T, Cai J, Lin J, Kang M. SORBS2-Mediated inhibition of malignant behaviors in esophageal squamous cell carcinoma through TIMP3. Int Immunopharmacol 2024; 142:113096. [PMID: 39288625 DOI: 10.1016/j.intimp.2024.113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is characterized by high invasiveness and poor prognosis. The role of Sorbin and SH3 domain-containing protein 2 (SORBS2) in ESCC remains largely unexplored. METHODS The expression levels of SORBS2 in ESCC were detected using RNA-seq and proteomics data. The biological functions of SORBS2 in ESCC were investigated through in vivo and in vitro experiments. The mechanism of SORBS2 was explored using RIP-seq technology, which identified the key downstream molecule metalloproteinase-3 (TIMP3). The interaction between SORBS2 and TIMP3, including specific binding sites, was validated through RIP-qPCR and RNA pull-down assays. The impact of altered SORBS2 expression in ESCC on HUVECs was assessed using endothelial tube formation assays. RESULTS SORBS2 expression was significantly downregulated in ESCC tissues, and its decreased expression was associated with poor prognosis. Overexpression of SORBS2 in ESCC cell lines inhibited cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, SORBS2 bound to the 3' UTR of TIMP3 mRNA, enhancing its stability and thereby regulating TIMP3 expression. Rescue experiments demonstrated that increased TIMP3 expression could reverse the promotive effects of SORBS2 knockdown on ESCC, confirming TIMP3 as a critical downstream molecule of SORBS2. Furthermore, downregulation of SORBS2 in ESCC cells was associated with activation of HUVEC functions, whereas upregulation of TIMP3 could reverse this effect. The SORBS2/TIMP3 axis may exert tumor suppressive effects by influencing extracellular matrix degradation. CONCLUSION This study confirms that SORBS2 inhibits ESCC tumor progression by regulating extracellular matrix degradation through TIMP3, providing a potential therapeutic target for future treatment interventions.
Collapse
Affiliation(s)
- Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaoqing Wang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ye Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Renyan Mao
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shujing Zhu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tianxin Lin
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junlan Cai
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China; Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China.
| |
Collapse
|
15
|
Chen H, Wu H, Wang Q, Zhang H. IFIT2 mediates iron retention and cholesterol efflux in atherosclerosis. Int Immunopharmacol 2024; 142:113131. [PMID: 39276454 DOI: 10.1016/j.intimp.2024.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Abnormalities in iron and lipid metabolism are recognized as key contributors to atherosclerosis (AS). Therefore, this study proposes to characterize the biomarker related to iron and lipid metabolism in AS using bioinformatics, animal, and cell experiments. METHODS The limma package was utilized to identify differentially expressed genes (DEGs) in GSE70126 and GSE70619 datasets, and biomarkers were screened using enrichment analysis and PPI networks. IFIT2 was knocked down using shRNA lentivirus in a high fat diet (HFD)-induced APOE-/- AS model to investigate its effects of IFIT2 on the pathology, iron retention, and lipid accumulation. Iron storage-related and cholesterol efflux-related proteins were evaluated following exogenous modulation of IFIT2 expression in ox-LDL-induced foamy macrophages. RESULTS Compared to non-foamy macrophages from the aorta, 189 and 4152 DEGs were identified in foamy macrophages within the GSE70126 and GSE70619 datasets, respectively. Moreover, intersecting DEGs may modulate immune responses, cell adhesion, vascular permeability, and oxidative stress through NF-kappa B, Wnt, TNF and HIF-1 signaling pathways. Notably, IFIT2 was significantly upregulated in foamy macrophages and AS models. In vivo, IFIT2 co-localized with foamy macrophages, and its knockdown led to reductions in plasma lipid levels, plaque area, immune infiltration, iron retention, and lipid accumulation. In vitro, IFIT2 knockdown alleviated the ox-LDL-induced increase in iron storage-related proteins (Ferritin-L and Ferritin-H) and iron (Fe2+ and Fe3+) in foamy macrophages. Furthermore, IFIT2 knockdown reduced lipid accumulation and upregulated cholesterol efflux-related proteins (PPARγ, LXRα, ABCA1, and ABCG1) in foamy macrophages. CONCLUSION IFIT2 knockdown attenuates iron retention and lipid accumulation in AS plaques, and facilitated cholesterol efflux from foamy macrophages via the PPARγ/LXRα/ABCA1-ABCG1 pathway.
Collapse
Affiliation(s)
- Haoqiang Chen
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China
| | - Haiyan Wu
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China; Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming 650500, P.R.China
| | - Qian Wang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China.
| | - Hong Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China.
| |
Collapse
|
16
|
Luo L, Liu K, Deng L, Wang W, Lai T, Li X. Chicoric acid acts as an ALOX15 inhibitor to prevent ferroptosis in asthma. Int Immunopharmacol 2024; 142:113187. [PMID: 39298822 DOI: 10.1016/j.intimp.2024.113187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chicoric acid (CA) is a crucial immunologically active compound found in chicory and echinacea, possessing a range of biological activities. Ferroptosis, a type of iron-dependent cell death induced by lipid peroxidation, plays a key role in the development and advancement of asthma. Targeting ferroptosis could be a potential therapeutic strategy for treating asthma. PURPOSE The purpose of this study was to explore the screening of ALOX15, a pivotal target of ferroptosis in asthma, and potential therapeutic agents, as well as to investigate the promising potential of CA as an ALOX15 inhibitor for modulating ferroptosis in asthma. METHODS Through high-throughput data processing of bronchial epithelial RNA from asthma patients using bioinformatics and machine learning, the key target of ferroptosis in asthma, ALOX15, was identified. An inhibitor of ALOX15 was then obtained through high-throughput molecular docking and molecular dynamics simulation tests. In vitro experiments were conducted using a 16HBE cell model induced by house dust mite (HDM) and lipopolysaccharide (LPS), which were treated with the ALOX15 inhibitor (PD146176), CA treatment, or ALOX15 knockdown. In vivo experiments were also carried out using a mouse model induced by HDM and LPS. RESULTS The composite model of ALOX15 and CA in molecular dynamics simulations shows good stability and flexibility. Network pharmacological analysis reveals that CA regulates ferroptosis through ALOX15 in treating asthma. In vitro studies show that ALOX15 is highly expressed in HDM and LPS treatments, while CA inhibits HDM and LPS-induced ferroptosis in 16HBE cells by reducing ALOX15 expression. Knockdown of ALOX15 has the opposite effect. Metabolomics analysis identifies key compounds associated with ferroptosis, including L-Targinine, eicosapentaenoic acid, 16-hydroxy hexadecanoic acid, and succinic acid. In vivo experiments demonstrate that CA suppresses ALOX15 expression, inhibits ferroptosis, and improves asthma symptoms in mice. CONCLUSION Our research initially identified CA as a promising asthma treatment that effectively blocks ferroptosis by specifically targeting ALOX15. This study not only highlights CA as a potential therapeutic agent for asthma but also introduces novel targets and treatment options for this condition, along with innovative approaches for utilizing natural compounds to target diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Kangdi Liu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Liyan Deng
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenjian Wang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Tianli Lai
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xiaoling Li
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
17
|
Rosati D, Palmieri M, Brunelli G, Morrione A, Iannelli F, Frullanti E, Giordano A. Differential gene expression analysis pipelines and bioinformatic tools for the identification of specific biomarkers: A review. Comput Struct Biotechnol J 2024; 23:1154-1168. [PMID: 38510977 PMCID: PMC10951429 DOI: 10.1016/j.csbj.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, the role of bioinformatics and computational biology together with omics techniques and transcriptomics has gained tremendous importance in biomedicine and healthcare, particularly for the identification of biomarkers for precision medicine and drug discovery. Differential gene expression (DGE) analysis is one of the most used techniques for RNA-sequencing (RNA-seq) data analysis. This tool, which is typically used in various RNA-seq data processing applications, allows the identification of differentially expressed genes across two or more sample sets. Functional enrichment analyses can then be performed to annotate and contextualize the resulting gene lists. These studies provide valuable information about disease-causing biological processes and can help in identifying molecular targets for novel therapies. This review focuses on differential gene expression (DGE) analysis pipelines and bioinformatic techniques commonly used to identify specific biomarkers and discuss the advantages and disadvantages of these techniques.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Giulia Brunelli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
18
|
Jaeger M, Dietschmann A, Austermeier S, Dinçer S, Porschitz P, Vornholz L, Maas RJ, Sprenkeler EG, Ruland J, Wirtz S, Azam T, Joosten LA, Hube B, Netea MG, Dinarello CA, Gresnigt MS. Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence 2024; 15:2333367. [PMID: 38515333 PMCID: PMC11008552 DOI: 10.1080/21505594.2024.2333367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic β-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sude Dinçer
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Pauline Porschitz
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ralph J.A. Maas
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien G.G. Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, USA
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| |
Collapse
|
19
|
Hong G, Huo Y, Gao Y, Ma L, Li S, Tian T, Zhong H, Li H. Integration of miRNA expression analysis of purified leukocytes and whole blood reveals blood-borne candidate biomarkers for lung cancer. Epigenetics 2024; 19:2393948. [PMID: 39164937 PMCID: PMC11340745 DOI: 10.1080/15592294.2024.2393948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Changes in leukocyte populations may confound the disease-associated miRNA signals in the blood of cancer patients. We aimed to develop a method to detect differentially expressed miRNAs from lung cancer whole blood samples that are not influenced by variations in leukocyte proportions. The Ref-miREO method identifies differential miRNAs unaffected by changes in leukocyte populations by comparing the within-sample relative expression orderings (REOs) of miRNAs from healthy leukocyte subtypes and those from lung cancer blood samples. Over 77% of the differential miRNAs observed between lung cancer and healthy blood samples overlapped with those between myeloid-derived and lymphoid-derived leukocytes, suggesting the potential impact of changes in leukocyte populations on miRNA profile. Ref-miREO identified 16 differential miRNAs that target 19 lung adenocarcinoma-related genes previously linked to leukocytes. These miRNAs showed enrichment in cancer-related pathways and demonstrated high potential as diagnostic biomarkers, with the LASSO regression models effectively distinguishing between healthy and lung cancer blood or serum samples (all AUC > 0.85). Additionally, 12 of these miRNAs exhibited significant prognostic correlations. The Ref-miREO method offers valuable candidates for circulating biomarker detection in cancer that are not affected by changes in leukocyte populations.
Collapse
Affiliation(s)
- Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Yue Huo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yaru Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Shuang Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Tian Tian
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Haijian Zhong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Liu Y, Min Z, Mo J, Ju Z, Chen J, Liang W, Zhang L, Li H, Chan GCF, Wei Y, Zhang W. ExomiRHub: A comprehensive database for hosting and analyzing human disease-related extracellular microRNA transcriptomics data. Comput Struct Biotechnol J 2024; 23:3104-3116. [PMID: 39219717 PMCID: PMC11362623 DOI: 10.1016/j.csbj.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular microRNA (miRNA) expression data generated by different laboratories exhibit heterogeneity, which poses challenges for biologists without bioinformatics expertise. To address this, we introduce ExomiRHub (http://www.biomedical-web.com/exomirhub/), a user-friendly database designed for biologists. This database incorporates 191 human extracellular miRNA expression datasets associated with 112 disease phenotypes, 62 treatments, and 24 genotypes, encompassing 29,198 and 23 sample types. ExomiRHub also integrates 16,012 miRNA transcriptomes of 156 cancer subtypes from The Cancer Genome Atlas. All the data in ExomiRHub were further standardized and curated with annotations. The platform offers 25 analytical functions, including differential expression, co-expression, Weighted Gene Co-Expression Network Analysis (WGCNA), feature selection, and functional enrichment, enabling users to select samples, define groups, and customize parameters for analyses. Moreover, ExomiRHub provides a web service that allows biologists to analyze their uploaded miRNA expression data. Four additional tools were developed to evaluate the functions and targets of miRNAs and miRNA variations. Through ExomiRHub, we identified extracellular miRNA biomarkers associated with angiogenesis for monitoring glioma progression, demonstrating its potential to significantly accelerate the discovery of extracellular miRNA biomarkers.
Collapse
Affiliation(s)
- Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| | - Zhuochao Min
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| | - Zhen Ju
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianliang Chen
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Weiling Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Lantian Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
| | - Hanguang Li
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenliang Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| |
Collapse
|
21
|
Ciantar J, Marttila S, Rajić S, Kostiniuk D, Mishra PP, Lyytikäinen LP, Mononen N, Kleber ME, März W, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Identification and functional characterisation of DNA methylation differences between East- and West-originating Finns. Epigenetics 2024; 19:2397297. [PMID: 39217505 PMCID: PMC11382697 DOI: 10.1080/15592294.2024.2397297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Eastern and Western Finns show a striking difference in coronary heart disease-related mortality; genetics is a known contributor for this discrepancy. Here, we discuss the potential role of DNA methylation in mediating the discrepancy in cardiometabolic disease-risk phenotypes between the sub-populations. We used data from the Young Finns Study (n = 969) to compare the genome-wide DNA methylation levels of East- and West-originating Finns. We identified 21 differentially methylated loci (FDR < 0.05; Δβ >2.5%) and 7 regions (smoothed FDR < 0.05; CpGs ≥ 5). Methylation at all loci and regions associates with genetic variants (p < 5 × 10-8). Independently of genetics, methylation at 11 loci and 4 regions associates with transcript expression, including genes encoding zinc finger proteins. Similarly, methylation at 5 loci and 4 regions associates with cardiometabolic disease-risk phenotypes including triglycerides, glucose, cholesterol, as well as insulin treatment. This analysis was also performed in LURIC (n = 2371), a German cardiovascular patient cohort, and results replicated for the association of methylation at cg26740318 and DMR_11p15 with diabetes-related phenotypes and methylation at DMR_22q13 with triglyceride levels. Our results indicate that DNA methylation differences between East and West Finns may have a functional role in mediating the cardiometabolic disease discrepancy between the sub-populations.
Collapse
Affiliation(s)
- Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daria Kostiniuk
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Tays Research Services, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
22
|
Qiu RB, Zhao ST, Li ZW, Zeng RY, Qiu ZC, Peng HZ, Xu ZQ, Zhou LF, Lai SQ, Wan L. Identification and validation of autophagy‑related genes in hypertrophic cardiomyopathy. Exp Ther Med 2024; 28:440. [PMID: 39355520 PMCID: PMC11443588 DOI: 10.3892/etm.2024.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant cardiac disorder characterized by ventricular hypertrophy resulting from the disordered arrangement of myocardial cells, which leads to impaired cardiac function or death. Autophagy (AT) is a biochemical process through which lysosomes degrade and recycle damaged or discarded intracellular components to protect cells against external environmental conditions, such as hypoxia and oxidative stress. AT is closely related to HCM, and thus, serves an important role in myocardial hypertrophy. However, the precise mechanism underlying the regulation of AT in cardiac hypertrophy remains elusive. The present study aimed to examine the role and mechanisms of AT-related genes (ARGs) in HCM through bioinformatics analysis and experimental validation and to identify potential targeted drugs for HCM. In this study, cardiac samples were obtained from healthy individuals and patients with HCM from the GEO database, and screened for differentially expressed ARGs to further investigate their potential interactions and functional pathways. These genes were subjected to functional enrichment analysis to identify potential crosstalk and involved pathways. Based on a protein-protein interaction network, EIF4EBP1, MCL1, PIK3R1, CCND1 and PPARG were identified as potential biomarkers for the diagnosis and treatment of HCM. Furthermore, 10 components with therapeutic potential for HCM were predicted based on the aforementioned hub genes. The results of bioinformatics analysis were validated using H9c2 cells stimulated with angiotensin II, which represented an in vitro model of cardiac hypertrophy. Overall, the present study demonstrated that the expression levels of ARGs were substantially altered in HCM. Therefore, these genes may be used as diagnostic biomarkers and therapeutic targets for HCM.
Collapse
Affiliation(s)
- Rong-Bin Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shi-Tao Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Wei Li
- Department of Cardiothoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu 215028, P.R. China
| | - Rui-Yuan Zeng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Cong Qiu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Han-Zhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Qiang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lian-Fen Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
23
|
Lin L, Liao Z, Li Y, Pan S, Wu S, Sun QX, Li C. Transcriptomic analysis and validation study of key genes and the HIF‑1α/HO‑1 pathway associated with ferroptosis in neutrophilic asthma. Exp Ther Med 2024; 28:433. [PMID: 39347495 PMCID: PMC11425779 DOI: 10.3892/etm.2024.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, as a unique form of cell death caused by iron overload and lipid peroxidation, is involved in the pathogenesis of various inflammatory diseases of the airways. Inhibition of ferroptosis has become a novel strategy for reducing airway epithelial cell death and improving airway inflammation. The aim of the present study was to analyze and validate the key genes and signaling pathways associated with ferroptosis by bioinformatic methods combined with experimental analyzes in vitro and in vivo to aid the diagnosis and treatment of neutrophilic asthma. A total of 1,639 differentially expressed genes (DEGs) were identified in the transcriptome dataset. After overlapping with ferroptosis-related genes, 11 differentially expressed ferroptosis-related genes (DE-FRGs) were obtained. A new diagnostic model was constructed by these DE-FRGs from the transcriptome dataset with those from the GSE108417 dataset. The receiver operating characteristic curve analysis indicated that the area under the curve had good diagnostic performance (>0.8). As a result, four key DE-FRGs (CXCL2, HMOX1, IL-6 and SLC7A5) and biological pathway [hypoxia-inducible factor 1 (HIF-1) signaling pathway] associated with ferroptosis in neutrophilic asthma were identified by the bioinformatics analysis combined with experimental validation. The upstream regulatory network of key DE-FRGs and target drugs were predicted and the molecular docking results from screened 37 potential therapeutic drugs revealed that the 13 small-molecule drugs exhibited a higher stable binding to the primary proteins of key DE-FRGs. The results suggested that four key DE-FRGs and the HIF-1α/heme oxygenase 1 pathway associated with ferroptosis have potential as novel markers or targets for the diagnosis or treatment of neutrophilic asthma.
Collapse
Affiliation(s)
- Lu Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Zenghua Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yinghua Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Shitong Pan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Sihui Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi-Xiang Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chaoqian Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
24
|
Xing D, Zhang W, Liu Y, Huang H, Xie J. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease. Mamm Genome 2024; 35:749-763. [PMID: 39390284 DOI: 10.1007/s00335-024-10073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Alzheimer's Disease (AD) remains a significant challenge due to its complex etiology and socio-economic burden. In this study, we investigated the roles of macrophage polarization-related hub genes in AD pathology, focusing on their impact on immune infiltration and gene regulation in distinct brain regions. Using Gene Expression Omnibus (GEO) datasets GSE110226 (choroid plexus) and GSE1297 (hippocampal CA1), we identified key genes-EDN1, HHLA2, KL, TREM2, and WWTR1-associated with AD mechanisms and immune responses. Based on these findings, we developed a diagnostic model demonstrating favorable calibration and clinical applicability. Furthermore, we explored molecular interactions within mRNA-transcription factor and mRNA-miRNA regulatory networks, providing deeper insights into AD progression and identifying potential therapeutic targets. The novel identification of WWTR1 and HHLA2 as biomarkers expands the diagnostic toolkit for AD, offering new perspectives on the disease's underlying immune dynamics. However, external dataset validation and further in vitro and in vivo studies are required to confirm these results and their clinical relevance.
Collapse
Affiliation(s)
- Dianxia Xing
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| | - Wenjin Zhang
- Central Laboratory of Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Yan Liu
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Hong Huang
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Junjie Xie
- Department of Geriatrics, Chongqing University Three Gorges Hospital, 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| |
Collapse
|
25
|
Sahoo K, Sundararajan V. Methods in DNA methylation array dataset analysis: A review. Comput Struct Biotechnol J 2024; 23:2304-2325. [PMID: 38845821 PMCID: PMC11153885 DOI: 10.1016/j.csbj.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Understanding the intricate relationships between gene expression levels and epigenetic modifications in a genome is crucial to comprehending the pathogenic mechanisms of many diseases. With the advancement of DNA Methylome Profiling techniques, the emphasis on identifying Differentially Methylated Regions (DMRs/DMGs) has become crucial for biomarker discovery, offering new insights into the etiology of illnesses. This review surveys the current state of computational tools/algorithms for the analysis of microarray-based DNA methylation profiling datasets, focusing on key concepts underlying the diagnostic/prognostic CpG site extraction. It addresses methodological frameworks, algorithms, and pipelines employed by various authors, serving as a roadmap to address challenges and understand changing trends in the methodologies for analyzing array-based DNA methylation profiling datasets derived from diseased genomes. Additionally, it highlights the importance of integrating gene expression and methylation datasets for accurate biomarker identification, explores prognostic prediction models, and discusses molecular subtyping for disease classification. The review also emphasizes the contributions of machine learning, neural networks, and data mining to enhance diagnostic workflow development, thereby improving accuracy, precision, and robustness.
Collapse
Affiliation(s)
| | - Vino Sundararajan
- Correspondence to: Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
26
|
Li TT, Bai HY, Zhang JH, Kang XH, Qu YQ. Identification and Validation of Aging Related Genes Signature in Chronic Obstructive Pulmonary Disease. COPD 2024; 21:2379811. [PMID: 39138958 DOI: 10.1080/15412555.2024.2379811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE Chronic Obstructive Pulmonary Disease (COPD) is regarded as an accelerated aging disease. Aging-related genes in COPD are still poorly understood. METHOD Data set GSE76925 was obtained from the Gene Expression Omnibus (GEO) database. The "limma" package identified the differentially expressed genes. The weighted gene co-expression network analysis (WGCNA) constructes co-expression modules and detect COPD-related modules. The least absolute shrinkage and selection operator (LASSO) and the support vector machine recursive feature elimination (SVM-RFE) algorithms were chosen to identify the hub genes and the diagnostic ability. Three external datasets were used to identify differences in the expression of hub genes. Real-time reverse transcription polymerase chain reaction (RT-qPCR) was used to verify the expression of hub genes. RESULT We identified 15 differentially expressed genes associated with aging (ARDEGs). The SVM-RFE and LASSO algorithms pinpointed four potential diagnostic biomarkers. Analysis of external datasets confirmed significant differences in PIK3R1 expression. RT-qPCR results indicated decreased expression of hub genes. The ROC curve demonstrated that PIK3R1 exhibited strong diagnostic capability for COPD. CONCLUSION We identified 15 differentially expressed genes associated with aging. Among them, PIK3R1 showed differences in external data sets and RT-qPCR results. Therefore, PIK3R1 may play an essential role in regulating aging involved in COPD.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Hong-Yan Bai
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-He Kang
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
27
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Lin C, Seabold K, Mills C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Epithelial-specific loss of Smad4 alleviates the fibrotic response in an acute colitis mouse model. Life Sci Alliance 2024; 7:e202402935. [PMID: 39366762 PMCID: PMC11452480 DOI: 10.26508/lsa.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel disease. But the epithelial-specific contribution to mucosal healing in vivo is poorly understood. We evaluated mucosal healing in an acute dextran sulfate sodium mouse model that shows an alleviated colitis response after epithelial-specific loss of Smad4. We find that enhanced epithelial wound healing alleviates the fibrotic response. Dextran sulfate sodium caused increased mesenchymal collagen deposition-indicative of fibrosis-within a week in the WT but not in the Smad4 KO colon. The fibrotic response correlated with decreased epithelial proliferation in the WT, whereas uninterrupted proliferation and an expanded zone of proliferation were observed in the Smad4 KO colon epithelium. Furthermore, the Smad4 KO colon showed epithelial extracellular matrix alterations that promote epithelial regeneration. Our data suggest that epithelium is a key determinant of the mucosal healing response in vivo, implicating mucosal healing as a strategy against fibrosis in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Zahra Hashemi
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Thompson Hui
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Alex Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Dahlia Matouba
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Steven Zukowski
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Shima Nejati
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Crystal Lim
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Julianna Bruzzese
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Cindy Lin
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kyle Seabold
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Connor Mills
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kylee Wrath
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Haoyu Wang
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Hongjun Wang
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Ansu Perekatt
- https://ror.org/02z43xh36 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
28
|
Zhou D, Liu T, Mei Y, Lv J, Cheng K, Cai W, Gao S, Guo D, Xie X, Liu Z. Identifying critical modules and biomarkers of intervertebral disc degeneration by using weighted gene co-expression network. JOR Spine 2024; 7:e70004. [PMID: 39430414 PMCID: PMC11487274 DOI: 10.1002/jsp2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is an age-related orthopedic degenerative disease characterized by recurrent episodes of lower back pain, the pathogenesis of which is not fully understood. This study aimed to identify key biomarkers of IVDD and its causes. Methods We acquired three gene expression profiles from the Gene Expression Omnibus (GEO) database, GSE56081, GSE124272, and GSE153761, and used limma fast differential analysis to identify differentially expressed genes (DEGs) between normal and IVDD samples after removing batch effects. We applied weighted gene co-expression network (WGCNA) to identify the key modular genes in GSE124272 and intersected these with DEGs. Next, A protein-protein interaction network (PPI) was constructed, and Cytoscape was used to identify the Top 10 hub genes. Functional enrichment analyses were performed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Three key genes were validated using Western Blot (WB) and qRT-PCR. Additionally, we predicted miRNAs involved in hub gene co-regulation and analyzed miRNA microarray data from GSE116726 to identify four differentially expressed miRNAs. Results We identified 10 hub genes using bioinformatics analysis, gene function enrichment analysis revealed that they were primarily enriched in pathways, such as the TNF signaling pathway. We chose JUNB, SOCS3, and CEBPB as hub genes and used WB and qRT-PCR to confirm their expression. All three genes were overexpressed in the IVDD model group compared to the control group. Furthermore, we identified four miRNAs involved in the co-regulation of the hub genes using miRNet prediction: mir-191-5p, mir-20a-5p, mir-155-5p, and mir-124-3p. Using limma difference analysis, we discovered that mir-191-5p, mir-20a-5p, and mir-155-5p were all down-regulated and expressed in IVDD samples, but mir-124-3p showed no significant change. Conclusion JUNB, SOCS3, and CEBPB were identified as key genes in IVDD, regulated by specific miRNAs, providing potential biomarkers for early diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Tao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Jiale Lv
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Daru Guo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Xianping Xie
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouSichuan ProvinceChina
- Department of OrthopedicsLuzhou Longmatan District People's HospitalLuzhouSichuanChina
| |
Collapse
|
29
|
Ziemann M, Abeysooriya M, Bora A, Lamon S, Kasu MS, Norris MW, Wong YT, Craig JM. Direction-aware functional class scoring enrichment analysis of infinium DNA methylation data. Epigenetics 2024; 19:2375022. [PMID: 38967555 PMCID: PMC11229754 DOI: 10.1080/15592294.2024.2375022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Infinium Methylation BeadChip arrays remain one of the most popular platforms for epigenome-wide association studies, but tools for downstream pathway analysis have their limitations. Functional class scoring (FCS) is a group of pathway enrichment techniques that involve the ranking of genes and evaluation of their collective regulation in biological systems, but the implementations described for Infinium methylation array data do not retain direction information, which is important for mechanistic understanding of genomic regulation. Here, we evaluate several candidate FCS methods that retain directional information. According to simulation results, the best-performing method involves the mean aggregation of probe limma t-statistics by gene followed by a rank-ANOVA enrichment test using the mitch package. This method, which we call 'LAM,' outperformed an existing over-representation analysis method in simulations, and showed higher sensitivity and robustness in an analysis of real lung tumour-normal paired datasets. Using matched RNA-seq data, we examine the relationship of methylation differences at promoters and gene bodies with RNA expression at the level of pathways in lung cancer. To demonstrate the utility of our approach, we apply it to three other contexts where public data were available. First, we examine the differential pathway methylation associated with chronological age. Second, we investigate pathway methylation differences in infants conceived with in vitro fertilization. Lastly, we analyse differential pathway methylation in 19 disease states, identifying hundreds of novel associations. These results show LAM is a powerful method for the detection of differential pathway methylation complementing existing methods. A reproducible vignette is provided to illustrate how to implement this method.
Collapse
Affiliation(s)
- Mark Ziemann
- Bioinformatics Working Group, Burnet Institute, Melbourne, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Mandhri Abeysooriya
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| | - Anusuiya Bora
- Bioinformatics Working Group, Burnet Institute, Melbourne, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| | - Mary Sravya Kasu
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Mitchell W. Norris
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Yen Ting Wong
- School of Medicine, Deakin University, Geelong, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Jeffrey M. Craig
- School of Medicine, Deakin University, Geelong, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
30
|
Akca MN, Kasavi C. Identifying new molecular signatures and potential therapeutics for idiopathic pulmonary fibrosis: a network medicine approach. Mamm Genome 2024; 35:734-748. [PMID: 39254743 DOI: 10.1007/s00335-024-10069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by excessive collagen deposition and fibrosis of the lung parenchyma, leading to respiratory failure. The molecular mechanisms underlying IPF pathogenesis remain incompletely understood, hindering the development of effective therapeutic strategies. We have used a network medicine approach to comprehensively analyze molecular interactions and identify novel molecular signatures and potential therapeutics associated with IPF progression. Our integrative analysis revealed dysregulated molecular networks that are central to IPF pathophysiology. We have highlighted key molecular players and signaling pathways that are implicated in aberrant fibrotic processes. This systems-level understanding enables the identification of new biomarkers and therapeutic targets for IPF, providing potential avenues for precision medicine. Drug repurposing analysis revealed several drug candidates with anti-fibrotic, anti-inflammatory, and anti-cancer activities that could potentially slow fibrotic progression and improve patient outcomes. This study offers new insights into the molecular underpinnings of IPF and highlights network medicine approaches in uncovering complex disease mechanisms. The molecular signatures and therapeutic targets identified hold promise for developing precision therapies tailored to individual patients, ultimately advancing the management of this debilitating lung disease.
Collapse
Affiliation(s)
- Mecbure Nur Akca
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye
| | - Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Türkiye.
| |
Collapse
|
31
|
Poli G, Argiento R, Amedei A, Stingo FC. High-Dimensional Bayesian Semiparametric Models for Small Samples: A Principled Approach to the Analysis of Cytokine Expression Data. Biom J 2024; 66:e70000. [PMID: 39470109 DOI: 10.1002/bimj.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/30/2024]
Abstract
In laboratory medicine, due to the lack of sample availability and resources, measurements of many quantities of interest are commonly collected over a few samples, making statistical inference particularly challenging. In this context, several hypotheses can be tested, and studies are not often powered accordingly. We present a semiparametric Bayesian approach to effectively test multiple hypotheses applied to an experiment that aims to identify cytokines involved in Crohn's disease (CD) infection that may be ongoing in multiple tissues. We assume that the positive correlation commonly observed between cytokines is caused by latent groups of effects, which in turn result from a common cause. These clusters are effectively modeled through a Dirichlet Process (DP) that is one of the most popular choices as nonparametric prior in Bayesian statistics and has been proven to be a powerful tool for model-based clustering. We use a spike-slab distribution as the base measure of the DP. The nonparametric part has been included in an additive model whose parametric component is a Bayesian hierarchical model. We include simulations that empirically demonstrate the effectiveness of the proposed testing procedure in settings that mimic our application's sample size and data structure. Our CD data analysis shows strong evidence of a cytokine gradient in the external intestinal tissue.
Collapse
Affiliation(s)
- Giovanni Poli
- Department of Statistics, Computer Science, Applications "G. Parenti", Università degli Studi di Firenze, Firenze, Italy
| | - Raffaele Argiento
- Department of Economics, Università degli Studi di Bergamo, Bergamo, Italy
- Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milano, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Firenze, Italy
| | - Francesco C Stingo
- Department of Statistics, Computer Science, Applications "G. Parenti", Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
32
|
Dikmen F, Dabak T, Özgişi BD, Özenirler Ç, Kuralay SC, Çay SB, Çınar YU, Obut O, Balcı MA, Akbaba P, Aksel EG, Zararsız G, Solares E, Eldem V. Transcriptome-wide analysis uncovers regulatory elements of the antennal transcriptome repertoire of bumblebee at different life stages. INSECT MOLECULAR BIOLOGY 2024; 33:571-588. [PMID: 38676460 DOI: 10.1111/imb.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.
Collapse
Affiliation(s)
- Fatih Dikmen
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Tunç Dabak
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | | | | | | | | | - Onur Obut
- Department of Biology, Istanbul University, İstanbul, Turkey
| | | | - Pınar Akbaba
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Edwin Solares
- Computer Science & Engineering Department, University of California, San Diego, California, USA
| | - Vahap Eldem
- Department of Biology, Istanbul University, İstanbul, Turkey
| |
Collapse
|
33
|
Salihoglu R, Balkenhol J, Dandekar G, Liang C, Dandekar T, Bencurova E. Cat-E: A comprehensive web tool for exploring cancer targeting strategies. Comput Struct Biotechnol J 2024; 23:1376-1386. [PMID: 38596315 PMCID: PMC11001601 DOI: 10.1016/j.csbj.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Identifying potential cancer-associated genes and drug targets from omics data is challenging due to its diverse sources and analyses, requiring advanced skills and large amounts of time. To facilitate such analysis, we developed Cat-E (Cancer Target Explorer), a novel R/Shiny web tool designed for comprehensive analysis with evaluation according to cancer-related omics data. Cat-E is accessible at https://cat-e.bioinfo-wuerz.eu/. Cat-E compiles information on oncolytic viruses, cell lines, gene markers, and clinical studies by integrating molecular datasets from key databases such as OvirusTB, TCGA, DrugBANK, and PubChem. Users can use all datasets and upload their data to perform multiple analyses, such as differential gene expression analysis, metabolic pathway exploration, metabolic flux analysis, GO and KEGG enrichment analysis, survival analysis, immune signature analysis, single nucleotide variation analysis, dynamic analysis of gene expression changes and gene regulatory network changes, and protein structure prediction. Cancer target evaluation by Cat-E is demonstrated here on lung adenocarcinoma (LUAD) datasets. By offering a user-friendly interface and detailed user manual, Cat-E eliminates the need for advanced computational expertise, making it accessible to experimental biologists, undergraduate and graduate students, and oncology clinicians. It serves as a valuable tool for investigating genetic variations across diverse cancer types, facilitating the identification of novel diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Rana Salihoglu
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
| | - Johannes Balkenhol
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University Hospital of Wurzburg, 97080 Wurzburg, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital of Wurzburg, 97080 Wurzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
| |
Collapse
|
34
|
Cheng X, Meng X, Chen R, Song Z, Li S, Wei S, Lv H, Zhang S, Tang H, Jiang Y, Zhang R. The molecular subtypes of autoimmune diseases. Comput Struct Biotechnol J 2024; 23:1348-1363. [PMID: 38596313 PMCID: PMC11001648 DOI: 10.1016/j.csbj.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Seddon AR, Damiano OM, Hampton MB, Stevens AJ. Widespread genomic de novo DNA methylation occurs following CD8 + T cell activation and proliferation. Epigenetics 2024; 19:2367385. [PMID: 38899429 PMCID: PMC11195465 DOI: 10.1080/15592294.2024.2367385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
This research investigates the intricate dynamics of DNA methylation in the hours following CD8+ T cell activation, during a critical yet understudied temporal window. DNA methylation is an epigenetic modification central to regulation of gene expression and directing immune responses. Our investigation spanned 96-h post-activation and unveils a nuanced tapestry of global and site-specific methylation changes. We identified 15,626 significant differentially methylated CpGs spread across the genome, with the most significant changes occurring within the genes ADAM10, ICA1, and LAPTM5. While many changes had modest effect sizes, approximately 120 CpGs exhibited a log2FC above 1.5, with cell activation and proliferation pathways the most affected. Relatively few of the differentially methylated CpGs occurred along adjacent gene regions. The exceptions were seven differentially methylated gene regions, with the Human T cell Receptor Alpha Joining Genes demonstrating consistent methylation change over a 3kb window. We also investigated whether an inflammatory environment could alter DNA methylation during activation, with proliferating cells exposed to the oxidant glycine chloramine. No substantial differential methylation was observed in this context. The temporal perspective of early activation adds depth to the evolving field of epigenetic immunology, offering insights with implications for therapeutic innovation and expanding our understanding of epigenetic modulation in immune function.
Collapse
Affiliation(s)
- Annika R. Seddon
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago, Christchurch, New Zealand
| | - Olivia M. Damiano
- Department of Pathology and Molecular Medicine, Genetics and Epigenetics Research Group, University of Otago, Wellington, New Zealand
| | - Mark B. Hampton
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago, Christchurch, New Zealand
| | - Aaron J. Stevens
- Department of Pathology and Molecular Medicine, Genetics and Epigenetics Research Group, University of Otago, Wellington, New Zealand
| |
Collapse
|
36
|
Yu Y, Dong G, Niu Y. Construction of ferroptosis-related gene signatures for identifying potential biomarkers and immune cell infiltration in osteoarthritis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:449-461. [PMID: 39258983 DOI: 10.1080/21691401.2024.2402298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Osteoarthritis (OA) is a comprehensive joint disorder. The specific genes that trigger OA and the strategies for its effective management are not fully understood. This study focuses on identifying key genes linked to iron metabolism that could influence both the diagnosis and therapeutic approaches for OA. Analysis of GEO microarray data and iron metabolism genes identified 15 ferroptosis-related DEGs, enriched in hypoxia and HIF-1 pathways. Ten key hub genes (ATM, GCLC, PSEN1, CYBB, ATG7, MAP1LC3B, PLIN2, GRN, APOC1, SIAH2) were identified. Through stepwise regression, we screened 4 out of the above 10 genes, namely, GCLC, GRN, APOC1, and SIAH2, to obtain the optimal model. AUROCs for diagnosis of OA for the four hub genes were 0.81 and 0.80 of training and validation sets, separately. According to immune infiltration results, OA was related to significantly increased memory B cells, M0 macrophages, regulatory T cells, and resting mast cells but decreased activated dendritic cells. The four hub genes showed a close relation to them. It is anticipated that this model will aid in diagnosing osteoarthritis by assessing the expression of specific genes in blood samples. Moreover, studying these hub genes may further elucidate the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Yali Yu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Guixiang Dong
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Yanli Niu
- School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
37
|
Li X, Yang Y, Xu S, Gui Y, Chen J, Xu J. Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning. Neural Regen Res 2024; 19:2723-2734. [PMID: 38595290 PMCID: PMC11168503 DOI: 10.4103/1673-5374.391306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guilin People’s Hospital, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Senming Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
38
|
Askari M, Mirzaei E, Navapour L, Karimpour M, Rejali L, Sarirchi S, Nazemalhosseini-Mojarad E, Nobili S, Cava C, Sadeghi A, Fatemi N. Integrative Bioinformatics Analysis: Unraveling Variant Signatures and Single-Nucleotide Polymorphism Markers Associated with 5-FU-Based Chemotherapy Resistance in Colorectal Cancer Patients. J Gastrointest Cancer 2024; 55:1607-1619. [PMID: 39240276 DOI: 10.1007/s12029-024-01102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Drug resistance in colorectal cancer (CRC) is modulated by multiple molecular factors, which can be ascertained through genetic investigation. Single nucleotide polymorphisms (SNPs) within key genes have the potential to impair the efficacy of chemotherapeutic agents such as 5-fluorouracil (5-FU). Therefore, the identification of SNPs linked to drug resistance can significantly contribute to the advancement of tailored therapeutic approaches and the enhancement of treatment outcomes in patients with CRC. MATERIAL AND METHOD To identify dysregulated genes in 5-FU-based chemotherapy responder or non-responder CRC patients, a meta-analysis was performed. Next, the protein-protein interaction (PPI) network of the identified genes was analyzed using the STRING database. The most significant module was chosen for further analysis. In addition, a literature review was conducted to identify drug resistance-related genes. Enrichment analysis was conducted to validate the main module genes and the genes identified from the literature review. The associations between SNPs and drug resistance were investigated, and the consequences of missense variants were assessed using in silico tools. RESULT The meta-analysis identified 796 dysregulated genes. Then, to conduct PPI analysis and enrichment analysis, we were able to discover 23 genes that are intricately involved in the cell cycle pathway. Consequently, these 23 genes were chosen for SNP analysis. By using the dbSNP database and ANNOVAR, we successfully detected and labeled SNPs in these specific genes. Additionally, after careful exclusion of SNPs with allele frequencies below 0.01, we evaluated 6 SNPs from the HDAC1, MCM2, CDK1, BUB1B, CDC14B, and CCNE1 genes using 8 bioinformatics tools. Therefore, these SNPs were identified as potentially harmful by multiple computational tools. Specifically, rs199958833 in CDK1 (Val124Gly) was predicted to be damaging by all tools used. Our analysis strongly indicates that this specific SNP could negatively affect the stability and functionality of the CDK1 protein. CONCLUSION Based on our current understanding, the evaluation of CDK1 polymorphisms in the context of drug resistance in CRC has yet to be undertaken. In this investigation, we showed that rs199958833 variant in the CDK1 gene may favor resistance to 5-FU-based chemotherapy. However, these findings need validation in an independent cohort of patients.
Collapse
Affiliation(s)
- Masomeh Askari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Sarirchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini, 6-50139, Florence, Italy
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Suresh K, Bhattacharyya S, Carvajal J, Ghosh R, Zeisler-Diehl VV, Böckem V, Nagel KA, Wojciechowski T, Schreiber L. Effects of water stress on apoplastic barrier formation in soil grown roots differ from hydroponically grown roots: Histochemical, biochemical and molecular evidence. PLANT, CELL & ENVIRONMENT 2024; 47:4917-4931. [PMID: 39110071 DOI: 10.1111/pce.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 11/06/2024]
Abstract
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
Collapse
Affiliation(s)
- Kiran Suresh
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Sabarna Bhattacharyya
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Jorge Carvajal
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Charles University, Praha, Czech Republic
| | - Viktoria V Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Vera Böckem
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kerstin A Nagel
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Chilimoniuk J, Erol A, Rödiger S, Burdukiewicz M. Challenges and opportunities in processing NanoString nCounter data. Comput Struct Biotechnol J 2024; 23:1951-1958. [PMID: 38736697 PMCID: PMC11087919 DOI: 10.1016/j.csbj.2024.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
NanoString nCounter is a medium-throughput technology used in mRNA and miRNA differential expression studies. It offers several advantages, including the absence of an amplification step and the ability to analyze low-grade samples. Despite its considerable strengths, the popularity of the nCounter platform in experimental research stabilized in 2022 and 2023, and this trend may continue in the upcoming years. Such stagnation could potentially be attributed to the absence of a standardized analytical pipeline or the indication of optimal processing methods for nCounter data analysis. To standardize the description of the nCounter data analysis workflow, we divided it into five distinct steps: data pre-processing, quality control, background correction, normalization and differential expression analysis. Next, we evaluated eleven R packages dedicated to nCounter data processing to point out functionalities belonging to these steps and provide comments on their applications in studies of mRNA and miRNA samples.
Collapse
Affiliation(s)
| | - Anna Erol
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Windhagauer M, Doblin MA, Signal B, Kuzhiumparambil U, Fabris M, Abbriano RM. Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 2024; 108:104. [PMID: 38212969 DOI: 10.1007/s00253-023-12823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.
Collapse
Affiliation(s)
- Matthias Windhagauer
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | | | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, 5230, Odense M, Denmark
| | - Raffaela M Abbriano
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
42
|
Sun P, Wang X, Wang S, Jia X, Feng S, Chen J, Fang Y. Bipolar disorder: Construction and analysis of a joint diagnostic model using random forest and feedforward neural networks. IBRO Neurosci Rep 2024; 17:145-153. [PMID: 39206162 PMCID: PMC11350441 DOI: 10.1016/j.ibneur.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background To construct a diagnostic model for Bipolar Disorder (BD) depressive phase using peripheral tissue RNA data from patients and combining Random Forest with Feedforward Neural Network methods. Methods Datasets GSE23848, GSE39653, and GSE69486 were selected, and differential gene expression analysis was conducted using the limma package in R. Key genes from the differentially expressed genes were identified using the Random Forest method. These key genes' expression levels in each sample were used to train a Feedforward Neural Network model. Techniques like L1 regularization, early stopping, and dropout layers were employed to prevent model overfitting. Model performance was then validated, followed by GO, KEGG, and protein-protein interaction network analyses. Results The final model was a Feedforward Neural Network with two hidden layers and two dropout layers, comprising 2345 trainable parameters. Model performance on the validation set, assessed through 1000 bootstrap resampling iterations, demonstrated a specificity of 0.769 (95 % CI 0.571-1.000), sensitivity of 0.818 (95 % CI 0.533-1.000), AUC value of 0.832 (95 % CI 0.642-0.979), and accuracy of 0.792 (95 % CI 0.625-0.958). Enrichment analysis of key genes indicated no significant enrichment in any known pathways. Conclusion Key genes with biological significance were identified based on the decrease in Gini coefficient within the Random Forest model. The combined use of Random Forest and Feedforward Neural Network to establish a diagnostic model showed good classification performance in Bipolar Disorder.
Collapse
Affiliation(s)
- Ping Sun
- Qingdao Mental Health Center, Shandong 266034, China
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiangwen Wang
- Qingdao Mental Health Center, Shandong 266034, China
- School of Mental Health, Research Institute of Mental Health,Jining Medical University, Shandong 272002, China
| | - Shenghai Wang
- Qingdao Mental Health Center, Shandong 266034, China
| | - Xueyu Jia
- Department of Medicine,Qingdao University, Shandong 266000, China
| | - Shunkang Feng
- Qingdao Mental Health Center, Shandong 266034, China
| | - Jun Chen
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
| | - Yiru Fang
- Clinical Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Psychiatry & Affective Disorders Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China
- State Key Laboratory of Neuroscience, Shanghai Institue for Biological Sciences, CAS, Shanghai 200031, China
| |
Collapse
|
43
|
Zhang X, Sun D, Wong K, Salkini A, Najafi H, Kim WJ. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Fly (Austin) 2024; 18:2368336. [PMID: 38884422 PMCID: PMC11185185 DOI: 10.1080/19336934.2024.2368336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.
Collapse
Affiliation(s)
- Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Kyle Wong
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ammar Salkini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hadi Najafi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
44
|
Zhou B, Min B, Liu W, Li Y, Zhu F, Huang J, Fang J, Chen Q, Wu D. Construction of a five-gene-based prognostic model for relapsed/refractory acute lymphoblastic leukemia. Hematology 2024; 29:2412952. [PMID: 39453390 DOI: 10.1080/16078454.2024.2412952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Relapsed/refractory acute lymphoblastic leukemia (R/R ALL) continues to be a major cause of mortality in children worldwide, with around 15% of ALL patients experiencing relapse and approximately 10% eventually dying from the disease. Early identification of R/R ALL in children has posed a longstanding clinical challenge. METHOD Genetic analysis of survival outcomes in pediatric patients with ALL from the TARGET-ALL dataset revealed five risk score factors identified through the intersection of differential genes (relapse/non-relapse) from the GSE17703 and GSE6092 databases. A risk score equation was formulated using these factors and validated against prognostic data from 46 ALL cases at our institution. Patients from multiple datasets were stratified into high and low-score groups based on this equation. Protein-protein interaction networks (PPI) were then constructed using the intersecting differential genes from all three datasets to identify hub nodes and predict interacting transcription factors. Additionally, genes related to cell pyroptosis with varying expression across these datasets were screened, and a multifactorial ROC curve (incorporating risk score and differential expression of pyroptosis-related genes) was generated. Furthermore, relationships among variables in the predictive model were depicted using a nomogram, and model efficacy was assessed through decision curve analysis (DCA). RESULTS By analyzing the TARGET-ALL, GSE17703, and GSE6092 databases, we developed a prognostic risk assessment model for pediatric ALL incorporating BAG2, EPHA4, FBXO9, SNX10, and WNK1. Validation of this model was conducted using data from 46 pediatric ALL cases obtained from our institution. Following the identification of 27 differentially expressed genes, we constructed a PPI and identified the top 10 hub genes (PTPRC, BTK, LCK, PRKCQ, CD3D, CD27, CD3G, BLNK, RASGRP1, VPREB1). Using this network, we predicted the top 5 transcription factors (HOXB4, MYC, SOX2, E2F1, NANOG). ROC and DCA were conducted on pyroptosis-related genes exhibiting differential expression and risk scores. Subsequently, a nomogram was generated, demonstrating the effectiveness of the risk score in predicting prognosis for pediatric ALL patients. CONCLUSIONS We have developed a risk prediction model for pediatric R/R ALL utilizing the genes BAG2, EPHA4, FBXO9, SNX10, and WNK1. This model provides a scientific foundation for early identification of R/R ALL in children.
Collapse
Affiliation(s)
- Bi Zhou
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - BoJie Min
- Department of Pediatrics, the First Affiliated Hospital of AnHui Medical University, Hefei City, People's Republic of China
| | - WenYuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of AnHui Medical University, Hefei City, People's Republic of China
| | - Ying Li
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - Feng Zhu
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - Jin Huang
- Department of Pediatric, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - Jing Fang
- Graduate School, Bengbu Medical College, Bengbu City, People's Republic of China
| | - Qin Chen
- Department of Nursing, Suzhou Hospital of AnHui Medical University, Suzhou City, People's Republic of China
| | - De Wu
- Department of Pediatrics, the First Affiliated Hospital of AnHui Medical University, Hefei City, People's Republic of China
| |
Collapse
|
45
|
Drozdova P, Gurkov A, Saranchina A, Vlasevskaya A, Zolotovskaya E, Indosova E, Timofeyev M, Borvinskaya E. Transcriptional response of Saccharomyces cerevisiae to lactic acid enantiomers. Appl Microbiol Biotechnol 2024; 108:121. [PMID: 38229303 DOI: 10.1007/s00253-023-12863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA). Here, we explore the transcriptional response of the BY4742 strain to a wide range of DLA concentrations (from 0.05 to 45 mM), and compare it to the response to 45 mM L-lactic acid (LLA). We recorded a response to 5 and 45 mM DLA (125 and 113 differentially expressed genes (DEGs), respectively; > 50% shared) and a less pronounced response to 45 mM LLA (63 DEGs; > 30% shared with at least one DLA treatment). Our data did not reveal natural yeast promoters quantitatively sensing DLA but provide the first description of the transcriptome-wide response to DLA and enrich our understanding of the LLA response. Some DLA-activated genes were indeed related to lactate metabolism, as well as iron uptake and cell wall structure. Additional analyses showed that at least some of these genes were activated only by acidic form of DLA but not its salt, revealing the role of pH. The list of LLA-responsive genes was similar to those published previously and also included iron uptake and cell wall genes, as well as genes responding to other weak acids. These data might be instrumental for optimization of lactate production in yeast and yeast co-cultivation with lactic acid bacteria. KEY POINTS: • We present the first dataset on yeast transcriptional response to DLA. • Differential gene expression was correlated with yeast growth inhibition. • The transcriptome response to DLA was richer in comparison to LLA.
Collapse
Affiliation(s)
- Polina Drozdova
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation.
- Baikal Research Centre, Rabochaya Str. 5V, Irkutsk, 664011, Russian Federation.
| | - Anton Gurkov
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
- Baikal Research Centre, Rabochaya Str. 5V, Irkutsk, 664011, Russian Federation
| | | | | | - Elena Zolotovskaya
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
| | - Elizaveta Indosova
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
| | - Maxim Timofeyev
- Irkutsk State University, Karl-Marx Str. 1, Irkutsk, 664025, Russian Federation
| | | |
Collapse
|
46
|
Hagenauer MH, Sannah Y, Hebda-Bauer EK, Rhoads C, O'Connor AM, Flandreau E, Watson SJ, Akil H. Resource: A curated database of brain-related functional gene sets (Brain.GMT). MethodsX 2024; 13:102788. [PMID: 39049932 PMCID: PMC11267058 DOI: 10.1016/j.mex.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g., liver) and topics (e.g., cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain "ignorome". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT") that can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, "brain ignorome" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation. •We compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT").•Brain.GMT can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret neuroscience transcriptional profiling results from three species (rat, mouse, human).•Although Brain.GMT is still undergoing development, it substantially improved the interpretation of differential expression results within our initial use cases.
Collapse
Affiliation(s)
- Megan H. Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yusra Sannah
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Cosette Rhoads
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela M. O'Connor
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stanley J. Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Nian F, Wang Y, Yang M, Zhang B. Identification the role of necroptosis in rheumatoid arthritis by WGCNA network. Autoimmunity 2024; 57:2358069. [PMID: 38869013 DOI: 10.1080/08916934.2024.2358069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Rheumatoid arthritis (RA) is the predominant manifestation of inflammatory arthritis, distinguished by an increasing burden of morbidity and mortality. The intricate interplay of genes and signalling pathways involved in synovial inflammation in patients with RA remains inadequately comprehended. This study aimed to ascertain the role of necroptosis in RA, as along with their associations with immune cell infiltration. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to identify central genes for RA. In this study, identified total of 28 differentially expressed genes (DEGs) were identified in RA. Utilising WGCNA, two co-expression modules were generated, with one module demonstrating the strongest correlation with RA. Through the integration of differential gene expression analysis, a total of 5 intersecting genes were discovered. These 5 hub genes, namely fused in sarcoma (FUS), transformer 2 beta homolog (TRA2B), eukaryotic translation elongation factor 2 (EEF2), cleavage and polyadenylation specific factor 6 (CPSF6) and signal transducer and activator of transcription 3 (STAT3) were found to possess significant diagnostic value as determined by receiver operating characteristic (ROC) curve analysis. The close association between the concentrations of various immune cells is anticipated to contribute to the diagnosis and treatment of RA. Furthermore, the infiltration of immune cells mentioned earlier is likely to exert a substantial influence on the initiation of this disease.
Collapse
Affiliation(s)
- Feige Nian
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Mingfeng Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Bin Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
- Jiaxing Key Laboratory of Osteoporosis and Bone Metabolism, The Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
48
|
Tang X, Chen Y. Identification and prognostic analysis of metabolic genes associated with TP53 mutation in multiple myeloma. Hematology 2024; 29:2377850. [PMID: 39012217 DOI: 10.1080/16078454.2024.2377850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. METHOD We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. RESULTS Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (p < 0.001). CONCLUSION RRM2 significantly impacts MM prognosis and is associated with TP53 mutation, presenting itself as a potential therapeutic target and prognostic marker for MM.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Postgraduate training base of Jinzhou Medical University, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
- Department of General Practice, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing, People's Republic of China
| | - Yongping Chen
- Postgraduate training base of Jinzhou Medical University, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
| |
Collapse
|
49
|
Mangano K, Diamantopoulos A, Vallianou NG, Stratigou T, Panagopoulos F, Kounatidis D, Dalamaga M, Fagone P, Nicoletti F. Serum and urinary levels of MIF, CD74, DDT and CXCR4 among patients with type 1 diabetes mellitus, type 2 diabetes and healthy individuals: Implications for further research. Metabol Open 2024; 24:100320. [PMID: 39323959 PMCID: PMC11422569 DOI: 10.1016/j.metop.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a highly conserved cytokine with pleiotropic properties, mainly pro-inflammatory. MIF seems to exert its pro-inflammatory features by binding to its transmembrane cellular receptor CD74. MIF also has CXCR4, which acts as a co-receptor in this inflammatory process. Apart from MIF, D-dopachrome tautomerase (DDT) or MIF2, which belongs to the MIF superfamily, also binds to receptor CD74. Therefore, these molecules, MIF, CD74, DDT and CXCR4 are suggested to work together orchestrating an inflammatory process. Diabetes mellitus is characterised by chronic low-grade inflammation. Therefore, the aim of the present study was to evaluate serum and urinary levels of the aforementioned molecules among patients with type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM) and among healthy controls. Methods We enrolled 13 patients with T1DM, 74 patients with T2DM and 25 healthy individuals as controls. Levels of CD74, CXCR4, DDT, and MIF were measured using ELISA Kits according to the manufacturer's instructions. Results We documented increased serum MIF levels together with higher urinary CD74 levels among patients with T1DM, when compared to patients with T2DM and healthy adults. In particular, patients with T1DM showed significantly increased levels of MIF compared to T2DM (p = 0.011) and healthy controls (p = 0.0093). CD74 in urine were significantly higher in patients with T1DM compared to those affected with T2DM (p = 0.0302) and healthy group (p = 0.0099). On the contrary, serum CD74 were similar among the three groups. No statistical differences were identified in CXCR4 levels both in serum and in urine of all groups. Patients with T2DM and overweight/obesity had increased urinary levels of CD74, when compared to lean patients with T2DM. Conclusion The increased serum MIF levels and urinary CD74 levels among patients with T1DM may be attributed to the autoimmune milieu, which characterises patients with T1DM, when compared to patients with T2DM. These two findings merit further attention as they could pave the way for further research regarding the potential beneficial effects of inhibitors of MIF among patients with T1DM, especially in the early stages of T1DM. Finally, the role of inhibitors of MIF could be further explored in the context of obesity among patients with T2DM.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Aristidis Diamantopoulos
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Natalia G Vallianou
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Fotis Panagopoulos
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
50
|
Montanari Borges B, Gama de Santana M, Willian Preite N, de Lima Kaminski V, Trentin G, Almeida F, Vieira Loures F. Extracellular vesicles from virulent P. brasiliensis induce TLR4 and dectin-1 expression in innate cells and promote enhanced Th1/Th17 response. Virulence 2024; 15:2329573. [PMID: 38511558 PMCID: PMC10962619 DOI: 10.1080/21505594.2024.2329573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that transport several biomolecules and are involved in important mechanisms and functions related to the pathophysiology of fungal diseases. EVs from Paracoccidioides brasiliensis, the main causative agent of Paracoccidioidomycosis (PCM), modulate the immune response of macrophages. In this study, we assessed the EVs proteome from a virulent P. brasiliensis isolated from granulomatous lesions and compared their immunomodulatory ability with EVs isolated from the fungus before the animal passage (control EVs) when challenging macrophages and dendritic cells (DCs). Proteome showed that virulent EVs have a higher abundance of virulence factors such as GP43, protein 14-3-3, GAPDH, as well as virulence factors never described in PCM, such as aspartyl aminopeptidase and a SidJ analogue compared with control EVs. Virulent extracellular vesicles induced higher expression of TLR4 and Dectin-1 than control EVs in macrophages and dendritic cells (DCs). In opposition, a lower TLR2 expression was induced by virulent EVs. Additionally, virulent EVs induced lower expression of CD80, CD86 and TNF-α, but promoted a higher expression of IL-6 and IL-10, suggesting that EVs isolated from virulent P. brasiliensis-yeast promote a milder DCs and macrophage maturation. Herein, we showed that EVs from virulent fungi stimulated a higher frequency of Th1/Tc1, Th17, and Treg cells, which gives new insights into fungal extracellular vesicles. Taken together, our results suggest that P. brasiliensis utilizes its EVs as virulence bags that manipulate the immune system in its favour, creating a milder immune response and helping with fungal evasion from the immune system.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Monique Gama de Santana
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| |
Collapse
|