1
|
Liu FF, Li K. Molecular characterization underlying IFN-α2 treatment in polycythemia vera: a transcriptomic overview. Mol Cell Biochem 2025:10.1007/s11010-025-05238-7. [PMID: 40029555 DOI: 10.1007/s11010-025-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Polycythemia vera (PV) is the most common chronic myeloproliferative neoplasm (MPN) in adults. Pegylated interferon-α2 (IFN-α2) is an effective and safe drug for the treatment of PV. However, the mechanisms of its action in PV are still not fully understood. Using the WGCNA and Limma algorithm, we found a subset of IFN-α2 sensitive genes and four gene co-expression modules. Meanwhile, we also found 820 genes were differentially expressed in PV compared with healthy controls. By integrating the above results, several differentially expressed genes (DEGs) that were up- or down-regulated in PV but showed opposite alterations in the IFN-α2-treated group were found. These genes were mainly related to three types of biological processes (metal ion homeostasis, metabolic/catabolic process, and Jak-STAT signaling pathway), the dysfunctions of which were prevalent in PV. Moreover, we applied another threshold-free analysis method to compare global gene expression between IFN-α2 treated PV, PV, and control groups. Results showed the transcriptome changes of PV versus controls were negatively correlated with that of IFN-α2 treated versus untreated PV, indicating IFN-α2 treatment could partially reverse the dysregulated gene expression profile due to PV pathology. In summary, interferon may alleviate the progression of PV through multiple pathways. The findings may be of assistance in understanding the molecular basis underlying this treatment.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
3
|
Joshi U, Jani D, George LB, Highland H. Human erythrocytes' perplexing behaviour: erythrocytic microRNAs. Mol Cell Biochem 2025; 480:923-935. [PMID: 39037663 DOI: 10.1007/s11010-024-05075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes have the potential role in erythropoiesis and disease diagnosis. Thought to have lacked nucleic acid content, mammalian erythrocytes are nevertheless able to function for 120-140 days, metabolize heme, maintain oxidative stress, and so on. Mysteriously, erythrocytes proved as largest repositories of microRNAs (miRNAs) some of which are selectively retained and function in mature erythrocytes. They have unique expression patterns and have been found to be linked to specific conditions such as sickle cell anaemia, high-altitude hypoxia, chronic mountain sickness, cardiovascular and metabolic conditions as well as host-parasite interactions. They also have been implicated in cell storage-related damage and the regulation of its survival. However, the mechanism by which miRNAs function in the cell remains unclear. Investigations into the molecular mechanism of miRNAs in erythrocytes via extracellular vesicles have provided important clues in research studies on Plasmodium infection. Erythrocytes are also the primary source of circulating miRNAs but, how they affect the plasma/serum miRNAs profiles are still poorly understood. Erythrocyte-derived exosomal miRNAs, can interact with various body cell types, and have easy access to all regions, making them potentially crucial in various pathophysiological conditions. Which can also improve our understanding to identify potential treatment options and discovery related to non-invasive diagnostic markers. This article emphasizes the importance of erythrocytic miRNAs while focusing on the enigmatic behaviour of erythrocytes. It also sheds light on how this knowledge may be applied in the future to enhance the state of erythrocyte translational research from the standpoint of erythrocytic miRNAs.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Dhara Jani
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
4
|
Shen CL, Tsai YY, Chou SJ, Chang YM, Tarn WY. RBM4-mediated intron excision of Hsf1 induces BDNF for cerebellar foliation. Commun Biol 2024; 7:1712. [PMID: 39738787 DOI: 10.1038/s42003-024-07328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF. RBM4-mediated Hsf1 intron excision regulated BDNF expression in cultured granule cells. Ectopic expression of HSF1 restored cerebellar foliation and motor learning of Rbm4-knockout mice, indicating a critical role for RBM4-HSF1-BDNF in cerebellar foliation. Moreover, N-methyl-D-aspartate receptor (NMDAR) signaling promoted the expression and nuclear translocation of RBM4, and hence increased the expression of both HSF and BDNF. A short CU-rich motif was responsible for NMDAR- and RBM4-mediated intron excision. Finally, RBM4 and polypyrimidine tract binding (PTB) proteins play antagonistic roles in intron excision, suggesting a role for splicing regulation in BDNF expression.
Collapse
Affiliation(s)
- Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, USA
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 PMCID: PMC11732257 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
6
|
Li Z, Fan J, Xiao Y, Wang W, Zhen C, Pan J, Wu W, Liu Y, Chen Z, Yan Q, Zeng H, Luo S, Liu L, Tu Z, Zhao X, Hou Y. Essential role of Dhx16-mediated ribosome assembly in maintenance of hematopoietic stem cells. Leukemia 2024; 38:2699-2708. [PMID: 39333759 DOI: 10.1038/s41375-024-02423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Hematopoietic stem cells (HSCs) are vital for the differentiation of all mature blood cells, with their homeostasis being tightly regulated by intrinsic and extrinsic factors. Alternative splicing, mediated by the spliceosome complex, plays a crucial role in regulating HSC homeostasis by increasing protein diversity. This study focuses on the ATP-dependent RNA helicase DHX16, a key spliceosome component, and its role in HSC regulation. Using conditional knockout mice, we demonstrate that loss of Dhx16 in the hematopoietic system results in significant depletion of hematopoietic stem and progenitor cells, bone marrow failure, and rapid mortality. Dhx16-deficient HSCs exhibit impaired quiescence, G2-M phase cell cycle arrest, reduced protein synthesis, abnormal ribosome assembly, increased apoptosis, and decreased self-renewal capacity. Multi-omics analysis identified intron 4 retention in Emg1 mRNA in Dhx16 knockout HSCs, leading to reduced EMG1 protein expression, disrupted ribosome assembly, and nucleolar stress, activating the p53 pathway. Overexpression of Emg1 in Dhx16-deficient HSCs partially restored ribosome assembly and HSC function, suggesting Emg1 as a potential therapeutic target for ribosomopathies. Our findings reveal the critical role of Dhx16 in HSC homeostasis through the regulation of alternative splicing and ribosome assembly, providing insights into the molecular mechanisms underlying hematopoietic diseases and potential therapeutic strategies.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiankun Fan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yalan Xiao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Wang
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Changlin Zhen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junbing Pan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Weiru Wu
- Department of Clinical Hematology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qinrong Yan
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hanqing Zeng
- Department of Hematology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Shuyu Luo
- Chongqing BI Academy, Chongqing, 401127, China
| | - Lun Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhanhan Tu
- Leicester Medical School, University of Leicester College of Life Sciences, Leicester, Leicester, UK.
- University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester College of Life Sciences, Leicester, Leicester, UK.
| | - Xueya Zhao
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Xie S, Bao D, Xiao Y, Li H, Guo M, Dai B, Liu S, Huang J, Li M, Ding L, Meng Q, Lv CL, Distler JHW, Luo H, Zhu H. Alternative splicing and intron retention: Their profiles and roles in cutaneous fibrosis of systemic sclerosis. J Autoimmun 2024; 149:103306. [PMID: 39265192 DOI: 10.1016/j.jaut.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Alternative splicing (AS) and intron retention (IR) implicated in multiple pathophysiological processes, have rarely been reported in systemic sclerosis (SSc). METHODS We integrated bulk RNA-seq and 4D label-free mass spectrometry to perform a multi-omics analysis of AS and IR in SSc skin tissue and fibroblasts. RMATS and iREAD were used to identify AS and IR, which were validated by real-time PCR. Spearman correlation and the LASSO method were employed to assess correlations among clinical features, introns, splicing factors (regulators of AS) and proteins. FINDINGS AS profiles showed distinct alterations in SSc skin tissue, with the most pronounced changes occurring in IR. AS and IR were associated with total modified Rodnan skin score (mRSS) and local skin score. Upon TGF-β stimulation, fibroblasts exhibited significant alterations in IR profiles, affecting genes related to fibroblast proliferation and collagen fibril organization. A comprehensive integrated analysis of introns, exons, and proteome profiles revealed that IR exerted a negative impact on protein expression, with certain changes being under intronic control. RT-PCR confirmed the presence of intron and exon-derived sequences of CTTN, OGA, MED16 and PHYKPL. Additionally, notable changes were observed in the regulatory network of splicing factors in SSc skin tissues. These factors are also involved in fibrosis pathways and correlated with clinical features. CONCLUSION Totally, abnormal AS, IR profiles and splicing factors were identified in SSc, altered IRs and splicing factors participated in fibrosis-related pathways. IR exerted a negative impact on protein expression in TGF-β-stimulated fibroblasts. Clarification of the IR mechanisms will provide new insights into the pathophysiology of SSc.
Collapse
Affiliation(s)
- Shasha Xie
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ding Bao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhi Xiao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongdong Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Muyao Guo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sijia Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Muyuan Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiming Meng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Liu Lv
- Department of Breast Tumor Plastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225, Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Wang B, Li J, Song Y, Qin X, Lu X, Huang W, Peng C, Wei J, Huang D, Wang W. CLK2 Condensates Reorganize Nuclear Speckles and Induce Intron Retention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309588. [PMID: 39119950 PMCID: PMC11481226 DOI: 10.1002/advs.202309588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Intron retention (IR) constitutes a less explored form of alternative splicing, wherein introns are retained within mature mRNA transcripts. This investigation demonstrates that the cell division cycle (CDC)-like kinase 2 (CLK2) undergoes liquid-liquid phase separation (LLPS) within nuclear speckles in response to heat shock (HS). The formation of CLK2 condensates depends on the intrinsically disordered region (IDR) located within the N-terminal amino acids 1-148. Phosphorylation at residue T343 sustains CLK2 kinase activity and promotes overall autophosphorylation, which inhibits the LLPS activity of the IDR. These CLK2 condensates initiate the reorganization of nuclear speckles, transforming them into larger, rounded structures. Moreover, these condensates facilitate the recruitment of splicing factors into these compartments, restricting their access to mRNA for intron splicing and promoting the IR. The retained introns lead to the sequestration of transcripts within the nucleus. These findings extend to the realm of glioma stem cells (GSCs), where a physiological state mirroring HS stress inhibits T343 autophosphorylation, thereby inducing the formation of CLK2 condensates and subsequent IR. Notably, expressing the CLK2 condensates hampers the maintenance of GSCs. In conclusion, this research unveils a mechanism by which IR is propelled by CLK2 condensates, shedding light on its role in coping with cellular stress.
Collapse
Affiliation(s)
- Bing Wang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yanyang Song
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Xuhui Qin
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Xia Lu
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Wei Huang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Chentai Peng
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Jinxia Wei
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| | - Donghui Huang
- Institute of Reproduction Health ResearchTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Wang
- Department of Human AnatomySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430070China
| |
Collapse
|
9
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
10
|
Kashyap MK, Karathia H, Kumar D, Vera Alvarez R, Forero-Forero JV, Moreno E, Lujan JV, Amaya-Chanaga CI, Vidal NM, Yu Z, Ghia EM, Lengerke-Diaz PA, Achinko D, Choi MY, Rassenti LZ, Mariño-Ramírez L, Mount SM, Hannenhalli S, Kipps TJ, Castro JE. Aberrant spliceosome activity via elevated intron retention and upregulation and phosphorylation of SF3B1 in chronic lymphocytic leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102202. [PMID: 38846999 PMCID: PMC11154714 DOI: 10.1016/j.omtn.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram (HR) 122413, India
| | - Hiren Karathia
- Advanced Biomedical Computational Science and National Center for Advancing Translational Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Greenwood Genetic Center, Greenwood, SC, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Eider Moreno
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Juliana Velez Lujan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhe Yu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Emanuela M. Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Paula A. Lengerke-Diaz
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Daniel Achinko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Michael Y. Choi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M. Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Januario E. Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
11
|
Rombaut D, Lefèvre C, Rached T, Bondu S, Letessier A, Mangione RM, Farhat B, Lesieur-Pasquier A, Castillo-Guzman D, Boussaid I, Friedrich C, Tourville A, De Carvalho M, Levavasseur F, Leduc M, Le Gall M, Battault S, Temple M, Houy A, Bouscary D, Willems L, Park S, Raynaud S, Cluzeau T, Clappier E, Fenaux P, Adès L, Margueron R, Wassef M, Alsafadi S, Chapuis N, Kosmider O, Solary E, Constantinou A, Stern MH, Droin N, Palancade B, Miotto B, Chédin F, Fontenay M. Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation. Nat Commun 2024; 15:3016. [PMID: 38589367 PMCID: PMC11001894 DOI: 10.1038/s41467-024-46547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Carine Lefèvre
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
| | - Tony Rached
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Sabrina Bondu
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Anne Letessier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | | | - Batoul Farhat
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Auriane Lesieur-Pasquier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Ismael Boussaid
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Chloé Friedrich
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Aurore Tourville
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Magali De Carvalho
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Françoise Levavasseur
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marjorie Leduc
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Sarah Battault
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marie Temple
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Didier Bouscary
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Lise Willems
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Sophie Park
- Department of Hematology, Centre Hospitalier Universitaire, Université de Grenoble Alpes, Grenoble, France
| | - Sophie Raynaud
- Laboratory of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Thomas Cluzeau
- Clinical Department of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Emmanuelle Clappier
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Laboratory of Hematology, Paris, France
| | - Pierre Fenaux
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Lionel Adès
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Raphael Margueron
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Olivier Kosmider
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Eric Solary
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nathalie Droin
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Miotto
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Michaela Fontenay
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France.
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France.
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France.
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France.
| |
Collapse
|
12
|
Nishimura K, Saika W, Inoue D. Minor introns impact on hematopoietic malignancies. Exp Hematol 2024; 132:104173. [PMID: 38309573 DOI: 10.1016/j.exphem.2024.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
In the intricate orchestration of the central dogma, pre-mRNA splicing plays a crucial role in the post-transcriptional process that transforms DNA into mature mRNA. Widely acknowledged as a pivotal RNA processing step, it significantly influences gene expression and alters the functionality of gene product proteins. Although U2-dependent spliceosomes efficiently manage the removal of over 99% of introns, a distinct subset of essential genes undergo splicing with a different intron type, denoted as minor introns, using U12-dependent spliceosomes. Mutations in spliceosome component genes are now recognized as prevalent genetic abnormalities in cancer patients, especially those with hematologic malignancies. Despite the relative rarity of minor introns, genes containing them are evolutionarily conserved and play crucial roles in functions such as the RAS-MAPK pathway. Disruptions in U12-type minor intron splicing caused by mutations in snRNA or its regulatory components significantly contribute to cancer progression. Notably, recurrent mutations associated with myelodysplastic syndrome (MDS) in the minor spliceosome component ZRSR2 underscore its significance. Examination of ZRSR2-mutated MDS cells has revealed that only a subset of minor spliceosome-dependent genes, such as LZTR1, consistently exhibit missplicing. Recent technological advancements have uncovered insights into minor introns, raising inquiries beyond current understanding. This review comprehensively explores the importance of minor intron regulation, the molecular implications of minor (U12-type) spliceosomal mutations and cis-regulatory regions, and the evolutionary progress of studies on minor, aiming to provide a sophisticated understanding of their intricate role in cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan; Department of Hematology, Shiga University of Medical Science, Ōtsu, Shiga, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
| |
Collapse
|
13
|
Wang F, Jin Z, Wang S, Yang L, Fan Z, Yao Y. ASAPA: a bioinformatic pipeline based on Iso-Seq that identifies the links among alternative splicing, alternative transcription initiation and alternative polyadenylation. Funct Integr Genomics 2024; 24:67. [PMID: 38528184 DOI: 10.1007/s10142-024-01332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Although the events associated with alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI) can be identified by many approaches based on isoform sequencing (Iso-Seq), these analyses are generally independent of each other and the links between these events are still rarely mentioned. However, an interdependency analysis can be achieved because the transcriptional start site, splice sites and polyA site could be simultaneously included in a long, full-length read from Iso-Seq. RESULTS We create ASAPA pipeline that enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data. We tested this pipeline using Arabidopsis data and found some interesting results: some adjacent introns tend to be simultaneously spliced or retained; coupling between AS and ATI or APA is limited to the initial or terminal intron; and ATI and APA are potentially linked in some special cases. CONCLUSION Our pipeline enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data, which is conducive to a better understanding of transcription landscape generation.
Collapse
Grants
- 32072537,31872068 This work is supported by the National Natural Science Foundation of China (32072537,31872068), fruit industry technology system of Shandong Province (SDAIT-06-03), and Agriculture Improved Variety Project of Shandong Province (2020LZGC008).
- 32072537,31872068 This work is supported by the National Natural Science Foundation of China (32072537,31872068), fruit industry technology system of Shandong Province (SDAIT-06-03), and Agriculture Improved Variety Project of Shandong Province (2020LZGC008).
- 32072537,31872068 This work is supported by the National Natural Science Foundation of China (32072537,31872068), fruit industry technology system of Shandong Province (SDAIT-06-03), and Agriculture Improved Variety Project of Shandong Province (2020LZGC008).
- 32072537,31872068 This work is supported by the National Natural Science Foundation of China (32072537,31872068), fruit industry technology system of Shandong Province (SDAIT-06-03), and Agriculture Improved Variety Project of Shandong Province (2020LZGC008).
- 32072537,31872068 This work is supported by the National Natural Science Foundation of China (32072537,31872068), fruit industry technology system of Shandong Province (SDAIT-06-03), and Agriculture Improved Variety Project of Shandong Province (2020LZGC008).
- 32072537,31872068 This work is supported by the National Natural Science Foundation of China (32072537,31872068), fruit industry technology system of Shandong Province (SDAIT-06-03), and Agriculture Improved Variety Project of Shandong Province (2020LZGC008).
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhongxin Jin
- National Key Laboratory of Tropical Crop Breeding, Tropical Bioscience and Biotechnology Institute, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shengnan Wang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Longcheng Yang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
14
|
Northrup V, Perez LJ, Edgett BA, Karakach T, Simpson JA, Brunt KR. Intron retention is a mechanism of erythropoietin regulation in brain cell models. Gene 2024; 898:148099. [PMID: 38128788 DOI: 10.1016/j.gene.2023.148099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Intron retention is a mechanism of post-transcriptional gene regulation, including genes involved in erythropoiesis. Erythropoietin (EPO) is a hormone without evidence of intracellular vesicle storage that regulates erythropoiesis. We hypothesize that EPO uses intron retention as a mechanism of post-transcriptional regulation in response to hypoxia and ischemia. Cell models of hypoxia and ischemia for kidney, liver, and brain cells were examined for intron retention by real time quantitative PCR. EPO expression increased in most cells except for blood brain barrier and liver cells. The intron retained transcript ratio decreased in brain cells, except for Astrocytes, but showed no change in kidney or liver after 24 h of ischemia. The shift in intron ratio was maintained when using poly (A) enriched cDNA, suggesting that intron retention is not due to immature transcripts. The expression of EPO was elevated at variable time points amongst cell models with the intron ratio also changing over a time course of 2 to 16 h after ischemia. We conclude that intron retention is a mechanism regulating EPO expression in response to ischemia in a tissue specific manner.
Collapse
Affiliation(s)
- Victoria Northrup
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART investigator team Canada
| | - Lester J Perez
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART investigator team Canada
| | - Brittany A Edgett
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada; IMPART investigator team Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; IMPART investigator team Canada
| | - Jeremy A Simpson
- Department of Human and Nutritional Science, University of Guelph, Guelph, Ontario, Canada; IMPART investigator team Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART investigator team Canada.
| |
Collapse
|
15
|
Xu F, Liu S, Zhao A, Shang M, Wang Q, Jiang S, Cheng Q, Chen X, Zhai X, Zhang J, Wang X, Yan J. iFLAS: positive-unlabeled learning facilitates full-length transcriptome-based identification and functional exploration of alternatively spliced isoforms in maize. THE NEW PHYTOLOGIST 2024; 241:2606-2620. [PMID: 38291701 DOI: 10.1111/nph.19554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024]
Abstract
The advent of full-length transcriptome sequencing technologies has accelerated the discovery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either tailored for short-read RNA-Seq data or designed for human and animal studies. The disparities in AS patterns between plants and animals still pose a challenge to the reliable identification and functional exploration of novel isoforms in plants. Here, we developed integrated full-length alternative splicing analysis (iFLAS), a plant-optimized AS toolkit that introduced a semi-supervised machine learning method known as positive-unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the investigation of AS functions from various perspectives, such as differential AS, poly(A) tail length, and allele-specific AS (ASAS) analyses. By applying iFLAS to three full-length transcriptome sequencing datasets, we systematically identified and functionally characterized maize (Zea mays) AS patterns. We found intron retention not only introduces premature termination codons, resulting in lower expression levels of isoforms, but may also regulate the length of 3'UTR and poly(A) tail, thereby affecting the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns in two genes within heterosis offspring, highlighting their potential value in breeding. These results underscore the broad applicability of iFLAS in plant full-length transcriptome-based AS research.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Songyu Liu
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Anwen Zhao
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Meiqi Shang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Qian Wang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Shuqin Jiang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Qian Cheng
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Xingming Chen
- Molbreeding Biotechnology Co., Ltd, Shijiazhuang, Hebei Province, 051430, China
| | - Xiaoguang Zhai
- Molbreeding Biotechnology Co., Ltd, Shijiazhuang, Hebei Province, 051430, China
| | - Jianan Zhang
- Molbreeding Biotechnology Co., Ltd, Shijiazhuang, Hebei Province, 051430, China
| | - Xiangfeng Wang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Jun Yan
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
16
|
Gómez-Montalvo J, de Obeso Fernández del Valle A, De la Cruz Gutiérrez LF, Gonzalez-Meljem JM, Scheckhuber CQ. Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:69-78. [PMID: 38414808 PMCID: PMC10897858 DOI: 10.15698/mic2024.02.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Saccharomyces cerevisiae (baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.
Collapse
Affiliation(s)
- Jesús Gómez-Montalvo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | | | | - Jose Mario Gonzalez-Meljem
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | |
Collapse
|
17
|
Shamnas v M, Singh A, Kumar A, Mishra GP, Sinha SK. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility. AOB PLANTS 2024; 16:plae014. [PMID: 38566894 PMCID: PMC10985678 DOI: 10.1093/aobpla/plae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
Collapse
Affiliation(s)
- Muhammed Shamnas v
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Akanksha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette 47906, Indiana, USA
| | - Anuj Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
18
|
Wallace L, Obeng EA. Noncoding rules of survival: epigenetic regulation of normal and malignant hematopoiesis. Front Mol Biosci 2023; 10:1273046. [PMID: 38028538 PMCID: PMC10644717 DOI: 10.3389/fmolb.2023.1273046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Hematopoiesis is an essential process for organismal development and homeostasis. Epigenetic regulation of gene expression is critical for stem cell self-renewal and differentiation in normal hematopoiesis. Increasing evidence shows that disrupting the balance between self-renewal and cell fate decisions can give rise to hematological diseases such as bone marrow failure and leukemia. Consequently, next-generation sequencing studies have identified various aberrations in histone modifications, DNA methylation, RNA splicing, and RNA modifications in hematologic diseases. Favorable outcomes after targeting epigenetic regulators during disease states have further emphasized their importance in hematological malignancy. However, these targeted therapies are only effective in some patients, suggesting that further research is needed to decipher the complexity of epigenetic regulation during hematopoiesis. In this review, an update on the impact of the epigenome on normal hematopoiesis, disease initiation and progression, and current therapeutic advancements will be discussed.
Collapse
Affiliation(s)
| | - Esther A. Obeng
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
19
|
Doty RT, Lausted CG, Munday AD, Yang Z, Yan X, Meng C, Tian Q, Abkowitz JL. The transcriptomic landscape of normal and ineffective erythropoiesis at single-cell resolution. Blood Adv 2023; 7:4848-4868. [PMID: 37352261 PMCID: PMC10469080 DOI: 10.1182/bloodadvances.2023010382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
The anemias of myelodysplastic syndrome (MDS) and Diamond Blackfan anemia (DBA) are generally macrocytic and always reflect ineffective erythropoiesis yet result from diverse genetic mutations. To delineate shared mechanisms that lead to cell death, we studied the fate of single erythroid marrow cells from individuals with DBA or MDS-5q. We defined an unhealthy (vs healthy) differentiation trajectory using transcriptional pseudotime and cell surface proteins. The pseudotime trajectories diverge immediately after cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die express high levels of heme-responsive genes, including ribosomal protein and globin genes, whereas surviving cells downregulate heme synthesis and upregulate DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24% ± 12% of cells from control subjects follow the unhealthy trajectory, implying that heme might serve as a rheostat directing cells to live or die. When heme synthesis was inhibited with succinylacetone, more DBA cells followed the healthy trajectory and survived. We also noted high numbers of messages with retained introns that increased as erythroid cells matured, confirmed the rapid cycling of colony forming unit-erythroid, and demonstrated that cell cycle timing is an invariant property of differentiation stage. Including unspliced RNA in pseudotime determinations allowed us to reliably align independent data sets and accurately query stage-specific transcriptomic changes. MDS-5q (unlike DBA) results from somatic mutation, so many normal (unmutated) erythroid cells persist. By independently tracking erythroid differentiation of cells with and without chromosome 5q deletions, we gained insight into why 5q+ cells cannot expand to prevent anemia.
Collapse
Affiliation(s)
- Raymond T. Doty
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | - Adam D. Munday
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Zhantao Yang
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Qiang Tian
- Institute for Systems Biology, Seattle, WA
| | - Janis L. Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Morales ML, García-Vicente R, Rodríguez-García A, Reyes-Palomares A, Vincelle-Nieto Á, Álvarez N, Ortiz-Ruiz A, Garrido-García V, Giménez A, Carreño-Tarragona G, Sánchez R, Ayala R, Martínez-López J, Linares M. Posttranslational splicing modifications as a key mechanism in cytarabine resistance in acute myeloid leukemia. Leukemia 2023; 37:1649-1659. [PMID: 37422594 PMCID: PMC10400425 DOI: 10.1038/s41375-023-01963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Despite the approval of several drugs for AML, cytarabine is still widely used as a therapeutic approach. However, 85% of patients show resistance and only 10% overcome the disease. Using RNA-seq and phosphoproteomics, we show that RNA splicing and serine-arginine-rich (SR) proteins phosphorylation were altered during cytarabine resistance. Moreover, phosphorylation of SR proteins at diagnosis were significantly lower in responder than non-responder patients, pointing to their utility to predict response. These changes correlated with altered transcriptomic profiles of SR protein target genes. Notably, splicing inhibitors were therapeutically effective in treating sensitive and resistant AML cells as monotherapy or combination with other approved drugs. H3B-8800 and venetoclax combination showed the best efficacy in vitro, demonstrating synergistic effects in patient samples and no toxicity in healthy hematopoietic progenitors. Our results establish that RNA splicing inhibition, alone or combined with venetoclax, could be useful for the treatment of newly diagnosed or relapsed/refractory AML.
Collapse
Affiliation(s)
- María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain.
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Veterinary School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - África Vincelle-Nieto
- Department of Biochemistry and Molecular Biology, Veterinary School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - Noemí Álvarez
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Vanesa Garrido-García
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Alicia Giménez
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Gonzalo Carreño-Tarragona
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Ricardo Sánchez
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
| | - Rosa Ayala
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, Hospital 12 de Octubre - Centro Nacional de Investigaciones Oncológicas, CIBERONC, ES 28041, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040, Madrid, Spain.
| |
Collapse
|
21
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
22
|
Carilli M, Gorin G, Choi Y, Chari T, Pachter L. Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523995. [PMID: 36712140 PMCID: PMC9882246 DOI: 10.1101/2023.01.13.523995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We motivate and present biVI, which combines the variational autoencoder framework of scVI with biophysically motivated, bivariate models for nascent and mature RNA distributions. While previous approaches to integrate bimodal data via the variational autoencoder framework ignore the causal relationship between measurements, biVI models the biophysical processes that give rise to observations. We demonstrate through simulated benchmarking that biVI captures cell type structure in a low-dimensional space and accurately recapitulates parameter values and copy number distributions. On biological data, biVI provides a scalable route for identifying the biophysical mechanisms underlying gene expression. This analytical approach outlines a generalizable strategy for treating multimodal datasets generated by high-throughput, single-cell genomic assays.
Collapse
Affiliation(s)
- Maria Carilli
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology
| | - Yongin Choi
- Biomedical Engineering Graduate Group, University of California, Davis
- Genome Center, University of California, Davis
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology
- Department of Computing and Mathematical Sciences, California Institute of Technology
| |
Collapse
|
23
|
Sun X, Liu Z, Li Z, Zeng Z, Peng W, Zhu J, Zhao J, Zhu C, Zeng C, Stearrett N, Crandall KA, Bachali P, Grammer AC, Lipsky PE. Abnormalities in intron retention characterize patients with systemic lupus erythematosus. Sci Rep 2023; 13:5141. [PMID: 36991079 PMCID: PMC10060252 DOI: 10.1038/s41598-023-31890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Computer Science Department, George Washington University, Washington, DC, 20052, USA
| | - Zhichao Liu
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zongzhu Li
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Zhouhao Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Weiqun Peng
- Physics Department, George Washington University, Washington, DC, 20052, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, 1445 Research Blvd, Suite 150, Rockville, MD, 20850, USA
| | - Joel Zhao
- Walt Whitman High School, Bethesda, MD, 20817, USA
| | | | - Chen Zeng
- Physics Department, George Washington University, Washington, DC, 20052, USA.
| | - Nathaniel Stearrett
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA.
| | - Prathyusha Bachali
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Amrie C Grammer
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, 250 W Main St, Ste 300, Charlottesville, VA, 22902, USA.
| |
Collapse
|
24
|
Jian Y, Chen X, Sun K, Liu Z, Cheng D, Cao J, Liu J, Cheng X, Wu L, Zhang F, Luo Y, Hahn M, Ma Z, Yin Y. SUMOylation regulates pre-mRNA splicing to overcome DNA damage in fungi. THE NEW PHYTOLOGIST 2023; 237:2298-2315. [PMID: 36539920 DOI: 10.1111/nph.18692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Pathogenic fungi are subject to DNA damage stress derived from host immune responses during infection. Small ubiquitin-like modifier (SUMO) modification and precursor (pre)-mRNA splicing are both involved in DNA damage response (DDR). However, the mechanisms of how SUMOylation and splicing coordinated in DDR remain largely unknown. Combining with biochemical analysis, RNA-Seq method, and biological analysis, we report that SUMO pathway participates in DDR and virulence in Fusarium graminearum, a causal agent of Fusarium head blight of cereal crops world-wide. Interestingly, a key transcription factor FgSR is SUMOylated upon DNA damage stress. SUMOylation regulates FgSR nuclear-cytoplasmic partitioning and its phosphorylation by FgMec1, and promotes its interaction with chromatin remodeling complex SWI/SNF for activating the expression of DDR-related genes. Moreover, the SWI/SNF complex was found to further recruit splicing-related NineTeen Complex, subsequently modulates pre-mRNA splicing during DDR. Our findings reveal a novel function of SUMOylation in DDR by regulating a transcription factor to orchestrate gene expression and pre-mRNA splicing to overcome DNA damage during the infection of F. graminearum, which advances the understanding of the delicate regulation of DDR by SUMOylation in pathogenic fungi, and extends the knowledge of cooperation of SUMOylation and pre-mRNA splicing in DDR in eukaryotes.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xia Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Danni Cheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Feng Zhang
- Key Laboratory of Pesticide, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuming Luo
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
25
|
Li Z, He Z, Wang J, Kong G. RNA splicing factors in normal hematopoiesis and hematologic malignancies: novel therapeutic targets and strategies. J Leukoc Biol 2023; 113:149-163. [PMID: 36822179 DOI: 10.1093/jleuko/qiac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/18/2023] Open
Abstract
RNA splicing, a crucial transesterification-based process by which noncoding regions are removed from premature RNA to create mature mRNA, regulates various cellular functions, such as proliferation, survival, and differentiation. Clinical and functional studies over the past 10 y have confirmed that mutations in RNA splicing factors are among the most recurrent genetic abnormalities in hematologic neoplasms, including myeloid malignancies, chronic lymphocytic leukemia, mantle cell lymphoma, and clonal hematopoiesis. These findings indicate an important role for splicing factor mutations in the development of clonal hematopoietic disorders. Mutations in core or accessory components of the RNA spliceosome complex alter splicing sites in a manner of change of function. These changes can result in the dysregulation of cancer-associated gene expression and the generation of novel mRNA transcripts, some of which are not only critical to disease development but may be also serving as potential therapeutic targets. Furthermore, multiple studies have revealed that hematopoietic cells bearing mutations in splicing factors depend on the expression of the residual wild-type allele for survival, and these cells are more sensitive to reduced expression of wild-type splicing factors or chemical perturbations of the splicing machinery. These findings suggest a promising possibility for developing novel therapeutic opportunities in tumor cells based on mutations in splicing factors. Here, we combine current knowledge of the mechanistic and functional effects of frequently mutated splicing factors in normal hematopoiesis and the effects of their mutations in hematologic malignancies. Moreover, we discuss the development of potential therapeutic opportunities based on these mutations.
Collapse
Affiliation(s)
- Zhenzhen Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Zhongzheng He
- Department of Neurosurgery, Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710003, China
| | - Jihan Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, No. 127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, Xi'an, Shaanxi 710004, China
| |
Collapse
|
26
|
Zhang J, Lin X, Chen Y, Li T, Lee AC, Chow EY, Cho WC, Chan T. LAFITE Reveals the Complexity of Transcript Isoforms in Subcellular Fractions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203480. [PMID: 36461702 PMCID: PMC9875686 DOI: 10.1002/advs.202203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Characterization of the subcellular distribution of RNA is essential for understanding the molecular basis of biological processes. Here, the subcellular nanopore direct RNA-sequencing (DRS) of four lung cancer cell lines (A549, H1975, H358, and HCC4006) is performed, coupled with a computational pipeline, Low-abundance Aware Full-length Isoform clusTEr (LAFITE), to comprehensively analyze the full-length cytoplasmic and nuclear transcriptome. Using additional DRS and orthogonal data sets, it is shown that LAFITE outperforms current methods for detecting full-length transcripts, particularly for low-abundance isoforms that are usually overlooked due to poor read coverage. Experimental validation of six novel isoforms exclusively identified by LAFITE further confirms the reliability of this pipeline. By applying LAFITE to subcellular DRS data, the complexity of the nuclear transcriptome is revealed in terms of isoform diversity, 3'-UTR usage, m6A modification patterns, and intron retention. Overall, LAFITE provides enhanced full-length isoform identification and enables a high-resolution view of the RNA landscape at the isoform level.
Collapse
Affiliation(s)
- Jizhou Zhang
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Xiao Lin
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Yuelong Chen
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Tsz‐Ho Li
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Alan Chun‐Kit Lee
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | | | | | - Ting‐Fung Chan
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| |
Collapse
|
27
|
O’Grady TM, Baddoo M, Flemington SA, Ishaq EY, Ungerleider NA, Flemington EK. Reversal of splicing infidelity is a pre-activation step in B cell differentiation. Front Immunol 2022; 13:1060114. [PMID: 36601126 PMCID: PMC9806119 DOI: 10.3389/fimmu.2022.1060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction B cell activation and differentiation is central to the adaptive immune response. Changes in exon usage can have major impacts on cellular signaling and differentiation but have not been systematically explored in differentiating B cells. Methods We analyzed exon usage and intron retention in RNA-Seq data from subsets of human B cells at various stages of differentiation, and in an in vitro laboratory model of B cell activation and differentiation (Epstein Barr virus infection). Results Blood naïve B cells were found to have an unusual splicing profile, with unannotated splicing events in over 30% of expressed genes. Splicing changed substantially upon naïve B cell entry into secondary lymphoid tissue and before activation, involving significant increases in exon commitment and reductions in intron retention. These changes preferentially involved short introns with weak splice sites and were likely mediated by an overall increase in splicing efficiency induced by the lymphoid environment. The majority of transcripts affected by splicing changes showed restoration of encoded conserved protein domains and/or reduced targeting to the nonsense-mediated decay pathway. Affected genes were enriched in functionally important immune cell activation pathways such as antigen-mediated signaling, cell cycle control and mRNA processing and splicing. Discussion Functional observations from donor B cell subsets in progressive states of differentiation and from timecourse experiments using the in vitro model suggest that these widespread changes in mRNA splicing play a role in preparing naïve B cells for the decisive step of antigen-mediated activation and differentiation.
Collapse
Affiliation(s)
- Tina M. O’Grady
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Melody Baddoo
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Samuel A. Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Eman Y. Ishaq
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nathan A. Ungerleider
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erik K. Flemington
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
28
|
Identification and characterization of RBM12 as a novel regulator of fetal hemoglobin expression. Blood Adv 2022; 6:5956-5968. [PMID: 35622975 PMCID: PMC9678958 DOI: 10.1182/bloodadvances.2022007904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
The fetal-to-adult hemoglobin transition is clinically relevant because reactivation of fetal hemoglobin (HbF) significantly reduces morbidity and mortality associated with sickle cell disease (SCD) and β-thalassemia. Most studies on the developmental regulation of the globin genes, including genome-wide genetics screens, have focused on DNA binding proteins, including BCL11A and ZBTB7A/LRF and their cofactors. Our understanding of RNA binding proteins (RBPs) in this process is much more limited. Two RBPs, LIN28B and IGF2BP1, are known posttranscriptional regulators of HbF production, but a global view of RBPs is still lacking. Here, we carried out a CRISPR/Cas9-based screen targeting RBPs harboring RNA methyltransferase and/or RNA recognition motif (RRM) domains and identified RNA binding motif 12 (RBM12) as a novel HbF suppressor. Depletion of RBM12 induced HbF expression and attenuated cell sickling in erythroid cells derived from patients with SCD with minimal detrimental effects on cell maturation. Transcriptome and proteome profiling revealed that RBM12 functions independently of major known HbF regulators. Enhanced cross-linking and immunoprecipitation followed by high-throughput sequencing revealed strong preferential binding of RBM12 to 5' untranslated regions of transcripts, narrowing down the mechanism of RBM12 action. Notably, we pinpointed the first of 5 RRM domains as essential, and, in conjunction with a linker domain, sufficient for RBM12-mediated HbF regulation. Our characterization of RBM12 as a negative regulator of HbF points to an additional regulatory layer of the fetal-to-adult hemoglobin switch and broadens the pool of potential therapeutic targets for SCD and β-thalassemia.
Collapse
|
29
|
David JK, Maden SK, Wood MA, Thompson RF, Nellore A. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads. Genome Biol 2022; 23:240. [PMID: 36369064 PMCID: PMC9652823 DOI: 10.1186/s13059-022-02789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. RESULTS We compared introns detected by 8 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same biological specimens. We found significant disagreement among tools (Fleiss' [Formula: see text]) such that 47.7% of all detected intron retentions were not called by more than one tool. We also observed poor performance of all tools, with none achieving an F1-score greater than 0.26, and qualitatively different behaviors between general-purpose alternative splicing detection tools and tools confined to retained intron detection. CONCLUSIONS Short-read tools detect intron retention with poor recall and precision, calling into question the completeness and validity of a large percentage of putatively retained introns called by commonly used methods.
Collapse
Affiliation(s)
- Julianne K. David
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,Present Address: Base5 Genomics, Inc., Mountain View, CA USA
| | - Sean K. Maden
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.21107.350000 0001 2171 9311Present Address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Mary A. Wood
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.429936.30000 0004 5914 210XPortland VA Research Foundation, Portland, OR USA ,Present Address: Phase Genomics, Inc., Seattle, WA USA
| | - Reid F. Thompson
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.484322.bDivision of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
| | - Abhinav Nellore
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Surgery, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
30
|
Petrić Howe M, Crerar H, Neeves J, Harley J, Tyzack GE, Klein P, Ramos A, Patani R, Luisier R. Physiological intron retaining transcripts in the cytoplasm abound during human motor neurogenesis. Genome Res 2022; 32:1808-1825. [PMID: 36180233 PMCID: PMC9712626 DOI: 10.1101/gr.276898.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Intron retention (IR) is now recognized as a dominant splicing event during motor neuron (MN) development; however, the role and regulation of intron-retaining transcripts (IRTs) localized to the cytoplasm remain particularly understudied. Here we show that IR is a physiological process that is spatiotemporally regulated during MN lineage restriction and that IRTs in the cytoplasm are detected in as many as 13% (n = 2297) of the genes expressed during this process. We identify a major class of cytoplasmic IRTs that are not associated with reduced expression of their own genes but instead show a high capacity for RNA-binding protein and miRNA occupancy. Finally, we show that ALS-causing VCP mutations lead to a selective increase in cytoplasmic abundance of this particular class of IRTs, which in turn temporally coincides with an increase in the nuclear expression level of predicted miRNA target genes. Altogether, our study identifies a previously unrecognized class of cytoplasmic intronic sequences with potential regulatory function beyond gene expression.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Hamish Crerar
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jacob Neeves
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jasmine Harley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Giulia E Tyzack
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Pierre Klein
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Rickie Patani
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Raphaëlle Luisier
- Idiap Research Institute, Genomics and Health Informatics, CH-1920 Martigny, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Mazille M, Buczak K, Scheiffele P, Mauger O. Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts. EMBO J 2022; 41:e110192. [PMID: 36149731 DOI: 10.15252/embj.2021110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein-coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron-retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub-populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron-retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue-specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome.
Collapse
Affiliation(s)
- Maxime Mazille
- Biozentrum of the University of Basel, Basel, Switzerland
| | | | | | - Oriane Mauger
- Biozentrum of the University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Gorin G, Fang M, Chari T, Pachter L. RNA velocity unraveled. PLoS Comput Biol 2022; 18:e1010492. [PMID: 36094956 PMCID: PMC9499228 DOI: 10.1371/journal.pcbi.1010492] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/22/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
We perform a thorough analysis of RNA velocity methods, with a view towards understanding the suitability of the various assumptions underlying popular implementations. In addition to providing a self-contained exposition of the underlying mathematics, we undertake simulations and perform controlled experiments on biological datasets to assess workflow sensitivity to parameter choices and underlying biology. Finally, we argue for a more rigorous approach to RNA velocity, and present a framework for Markovian analysis that points to directions for improvement and mitigation of current problems.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Meichen Fang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
33
|
Liu T, Zhang X, Zhang H, Cheng Z, Liu J, Zhou C, Luo S, Luo W, Li S, Xing X, Chang Y, Shi C, Ren Y, Zhu S, Lei C, Guo X, Wang J, Zhao Z, Wang H, Zhai H, Lin Q, Wan J. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. THE PLANT CELL 2022; 34:3301-3318. [PMID: 35670739 PMCID: PMC9421477 DOI: 10.1093/plcell/koac169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/11/2022] [Indexed: 06/09/2023]
Abstract
Strigolactones (SLs) constitute a class of plant hormones that regulate many aspects of plant development, including repressing tillering in rice (Oryza sativa). However, how SL pathways are regulated is still poorly understood. Here, we describe a rice mutant dwarf and high tillering1 (dht1), which exhibits pleiotropic phenotypes (such as dwarfism and increased tiller numbers) similar to those of mutants defective in SL signaling. We show that DHT1 encodes a monocotyledon-specific hnRNP-like protein that acts as a previously unrecognized intron splicing factor for many precursor mRNAs (pre-mRNAs), including for the SL receptor gene D14. We find that the dht1 (DHT1I232F) mutant protein is impaired in its stability and RNA binding activity, causing defective splicing of D14 pre-mRNA and reduced D14 expression, and consequently leading to the SL signaling-defective phenotypes. Overall, our findings deepen our understanding of the functional diversification of hnRNP-like proteins and establish a connection between posttranscriptional splicing and SL signaling in the regulation of plant development.
Collapse
Affiliation(s)
| | | | | | | | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weifeng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinxin Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanqi Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cuilan Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huqu Zhai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- Author for correspondence: (J.W.), (Q.L.)
| | | |
Collapse
|
34
|
Reixachs‐Solé M, Eyras E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1707. [PMID: 34979593 PMCID: PMC9542554 DOI: 10.1002/wrna.1707] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Marina Reixachs‐Solé
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
35
|
Intron retention is a stress response in sensor genes and is restored by Japanese herbal medicines: A basis for future clinical applications. Gene X 2022; 830:146496. [PMID: 35504437 DOI: 10.1016/j.gene.2022.146496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Intron retention (IR) is a regulatory mechanism that can retard protein production by acting at the level of mRNA processing. We recently demonstrated that IR occurs at the pre-symptomatic state during the aging process of a mouse model of aging, providing a promising biomarker for that state, and can be restored to the normal state by juzentaihoto (JTT), a Japanese herbal medicine (Kampo) (Okada et al. 2021). Here we characterized the genes that accumulate retained introns, examined the biological significance of increased IR in these genes for the host, and determined whether drugs other than JTT can have this effect. By analyzing RNA-sequencing data generated from the hippocampus of the 19-week-old SAMP8 mouse, a model for studying age-related depression and Alzheimer's disease, we showed that genes with increased IR are generally involved in multiple metabolic pathways and have pivotal roles in sensing homeostasis. We thus propose that IR is a stress response and works to fine-tune the expression of many downstream target genes, leading to lower levels of their translation under stress conditions. Interestingly, Kampo medicines, as well as other organic compounds, restored splicing of a specific set of retained introns in these sensor genes in accordance with the physiological recovery conditions of the host, which corresponds with the recovery of transcripts represented by differentially expressed genes. Thus, analysis of IR genes may have broad applicability in evaluating the pre-symptomatic state based on the extent of IR of selective sensor genes, opening a promising early diagnosis of any diseases and a strategy for evaluating efficacies of several drugs based on the extent of IR restoration of these sensor genes.
Collapse
|
36
|
Xu J, Wang D, Ma H, Zhai X, Huo Y, Ren Y, Li W, Chang L, Lu D, Guo Y, Si Y, Gao Y, Wang X, Ma Y, Wang F, Yu J. KHSRP combines transcriptional and posttranscriptional mechanisms to regulate monocytic differentiation. BLOOD SCIENCE 2022; 4:103-115. [DOI: 10.1097/bs9.0000000000000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
|
37
|
Nishimura K, Yamazaki H, Zang W, Inoue D. Dysregulated minor intron splicing in cancer. Cancer Sci 2022; 113:2934-2942. [PMID: 35766428 PMCID: PMC9459249 DOI: 10.1111/cas.15476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pre‐mRNA splicing is now widely recognized as a cotranscriptional and post‐transcriptional mechanism essential for regulating gene expression and modifying gene product function. Mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are now considered among the most recurrent genetic abnormalities in patients with cancer, particularly hematologic malignancies. These include mutations in the major (U2‐type) and minor (U12‐type) spliceosomes, which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates that aberrant splicing of evolutionarily conserved U12‐type minor introns plays a crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to recurrent, leukemia‐associated mutations, and intronic mutations have been shown to disrupt the splicing of minor introns. Here, we review the importance of minor intron regulation, the molecular effects of the minor (U12‐type) spliceosomal mutations and cis‐regulatory regions, and the development of minor intron studies for better understanding of cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Meta-Analysis Suggests That Intron Retention Can Affect Quantification of Transposable Elements from RNA-Seq Data. BIOLOGY 2022; 11:biology11060826. [PMID: 35741347 PMCID: PMC9220773 DOI: 10.3390/biology11060826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Simple Summary Transposable elements (TEs) are repetitive sequences comprising more than one third of the human genome with the original ability to change their location within the genome. Owing to their repetitive nature, the quantification of TEs results often challenging. RNA-seq is a useful tool for genome-wide TEs quantification, nevertheless it also presents technical issues, including low reads mappability and erroneous quantification derived from the transcription of TEs fragments embedded in canonical transcripts. Fragments derived from TEs are found within the introns of most genes, which led to the hypothesis that intron retention (IR) can affect the unbiased quantification of TEs expression. Performing meta-analysis of public RNA-seq datasets, here we observe that IR can indeed impact the quantification of TEs by increasing the number of reads mapped on intronic TE copies. Our work highlights a correlation between IR and TEs expression measurement by RNA-seq that should be taken into account to achieve reliable TEs quantification, especially in samples characterized by extensive IR, because differential IR might be confused with differential TEs expression. Abstract Transposable elements (TEs), also known as “jumping genes”, are repetitive sequences with the capability of changing their location within the genome. They are key players in many different biological processes in health and disease. Therefore, a reliable quantification of their expression as transcriptional units is crucial to distinguish between their independent expression and the transcription of their sequences as part of canonical transcripts. TEs quantification faces difficulties of different types, the most important one being low reads mappability due to their repetitive nature preventing an unambiguous mapping of reads originating from their sequences. A large fraction of TEs fragments localizes within introns, which led to the hypothesis that intron retention (IR) can be an additional source of bias, potentially affecting accurate TEs quantification. IR occurs when introns, normally removed from the mature transcript by the splicing machinery, are maintained in mature transcripts. IR is a widespread mechanism affecting many different genes with cell type-specific patterns. We hypothesized that, in an RNA-seq experiment, reads derived from retained introns can introduce a bias in the detection of overlapping, independent TEs RNA expression. In this study we performed meta-analysis using public RNA-seq data from lymphoblastoid cell lines and show that IR can impact TEs quantification using established tools with default parameters. Reads mapped on intronic TEs were indeed associated to the expression of TEs and influence their correct quantification as independent transcriptional units. We confirmed these results using additional independent datasets, demonstrating that this bias does not appear in samples where IR is not present and that differential TEs expression does not impact on IR quantification. We concluded that IR causes the over-quantification of intronic TEs and differential IR might be confused with differential TEs expression. Our results should be taken into account for a correct quantification of TEs expression from RNA-seq data, especially in samples in which IR is abundant.
Collapse
|
39
|
Heazlewood SY, Ahmad T, Mohenska M, Guo BB, Gangatirkar P, Josefsson EC, Ellis SL, Ratnadiwakara M, Cao H, Cao B, Heazlewood CK, Williams B, Fulton M, White JF, Ramialison M, Nilsson SK, Änkö ML. The RNA-binding protein SRSF3 has an essential role in megakaryocyte maturation and platelet production. Blood 2022; 139:1359-1373. [PMID: 34852174 PMCID: PMC8900270 DOI: 10.1182/blood.2021013826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
RNA processing is increasingly recognized as a critical control point in the regulation of different hematopoietic lineages including megakaryocytes responsible for the production of platelets. Platelets are anucleate cytoplasts that contain a rich repertoire of RNAs encoding proteins with essential platelet functions derived from the parent megakaryocyte. It is largely unknown how RNA binding proteins contribute to the development and functions of megakaryocytes and platelets. We show that serine-arginine-rich splicing factor 3 (SRSF3) is essential for megakaryocyte maturation and generation of functional platelets. Megakaryocyte-specific deletion of Srsf3 in mice led to macrothrombocytopenia characterized by megakaryocyte maturation arrest, dramatically reduced platelet counts, and abnormally large functionally compromised platelets. SRSF3 deficient megakaryocytes failed to reprogram their transcriptome during maturation and to load platelets with RNAs required for normal platelet function. SRSF3 depletion led to nuclear accumulation of megakaryocyte mRNAs, demonstrating that SRSF3 deploys similar RNA regulatory mechanisms in megakaryocytes as in other cell types. Our study further suggests that SRSF3 plays a role in sorting cytoplasmic megakaryocyte RNAs into platelets and demonstrates how SRSF3-mediated RNA processing forms a central part of megakaryocyte gene regulation. Understanding SRSF3 functions in megakaryocytes and platelets provides key insights into normal thrombopoiesis and platelet pathologies as SRSF3 RNA targets in megakaryocytes are associated with platelet diseases.
Collapse
Affiliation(s)
- Shen Y Heazlewood
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Tanveer Ahmad
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Monika Mohenska
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Belinda B Guo
- School of Biomedical Sciences, Pathology and Laboratory Science, University of Western Australia, WA, Australia
| | | | - Emma C Josefsson
- Walter and Eliza Hall Institute of Medical Research, VIC, Australia
- Department of Medical Biology, The University of Melbourne, VIC, Australia
| | - Sarah L Ellis
- Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Microscopy Facility and School of Cancer Medicine, La Trobe University, VIC, Australia
| | - Madara Ratnadiwakara
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
- Hudson Institute of Medical Research, VIC, Australia; and
- Department of Molecular and Translational Sciences, Monash University, VIC, Australia
| | - Huimin Cao
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Benjamin Cao
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Chad K Heazlewood
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Madeline Fulton
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | | | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Susan K Nilsson
- Biomedical Manufacturing CSIRO, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Minna-Liisa Änkö
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
- Hudson Institute of Medical Research, VIC, Australia; and
- Department of Molecular and Translational Sciences, Monash University, VIC, Australia
| |
Collapse
|
40
|
Hao W, Yang Z, Sun Y, Li J, Zhang D, Liu D, Yang X. Characterization of Alternative Splicing Events in Porcine Skeletal Muscles with Different Intramuscular Fat Contents. Biomolecules 2022; 12:biom12020154. [PMID: 35204660 PMCID: PMC8961525 DOI: 10.3390/biom12020154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production. Intramuscular fat (IMF) is a major factor that improves meat quality. To better understand the alternative splicing (AS) events underlying meat quality, long-read isoform sequencing (Iso-seq) was used to identify differential (D)AS events between the longissimus thoracis (LT) and semitendinosus (ST), which differ in IMF content, together with short-read RNA-seq. Through Iso-seq analysis, we identified a total of 56,789 novel transcripts covering protein-coding genes, lncRNA, and fusion transcripts that were not previously annotated in pigs. We also identified 456,965 AS events, among which 3930 were DAS events, corresponding to 2364 unique genes. Through integrative analysis of Iso-seq and RNA-seq, we identified 1174 differentially expressed genes (DEGs), among which 122 were DAS genes, i.e., DE-DAS genes. There are 12 overlapped pathways between the top 20 DEGs and DE-DAS genes, as revealed by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, indicating that DE-DAS genes play important roles in the differential phenotype of LT and ST. Further analysis showed that upregulated DE-DAS genes are more important than downregulated ones in IMF deposition. Fatty acid degradation and the PPAR (peroxisome proliferator-activated receptor) signaling pathway were found to be the most important pathways regulating the differential fat deposition of the two muscles. The results update the existing porcine genome annotations and provide data for the in-depth exploration of the mechanisms underlying meat quality and IMF deposition.
Collapse
Affiliation(s)
- Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Zewei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Jiaxin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (W.H.); (Z.Y.); (Y.S.); (J.L.)
- Correspondence: (D.L.); (X.Y.); Tel.: +86-451-8667-7458 (D.L.); +86-451-5519-1738 (X.Y.)
| |
Collapse
|
41
|
Maron MI, Casill AD, Gupta V, Roth JS, Sidoli S, Query CC, Gamble MJ, Shechter D. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 2022; 11:e72867. [PMID: 34984976 PMCID: PMC8765754 DOI: 10.7554/elife.72867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.
Collapse
Affiliation(s)
- Maxim I Maron
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Alyssa D Casill
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Jacob S Roth
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
42
|
Kumari A, Sedehizadeh S, Brook JD, Kozlowski P, Wojciechowska M. Differential fates of introns in gene expression due to global alternative splicing. Hum Genet 2022; 141:31-47. [PMID: 34907472 PMCID: PMC8758631 DOI: 10.1007/s00439-021-02409-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
The discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.
Collapse
Affiliation(s)
- Anjani Kumari
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Saam Sedehizadeh
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - John David Brook
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
- Department of Rare Human Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
43
|
Song R, Tikoo S, Jain R, Pinello N, Au AY, Nagarajah R, Porse B, Rasko JEJ, Wong JJL. Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology 2021; 165:274-286. [PMID: 34775600 DOI: 10.1111/imm.13435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022] Open
Abstract
Monocytes play a crucial role in maintaining homeostasis and mediating a successful innate immune response. They also act as central players in diverse pathological conditions, thus making them an attractive therapeutic target. Within the bone marrow, monocytes arise from a committed precursor termed cMoP (Common Monocyte Progenitor). However, molecular mechanisms that regulate the differentiation of cMoP to various monocytic subsets remain unclear. Herein, we purified murine myeloid precursors for deep poly-A enriched RNA sequencing to understand the role of alternative splicing in the development and differentiation of monocytes under homeostasis. Our analyses revealed intron retention to be the major alternative splicing mechanism involved in the monocyte differentiation cascade, especially in the differentiation of Ly6Chi monocytes to Ly6Clo monocytes. Furthermore, we found that the key genes regulated by intron retention in the differentiation of murine Ly6Chi to Ly6Clo monocytes were also conserved in humans. Our data highlight the unique role of intron retention in the regulation of the monocytic differentiation pathway.
Collapse
Affiliation(s)
- Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Shweta Tikoo
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Rohit Jain
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Amy Ym Au
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Rajini Nagarajah
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - John E J Rasko
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| |
Collapse
|
44
|
Using the Zebrafish as a Genetic Model to Study Erythropoiesis. Int J Mol Sci 2021; 22:ijms221910475. [PMID: 34638816 PMCID: PMC8508994 DOI: 10.3390/ijms221910475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond–Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria. The molecular mechanisms of erythropoiesis are highly conserved between fish and mammals, and the zebrafish (Danio rerio) has provided a powerful genetic model for studying erythropoiesis. Studies in zebrafish have yielded important insights into RBC development and established a number of models for human blood diseases. Here, we focus on latest discoveries of the molecular processes and mechanisms regulating zebrafish erythropoiesis and summarize newly established zebrafish models of human anemias.
Collapse
|
45
|
The Expanding Role of Alternative Splicing in Vascular Smooth Muscle Cell Plasticity. Int J Mol Sci 2021; 22:ijms221910213. [PMID: 34638554 PMCID: PMC8508619 DOI: 10.3390/ijms221910213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) display extraordinary phenotypic plasticity. This allows them to differentiate or dedifferentiate, depending on environmental cues. The ability to ‘switch’ between a quiescent contractile phenotype to a highly proliferative synthetic state renders VSMCs as primary mediators of vascular repair and remodelling. When their plasticity is pathological, it can lead to cardiovascular diseases such as atherosclerosis and restenosis. Coinciding with significant technological and conceptual innovations in RNA biology, there has been a growing focus on the role of alternative splicing in VSMC gene expression regulation. Herein, we review how alternative splicing and its regulatory factors are involved in generating protein diversity and altering gene expression levels in VSMC plasticity. Moreover, we explore how recent advancements in the development of splicing-modulating therapies may be applied to VSMC-related pathologies.
Collapse
|
46
|
Golicz AA, Allu AD, Li W, Lohani N, Singh MB, Bhalla PL. A dynamic intron retention program regulates the expression of several hundred genes during pollen meiosis. PLANT REPRODUCTION 2021; 34:225-242. [PMID: 34019149 DOI: 10.1007/s00497-021-00411-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
Intron retention is a stage-specific mechanism of functional attenuation of a subset of co-regulated, functionally related genes during early stages of pollen development. To improve our understanding of the gene regulatory mechanisms that drive developmental processes, we performed a genome-wide study of alternative splicing and isoform switching during five key stages of pollen development in field mustard, Brassica rapa. Surprisingly, for several hundred genes (12.3% of the genes analysed), isoform switching results in stage-specific expression of intron-retaining transcripts at the meiotic stage of pollen development. In such cases, we report temporally regulated switching between expression of a canonical, translatable isoform and an intron-retaining transcript that is predicted to produce a truncated and presumably inactive protein. The results suggest a new pervasive mechanism underlying modulation of protein levels in a plant developmental program. The effect is not based on gene expression induction but on the type of transcript produced. We conclude that intron retention is a stage-specific mechanism of functional attenuation of a subset of co-regulated, functionally related genes during meiosis, especially genes related to ribosome biogenesis, mRNA transport and nuclear envelope architecture. We also propose that stage-specific expression of a non-functional isoform of Brassica rapa BrSDG8, a non-redundant member of histone methyltransferase gene family, linked to alternative splicing regulation, may contribute to the intron retention observed.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Annapurna D Allu
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Wei Li
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
47
|
Mayère C, Neirijnck Y, Sararols P, Rands CM, Stévant I, Kühne F, Chassot AA, Chaboissier MC, Dermitzakis ET, Nef S. Single-cell transcriptomics reveal temporal dynamics of critical regulators of germ cell fate during mouse sex determination. FASEB J 2021; 35:e21452. [PMID: 33749946 DOI: 10.1096/fj.202002420r] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Despite the importance of germ cell (GC) differentiation for sexual reproduction, the gene networks underlying their fate remain unclear. Here, we comprehensively characterize the gene expression dynamics during sex determination based on single-cell RNA sequencing of 14 914 XX and XY mouse GCs between embryonic days (E) 9.0 and 16.5. We found that XX and XY GCs diverge transcriptionally as early as E11.5 with upregulation of genes downstream of the bone morphogenic protein (BMP) and nodal/Activin pathways in XY and XX GCs, respectively. We also identified a sex-specific upregulation of genes associated with negative regulation of mRNA processing and an increase in intron retention consistent with a reduction in mRNA splicing in XY testicular GCs by E13.5. Using computational gene regulation network inference analysis, we identified sex-specific, sequential waves of putative key regulator genes during GC differentiation and revealed that the meiotic genes are regulated by positive and negative master modules acting in an antagonistic fashion. Finally, we found that rare adrenal GCs enter meiosis similarly to ovarian GCs but display altered expression of master genes controlling the female and male genetic programs, indicating that the somatic environment is important for GC function. Our data are available on a web platform and provide a molecular roadmap of GC sex determination at single-cell resolution, which will serve as a valuable resource for future studies of gonad development, function, and disease.
Collapse
Affiliation(s)
- Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,CNRS, Inserm, iBV, Université Côte d'Azur, Nice, France
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | | | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Bagacean C, Iuga CA, Bordron A, Tempescul A, Pralea IE, Bernard D, Cornen M, Bergot T, Le Dantec C, Brooks W, Saad H, Ianotto JC, Pers JO, Zdrenghea M, Berthou C, Renaudineau Y. Identification of altered cell signaling pathways using proteomic profiling in stable and progressive chronic lymphocytic leukemia. J Leukoc Biol 2021; 111:313-325. [PMID: 34288092 DOI: 10.1002/jlb.4hi0620-392r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by significant biologic and clinical heterogeneity. This study was designed to explore CLL B-cells' proteomic profile in order to identify biologic processes affected at an early stage and during disease evolution as stable or progressive. Purified B cells from 11 untreated CLL patients were tested at two time points by liquid chromatography-tandem mass spectrometry. Patients included in the study evolved to either progressive (n = 6) or stable disease (n = 5). First, at an early stage of the disease (Binet stage A), based on the relative abundance levels of 389 differentially expressed proteins (DEPs), samples were separated into stable and progressive clusters with the main differentiating factor being the RNA splicing pathway. Next, in order to test how the DEPs affect RNA splicing, a RNA-Seq study was conducted showing 4217 differentially spliced genes between the two clusters. Distinct longitudinal evolutions were observed with predominantly proteomic modifications in the stable CLL group and spliced genes in the progressive CLL group. Splicing events were shown to be six times more frequent in the progressive CLL group. The main aberrant biologic processes controlled by DEPs and spliced genes in the progressive group were cytoskeletal organization, Wnt/β-catenin signaling, and mitochondrial and inositol phosphate metabolism with a downstream impact on CLL B-cell survival and migration. This study suggests that proteomic profiles at the early stage of CLL can discriminate progressive from stable disease and that RNA splicing dysregulation underlies CLL evolution, which opens new perspectives in terms of biomarkers and therapy.
Collapse
Affiliation(s)
- Cristina Bagacean
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Cristina Adela Iuga
- Department of Drug Analysis, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine-MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anne Bordron
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France
| | - Adrian Tempescul
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, MedFuture Research Center for Advanced Medicine-MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Melanie Cornen
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France
| | | | | | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Hussam Saad
- Department of Hematology, University Hospital of Brest, Brest, France
| | | | | | - Mihnea Zdrenghea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian Berthou
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Department of Hematology, University Hospital of Brest, Brest, France
| | - Yves Renaudineau
- Univ Brest, INSERM, UMR1227, B Lymphocytes and Autoimmunity, Brest, France.,Laboratory of Immunology and Immunotherapy, University Hospital of Brest, Brest, France
| |
Collapse
|
49
|
Barile M, Imaz-Rosshandler I, Inzani I, Ghazanfar S, Nichols J, Marioni JC, Guibentif C, Göttgens B. Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation. Genome Biol 2021; 22:197. [PMID: 34225769 PMCID: PMC8258993 DOI: 10.1186/s13059-021-02414-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.
Collapse
Affiliation(s)
- Melania Barile
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Isabella Inzani
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Cambridge, CB2 0QQ UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD UK
| | - Carolina Guibentif
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Splicing mutations are among the most recurrent genetic perturbations in hematological malignancies, highlighting an important impact of splicing regulation in hematopoietic development. However, compared to our understanding of splicing factor mutations in hematological malignancies, studies of splicing components and alternative splicing in normal hematopoiesis have been less well investigated. Here, we outline the most recent findings on splicing regulation in normal hematopoiesis and discuss the important questions in the field. RECENT FINDINGS Recent studies have highlighted the critical role of splicing regulation in hematopoiesis, including characterization of splicing components in normal hematopoiesis, investigation of transcriptional alterations on splicing, and identification of stage-specific alternative splicing events during hematopoietic development. SUMMARY These interesting findings provide insights on hematopoietic regulation at a co-transcriptional level. More high-throughput RNA ribonucleic acid (RNA) sequencing and functional genomic screens are needed to advance our knowledge of critical alternative splicing patterns in shaping hematopoiesis.
Collapse
Affiliation(s)
- Sisi Chen
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Leukemia Service, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|