1
|
Wu D, Li X, Khan FA, Yuan C, Pandupuspitasari NS, Huang C, Sun F, Guan K. tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease. Cell Biol Toxicol 2024; 40:76. [PMID: 39276283 PMCID: PMC11401796 DOI: 10.1007/s10565-024-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as "tRNA modopathy". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | | | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Chaudhary U, Banerjee S. Decoding the Non-coding: Tools and Databases Unveiling the Hidden World of "Junk" RNAs for Innovative Therapeutic Exploration. ACS Pharmacol Transl Sci 2024; 7:1901-1915. [PMID: 39022352 PMCID: PMC11249652 DOI: 10.1021/acsptsci.3c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Non-coding RNAs are pivotal regulators of gene and protein expression, exerting crucial influences on diverse biological processes. Their dysregulation is frequently implicated in the onset and progression of diseases, notably cancer. A profound comprehension of the intricate mechanisms governing ncRNAs is imperative for devising innovative therapeutic interventions against these debilitating conditions. Significantly, nearly 80% of our genome comprises ncRNAs, underscoring their centrality in cellular processes. The elucidation of ncRNA functions is pivotal for grasping the complexities of gene regulation and its implications for human health. Modern genome sequencing techniques yield vast datasets, stored in specialized databases. To harness this wealth of information and to understand the crosstalk of non-coding RNAs, knowledge of available databases is required, and many new sophisticated computational tools have emerged. These tools play a pivotal role in the identification, prediction, and annotation of ncRNAs, thereby facilitating their experimental validation. This Review succinctly outlines the current understanding of ncRNAs, emphasizing their involvement in disease development. It also highlights the databases and tools instrumental in classifying, annotating, and evaluating ncRNAs. By extracting meaningful biological insights from seemingly "junk" data, these tools empower scientists to unravel the intricate roles of ncRNAs in shaping human health.
Collapse
Affiliation(s)
- Uma Chaudhary
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Satarupa Banerjee
- Department of Biotechnology,
School of Biosciences and Technology, Vellore
Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Kolenda T, Śmiełowska M, Lipowicz J, Ostapowicz J, Pacześna P, Rosochowicz MA, Poter P, Kozłowska-Masłoń J, Guglas K, Dudek K, Grzejda N, Regulska K, Florczak A, Kazimierczak U, Lamperska K, Teresiak A. The RNA world: from experimental laboratory to "in silico" approach. Part 1: User friendly RNA expression databases portals. Rep Pract Oncol Radiother 2024; 29:245-257. [PMID: 39143966 PMCID: PMC11321768 DOI: 10.5603/rpor.99675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 08/16/2024] Open
Abstract
Cellular information about "life instruction" is stored, transferred, and modified using different types of RNA molecules. During the last decades, a growing number of RNA data has been generated thanks to the development of microarray chips and next-generation sequencing (NGS) methods. Improvement of bioinformatics contributed to the discovery of many types of new non-coding RNAs (ncRNAs), mostly with regulatory functions that supplemented the knowledge about the world of RNA. All of it, as well as the Human Genome Project (HGP) and the Cancer Genome Atlas (TCGA) project, has resulted in the formation of data storage and analysis portals which are widely used in cancer research and moved science from in vitro to in silico research. In this review we presented and discussed the data storage and analysis portals used by us, such as cBioPortal, UALCAN, ENCORI, and others. During the revision of these sites, we paid attention to data integration, simplicity of analysis, and results visualization, which are important for users without bioinformatic or statistical skills. In our opinion, the RNA analysis online tools will rapidly develop during the next decade and it seems to be a way for personalization of cancer treatment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
| | - Marianna Śmiełowska
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Julia Lipowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Paula Pacześna
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
| | - Monika Anna Rosochowicz
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Orthopaedic and Traumatology, W. Dega University Hospital, University of Medical Sciences, Poznań, Poland
| | - Paulina Poter
- Department of Tumor Pathology and Prophylactics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Tumor Pathology, Greater Poland Cancer Center, Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Dudek
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
- Poznan University of Life Sciences, Poznan, Poland
| | - Nina Grzejda
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
- Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna Regulska
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
- Pharmacy, Greater Poland Cancer Centre, Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland, Collegium Pharmaceuticum, Poznan, Poland
| | - Anna Florczak
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Urszula Kazimierczak
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Poznan, Poland
- Greater Poland Cancer Center, Research and Implementation Unit, Poznan, Poland
| |
Collapse
|
4
|
Cabrelle C, Giorgi FM, Mercatelli D. Quantitative and qualitative detection of tRNAs, tRNA halves and tRFs in human cancer samples: Molecular grounds for biomarker development and clinical perspectives. Gene 2024; 898:148097. [PMID: 38128792 DOI: 10.1016/j.gene.2023.148097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs playing a central role during protein synthesis. Besides translation, growing evidence suggests that in many contexts, precursor or mature tRNAs can also be processed into smaller fragments playing many non-canonical regulatory roles in different biological pathways with oncogenic relevance. Depending on the source, these molecules can be classified as tRNA halves (also known as tiRNAs) or tRNA-derived fragments (tRFs), and furtherly divided into 5'-tRNA and 3'-tRNA halves, or tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, respectively. Unlike DNA and mRNA, high-throughput sequencing of tRNAs is challenging, because of technical limitations of currently developed sequencing methods. In recent years, different sequencing approaches have been proposed allowing the quantification and identification of an increasing number of tRNA fragments with critical functions in distinct physiological and pathophysiological processes. In the present review, we discussed pros and cons of recent advances in different sequencing methods, also introducing the expanding repertoire of bioinformatics tool and resources specifically focused on tRNA research and discussing current issues in the study of these small RNA molecules. Furthermore, we discussed the potential value of tRNA fragments as diagnostic and prognostic biomarkers for different types of cancers.
Collapse
Affiliation(s)
- Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | | | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
5
|
La Ferlita A, Alaimo S, Nigita G, Distefano R, Beane JD, Tsichlis PN, Ferro A, Croce CM, Pulvirenti A. tRFUniverse: A comprehensive resource for the interactive analyses of tRNA-derived ncRNAs in human cancer. iScience 2024; 27:108810. [PMID: 38303722 PMCID: PMC10831894 DOI: 10.1016/j.isci.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
tRNA-derived ncRNAs are a heterogeneous class of non-coding RNAs recently proposed to be active regulators of gene expression and be involved in many diseases, including cancer. Consequently, several online resources on tRNA-derived ncRNAs have been released. Although interesting, such resources present only basic features and do not adequately exploit the wealth of knowledge available about tRNA-derived ncRNAs. Therefore, we introduce tRFUniverse, a novel online resource for the analysis of tRNA-derived ncRNAs in human cancer. tRFUniverse presents an extensive collection of classes of tRNA-derived ncRNAs analyzed across all the TCGA and TARGET tumor cohorts, NCI-60 cell lines, and biological fluids. Moreover, public AGO CLASH/CLIP-Seq data were analyzed to identify the molecular interactions between tRNA-derived ncRNAs and other transcripts. Importantly, tRFUniverse combines in a single resource a comprehensive set of features that we believe may be helpful to investigate the involvement of tRNA-derived ncRNAs in cancer biology.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Knowmics Lab, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Patel K, Rao DM, Sundersingh S, Velusami S, Rajkumar T, Nair B, Pandey A, Chatterjee A, Mani S, Gowda H. MicroRNA Expression Profile in Early-Stage Breast Cancers. Microrna 2024; 13:71-81. [PMID: 37873952 DOI: 10.2174/0122115366256479231003064842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. METHODS We have deployed miRge for microRNA analysis, DESeq for differential expression analysis, and Cytoscape for competing endogenous RNA network investigation. RESULTS Here, we identified 76 miRNAs that were differentially expressed in DCIS and IDC. Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in earlystage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. CONCLUSION Higher expression of miR-301a-3p is associated with poor overall survival in The Cancer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation.
Collapse
MESH Headings
- Humans
- Female
- MicroRNAs/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Gene Expression Regulation, Neoplastic/genetics
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Middle Aged
- Neoplasm Staging
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Transcriptome/genetics
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Deva Magendhra Rao
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036, India
| | | | - Sridevi Velusami
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, India
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560066 India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai 600036, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 691001, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
7
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Antoniali G, Dalla E, Mangiapane G, Zhao X, Jing X, Cheng Y, De Sanctis V, Ayyildiz D, Piazza S, Li M, Tell G. APE1 controls DICER1 expression in NSCLC through miR-33a and miR-130b. Cell Mol Life Sci 2022; 79:446. [PMID: 35876890 PMCID: PMC9314295 DOI: 10.1007/s00018-022-04443-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs biogenesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer development but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, which are of relevance in lung cancer chemoresistance and cancer invasiveness.
Collapse
Affiliation(s)
- Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Xiaolong Zhao
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xinming Jing
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Veronica De Sanctis
- Next Generation Sequence Facility, Department CIBIO, University of Trento, Trento, Italy
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Silvano Piazza
- Bioinformatics Core Facility, Department CIBIO, University of Trento, Trento, Italy.,Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
9
|
Zhang T, Chen L, Li R, Liu N, Huang X, Wong G. PIWI-interacting RNAs in human diseases: databases and computational models. Brief Bioinform 2022; 23:6603448. [PMID: 35667080 DOI: 10.1093/bib/bbac217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are short 21-35 nucleotide molecules that comprise the largest class of non-coding RNAs and found in a large diversity of species including yeast, worms, flies, plants and mammals including humans. The most well-understood function of piRNAs is to monitor and protect the genome from transposons particularly in germline cells. Recent data suggest that piRNAs may have additional functions in somatic cells although they are expressed there in far lower abundance. Compared with microRNAs (miRNAs), piRNAs have more limited bioinformatics resources available. This review collates 39 piRNA specific and non-specific databases and bioinformatics resources, describes and compares their utility and attributes and provides an overview of their place in the field. In addition, we review 33 computational models based upon function: piRNA prediction, transposon element and mRNA-related piRNA prediction, cluster prediction, signature detection, target prediction and disease association. Based on the collection of databases and computational models, we identify trends and potential gaps in tool development. We further analyze the breadth and depth of piRNA data available in public sources, their contribution to specific human diseases, particularly in cancer and neurodegenerative conditions, and highlight a few specific piRNAs that appear to be associated with these diseases. This briefing presents the most recent and comprehensive mapping of piRNA bioinformatics resources including databases, models and tools for disease associations to date. Such a mapping should facilitate and stimulate further research on piRNAs.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Liang Chen
- Department of Computer Science, School of Engineering, Shantou University, Shantou, China
| | - Rongzhen Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Ning Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Xiaobing Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R. 999078, China
| |
Collapse
|
10
|
Lin YZ, Liu SH, Wu WR, Shen YC, Wang YL, Liao CC, Lin PL, Chang H, Liu LC, Cheng WC, Wang SC. miR-4759 suppresses breast cancer through immune checkpoint blockade. Comput Struct Biotechnol J 2022; 20:241-251. [PMID: 35024096 PMCID: PMC8718579 DOI: 10.1016/j.csbj.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Programmed cell death protein 1 (PD-1)/ programmed cell death protein ligand 1 (PD-L1) is the key immune checkpoint governing evasion of advanced cancer from immune surveillance. Immuno-oncology (IO) therapy targeting PD-1/PD-L1 with traditional antibodies is a promising approach to multiple cancer types but to which the response rate remains moderate in breast cancer, calling for the need of exploring alternative IO targeting approaches. A miRNA-gene network was integrated by a bioinformatics approach and corroborated with The Cancer Genome Atlas (TCGA) to screen miRNAs regulating immune checkpoint genes and associated with patient survival. Here we show the identification of a novel microRNA miR-4759 which repressed RNA expression of the PD-L1 gene. miR-4759 targeted the PD-L1 gene through two binding motifs in the 3′ untranslated region (3′-UTR) of PD-L1. Reconstitution of miR-4759 inhibited PD-L1 expression and sensitized breast cancer cells to killing by immune cells. Treatment with miR-4759 suppressed tumor growth of orthotopic xenografts and promoted tumor infiltration of CD8+ T lymphocytes in immunocompetent mice. In contrast, miR-4759 had no effect to tumor growth in immunodeficient mice. In patients with breast cancer, expression of miR-4759 was preferentially downregulated in tumors compared to normal tissues and was associated with poor overall survival. Together, our results demonstrated miR-4759 as a novel non-coding RNA which promotes anti-tumor immunity of breast cancer.
Collapse
Affiliation(s)
- You-Zhe Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shu-Hsuan Liu
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yuan-Liang Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Ching Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Pei-Le Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Han Chang
- Division of Molecular Pathology, Department of Pathology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan.,Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan.,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.,Cancer Biology and Drug Discovery Ph.D. Program, China Medical University, Taichung 40402, Taiwan.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Using bioinformatics approaches to identify survival-related oncomiRs as potential targets of miRNA-based treatments for lung adenocarcinoma. Comput Struct Biotechnol J 2022; 20:4626-4635. [PMID: 36090818 PMCID: PMC9449502 DOI: 10.1016/j.csbj.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is a major cause of cancer-associated deaths worldwide, and lung adenocarcinoma (LUAD) is the most common lung cancer subtype. Micro RNAs (miRNAs) regulate the pattern of gene expression in multiple cancer types and have been explored as potential drug development targets. To develop an oncomiR-based panel, we identified miRNA candidates that show differential expression patterns and are relevant to the worse 5-year overall survival outcomes in LUAD patient samples. We further evaluated various combinations of miRNA candidates for association with 5-year overall survival and identified a four-miRNA panel: miR-9-5p, miR-1246, miR-31-3p, and miR-3136-5p. The combination of these four miRNAs outperformed any single miRNA for predicting 5-year overall survival (hazard ratio [HR]: 3.47, log-rank p-value = 0.000271). Experiments were performed on lung cancer cell lines and animal models to validate the effects of these miRNAs. The results showed that singly transfected antagomiRs largely inhibited cell growth, migration, and invasion, and the combination of all four antagomiRs considerably reduced cell numbers, which is twice as effective as any single miRNA-targeted transfected. The in vivo studies revealed that antagomiR-mediated knockdown of all four miRNAs significantly reduced tumor growth and metastatic ability of lung cancer cells compared to the negative control group. The success of these in vivo and in vitro experiments suggested that these four identified oncomiRs may have therapeutic potential.
Collapse
|
12
|
Kaddour H, Kopcho S, Lyu Y, Shouman N, Paromov V, Pratap S, Dash C, Kim EY, Martinson J, McKay H, Epeldegui M, Margolick JB, Stapleton JT, Okeoma CM. HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cell Mol Life Sci 2021; 79:5. [PMID: 34936021 PMCID: PMC9134786 DOI: 10.1007/s00018-021-04068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Victor Paromov
- CRISALIS, School of Graduate Studies and Research, Proteomics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Siddharth Pratap
- CRISALIS, School of Graduate Studies and Research, Bioinformatics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather McKay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, USA
- David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Los Angeles, USA
- UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21207, USA
| | - Jack T Stapleton
- Departments of Internal Medicine, Microbiology and Immunology, University of Iowa and Iowa City Veterans Administration Healthcare, Iowa City, IA, 52242-1081, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
13
|
Kavakiotis I, Alexiou A, Tastsoglou S, Vlachos IS, Hatzigeorgiou AG. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Res 2021; 50:D1055-D1061. [PMID: 34469540 PMCID: PMC8728140 DOI: 10.1093/nar/gkab733] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRNAs) are short (∼23nt) single-stranded non-coding RNAs that act as potent post-transcriptional gene expression regulators. Information about miRNA expression and distribution across cell types and tissues is crucial to the understanding of their function and for their translational use as biomarkers or therapeutic targets. DIANA-miTED is the most comprehensive and systematic collection of miRNA expression values derived from the analysis of 15 183 raw human small RNA-Seq (sRNA-Seq) datasets from the Sequence Read Archive (SRA) and The Cancer Genome Atlas (TCGA). Metadata quality maximizes the utility of expression atlases, therefore we manually curated SRA and TCGA-derived information to deliver a comprehensive and standardized set, incorporating in total 199 tissues, 82 anatomical sublocations, 267 cell lines and 261 diseases. miTED offers rich instant visualizations of the expression and sample distributions of requested data across variables, as well as study-wide diagrams and graphs enabling efficient content exploration. Queries also generate links towards state-of-the-art miRNA functional resources, deeming miTED an ideal starting point for expression retrieval, exploration, comparison, and downstream analysis, without requiring bioinformatics support or expertise. DIANA-miTED is freely available at http://www.microrna.gr/mited.
Collapse
Affiliation(s)
- Ioannis Kavakiotis
- DIANA-Lab, Dept. of Computer Science and Biomedical Informatics, Univ. of Thessaly, 35131 Lamia, Greece
| | - Athanasios Alexiou
- DIANA-Lab, Dept. of Computer Science and Biomedical Informatics, Univ. of Thessaly, 35131 Lamia, Greece.,Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Dept. of Computer Science and Biomedical Informatics, Univ. of Thessaly, 35131 Lamia, Greece.,Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Ioannis S Vlachos
- Cancer Research Institute
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Dept. of Computer Science and Biomedical Informatics, Univ. of Thessaly, 35131 Lamia, Greece.,Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
14
|
Priya S, Kaur E, Kulshrestha S, Pandit A, Gross I, Kumar N, Agarwal H, Khan A, Shyam R, Bhagat P, Prabhu JS, Nagarajan P, Deo SVS, Bajaj A, Freund JN, Mukhopadhyay A, Sengupta S. CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. J Cell Sci 2021; 134:jcs258601. [PMID: 34369561 DOI: 10.1242/jcs.258601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
Meta-analysis of transcripts in colon adenocarcinoma patient tissues led to the identification of a DNA damage responsive miR signature called DNA damage sensitive miRs (DDSMs). DDSMs were experimentally validated in the cancerous colon tissues obtained from an independent cohort of colon cancer patients and in multiple cellular systems with high levels of endogenous DNA damage. All the tested DDSMs were transcriptionally upregulated by a common intestine-specific transcription factor, CDX2. Reciprocally, DDSMs were repressed via the recruitment of HDAC1/2-containing complexes onto the CDX2 promoter. These miRs downregulated multiple key targets in the DNA damage response (DDR) pathway, namely BRCA1, ATM, Chk1 (also known as CHEK1) and RNF8. CDX2 directly regulated the DDSMs, which led to increased tumor volume and metastasis in multiple preclinical models. In colon cancer patient tissues, the DDSMs negatively correlated with BRCA1 levels, were associated with decreased probability of survival and thereby could be used as a prognostic biomarker. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Swati Priya
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ekjot Kaur
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swati Kulshrestha
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Awadhesh Pandit
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Nitin Kumar
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Himanshi Agarwal
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aamir Khan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Radhey Shyam
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Bhagat
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, Bengaluru, Karnataka 560034, India
| | - Perumal Nagarajan
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC UMR_S1113, FMTS, 67200 Strasbourg, France
| | - Arnab Mukhopadhyay
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sagar Sengupta
- Signal Transduction Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
15
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M, Yang D. tRNA-derived fragments as New Hallmarks of Aging and Age-related Diseases. Aging Dis 2021; 12:1304-1322. [PMID: 34341710 PMCID: PMC8279533 DOI: 10.14336/ad.2021.0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/15/2021] [Indexed: 01/02/2023] Open
Abstract
tRNA-derived fragments (tRFs), which are non-coding RNAs produced via tRNA cleavage with lengths of 14 to 50 nucleotides, originate from precursor tRNAs or mature tRNAs and exist in a wide range of organisms. tRFs are produced not by random fracture of tRNAs but by specific mechanisms. Considerable evidence shows that tRFs are detectable in model organisms of different ages and are associated with age-related diseases in humans, such as cancer and neurodegenerative diseases. In this literature review, the origin and classification of tRFs and the regulatory mechanisms of tRFs in aging and age-related diseases are summarized. We also describe the available tRF databases and research techniques and lay a foundation for the exploration of tRFs as biomarkers for the diagnosis and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Ya Yuan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiamei Li
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhi He
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaolan Fan
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xueping Mao
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Mingyao Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Deying Yang
- 1Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.,2Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
16
|
Liu SH, Hsu KW, Lai YL, Lin YF, Chen FH, Peng PH, Lin LJ, Wu HH, Li CY, Wang SC, Wu MZ, Sher YP, Cheng WC. Systematic identification of clinically relevant miRNAs for potential miRNA-based therapy in lung adenocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:1-10. [PMID: 34141460 PMCID: PMC8181588 DOI: 10.1016/j.omtn.2021.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
Lung adenocarcinoma (LUAD), the most common histological type of non-small cell lung cancer, is one of the most malignant and deadly diseases. Current treatments for advanced LUAD patients are far from ideal and require further improvements. Here, we utilized a systematic integrative analysis of LUAD microRNA sequencing (miRNA-seq) and RNA-seq data from The Cancer Genome Atlas (TCGA) to identify clinically relevant tumor suppressor miRNAs. Three miRNA candidates (miR-195-5p, miR-101-3p, and miR-338-5p) were identified based on their differential expressions, survival significance levels, correlations with targets, and an additive effect on survival among them. We further evaluated mimics of the three miRNAs to determine their therapeutic potential in inhibiting cancer progression. The results showed not only that each of the miRNA mimics alone but also the three miRNA mimics in combination were efficient at inhibiting tumor growth and progression with equal final concentrations, meaning that the three miRNA mimics in combination were more effective than the single miRNA mimics. Moreover, the combined miRNA mimics provided significant therapeutic effects in terms of reduced tumor volume and metastasis nodules in lung tumor animal models. Hence, our findings show the potential of using the three miRNAs in combination to treat LUAD patients with poor survival outcomes.
Collapse
Affiliation(s)
- Shu-Hsuan Liu
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Kai-Wen Hsu
- Institute of New Drug Development, Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Yo-Liang Lai
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40447, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan
| | - Yu-Feng Lin
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.,Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Pei-Hwa Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Li-Jie Lin
- The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
| | - Heng-Hsiung Wu
- The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan.,Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Min-Zu Wu
- AbbVie Biotherapeutics Inc., Redwood City, CA 94063, USA
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wei-Chung Cheng
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan.,The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
| |
Collapse
|
17
|
Liao TT, Cheng WC, Yang CY, Chen YQ, Su SH, Yeh TY, Lan HY, Lee CC, Lin HH, Lin CC, Lu RH, Chiou AET, Jiang JK, Hwang WL. The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13081833. [PMID: 33921319 PMCID: PMC8069838 DOI: 10.3390/cancers13081833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Metastasis of tumor cells is the leading cause of death in cancer patients. Concurrent therapy with surgical removal of primary and metastatic lesions is the main approach for cancer therapy. Currently, therapeutic resistant properties of cancer stem cells (CSCs) are known to drive malignant cancer progression, including metastasis. Our study aimed to identify molecular tools dedicated to the detection and treatment of CSCs. We confirmed that microRNA-210-3p (miR-210) was upregulated in colorectal stem-like cancer cells, which targeted stathmin1 (STMN1), to decrease cell elasticity for increasing mobility. We envision that strategies for softening cellular elasticity will reduce the onset of CSC-orientated metastasis. Abstract Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.-T.L.); (H.-Y.L.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, China Medical University, Taichung 406, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung 406, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei 106, Taiwan;
- General Education Center, University of Taipei, Taipei 100, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Shu-Han Su
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; (S.-H.S.); (T.-Y.Y.)
| | - Tzu-Yu Yeh
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; (S.-H.S.); (T.-Y.Y.)
| | - Hsin-Yi Lan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.-T.L.); (H.-Y.L.)
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chih-Chan Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hung-Hsin Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Lu
- Department of Surgery, Zhongxing Branch, Taipei City Hospital, Taipei 106, Taiwan;
| | - Arthur Er-Terg Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (J.-K.J.); (W.-L.H.); Tel.: +886-2-2826-7000 (ext. 65832) (W.-L.H.)
| | - Wei-Lun Hwang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (J.-K.J.); (W.-L.H.); Tel.: +886-2-2826-7000 (ext. 65832) (W.-L.H.)
| |
Collapse
|
18
|
Gu D, Ahn SH, Eom S, Lee HS, Ham J, Lee DH, Cho YK, Koh Y, Ignatova E, Jang ES, Chi SW. AGO-accessible anticancer siRNAs designed with synergistic miRNA-like activity. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1172-1190. [PMID: 33664996 PMCID: PMC7900643 DOI: 10.1016/j.omtn.2021.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Small interfering RNAs (siRNAs) therapeutically induce RNA interference (RNAi) of disease-causing genes, but they also silence hundreds of seed-matched off-targets as behaving similar to microRNAs (miRNAs). miRNAs control the pathophysiology of tumors, wherein their accessible binding sites can be sequenced by Argonaute crosslinking immunoprecipitation (AGO CLIP). Herein, based on AGO CLIP, we develop potent anticancer siRNAs utilizing miRNA-like activity (mi/siRNAs). The mi/siRNAs contain seed sequences (positions 2-7) of tumor-suppressive miRNAs while maintaining perfect sequence complementarity to the AGO-accessible tumor target sites. Initially, host miRNA interactions with human papillomavirus 18 (HPV18) were identified in cervical cancer by AGO CLIP, revealing tumor-suppressive activity of miR-1/206 and miR-218. Based on the AGO-miRNA binding sites, mi/siRNAs were designed to target E6 and E7 (E6/E7) transcript with seed sequences of miR-1/206 (206/E7) and miR-218 (218/E7). Synergistic anticancer activity of 206/E7 and 218/E7 was functionally validated and confirmed via RNA sequencing and in vivo xenograft models (206/E7). Other mi/siRNA sequences were additionally designed for cervical, ovarian, and breast cancer, and available as an online tool (http://ago.korea.ac.kr/misiRNA); some of the mi/siRNAs were validated for their augmented anticancer activity (206/EphA2 and 206/Her2). mi/siRNAs could coordinate miRNA-like activity with robust siRNA function, demonstrating the potential of AGO CLIP analysis for RNAi therapeutics.
Collapse
Affiliation(s)
- Dowoon Gu
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Sangkyeong Eom
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Hye-Sook Lee
- Department of Life Sciences, Korea University, Seoul 02481, Korea.,EncodeGEN, Co., Ltd., Seoul 06329, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - Juyoung Ham
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - Dong Ha Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06355, Korea
| | - You Kyung Cho
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Yongjun Koh
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02481, Korea
| | | | - Eun-Sook Jang
- Department of Life Sciences, Korea University, Seoul 02481, Korea.,EncodeGEN, Co., Ltd., Seoul 06329, Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| |
Collapse
|
19
|
Ning L, Cui T, Zheng B, Wang N, Luo J, Yang B, Du M, Cheng J, Dou Y, Wang D. MNDR v3.0: mammal ncRNA-disease repository with increased coverage and annotation. Nucleic Acids Res 2021; 49:D160-D164. [PMID: 32833025 PMCID: PMC7779040 DOI: 10.1093/nar/gkaa707] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Many studies have indicated that non-coding RNA (ncRNA) dysfunction is closely related to numerous diseases. Recently, accumulated ncRNA-disease associations have made related databases insufficient to meet the demands of biomedical research. The constant updating of ncRNA-disease resources has become essential. Here, we have updated the mammal ncRNA-disease repository (MNDR, http://www.rna-society.org/mndr/) to version 3.0, containing more than one million entries, four-fold increment in data compared to the previous version. Experimental and predicted circRNA-disease associations have been integrated, increasing the number of categories of ncRNAs to five, and the number of mammalian species to 11. Moreover, ncRNA-disease related drug annotations and associations, as well as ncRNA subcellular localizations and interactions, were added. In addition, three ncRNA-disease (miRNA/lncRNA/circRNA) prediction tools were provided, and the website was also optimized, making it more practical and user-friendly. In summary, MNDR v3.0 will be a valuable resource for the investigation of disease mechanisms and clinical treatment strategies.
Collapse
Affiliation(s)
- Lin Ning
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Boyang Zheng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Nuo Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Beilei Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengze Du
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, B24 Yinquan South Road, Qingyuan 511518, Guangdong Province, People's Republic of China
| | - Jun Cheng
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital)
| | - Yiying Dou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Wang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
20
|
Identification and validation of a miRNA-based prognostic signature for cervical cancer through an integrated bioinformatics approach. Sci Rep 2020; 10:22270. [PMID: 33335254 PMCID: PMC7747620 DOI: 10.1038/s41598-020-79337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide. Increasing evidence has shown that miRNAs are related to the progression of cervical cancer. However, the mechanisms that affect the prognosis of cancer are still largely unknown. In the present study, we sought to identify miRNAs associated with poor prognosis of patient with cervical cancer, as well as the possible mechanisms regulated by them. The miRNA expression profiles and relevant clinical information of patients with cervical cancer were obtained from The Cancer Genome Atlas (TCGA). The selection of prognostic miRNAs was carried out through an integrated bioinformatics approach. The most effective miRNAs with synergistic and additive effects were selected for validation through in vitro experiments. Three miRNAs (miR-216b-5p, miR-585-5p, and miR-7641) were identified as exhibiting good performance in predicting poor prognosis through additive effects analysis. The functional enrichment analysis suggested that not only pathways traditionally involved in cancer but also immune system pathways might be important in regulating the outcome of the disease. Our findings demonstrated that a synergistic combination of three miRNAs may be associated, through their regulation of specific pathways, with very poor survival rates for patients with cervical cancer.
Collapse
|
21
|
Veena MS, Raychaudhuri S, Basak SK, Venkatesan N, Kumar P, Biswas R, Chakrabarti R, Lu J, Su T, Gallagher-Jones M, Morselli M, Fu H, Pellegrini M, Goldstein T, Aladjem MI, Rettig MB, Wilczynski SP, Shin DS, Srivatsan ES. Dysregulation of hsa-miR-34a and hsa-miR-449a leads to overexpression of PACS-1 and loss of DNA damage response (DDR) in cervical cancer. J Biol Chem 2020; 295:17169-17186. [PMID: 33028635 PMCID: PMC7863911 DOI: 10.1074/jbc.ra120.014048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3' terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.
Collapse
Affiliation(s)
- Mysore S Veena
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Santanu Raychaudhuri
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Saroj K Basak
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Natarajan Venkatesan
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Parameet Kumar
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rita Chakrabarti
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, UCLA, Los Angeles, California, USA
| | | | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Theodore Goldstein
- Institute of Computational Sciences, University of California San Francisco, San Francisco, California, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew B Rettig
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sharon P Wilczynski
- Department of Pathology, City of Hope Medical Center, Duarte, California, USA
| | - Daniel Sanghoon Shin
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eri S Srivatsan
- Department of Surgery, VAGLAHS West Los Angeles and David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
22
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
23
|
Ho KH, Chen PH, Shih CM, Lee YT, Cheng CH, Liu AJ, Lee CC, Chen KC. miR-4286 is Involved in Connections Between IGF-1 and TGF-β Signaling for the Mesenchymal Transition and Invasion by Glioblastomas. Cell Mol Neurobiol 2020; 42:791-806. [PMID: 33025417 DOI: 10.1007/s10571-020-00977-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β signal pathways are both recognized as important in regulating cancer prognosis, such as the epithelial-to-mesenchymal transition (EMT) and cell invasion. However, cross-talk between these two signal pathways in glioblastoma multiforme (GBM) is still unclear. In the present study, by analyzing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GSE) 4412, GBM patients with higher IGF-1 levels exhibited poorer survival. Genes positively correlated with IGF-1 were enriched in EMT and TGF-β signal pathways. IGF-1 treatment enhanced mesenchymal marker expressions and GBM cell invasion. A significant positive correlation was observed for IGF-1 with TGF-β1 (TGFB1) or TGF-β receptor 2 (TGFBR2), both of which participate in TGF-β signaling and are risk genes in the GBM process. IGF-1 stimulation promoted both TGFB1 and TGFBR2 expressions. LY2157299, a TGF-β signaling inhibitor, attenuated IGF-1-enhanced GBM cell invasion and mesenchymal transition. By analyzing IGF-1-regulated microRNA (miR) profiles, miR-4286 was found to be significantly downregulated in IGF-1-treated cells and could be targeted to both TGFB1 and TGFBR2. Overexpression of miR-4286 significantly attenuated expressions of the IGF-1-mediated mesenchymal markers, TGFB1 and TGFBR2. Using kinase inhibitors, only U0126 treatment showed an inhibitory effect on IGF-1-reduced miR-4286 and IGF-1-induced TGFB1/TGFBR2 expressions, suggesting that MEK/ERK signaling is involved in the IGF-1/miR-4286/TGF-β signaling axis. Finally, our results suggested that miR-4286 might act as a tumor suppressive microRNA in inhibiting IGF-1-enhanced GBM cell invasion. In conclusion, IGF-1 is connected to TGF-β signaling in regulating the mesenchymal transition and cell invasion of GBM through inhibition of miR-4286. Our findings provide new directions and mechanisms for exploring GBM progression.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen Chang Road, Shih Lin District, Taipei, 111, Taiwan.
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
24
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
26
|
Zhao Q, Zheng X, Guo H, Xue X, Zhang Y, Niu M, Cui J, Liu H, Luo H, Yang D, Shi Y, Huangfu H, Wen S, Wu Y, Gao W, Wang B. Serum Exosomal miR-941 as a promising Oncogenic Biomarker for Laryngeal Squamous Cell Carcinoma. J Cancer 2020; 11:5329-5344. [PMID: 32742479 PMCID: PMC7391210 DOI: 10.7150/jca.45394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
At present, no blood-based biomarkers have been used in clinical practice for laryngeal squamous cell carcinoma (LSCC). Increasing evidence suggests that circulating exosomal microRNAs (miRNAs) may serve as potential diagnostic biomarkers for various cancers. This study aims to identify and evaluate serum exosomal miRNAs for LSCC diagnosis. The ExoQuick solution (EQ), which provides a high-yield and is a highly efficient exosome isolation method, was selected to isolate serum exosomes in the current study. In LSCC samples, exosome concentrations were higher than in healthy control (HC) samples. RNA-seq analysis identified a total of 1608 miRNAs, with 34 upregulated and 41 downregulated in LSCC samples relative to HC samples. Furthermore, qRT-PCR showed that miR-941 is significantly upregulated in LSCC serum exosomes, with this same trend seen in LSCC tissues and cells. Moreover, when examining miR-941 in cell lines, miR-941 overexpression promoted proliferation and invasion, while miR-941 knockdown inhibited cell proliferation and invasion. ROC curve analysis showed that miR-941 has an area under the curve (AUC) of 0.797 (95% CI = 0.676-0.918) for distinguishing LSCC patients from HCs. In conclusion, serum exosomal miR-941 may serve as a promising oncogenic biomarker for diagnosing LSCC, and has the potential as a therapeutic target.
Collapse
Affiliation(s)
- Qinli Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hongjie Luo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Dongli Yang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yong Shi
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hui Huangfu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, General Hospital of Shenzhen University, Shenzhen 518061, Guangdong, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001 Shanxi, P. R. China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| |
Collapse
|
27
|
Liu SH, Shen PC, Chen CY, Hsu AN, Cho YC, Lai YL, Chen FH, Li CY, Wang SC, Chen M, Chung IF, Cheng WC. DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic Acids Res 2020; 48:D863-D870. [PMID: 31701128 PMCID: PMC7145679 DOI: 10.1093/nar/gkz964] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/09/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
An integrative multi-omics database is needed urgently, because focusing only on analysis of one-dimensional data falls far short of providing an understanding of cancer. Previously, we presented DriverDB, a cancer driver gene database that applies published bioinformatics algorithms to identify driver genes/mutations. The updated DriverDBv3 database (http://ngs.ym.edu.tw/driverdb) is designed to interpret cancer omics’ sophisticated information with concise data visualization. To offer diverse insights into molecular dysregulation/dysfunction events, we incorporated computational tools to define CNV and methylation drivers. Further, four new features, CNV, Methylation, Survival, and miRNA, allow users to explore the relations from two perspectives in the ‘Cancer’ and ‘Gene’ sections. The ‘Survival’ panel offers not only significant survival genes, but gene pairs synergistic effects determine. A fresh function, ‘Survival Analysis’ in ‘Customized-analysis,’ allows users to investigate the co-occurring events in user-defined gene(s) by mutation status or by expression in a specific patient group. Moreover, we redesigned the web interface and provided interactive figures to interpret cancer omics’ sophisticated information, and also constructed a Summary panel in the ‘Cancer’ and ‘Gene’ sections to visualize the features on multi-omics levels concisely. DriverDBv3 seeks to improve the study of integrative cancer omics data by identifying driver genes and contributes to cancer biology.
Collapse
Affiliation(s)
- Shu-Hsuan Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan
| | - Pei-Chun Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan
| | - Chen-Yang Chen
- Cytoaurora Biotechnologies, Inc. Hsinchu Science Park, Hsinchu 30261, Taiwan
| | - An-Ni Hsu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan
| | - Yi-Chun Cho
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan
| | - Yo-Liang Lai
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, Taichung 40403, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan.,Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming Chen
- Center for Medical Genetics, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - I-Fang Chung
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40403, Taiwan.,Research Center for Tumor Medical Science, China Medical University, Taichung 40403, Taiwan
| |
Collapse
|
28
|
Rahman RU, Liebhoff AM, Bansal V, Fiosins M, Rajput A, Sattar A, Magruder DS, Madan S, Sun T, Gautam A, Heins S, Liwinski T, Bethune J, Trenkwalder C, Fluck J, Mollenhauer B, Bonn S. SEAweb: the small RNA Expression Atlas web application. Nucleic Acids Res 2020; 48:D204-D219. [PMID: 31598718 PMCID: PMC6943056 DOI: 10.1093/nar/gkz869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
We present the Small RNA Expression Atlas (SEAweb), a web application that allows for the interactive querying, visualization and analysis of known and novel small RNAs across 10 organisms. It contains sRNA and pathogen expression information for over 4200 published samples with standardized search terms and ontologies. In addition, SEAweb allows for the interactive visualization and re-analysis of 879 differential expression and 514 classification comparisons. SEAweb's user model enables sRNA researchers to compare and re-analyze user-specific and published datasets, highlighting common and distinct sRNA expression patterns. We provide evidence for SEAweb's fidelity by (i) generating a set of 591 tissue specific miRNAs across 29 tissues, (ii) finding known and novel bacterial and viral infections across diseases and (iii) determining a Parkinson's disease-specific blood biomarker signature using novel data. We believe that SEAweb's simple semantic search interface, the flexible interactive reports and the user model with rich analysis capabilities will enable researchers to better understand the potential function and diagnostic value of sRNAs or pathogens across tissues, diseases and organisms.
Collapse
Affiliation(s)
- Raza-Ur Rahman
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anna-Maria Liebhoff
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vikas Bansal
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Maksims Fiosins
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
- Genevention GmbH, 37079 Göttingen, Germany
| | - Ashish Rajput
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Abdul Sattar
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Daniel S Magruder
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Genevention GmbH, 37079 Göttingen, Germany
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Abhivyakti Gautam
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sven Heins
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Timur Liwinski
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jörn Bethune
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juliane Fluck
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Institute of Geodesy and Geoinformation, University of Bonn, 53115 Bonn, Germany
- German National Library of Medicine (ZB MED) - Information Centre for Life Sciences, 53115 Bonn, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
- Institute of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Kuksa PP, Amlie-Wolf A, Katanić Ž, Valladares O, Wang LS, Leung YY. DASHR 2.0: integrated database of human small non-coding RNA genes and mature products. Bioinformatics 2019; 35:1033-1039. [PMID: 30668832 PMCID: PMC6419920 DOI: 10.1093/bioinformatics/bty709] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/31/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Abstract
Motivation Small non-coding RNAs (sncRNAs, <100 nts) are highly abundant RNAs that regulate diverse and often tissue-specific cellular processes by associating with transcription factor complexes or binding to mRNAs. While thousands of sncRNA genes exist in the human genome, no single resource provides searchable, unified annotation, expression and processing information for full sncRNA transcripts and mature RNA products derived from these larger RNAs. Results Our goal is to establish a complete catalog of annotation, expression, processing, conservation, tissue-specificity and other biological features for all human sncRNA genes and mature products derived from all major RNA classes. DASHR (Database of small human non-coding RNAs) v2.0 database is the first that integrates human sncRNA gene and mature products profiles obtained from multiple RNA-seq protocols. Altogether, 185 tissues/cell types and sncRNA annotations and >800 curated experiments from ENCODE and GEO/SRA across multiple RNA-seq protocols for both GRCh38/hg38 and GRCh37/hg19 assemblies are integrated in DASHR. Moreover, DASHR is the first to contain both known and novel, previously un-annotated sncRNA loci identified by unsupervised segmentation (13 times more loci with 1 678 800 total). Additionally, DASHR v2.0 adds >3 200 000 annotations for non-small RNA genes and other genomic features (long-noncoding RNAs, mRNAs, promoters, repeats). Furthermore, DASHR v2.0 introduces an enhanced user interface, interactive experiment-by-locus table view, sncRNA locus sorting and filtering by biological features. All annotation and expression information directly downloadable and accessible as UCSC genome browser tracks. Availability and implementation DASHR v2.0 is freely available at https://lisanwanglab.org/DASHRv2. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pavel P Kuksa
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine
| | - Alexandre Amlie-Wolf
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Živadin Katanić
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine
| |
Collapse
|
30
|
Cheng WC, Liao TT, Lin CC, Yuan LTE, Lan HY, Lin HH, Teng HW, Chang HC, Lin CH, Yang CY, Huang SC, Jiang JK, Yang SH, Yang MH, Hwang WL. RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int J Cancer 2019; 145:2209-2224. [PMID: 30980673 DOI: 10.1002/ijc.32338] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
The dynamic cell-cell communication is essential for tissue homeostasis in normal physiological circumstances and contributes to a diversified tumor microenvironment. Although exosomes are extracellular vesicles that actively participate in cell-cell interaction by shutting cellular components, impacts of tumor exosomes in the context of cancer stemness remain elusive. Here, we expand colorectal cancer stem cells (CRCSCs) as cancer spheroids and demonstrate that the β-catenin/Tcf-4-activated RAB27B expression is required for the secretion of CRCSC exosomes. In an exosomal RNA sequencing analysis, a switch of exosomal RNA species from retrotransposons to microRNAs (miRNAs) is identified upon expanding CRCSCs. miRNA-146a-5p (miR-146a) is the major miRNA in CRCSC exosomes and exosomal miR-146a promotes stem-like properties and tumorigenicity by targeting Numb in recipient CRC cells. Among 53 CRC patients, those with abundant exosomal miR-146a expression in serum exhibits higher miR-146aHigh /NumbLow CRCSC traits, an increased number of tumor-filtrating CD66(+) neutrophils and a decreased number of tumor-infiltrating CD8(+) T cells. Our study elucidates a unique mechanism of tumor exosome-mediated stemness expansion.
Collapse
Affiliation(s)
- Wei-Chung Cheng
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Hsin-Yi Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Hsin Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chuan Chang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shih-Ching Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Lun Hwang
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
31
|
Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G. Trends in the development of miRNA bioinformatics tools. Brief Bioinform 2019; 20:1836-1852. [PMID: 29982332 PMCID: PMC7414524 DOI: 10.1093/bib/bby054] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via recognition of cognate sequences and interference of transcriptional, translational or epigenetic processes. Bioinformatics tools developed for miRNA study include those for miRNA prediction and discovery, structure, analysis and target prediction. We manually curated 95 review papers and ∼1000 miRNA bioinformatics tools published since 2003. We classified and ranked them based on citation number or PageRank score, and then performed network analysis and text mining (TM) to study the miRNA tools development trends. Five key trends were observed: (1) miRNA identification and target prediction have been hot spots in the past decade; (2) manual curation and TM are the main methods for collecting miRNA knowledge from literature; (3) most early tools are well maintained and widely used; (4) classic machine learning methods retain their utility; however, novel ones have begun to emerge; (5) disease-associated miRNA tools are emerging. Our analysis yields significant insight into the past development and future directions of miRNA tools.
Collapse
Affiliation(s)
- Liang Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Liisa Heikkinen
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Changliang Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Yang Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| | - Huiyan Sun
- Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, Taipa, Macau S.A.R, China
| |
Collapse
|
32
|
Chen CL, Lin CH, Li AL, Huang CC, Shen BY, Chiang YR, Fang PL, Chang HC, Li KL, Yang WC, Horng JT, Ma N. Plasma miRNA profile is a biomarker associated with urothelial carcinoma in chronic hemodialysis patients. Am J Physiol Renal Physiol 2019; 316:F1094-F1102. [PMID: 30892932 DOI: 10.1152/ajprenal.00014.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The incidence of urothelial carcinoma (UC) is higher in patients undergoing chronic dialysis than in the general population. This study investigated plasma miRNA profiling as the ancillary diagnosis biomarker associated with UC in patients undergoing chronic hemodialysis. We successfully screened out and detected miRNA expression from plasma in eight patients undergoing dialysis through quantitative real-time PCR array analysis and identified eight candidate miRNAs. The candidate miRNAs were then validated using single quantitative RT-PCR assays from 52 plasma samples. The miRNA classifier for ancillary UC detection was developed by multiple logistic regression analyses. Moreover, we validated the classifier by testing another nine samples. Expression levels of miR-150-5p, miR-150-5p/miR-155-5p, miR-378a-3p/miR-150-5p, miR-636/miR-150-5p, miR-150-5p/miR-210-3p, and miR-19b-1-5p/miR-378a-3p were shown to be significantly different between UC and non-UC samples (P = 0.035, 0.0048, 0.016, 0.024, 0.038, and 0.048). Kaplan-Meier curve analysis also showed that low miR-19b-1-5p expression was associated with a worse prognosis (P = 0.0382). We also developed a miRNA classifier based on five miRNA expression levels to predict UC and found that the area under curve was 0.882. The classifier had a sensitivity of 80% (95% confidence interval: 0.5191% to 0.9567%) and a specificity of 83.7% (95% confidence interval: 0.6799% to 0.9381%). This classifier was tested by nine samples with 100% accuracy. The miRNA classifier offers higher sensitivity and specificity than the existing makers. Thus, this approach will improve the prospective diagnosis of UC in patients undergoing chronic hemodialysis.
Collapse
Affiliation(s)
- Chien-Lung Chen
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University , Taoyuan , Taiwan.,Division of Nephrology, Department of Medicine, Taiwan Landseed Hospital , Taoyuan , Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University , Taoyuan , Taiwan
| | - An-Lun Li
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University , Taoyuan , Taiwan
| | - Chiu-Ching Huang
- Division of Nephrology, Department of Internal Medicine, China Medical University , Taichung , Taiwan
| | - Biing-Yir Shen
- Division of Urology, Department of Surgery, Taiwan Landseed Hospital , Taoyuan , Taiwan
| | - Yun-Ru Chiang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University , Taoyuan , Taiwan
| | - Pei-Luen Fang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University , Taoyuan , Taiwan
| | - Huan-Cheng Chang
- Division of Nephrology, Department of Medicine, Taiwan Landseed Hospital , Taoyuan , Taiwan.,Department and Graduate Institute of Health Care Management, Chang Gung, University , Taoyuan , Taiwan
| | - Kay-Lun Li
- Division of Metabolism and Endocrinology, Department of Medicine, Landseed Hospital , Taoyuan , Taiwan
| | - Wu-Chang Yang
- Division of Nephrology, Department of Medicine, Taiwan Landseed Hospital , Taoyuan , Taiwan.,Kidney Disease Integrated Center, Taiwan Landseed Hospital , Taoyuan , Taiwan
| | - Jorng-Tzong Horng
- Department of computer science and information engineering, National Central University , Taoyuan , Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University , Taoyuan , Taiwan.,Institute of Cognitive Neuroscience, National Central University , Taoyuan , Taiwan
| |
Collapse
|
33
|
Kao SH, Cheng WC, Wang YT, Wu HT, Yeh HY, Chen YJ, Tsai MH, Wu KJ. Regulation of miRNA Biogenesis and Histone Modification by K63-Polyubiquitinated DDX17 Controls Cancer Stem-like Features. Cancer Res 2019; 79:2549-2563. [PMID: 30877109 DOI: 10.1158/0008-5472.can-18-2376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/17/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Markers of cancer stemness predispose patients to tumor aggressiveness, drug and immunotherapy resistance, relapse, and metastasis. DDX17 is a cofactor of the Drosha-DGCR8 complex in miRNA biogenesis and transcriptional coactivator and has been associated with cancer stem-like properties. However, the precise mechanism by which DDX17 controls cancer stem-like features remains elusive. Here, we show that the E3 ligase HectH9 mediated K63-polyubiquitination of DDX17 under hypoxia to control stem-like properties and tumor-initiating capabilities. Polyubiquitinated DDX17 disassociated from the Drosha-DGCR8 complex, leading to decreased biogenesis of anti-stemness miRNAs. Increased association of polyubiquitinated DDX17 with p300-YAP resulted in histone 3 lysine 56 (H3K56) acetylation proximal to stemness-related genes and their subsequent transcriptional activation. High expression of HectH9 and six stemness-related genes (BMI1, SOX2, OCT4, NANOG, NOTCH1, and NOTCH2) predicted poor survival in patients with head and neck squamous cell carcinoma and lung adenocarcinoma. Our findings demonstrate that concerted regulation of miRNA biogenesis and histone modifications through posttranslational modification of DDX17 underlies many cancer stem-like features. Inhibition of DDX17 ubiquitination may serve as a new therapeutic venue for cancer treatment. SIGNIFICANCE: Hypoxia-induced polyubiquitination of DDX17 controls its dissociation from the pri-miRNA-Drosha-DCGR8 complex to reduce anti-stemness miRNA biogenesis and association with YAP and p300 to enhance transcription of stemness-related genes.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, Taiwan
| | - Han-Yu Yeh
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan. .,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
34
|
La Ferlita A, Alaimo S, Veneziano D, Nigita G, Balatti V, Croce CM, Ferro A, Pulvirenti A. Identification of tRNA-derived ncRNAs in TCGA and NCI-60 panel cell lines and development of the public database tRFexplorer. Database (Oxford) 2019; 2019:baz115. [PMID: 31735953 PMCID: PMC6859256 DOI: 10.1093/database/baz115] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/01/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
Next-generation sequencing is increasing our understanding and knowledge of non-coding RNAs (ncRNAs), elucidating their roles in molecular mechanisms and processes such as cell growth and development. Within such a class, tRNA-derived ncRNAs have been recently associated with gene expression regulation in cancer progression. In this paper, we characterize, for the first time, tRNA-derived ncRNAs in NCI-60. Furthermore, we assess their expression profile in The Cancer Genome Atlas (TCGA). Our comprehensive analysis allowed us to report 322 distinct tRNA-derived ncRNAs in NCI-60, categorized in tRNA-derived fragments (11 tRF-5s, 55 tRF-3s), tRNA-derived small RNAs (107 tsRNAs) and tRNA 5' leader RNAs (149 sequences identified). In TCGA, we were able to identify 232 distinct tRNA-derived ncRNAs categorized in 53 tRF-5s, 58 tRF-3s, 63 tsRNAs and 58 5' leader RNAs. This latter group represents an additional evidence of tRNA-derived ncRNAs originating from the 5' leader region of precursor tRNA. We developed a public database, tRFexplorer, which provides users with the expression profile of each tRNA-derived ncRNAs in every cell line in NCI-60 as well as for each TCGA tumor type. Moreover, the system allows us to perform differential expression analyses of such fragments in TCGA, as well as correlation analyses of tRNA-derived ncRNAs expression in TCGA and NCI-60 with gene and miRNA expression in TCGA samples, in association with all omics and compound activities data available on CellMiner. Hence, the tool provides an important opportunity to investigate their potential biological roles in absence of any direct experimental evidence. Database URL: https://trfexplorer.cloud/.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Physics and Astronomy, University of Catania, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
35
|
Li AL, Chung TS, Chan YN, Chen CL, Lin SC, Chiang YR, Lin CH, Chen CC, Ma N. microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med 2018; 16:341. [PMID: 30518388 PMCID: PMC6282371 DOI: 10.1186/s12967-018-1711-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background In view of the limited knowledge of plasma biomarkers relating to cancer resistance to radiotherapy, we have set up screening, training and testing stages to investigate the microRNAs (miRNAs) expression profile in plasma to predict between the poor responsive and responsive groups after 6 months of radiotherapy. Methods Plasma was collected prior to and after radiotherapy, and the microRNA profiles were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) arrays. Candidate miRNAs were validated by single qRT-PCR assays from the training and testing set. The classifier for ancillary prognosis was developed by multiple logistic regression analysis to correlate the ratios of miRNAs expression levels with clinical data. Results We revealed that eight miRNAs expressions had significant changes after radiotherapy and the expression levels of miR-374a-5p, miR-342-5p and miR-519d-3p showed significant differences between the responsive and poor responsive groups in the pre-radiotherapy samples. The Kaplan–Meier curve analysis also showed that low miR-342-5p and miR-519d-3p expressions were associated with worse prognosis. Our results revealed two miRNA classifiers from the pre- and post-radiotherapy samples to predict radiotherapy response with area under curve values of 0.8923 and 0.9405. Conclusions The expression levels of miR-374a-5p, miR-342-5p and miR-519d-3p in plasma are associated with radiotherapy responses. Two miRNA classifiers could be developed as a potential non-invasive ancillary tool for predicting patient response to radiotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-018-1711-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- An-Lun Li
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Tao-Sang Chung
- Department of Radiation Oncology, Landseed Hospital, Taoyuan, Taiwan
| | - Yao-Ning Chan
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chien-Lung Chen
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.,Department of Nephrology, Landseed Hospital, Taoyuan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ru Chiang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Zhao C, Tolkach Y, Schmidt D, Toma M, Muders MH, Kristiansen G, Müller SC, Ellinger J. Mitochondrial PIWI-interacting RNAs are novel biomarkers for clear cell renal cell carcinoma. World J Urol 2018; 37:1639-1647. [DOI: 10.1007/s00345-018-2575-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
|
37
|
miRNA arm switching identifies novel tumour biomarkers. EBioMedicine 2018; 38:37-46. [PMID: 30425004 PMCID: PMC6306400 DOI: 10.1016/j.ebiom.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs have been reported to play critical roles in cancer and to have potential as diagnostic biomarkers. During miRNA biogenesis, one strand of the miRNA hairpin precursor is preferentially selected as a functionally mature miRNA, while the other strand is typically degraded. Arm switching occurs when the strand preference is changed. This preference can be different and can change dynamically depending upon the species, tissue types, or development stages. Due to recent advances in next-generation sequencing methods, arm switching has been observed in a variety of cancers. Methods A tumour miRNA-Seq dataset was collected from The Cancer Genome Atlas (TCGA). The support vector machine (SVM) method combined with 5-fold cross validation was applied to select the best combination of arm-switched miRNA tumour markers. Survival analysis was also applied to identify patient survival associated miRNA markers. Findings We observed 51 arm-switched miRNAs and of these, 7 were associated with patient survival. Twenty-three 1-combination arm switching miRNAs with excellent diagnostic value were identified. Interestingly, ovarian cancer showed a significant difference in arm switching pattern compared with 32 other cancers. Interpretation These results suggest that arm switching miRNAs could be used as potential biomarkers for various cancers. Fund This work was partially supported by the National Natural Science Foundation of China (no. 61472158, 61572227), and University of Macau Faculty of Health Sciences (MYRG2016-00101-FHS).
Collapse
|
38
|
Barberán-Soler S, Vo JM, Hogans RE, Dallas A, Johnston BH, Kazakov SA. Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol 2018; 19:105. [PMID: 30173660 PMCID: PMC6120088 DOI: 10.1186/s13059-018-1488-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to accurately quantify all the microRNAs (miRNAs) in a sample is important for understanding miRNA biology and for development of new biomarkers and therapeutic targets. We develop a new method for preparing miRNA sequencing libraries, RealSeq®-AC, that involves ligating the miRNAs with a single adapter and circularizing the ligation products. When compared to other methods, RealSeq®-AC provides greatly reduced miRNA sequencing bias and allows the identification of the largest variety of miRNAs in biological samples. This reduced bias also allows robust quantification of miRNAs present in samples across a wide range of RNA input levels.
Collapse
Affiliation(s)
| | - Jenny M. Vo
- SomaGenics, Inc., Santa Cruz, California, USA
| | | | - Anne Dallas
- SomaGenics, Inc., Santa Cruz, California, USA
| | | | | |
Collapse
|
39
|
Lacunza E, Montanaro MA, Salvati A, Memoli D, Rizzo F, Henning MF, Quiroga IY, Guillou H, Abba MC, Gonzalez-Baro MDR, Weisz A, Pellon-Maison M. Small non-coding RNA landscape is modified by GPAT2 silencing in MDA-MB-231 cells. Oncotarget 2018; 9:28141-28154. [PMID: 29963267 PMCID: PMC6021339 DOI: 10.18632/oncotarget.25582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/28/2018] [Indexed: 01/13/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase-2 is a member of "cancer-testis gene" family. Initially linked to lipid metabolism, this gene has been recently found involved also in PIWI-interacting RNAs biogenesis in germline stem cells. To investigate its role in piRNA metabolism in cancer, the gene was silenced in MDA-MB-231 breast cancer cells and small RNA sequencing was applied. PIWI-interacting RNAs and tRNA-derived fragments expression profiles showed changes following GPAT2 silencing. Interestingly, a marked shift in length distribution for both small RNAs was detected in GPAT2-silenced cells. Most downregulated PIWI-interacting RNAs are single copy in the genome, intragenic, hosted in snoRNAs and previously found to be upregulated in cancer cells. Putative targets of these PIWI-interacting RNAs are linked to lipid metabolism. Downregulated tRNA derived fragments derived from, so-called 'differentiation tRNAs', whereas upregulated ones derived from proliferation-linked tRNAs. miRNA amounts decrease after Glycerol-3-phosphate acyltransferase-2 silencing and functional enrichment analysis of deregulated miRNA putative targets point to mitochondrial biogenesis, IGF1R signaling and oxidative metabolism of lipids and lipoproteins. In addition, miRNAs known to be overexpressed in breast cancer tumors with poor prognosis where found downregulated in GPAT2-silenced cells. In conclusion, GPAT2 silencing quantitatively and qualitatively affects the population of PIWI-interacting RNAs, tRNA derived fragments and miRNAs which, in combination, result in a more differentiated cancer cell phenotype.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauro Aldo Montanaro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Genomix4Life, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Florencia Henning
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Ivana Yoseli Quiroga
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Martín Carlos Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Del Rosario Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Genomix4Life, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Magalí Pellon-Maison
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
40
|
Godfrey JD, Morton JP, Wilczynska A, Sansom OJ, Bushell MD. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death Dis 2018; 9:644. [PMID: 29844410 PMCID: PMC5973943 DOI: 10.1038/s41419-018-0628-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53R172H, primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53R175H. Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53R172H. Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53R172H-expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.
Collapse
Affiliation(s)
- Jack D Godfrey
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road Glasgow, Glasgow, G61 1QH, UK
| | - Ania Wilczynska
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road Glasgow, Glasgow, G61 1QH, UK
| | - Martin D Bushell
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester, LE1 7HB, UK.
| |
Collapse
|
41
|
Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep 2018; 8:7040. [PMID: 29728663 PMCID: PMC5935709 DOI: 10.1038/s41598-018-25498-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Carcinogenic effect of tobacco in oral cancer is through chewing and/or smoking. Significant differences exist in development of oral cancer between tobacco users and non-users. However, molecular alterations induced by different forms of tobacco are yet to be fully elucidated. We developed cellular models of chronic exposure to chewing tobacco and cigarette smoke using immortalized oral keratinocytes. Chronic exposure to tobacco resulted in increased cell scattering and invasiveness in immortalized oral keratinocytes. miRNA sequencing using Illumina HiSeq 2500 resulted in the identification of 10 significantly dysregulated miRNAs (4 fold; p ≤ 0.05) in chewing tobacco treated cells and 6 in cigarette smoke exposed cells. We integrated this data with global proteomic data and identified 36 protein targets that showed inverse expression pattern in chewing tobacco treated cells and 16 protein targets that showed inverse expression in smoke exposed cells. In addition, we identified 6 novel miRNAs in chewing tobacco treated cells and 18 novel miRNAs in smoke exposed cells. Integrative analysis of dysregulated miRNAs and their targets indicates that signaling mechanisms leading to oncogenic transformation are distinct between both forms of tobacco. Our study demonstrates alterations in miRNA expression in oral cells in response to two frequently used forms of tobacco.
Collapse
|
42
|
Chiu KL, Lin YS, Kuo TT, Lo CC, Huang YK, Chang HF, Chuang EY, Lin CC, Cheng WC, Liu YN, Lai LC, Sher YP. ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling activation in lung cancer metastasis. Oncotarget 2018; 8:47365-47378. [PMID: 28537886 PMCID: PMC5564571 DOI: 10.18632/oncotarget.17648] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), which are endogenous short noncoding RNAs, can regulate genes involved in important biological and pathological functions. Therefore, dysregulation of miRNAs plays a critical role in cancer progression. However, whether the aberrant expression of miRNAs is regulated by oncogenes remains unclear. We previously demonstrated that a disintegrin and metalloprotease domain 9 (ADAM9) promotes lung metastasis by enhancing the expression of a pro-migratory protein, CUB domain containing protein 1 (CDCP1). In this study, we found that this process occurred via miR-1 down-regulation. miR-1 expression was down-regulated in lung tumors, but increased in ADAM9-knockdown lung cancer cells, and was negatively correlated with CDCP1 expression as well as the migration ability of lung cancer cells. Luciferase-based reporter assays showed that miR-1 directly bound to the 3′-untranslated region of CDCP1 and inhibited its translation. Treatment with a miR-1 inhibitor restored CDCP1 protein levels and enhanced tumor cell mobility. Overexpression of miR-1 decreased tumor metastases and increased the survival rate in mice. ADAM9 knockdown reduced EGFR signaling and increased miR-1 expression. These results revealed that ADAM9 down-regulates miR-1 via activating EGFR signaling pathways, which in turn enhances CDCP1 expression to promote lung cancer progression.
Collapse
Affiliation(s)
- Kuo-Liang Chiu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Kai Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsien-Fang Chang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Chan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of BioMedical Sciences, China Medical University, Taichung 404, Taiwan.,Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chuan Lai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan.,Graduate Institute of Physiology, National Taiwan University, Taipei 106, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Graduate Institute of BioMedical Sciences, China Medical University, Taichung 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
43
|
Huang L, Cai JL, Huang PZ, Kang L, Huang MJ, Wang L, Wang JP. miR19b-3p promotes the growth and metastasis of colorectal cancer via directly targeting ITGB8. Am J Cancer Res 2017; 7:1996-2008. [PMID: 29119049 PMCID: PMC5665847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023] Open
Abstract
MicroRNAs (miRNAs) are widely up-regulated or down-regulated in a variety of tumors, including lung cancer, liver cancer, and colorectal cancer (CRC). Furthermore, miRNAs can function as tumor suppressors or proto-oncogenes by controlling the growth and metastasis of cancer cells. In the present study, we found a significant increase in miR19b-3p levels in CRC compared to tumor tissue and revealed the role of miR19b-3p in CRC growth and metastasis. The exogenous overexpression of miR19b-3p induced the proliferation, migration, and invasion of CRC cells in vitro. In addition, the nude mouse xenograft model showed that miR19b-3p overexpression promoted CRC growth and lung metastasis in vivo, whereas silencing miR19b-3p showed opposite results. Mechanistic studies have shown that the integrin beta-8 (ITGB8) transcript is one of the direct targets of miR19b-3p, and the expression of ITGB8 in CRC specimens was positively correlated with miR19b-3p. Finally, ectopic expression of ITGB8 rescued cell proliferation and invasion, which was inhibited by down-regulation of miR19b-3p. In addition, knockdown of ITGB8 neutralized the effects of miR19b-3p overexpression on cell growth and metastasis in CRC cells. Together, these results suggest that the miR19b-3p/ITGB8 axis plays an important role in the growth and metastasis of CRC.
Collapse
Affiliation(s)
- Liang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Jin Lin Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Pin Zhu Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Liang Kang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Mei Jin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Lei Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Jian Ping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|