1
|
Min X, Lin F, Zhao X, Yu J, Ge C, Zhang S, Li X, Zhao F, Chen T, Tian H, Yan M, Li J, Li H. TENT5A mediates the cancer-inhibiting effects of EGR1 by suppressing the protein stability of RPL35 in hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:2247-2264. [PMID: 39570560 DOI: 10.1007/s13402-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE Terminal nucleotidyltransferase 5A (TENT5A), recently predicted as a non-canonical poly(A) polymerase, is critically involved in several human disorders including retinitis pigmentosa, cancer and obesity. However, the exact biological role of TENT5A in hepatocellular carcinoma (HCC) has not been elucidated. METHODS The transcription level of TENT5A and clinical correlation were analyzed using the LIRI-JP cohort, the TCGA-LIHC cohort, and clinical tissue samples of HCC patients in our laboratory. Proliferation, migration, and invasion were detected with stably TENT5A overexpressing and knockdown HCC cells in vitro and in vivo. Chromatin immunoprecipitation and dual-luciferase reporter assay were performed to verify the binding of the target protein to DNA. Co-immunoprecipitation and GST pull-down assay combined with mass spectrometry (MS) were used to identify protein interactions. RESULTS Our study presented here shows that TENT5A is downregulated in HCC tissues, suggesting a shorter overall survival for patients. Gain- and loss-of-function experiments reveal that TENT5A suppresses the proliferation and metastasis, and the residue Gly122 is of great importance to the role of TENT5A in HCC. More importantly, EGR1 (Early growth response 1) directly binds to the TENT5A promoter and promotes TENT5A expression. By interacting with RPL35, TENT5A is involved in ribosome biogenesis and exerts a negative regulatory effect on the mTOR pathway. CONCLUSIONS Our findings illustrate the role of the oncosuppressive function of TENT5A in HCC and suggest that the EGR1/TENT5A/RPL35 regulatory axis may be a promising target for therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xuejie Min
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Fen Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Xinge Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Junming Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Saihua Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Xianxian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Taoyang Chen
- Department of Pathology, Qi Dong Liver Cancer Institute, Qidong, 226220, China
| | - Hua Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Jinjun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| | - Hong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Zhang YT, Shen G, Zhuo LC, Yang X, Wang SY, Ruan TC, Jiang C, Wang X, Wang Y, Yang YH, Shen Y. Novel variations in TENT5D lead to teratozoospermia in infertile patients. Andrology 2024; 12:1336-1346. [PMID: 38228861 DOI: 10.1111/andr.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Teratozoospermia is the main pathogenic factor of male infertility. However, the genetic etiology of teratozoospermia is largely unknown. This study aims to clarify the relationship between novel variations in TENT5D and teratozoospermia in infertile patients. MATERIALS AND METHODS Two infertile patients were enrolled. Routine semen analysis of patients and normal controls was conducted with the WHO guidelines. Whole-exome sequencing (WES) was conducted to identify pathogenic variants in the two patients. Morphology and ultrastructure analysis of spermatozoa in the two patients was determined by Papanicolaou staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The functional effect of the identified variants was analyzed by immunofluorescence staining and western blotting. The expression of TENT5D in different germ cells was detected by immunofluorescence staining. RESULTS Two new hemizygous variations, c.101C > T (p.P34L) and c.125A > T (p.D42V), in TENT5D were detected in two patients with male infertility. Morphology analysis showed abnormalities in spermatozoa morphology in the two patients, including multiple heads, headless, multiple tails, coiled, and/or bent flagella. Ultrastructure analysis showed that most of the spermatozoa exhibited missing or irregularly arranged '9+2' structures. Further functional experiments confirmed the abrogated TENT5D protein expression in patients. In addition, both p.P34L and p.D42V substitutions resulted in a conformational change of the TENT5D protein. We precisely analyzed the subcellular localization of TENT5D in germ cells in humans and mice. And we found that TENT5D was predominantly detected in the head and flagellum of elongating spermatids and epididymal spermatozoa. CONCLUSIONS Our results showed further evidence of a relationship between TENT5D mutation and human male infertility, providing new genetic insight for use in the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Ying-Teng Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang-Chai Zhuo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Su-Yan Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tie-Chao Ruan
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Luu S, Fu N, Savage P, Pacholczyk K, Zaslavsky T, Conner J, Swallow CJ. The emerging role of FAM46C as a biomarker and therapeutic target in gastric adenocarcinoma. J Gastrointest Oncol 2024; 15:1870-1879. [PMID: 39279976 PMCID: PMC11399874 DOI: 10.21037/jgo-24-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/24/2024] [Indexed: 09/18/2024] Open
Abstract
On a global scale, gastric adenocarcinoma (GCa) accounts for a large burden of death from cancer. Despite advances in systemic therapy and surgical technique, the fatality rate for GCa remains unacceptably high in Europe and North America, where diagnosis is typically made at an advanced stage. Biomarkers that can accurately predict response to new therapies and provide novel therapeutic strategies are urgently sought. FAM46C, a putative noncanonical nucleotidyltransferase, has garnered interest for its tumor suppressor function in multiple myeloma. A frequent and profound depletion of FAM46C has been described in GCa patients from China, Japan and now Canada. Furthermore, the degree of FAM46C depletion meaningfully portends cancer recurrence following resection, and death from GCa. In this review, we provide an updated summary of the literature regarding FAM46C as a biomarker in GCa and explore the potential mechanism(s) through which FAM46C depletion promotes GCa progression, including dis-inhibition of oncogenic Plk4 kinase activity. We highlight the potential for restoration of FAM46C levels as a therapeutic strategy. Norcantharidin, a synthetic analogue of the traditional Chinese medicine cantharidin derived from the blister beetle, is the only bio-available compound presently known to upregulate FAM46C expression and is under investigation in phase one trials in cancer patients.
Collapse
Affiliation(s)
- Shelly Luu
- Department of Surgery, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Ning Fu
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Paul Savage
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Karina Pacholczyk
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Taylor Zaslavsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - James Conner
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Carol J Swallow
- Department of Surgery, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Division of General Surgery, Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| |
Collapse
|
5
|
Brouze M, Czarnocka-Cieciura A, Gewartowska O, Kusio-Kobiałka M, Jachacy K, Szpila M, Tarkowski B, Gruchota J, Krawczyk P, Mroczek S, Borsuk E, Dziembowski A. TENT5-mediated polyadenylation of mRNAs encoding secreted proteins is essential for gametogenesis in mice. Nat Commun 2024; 15:5331. [PMID: 38909026 PMCID: PMC11193744 DOI: 10.1038/s41467-024-49479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.
Collapse
Affiliation(s)
- Michał Brouze
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | | | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Monika Kusio-Kobiałka
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Kamil Jachacy
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Marcin Szpila
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Bartosz Tarkowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Ewa Borsuk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland.
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland.
| |
Collapse
|
6
|
Kaspiris A, Vasiliadis ES, Tsalimas G, Melissaridou D, Lianou I, Panagopoulos F, Katzouraki G, Vavourakis M, Kolovos I, Savvidou OD, Papadimitriou E, Pneumaticos SG. Unraveling the Link of Altered TGFβ Signaling with Scoliotic Vertebral Malformations in Osteogenesis Imperfecta: A Comprehensive Review. J Clin Med 2024; 13:3484. [PMID: 38930011 PMCID: PMC11204596 DOI: 10.3390/jcm13123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Osteogenesis Imperfecta (OI) is a genetic disorder caused by mutations in genes responsible for collagen synthesis or polypeptides involved in the formation of collagen fibers. Its predominant skeletal complication is scoliosis, impacting 25 to 80% of OI patients. Vertebral deformities of the scoliotic curves in OI include a variety of malformations such as codfish, wedged-shaped vertebrae or platyspondyly, craniocervical junction abnormalities, and lumbosacral spondylolysis and spondylolisthesis. Although the precise pathophysiology of these spinal deformities remains unclear, anomalies in bone metabolism have been implicated in the progression of scoliotic curves. Bone Mineral Density (BMD) measurements have demonstrated a significant reduction in the Z-score, indicating osteoporosis and a correlation with the advancement of scoliosis. Factors such as increased mechanical strains, joint hypermobility, lower leg length discrepancy, pelvic obliquity, spinal ligament hypermobility, or vertebrae microfractures may also contribute to the severity of scoliosis. Histological vertebral analysis has confirmed that changes in trabecular microarchitecture, associated with inadequate bone turnover, indicate generalized bone metabolic defects in OI. At the molecular level, the upregulation of Transforming Growth factor-β (TGFβ) signaling in OI can lead to disturbed bone turnover and changes in muscle mass and strength. Understanding the relationship between spinal clinical features and molecular pathways could unveil TGFβ -related molecular targets, paving the way for novel therapeutic approaches in OI.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
- Laboratory of Molecular Pharmacology, Group for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Elias S. Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Georgios Tsalimas
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Dimitra Melissaridou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Ioanna Lianou
- Department of Orthopaedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Fotios Panagopoulos
- Department of Orthopaedic Surgery, “Rion” University Hospital and Medical School, School of Health Sciences, University of Patras, 26504 Patras, Greece; (I.L.); (F.P.)
| | - Galateia Katzouraki
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Michail Vavourakis
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Ioannis Kolovos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| | - Olga D. Savvidou
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Rimini 1, 12462 Athens, Greece; (D.M.); (O.D.S.)
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Group for Orthopaedic Research, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Spiros G. Pneumaticos
- Third Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, “KAT” General Hospital, Nikis 2, 14561 Athens, Greece; (E.S.V.); (G.T.); (G.K.); (M.V.); (I.K.); (S.G.P.)
| |
Collapse
|
7
|
Yang K, Zhu T, Yin J, Zhang Q, Li J, Fan H, Han G, Xu W, Liu N, Lv X. The non-canonical poly(A) polymerase FAM46C promotes erythropoiesis. J Genet Genomics 2024; 51:594-607. [PMID: 38403115 DOI: 10.1016/j.jgg.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The post-transcriptional regulation of mRNA is a crucial component of gene expression. The disruption of this process has detrimental effects on the normal development and gives rise to various diseases. Searching for novel post-transcriptional regulators and exploring their roles are essential for understanding development and disease. Through a multimodal analysis of red blood cell trait genome-wide association studies (GWAS) and transcriptomes of erythropoiesis, we identify FAM46C, a non-canonical RNA poly(A) polymerase, as a necessary factor for proper red blood cell development. FAM46C is highly expressed in the late stages of the erythroid lineage, and its developmental upregulation is controlled by an erythroid-specific enhancer. We demonstrate that FAM46C stabilizes mRNA and regulates erythroid differentiation in a polymerase activity-dependent manner. Furthermore, we identify transcripts of lysosome and mitochondria components as highly confident in vivo targets of FAM46C, which aligns with the need of maturing red blood cells for substantial clearance of organelles and maintenance of cellular redox homeostasis. In conclusion, our study unveils a unique role of FAM46C in positively regulating lysosome and mitochondria components, thereby promoting erythropoiesis.
Collapse
Affiliation(s)
- Ke Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China; The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Tianqi Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Jiaying Yin
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Qiaoli Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Jing Li
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Hong Fan
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Gaijing Han
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Weiyin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China
| | - Nan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang 311121, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 311121, China.
| | - Xiang Lv
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Haihe Laboratory of Cell Ecosystem, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
8
|
Lai G, De Grossi F, Catusi I, Pesce E, Manfrini N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers (Basel) 2024; 16:1706. [PMID: 38730656 PMCID: PMC11083040 DOI: 10.3390/cancers16091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, β-catenin and TGF-β/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.
Collapse
Affiliation(s)
- Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ilaria Catusi
- SC Clinical Pathology, SS Medical Genetics Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
9
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
10
|
Sha Y, Liu W, Tang S, Zhang X, Xiao Z, Xiao Y, Deng H, Zhou H, Wei X. TENT5D disruption causes oligoasthenoteratozoospermia and male infertility. Andrology 2023; 11:1121-1131. [PMID: 36746179 DOI: 10.1111/andr.13407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/06/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oligoasthenoteratozoospermia (OAT) is one of the most complex aggregators of male gametic problems. However, the genetic etiology of OAT is still largely unknown. OBJECTIVES To reveal the new genetic factors responsible for male infertility owning to OAT and reveal the outcomes of the affected patients from intracytoplasmic sperm injection (ICSI). MATERIALS AND METHODS Two infertile men with typical OAT were recruited in 2018 and retrospected a cohort that included 47 patients with OAT from 2013 to 2021. Fifty healthy men with proven fertility served as control subjects. To identify the novel pathogenic variants, whole-exome sequencing and Sanger sequencing were used. In silico analysis revealed the affecting of the variants. Field emission scanning electron microscopy was employed to observe the morphological defects of the spermatozoa. Immunofluorescence was used to analyze the expression and localization of the related protein. CRISPR/Cas9 was used to generate the mouse model. ICSI was used as a treatment for the patients and to assess the effects of the pathogenic variant on fertilization and embryo development. RESULTS We identified a loss-of-function mutation NM_001170574.2:c.823G > T (p.Glu275*) in X-linked TENT5D from two patients with OAT. This variant is highly deleterious and has not been found in the human population. The count of patients' spermatozoa is dramatically decreased and displays multiple morphologic abnormalities with poor motility. Tent5d knockout mice are infertile and exhibit parallel defects. ICSI could rescue the infertility of the Tent5d knockout male mice. Moreover, the proband was treated with ICSI and achieved a successful pregnancy outcome for the first time. Subsequent mutation screening identified no TENT5D mutations among 47 additional patients with OAT and 50 control subjects. CONCLUSION Mutation in TENT5D results in OAT and male infertility, and this terrible situation could be rescued by ICSI.
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wensheng Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, Guangdong, China
| | - Songxi Tang
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoya Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ziyi Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yuwei Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Hongjing Deng
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Huiliang Zhou
- Department of Andrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoli Wei
- School of Medicine, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Min K, Li Y, Wu Z, Dai Z, Feng Z, Qian Z, Sun X, Qiu Y, Xu L, Zhu Z. A Genetic Variant of FAM46A is Associated With the Development of Adolescent Idiopathic Scoliosis in the Chinese Population. Spine (Phila Pa 1976) 2023; 48:1253-1258. [PMID: 37141460 PMCID: PMC10412078 DOI: 10.1097/brs.0000000000004691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/26/2022] [Indexed: 05/06/2023]
Abstract
STUDY DESIGN A genetic case-control study. OBJECTIVE To replicate recently reported genetic loci associated with adolescent idiopathic scoliosis (AIS) in the Chinese Han population, and to determine the relationship between gene expression and the clinical features of the patients. SUMMARY OF BACKGROUND DATA A recent study conducted in the Japanese population identified several novel susceptible loci, which might provide new insights into the etiology of AIS. However, the association of these genes with AIS in other populations remains unclear. MATERIALS AND METHODS A total of 1210 AIS and 2500 healthy controls were recruited for the genotyping of 12 susceptibility loci. Paraspinal muscles used for gene expression analysis were obtained from 36 AIS and 36 patients with congenital scoliosis. The difference regarding genotype and allele frequency between patients and controls was analyzed by χ 2 analysis. The t test was performed to compare the target gene expression level between controls and AIS patients. Correlation analysis was performed between gene expression and phenotypic data, including Cobb angle, bone mineral density, lean mass, height, and body mass index. RESULTS Four SNPs, including rs141903557, rs2467146, rs658839, and rs482012, were successfully validated. Allele C of rs141903557, allele A of rs2467146, allele G of rs658839, and allele T of single nucleotide polymorphism rs482012 showed significantly higher frequency in patients. Allele C of rs141903557, allele A of rs2467146, allele G of rs658839, and allele T of rs482012 could notably increase the risk of AIS patients, with an odds ratio of 1.49, 1.16, 1.11, and 1.25, respectively. Moreover, tissue expression of FAM46A was significantly lower in AIS patients as compared with controls. Moreover, FAM46A expression was remarkably correlated with bone mineral density of patients. CONCLUSION Four SNPs were successfully validated as novel susceptibility loci associated with AIS in the Chinese population. Moreover, FAM46A expression was associated with the phenotype of AIS patients.
Collapse
|
12
|
Ma Y, Xing X, Cheng C, Kong R, Sun L, Zhao F, Zhang D, Li J. Hsa-miR-1269a up-regulation fosters the malignant progression of esophageal squamous cell carcinoma via targeting FAM46C. Mutat Res 2023; 827:111832. [PMID: 37467675 DOI: 10.1016/j.mrfmmm.2023.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignancy of the alimentary tract resulting in death worldwide. The role and underlying mechanism of hsa-miR-1269a in the progression of ESCC remain unclear. In this study, hsa-miR-1269a was screened by differential expression analysis in TCGA, and its target gene FAM46C was predicted. qRT-PCR was conducted to assay the expression of hsa-miR-1269a and FAM46C in ESCC cells. The results showed that hsa-miR-1269a was upregulated in ESCC tissues and cell lines. Hsa-miR-1269a overexpression stimulated the proliferation, migration, and invasion capacities of ESCC cells, and FAM46C overexpression inhibited these phenotypes. Dual-luciferase assay verified that hsa-miR-1269a could target FAM46C. Next, qRT-PCR and western blot demonstrated that hsa-miR-1269a overexpression downregulated FAM46C. Rescue experiments revealed that hsa-miR-1269a accelerated the malignant progression of ESCC through FAM46C down-regulation. These results indicate that the interaction between hsa-miR-1269a and FAM46C plays a regulatory role in driving the malignant progression of ESCC cells, thereby providing a novel molecular mechanism for understanding ESCC.
Collapse
Affiliation(s)
- Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Xin Xing
- Department of Health Care for Cadres, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Ranran Kong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Liangzhang Sun
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Feng Zhao
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Danjie Zhang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China.
| |
Collapse
|
13
|
Zhang W, Wu C, Geng S, Wang J, Yan C, Zhang X, Zhang JJ, Wu F, Pang Y, Zhong Y, Wang J, Fu W, Huang X, Wang W, Lyu X, Huang Y, Jing H. FAM46C-mediated tumor heterogeneity predicts extramedullary metastasis and poorer survival in multiple myeloma. Aging (Albany NY) 2023; 15:3644-3677. [PMID: 37155154 PMCID: PMC10449297 DOI: 10.18632/aging.204697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Cancers originate from a single cell according to Nowell's theory of clonal evolution. The enrichment of the most aggressive clones has been developed and the heterogeneity arises for genomic instability and environmental selection. Multiple myeloma (MM) is a multiple relapse plasma cell cancer generated from bone marrow. Although there were accumulating researches in multiple myeloma pathogenesis, the heterogeneity remains poorly understood. The participants enrolled in this study were 4 EMP+ (EMP, Extramedullary plasmacytoma) and 2 EMP- primarily untreated MM patients. Single cell RNA sequencing and analysis were conducted for the single cell suspension, which was sorted by flow cytometry from peripheral blood mononuclear cells or bone marrow cells. In our research, the results of single cell RNA sequencing show that FAM46C determines MM tumor heterogeneity predicting extramedullary metastasis by influencing RNA stability. Further, we integrated and analyzed 2280 multiple myeloma samples from 7 independent datasets, which uncover that FAM46C mediated tumor heterogeneity predicts poorer survival in multiple myeloma.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Chaoling Wu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Shuang Geng
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Jing Wang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Changjian Yan
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Xiannian Zhang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Jia-jia Zhang
- Department of Hematology, Beijing Chaoyang Hospital West, Capital Medical University, Beijing 100054, China
| | - Fan Wu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Yuhong Pang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Yuping Zhong
- Department of Hematology, Beijing Chaoyang Hospital West, Capital Medical University, Beijing 100054, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100190, China
| | - Wei Fu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Xin Huang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Wenming Wang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Xiaoqing Lyu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Yanyi Huang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Hongmei Jing
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| |
Collapse
|
14
|
Sommerer Y, Dobricic V, Schilling M, Ohlei O, Sabet SS, Wesse T, Fuß J, Franzenburg S, Franke A, Parkkinen L, Lill CM, Bertram L. Entorhinal cortex epigenome-wide association study highlights four novel loci showing differential methylation in Alzheimer's disease. Alzheimers Res Ther 2023; 15:92. [PMID: 37149695 PMCID: PMC10163801 DOI: 10.1186/s13195-023-01232-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies on DNA methylation (DNAm) in Alzheimer's disease (AD) have recently highlighted several genomic loci showing association with disease onset and progression. METHODS Here, we conducted an epigenome-wide association study (EWAS) using DNAm profiles in entorhinal cortex (EC) from 149 AD patients and control brains and combined these with two previously published EC datasets by meta-analysis (total n = 337). RESULTS We identified 12 cytosine-phosphate-guanine (CpG) sites showing epigenome-wide significant association with either case-control status or Braak's tau-staging. Four of these CpGs, located in proximity to CNFN/LIPE, TENT5A, PALD1/PRF1, and DIRAS1, represent novel findings. Integrating DNAm levels with RNA sequencing-based mRNA expression data generated in the same individuals showed significant DNAm-mRNA correlations for 6 of the 12 significant CpGs. Lastly, by calculating rates of epigenetic age acceleration using two recently proposed "epigenetic clock" estimators we found a significant association with accelerated epigenetic aging in the brains of AD patients vs. controls. CONCLUSION In summary, our study represents the hitherto most comprehensive EWAS in AD using EC and highlights several novel differentially methylated loci with potential effects on gene expression.
Collapse
Affiliation(s)
- Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany
- Ageing Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Ratzeburger Allee 160, Haus V50, 1St Floor, Room 319, 23562, Lübeck, Germany.
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
Liu S, Chen H, Yin Y, Lu D, Gao G, Li J, Bai XC, Zhang X. Inhibition of FAM46/TENT5 activity by BCCIPα adopting a unique fold. SCIENCE ADVANCES 2023; 9:eadf5583. [PMID: 37018411 PMCID: PMC10075960 DOI: 10.1126/sciadv.adf5583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The FAM46 (also known as TENT5) proteins are noncanonical poly(A) polymerases (PAPs) implicated in regulating RNA stability. The regulatory mechanisms of FAM46 are poorly understood. Here, we report that the nuclear protein BCCIPα, but not the alternatively spliced isoform BCCIPβ, binds FAM46 and inhibits their PAP activity. Unexpectedly, our structures of the FAM46A/BCCIPα and FAM46C/BCCIPα complexes show that, despite sharing most of the sequence and differing only at the C-terminal portion, BCCIPα adopts a unique structure completely different from BCCIPβ. The distinct C-terminal segment of BCCIPα supports the adoption of the unique fold but does not directly interact with FAM46. The β sheets in BCCIPα and FAM46 pack side by side to form an extended β sheet. A helix-loop-helix segment in BCCIPα inserts into the active site cleft of FAM46, thereby inhibiting the PAP activity. Our results together show that the unique fold of BCCIPα underlies its interaction with and functional regulation of FAM46.
Collapse
Affiliation(s)
- Shun Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Yin
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Defen Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoming Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Liudkovska V, Krawczyk PS, Brouze A, Gumińska N, Wegierski T, Cysewski D, Mackiewicz Z, Ewbank JJ, Drabikowski K, Mroczek S, Dziembowski A. TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals. SCIENCE ADVANCES 2022; 8:eadd9468. [PMID: 36383655 PMCID: PMC9668313 DOI: 10.1126/sciadv.add9468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Innate immunity is the first line of host defense against pathogens. Here, through global transcriptome and proteome analyses, we uncover that newly described cytoplasmic poly(A) polymerase TENT-5 (terminal nucleotidyltransferase 5) enhances the expression of secreted innate immunity effector proteins in Caenorhabditis elegans. Direct RNA sequencing revealed that multiple mRNAs with signal peptide-encoding sequences have shorter poly(A) tails in tent-5-deficient worms. Those mRNAs are translated at the endoplasmic reticulum where a fraction of TENT-5 is present, implying that they represent its direct substrates. Loss of tent-5 makes worms more susceptible to bacterial infection. Notably, the role of TENT-5 in innate immunity is evolutionarily conserved. Its orthologs, TENT5A and TENT5C, are expressed in macrophages and induced during their activation. Analysis of macrophages devoid of TENT5A/C revealed their role in the regulation of secreted proteins involved in defense response. In summary, our study reveals cytoplasmic polyadenylation to be a previously unknown component of the posttranscriptional regulation of innate immunity in animals.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aleksandra Brouze
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Natalia Gumińska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz Wegierski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Zuzanna Mackiewicz
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jonathan J Ewbank
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Kwak Y, Daly CWP, Fogarty EA, Grimson A, Kwak H. Dynamic and widespread control of poly(A) tail length during macrophage activation. RNA (NEW YORK, N.Y.) 2022; 28:947-971. [PMID: 35512831 PMCID: PMC9202586 DOI: 10.1261/rna.078918.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The poly(A) tail enhances translation and transcript stability, and tail length is under dynamic control during cell state transitions. Tail regulation plays essential roles in translational timing and fertilization in early development, but poly(A) tail dynamics have not been fully explored in post-embryonic systems. Here, we examined the landscape and impact of tail length control during macrophage activation. Upon activation, more than 1500 mRNAs, including proinflammatory genes, underwent distinctive changes in tail lengths. Increases in tail length correlated with mRNA levels regardless of transcriptional activity, and many mRNAs that underwent tail extension encode proteins necessary for immune function and post-transcriptional regulation. Strikingly, we found that ZFP36, whose protein product destabilizes target transcripts, undergoes tail extension. Our analyses indicate that many mRNAs undergoing tail lengthening are, in turn, degraded by elevated levels of ZFP36, constituting a post-transcriptional feedback loop that ensures transient regulation of transcripts integral to macrophage activation. Taken together, this study establishes the complexity, relevance, and widespread nature of poly(A) tail dynamics, and the resulting post-transcriptional regulation during macrophage activation.
Collapse
Affiliation(s)
- Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
18
|
Luo S, Su T, Zhou X, Hu WX, Hu J. Chromosome 1 instability in multiple myeloma: Aberrant gene expression, pathogenesis, and potential therapeutic target. FASEB J 2022; 36:e22341. [PMID: 35579877 DOI: 10.1096/fj.202200354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
Multiple myeloma (MM), the terminally differentiated B cells malignancy, is widely considered to be incurable since many patients have either developed drug resistance or experienced an eventual relapse. To develop precise and efficient therapeutic strategies, we must understand the pathogenesis of MM. Thus, unveiling the driver events of MM and its further clonal evolution will help us understand this complicated disease. Chromosome 1 instabilities are the most common genomic alterations that participate in MM pathogenesis, and these aberrations of chromosome 1 mainly include copy number variations and structural changes. The chromosome 1q gains/amplifications and 1p deletions are the most frequent structural changes of chromosomes in MM. In this review, we intend to focus on the genes that are affected by chromosome 1 instability: some tumor suppressors were lost or down regulated in 1p deletions, and others that contributed to tumorigenesis were upregulated in 1q gains/amplifications. We have summarized their biological function as well as their roles in the MM pathogenesis, hoping to uncover potential novel therapeutical targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Saiqun Luo
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Tao Su
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
19
|
Deng J, Xiao W, Wang Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front Genet 2022; 13:810252. [PMID: 35222533 PMCID: PMC8864238 DOI: 10.3389/fgene.2022.810252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Background:FAM46C is a common mutated gene in tumours. A comprehensive understanding of the relationship between FAM46C expression and pan-cancer can guide clinical prognosis and broaden the immunotherapeutic targets.Methods: Data from The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases were obtained, and gene expression of different tumour types and stages was analysed. Immunohistochemical analysis was performed to detect differences in the FAM46C protein levels in normal and cancerous tissues. The genetic variation of FAM46C was characterised using cBioPortal. The clinical prognostic value of FAM46C and the impact of FAM46C expression levels on the prognosis of patients with different types of cancer were assessed based on Kaplan–Meier and Cox regression analyses. Gene set enrichment analysis (GSEA) was used to analyse the pathways associated with FAM46C. Correlations between FAM46C expression levels and immune infiltration were assessed using the TIMER2 database and CIBERSORT algorithm, and correlations between FAM46C expression and the ESTIMATE, immune and stromal scores were analysed using the ESTIMATE algorithm. In addition, we also analysed the correlation between FAM46C expression and immune activation, suppression genes and immune chemokines.Results: The expression level of FAM46C was correlated with the prognosis of most tumours, and low expression levels often suggested a poor prognosis. FAM46C was positively correlated with the abundance of CD4+ T cells, CD8+ T cells and plasma B lymphocytes in the tumour microenvironment. FAM46C exhibited a strong correlation with immunomodulatory pathways, immunomodulatory factors and immune markers. In addition, high FAM46C expression correlated with tumour mutational burden in acute myeloid leukaemia and microsatellite instability in endometrial cancer.Conclusion: Our study suggests that FAM46C can be a potential prognostic marker for pan-cancer, is closely associated with immune regulation and may be an immune checkpoint to guide future clinical immunotherapy.
Collapse
Affiliation(s)
- Jiehua Deng
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xiao
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, China
| | - Zheng Wang
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zheng Wang,
| |
Collapse
|
20
|
Luo M, Yang H, Wu D, You X, Huang S, Song Y. Tent5a modulates muscle fiber formation in adolescent idiopathic scoliosis via maintenance of myogenin expression. Cell Prolif 2022; 55:e13183. [PMID: 35137485 PMCID: PMC8891553 DOI: 10.1111/cpr.13183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/04/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Paravertebral muscle asymmetry may be involved in the pathogenesis of adolescent idiopathic scoliosis (AIS), and the Tent5a protein was recently identified as a novel active noncanonical poly(A) polymerase. We, therefore, explored the function of the AIS susceptibility gene Tent5a in myoblasts. MATERIALS AND METHODS RNA-seq of AIS paravertebral muscle was performed, and the molecular differences in paravertebral muscle were investigated. Twenty-four AIS susceptibility genes were screened, and differential expression of Tent5a in paravertebral muscles was confirmed with qPCR and Western blot. After the knockdown of Tent5a, the functional effects of Tent5a on C2C12 cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 assay, wound-healing assay, and TUNEL assay, respectively. Myogenic differentiation markers were tested with immunofluorescence and qPCR in vitro, and muscle fiber formation was compared in vivo. RESULTS The AIS susceptibility gene Tent5a was differentially expressed in AIS paravertebral muscles. Tent5a knockdown inhibited the proliferation and migration of C2C12 cells and inhibited the maturation of type I muscle fibers in vitro and in vivo. Mechanistically, the expression of myogenin was decreased along with the suppression of Tent5a. CONCLUSIONS Tent5a plays an important role in the proliferation and migration of myoblasts, and it regulates muscle fiber maturation by maintaining the stability of myogenin. Tent5a may be involved in the pathogenesis of AIS by regulating the formation of muscle fiber type I.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huiliang Yang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
22
|
Perini T, Materozzi M, Milan E. The Immunity-malignancy equilibrium in multiple myeloma: lessons from oncogenic events in plasma cells. FEBS J 2021; 289:4383-4397. [PMID: 34117720 DOI: 10.1111/febs.16068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells (PC) that grow within the bone marrow and maintain massive immunoglobulin (Ig) production. Disease evolution is driven by genetic lesions, whose effects on cell biology and fitness underlie addictions and vulnerabilities of myeloma cells. Several genes mutated in myeloma are strictly involved in dictating PC identity and antibody factory function. Here, we evaluate the impact of mutations in IRF4, PRDM1, and XBP1, essential transcription factors driving the B to PC differentiation, on MM cell biology and homeostasis. These factors are highly specialized, with limited overlap in their downstream transcriptional programs. Indeed, IRF4 sustains metabolism, survival, and proliferation, while PRDM1 and XBP1 are mainly responsible for endoplasmic reticulum expansion and sustained Ig secretion. Interestingly, IRF4 undergoes activating mutations and translocations, while PRDM1 and XBP1 are hit by loss-of-function events, raising the hypothesis that containment of the secretory program, but not its complete extinction, may be beneficial to malignant PCs. Finally, recent studies unveiled that also the PRDM1 target, FAM46C/TENT5C, an onco-suppressor uniquely and frequently mutated or deleted in myeloma, is directly and potently involved in orchestrating ER homeostasis and secretory activity. Inactivating mutations found in this gene and its interactors strengthen the notion that reduced secretory capacity confers advantage to myeloma cells. We believe that dissection of the evolutionary pressure on genes driving PC-specific functions in myeloma will disclose the cellular strategies by which myeloma cells maintain an equilibrium between antibody production and survival, thus unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Tommaso Perini
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy.,Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Materozzi
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Enrico Milan
- Age related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy.,University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
23
|
Zhang H, Zhang SH, Hu JL, Wu YT, Ma XY, Chen Y, Yu B, Liao S, Huang H, Gao S. Structural and functional characterization of multiple myeloma associated cytoplasmic poly(A) polymerase FAM46C. Cancer Commun (Lond) 2021; 41:615-630. [PMID: 34048638 PMCID: PMC8286142 DOI: 10.1002/cac2.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of aberrant plasma cells within the bone marrow. The high frequent mutation of family with sequence similarity 46, member C (FAM46C) is closely related with the occurrence and progression of MM. Recently, FAM46C has been identified as a non‐canonical poly(A) polymerase (PAP) that functions as a tumor suppressor in MM. This study aimed to elucidate the structural features of this novel non‐canonical PAP and how MM‐related mutations affect the structural and biochemical properties of FAM46C, eventually advancing our understandings towards FAM46C mutation‐related MM occurrence. Methods We purified and crystallized a mammalian FAM46C construct, and solved its structure. Next, we characterized the property of FAM46C as a PAP through a combination of structural analysis, site‐directed mutagenesis and biochemical assays, and by comparison with its homolog FAM46B. Finally, we structurally analyzed MM‐related FAM46C mutations and tested the enzymatic activity of corresponding mutants. Results We determined the crystal structure of a mammalian FAM46C protein at 2.35 Å, and confirmed that FAM46C preferentially consumed adenosine triphosphate (ATP) and extended A‐rich RNA substrates. FAM46C showed a weaker PAP activity than its homolog FAM46B, and this difference was largely dependent on the residue variance at particular sites. Of them, residues at positions 77, 290, and 298 of mouse FAM46C were most important for the divergence in enzymatic activity. Among the MM‐associated FAM46C mutants, those residing at the catalytic site (D90G and D90H) or putative RNA‐binding site (I155L, S156F, D182Y, F184L, Y247V, and M270V) showed abolished or compromised PAP activity of FAM46C, while N72A and S248A did not severely affect the PAP activity. FAM46C mutants D90G, D90H, I155L, S156F, F184L, Y247V, and M270V had significantly lower inhibitory effect on apoptosis of RPMI‐8226 cells as compared to wild‐type FAM46C. Conclusions FAM46C is a prokaryotic‐like PAP with preference for A‐rich RNA substrates, and showed distinct enzymatic efficiency with its homolog FAM46B. The MM‐related missense mutations of FAM46C lead to various structural and biochemical outcomes to the protein.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shi-Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yu-Tong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, P. R. China
| |
Collapse
|
24
|
The Interaction of the Tumor Suppressor FAM46C with p62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep 2021; 32:108162. [PMID: 32966780 DOI: 10.1016/j.celrep.2020.108162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B. In MM cells, FAM46C expression raises secretory capacity beyond sustainability, inducing ROS accumulation, ATP shortage, and cell death. FAM46C activity is regulated through rapid proteasomal degradation or the inhibitory interaction with the ZZ domain of the autophagic receptor p62 that hinders its association with FNDC3 proteins via sequestration in p62+ aggregates. Altogether, our data disclose a p62/FAM46C/FNDC3 circuit coordinating sustainable secretory activity and survival, providing an explanation for the MM-specific oncosuppressive role of FAM46C and uncovering potential therapeutic opportunities against cancer.
Collapse
|
25
|
Gewartowska O, Aranaz-Novaliches G, Krawczyk PS, Mroczek S, Kusio-Kobiałka M, Tarkowski B, Spoutil F, Benada O, Kofroňová O, Szwedziak P, Cysewski D, Gruchota J, Szpila M, Chlebowski A, Sedlacek R, Prochazka J, Dziembowski A. Cytoplasmic polyadenylation by TENT5A is required for proper bone formation. Cell Rep 2021; 35:109015. [PMID: 33882302 DOI: 10.1016/j.celrep.2021.109015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoblasts orchestrate bone formation through the secretion of type I collagen and other constituents of the matrix on which hydroxyapatite crystals mineralize. Here, we show that TENT5A, whose mutations were found in congenital bone disease osteogenesis imperfecta patients, is a cytoplasmic poly(A) polymerase playing a crucial role in regulating bone mineralization. Direct RNA sequencing revealed that TENT5A is induced during osteoblast differentiation and polyadenylates mRNAs encoding Col1α1, Col1α2, and other secreted proteins involved in osteogenesis, increasing their expression. We postulate that TENT5A, possibly together with its paralog TENT5C, is responsible for the wave of cytoplasmic polyadenylation of mRNAs encoding secreted proteins occurring during bone mineralization. Importantly, the Tent5a knockout (KO) mouse line displays bone fragility and skeletal hypomineralization phenotype resulting from quantitative and qualitative collagen defects. Thus, we report a biologically relevant posttranscriptional regulator of collagen production and, more generally, bone formation.
Collapse
Affiliation(s)
- Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Goretti Aranaz-Novaliches
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Kusio-Kobiałka
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Bartosz Tarkowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Frantisek Spoutil
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic
| | - Piotr Szwedziak
- Laboratory of Structural Cell Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marcin Szpila
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
26
|
Wang Y, Cai R, Wang P, Huang C, Zhang C, Liu Z. FAM46A expression is elevated in glioblastoma and predicts poor prognosis of patients. Clin Neurol Neurosurg 2020; 201:106421. [PMID: 33370626 DOI: 10.1016/j.clineuro.2020.106421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the expression of FAM46A in glioblastoma (GBM) and analyze its significance in predicting the prognosis of patients. MATERIALS AND METHODS mRNA expression and clinical data of patients with GBM were retrieved from ONCOMINE databases and The Cancer Genome Atlas (TCGA) database. Immunohistochemistry was performed in a tissue microarray including 110 GBM cases and 12 normal controls to determine the expression of FAM46A protein. Then, Kaplan-Meier curve and Cox regression model were used to investigate the relationship between FAM46A expression and clinical outcome. Coexpressed genes of FAM46A were analyzed by Linked Omics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS Upregulated expression of FAM46A was found in both TCGA and our cohort. High FAM46A expression was associated with the poor prognosis of patients with GBM and could be identified as an independent risk factor for overall survival (HR = 1.652, p = 0.022). Further bioinformatics analysis revealed that FAM46A might be involved in cell motility and endoplasmic reticulum proteostasis and stress to promote GBM progression. CONCLUSION Our findings suggest that increased expression of FAM46A in GBM is a novel biomarker for predicting poor outcome of patients and that targeting FAM46A may serve as a potential therapy for this disease.
Collapse
Affiliation(s)
- Yibiao Wang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Renduan Cai
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Pengcheng Wang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Chuixue Huang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Chaocai Zhang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Zhaohui Liu
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
27
|
Ma XY, Zhang H, Feng JX, Hu JL, Yu B, Luo L, Cao YL, Liao S, Wang J, Gao S. Structures of mammalian GLD-2 proteins reveal molecular basis of their functional diversity in mRNA and microRNA processing. Nucleic Acids Res 2020; 48:8782-8795. [PMID: 32633758 PMCID: PMC7470959 DOI: 10.1093/nar/gkaa578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the β-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of histology and embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
28
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
29
|
Manfrini N, Mancino M, Miluzio A, Oliveto S, Balestra M, Calamita P, Alfieri R, Rossi RL, Sassoè-Pognetto M, Salio C, Cuomo A, Bonaldi T, Manfredi M, Marengo E, Ranzato E, Martinotti S, Cittaro D, Tonon G, Biffo S. FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy. Cancer Res 2020; 80:4693-4706. [PMID: 32963011 DOI: 10.1158/0008-5472.can-20-1357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a plasma cell neoplasm characterized by the production of unfolded immunoglobulins, which cause endoplasmic reticulum (ER) stress and sensitivity to proteasome inhibition. The genomic landscape of multiple myeloma is characterized by the loss of several genes rarely mutated in other cancers that may underline specific weaknesses of multiple myeloma cells. One of these is FAM46C that is lost in more than 10% of patients with multiple myeloma. We show here that FAM46C is part of a new complex containing the ER-associated protein FNDC3A, which regulates trafficking and secretion and, by impairing autophagy, exacerbates proteostatic stress. Reconstitution of FAM46C in multiple myeloma cells that had lost it induced apoptosis and ER stress. Apoptosis was preceded by an increase of intracellular aggregates, which was not linked to increased translation of IgG mRNA, but rather to impairment of autophagy. Biochemical analysis showed that FAM46C requires interaction with ER bound protein FNDC3A to reside in the cytoplasmic side of the ER. FNDC3A was lost in some multiple myeloma cell lines. Importantly, depletion of FNDC3A increased the fitness of FAM46C-expressing cells and expression of FNDC3A in cells that had lost it recapitulated the effects of FAM46C, inducing aggregates and apoptosis. FAM46C and FNDC3A formed a complex that modulates secretion routes, increasing lysosome exocytosis. The cellular landscape generated by FAM46C/FNDC3A expression predicted sensitivity to sphingosine kinase inhibition. These results suggest that multiple myeloma cells remodel their trafficking machinery to cope with ER stress. SIGNIFICANCE: This study identifies a new multiple myeloma-specific tumor suppressor complex that regulates autophagy and unconventional secretion, highlighting the sensitivity of multiple myeloma cells to the accumulation of protein aggregates.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy.,Department of Biological Sciences, University of Milan, Milan, Italy
| | - Marilena Mancino
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy.,Department of Clinical Sciences and Community, University of Milan, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy
| | - Stefania Oliveto
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy.,Department of Biological Sciences, University of Milan, Milan, Italy
| | - Matteo Balestra
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy
| | - Piera Calamita
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy.,Department of Biological Sciences, University of Milan, Milan, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy
| | - Riccardo L Rossi
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience "Rita Levi Montalcini," University of Turin, Torino, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Torino, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,ISALIT, Novara, Italy.,Department of Translation Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.,ISALIT, Novara, Italy.,Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Elia Ranzato
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Simona Martinotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi," Milan, Italy. .,Department of Biological Sciences, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Kazazian K, Haffani Y, Ng D, Lee CMM, Johnston W, Kim M, Xu R, Pacholzyk K, Zih FSW, Tan J, Smrke A, Pollett A, Wu HST, Swallow CJ. FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity. Commun Biol 2020; 3:448. [PMID: 32807875 PMCID: PMC7431843 DOI: 10.1038/s42003-020-01161-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polo like kinase 4 (Plk4) is a tightly regulated serine threonine kinase that governs centriole duplication. Increased Plk4 expression, which is a feature of many common human cancers, causes centriole overduplication, mitotic irregularities, and chromosomal instability. Plk4 can also promote cancer invasion and metastasis through regulation of the actin cytoskeleton. Herein we demonstrate physical interaction of Plk4 with FAM46C/TENT5C, a conserved protein of unknown function until recently. FAM46C localizes to centrioles, inhibits Plk4 kinase activity, and suppresses Plk4-induced centriole duplication. Interference with Plk4 function by FAM46C was independent of the latter's nucleotidyl transferase activity. In addition, FAM46C restrained cancer cell invasion and suppressed MDA MB-435 cancer growth in a xenograft model, opposing the effect of Plk4. We demonstrate loss of FAM46C in patient-derived colorectal cancer tumor tissue that becomes more profound with advanced clinical stage. These results implicate FAM46C as a tumor suppressor that acts by inhibiting Plk4 activity.
Collapse
Affiliation(s)
- Karineh Kazazian
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Yosr Haffani
- Laboratory of Physiopathology, Alimentation and Biomolecules LR17ES03, Higher Institute of Biotechnology, Sidi Thabet, University of Manouba, Ariana, 2020, Tunisia
| | - Deanna Ng
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Chae Min Michelle Lee
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Wendy Johnston
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Minji Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Roland Xu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Karina Pacholzyk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Francis Si-Wah Zih
- Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Julie Tan
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Alannah Smrke
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hannah Sun-Tsi Wu
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Carol Jane Swallow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada. .,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
31
|
Zheng C, Ouyang YC, Jiang B, Lin X, Chen J, Dong MZ, Zhuang X, Yuan S, Sun QY, Han C. Non-canonical RNA polyadenylation polymerase FAM46C is essential for fastening sperm head and flagellum in mice†. Biol Reprod 2020; 100:1673-1685. [PMID: 31087039 DOI: 10.1093/biolre/ioz083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Family with sequence similarity 46, member C (FAM46C) is a highly conserved non-canonical RNA polyadenylation polymerase that is abundantly expressed in human and mouse testes and is frequently mutated in patients with multiple myeloma. However, its physiological role remains largely unknown. In this study, we found that FAM46C is specifically localized to the manchette of spermatids in mouse testes, a transient microtubule-based structure mainly involved in nuclear shaping and intra-flagellar protein traffic. Gene knockout of FAM46C in mice resulted in male sterility, characterized by the production of headless spermatozoa in testes. Sperm heads were intermittently found in the epididymides of FAM46C knockout mice, but their fertilization ability was severely compromised based on the results of intracytoplasmic sperm injection assays. Interestingly, our RNA-sequencing analyses of FAM46C knockout testes revealed that mRNA levels of only nine genes were significantly altered compared to wild-type ones (q < 0.05). When considering alternate activities for FAM46C, in vitro assays demonstrated that FAM46C does not exhibit protein kinase or AMPylation activity against general substrates. Together, our data show that FAM46C in spermatids is a novel component in fastening the sperm head and flagellum.
Collapse
Affiliation(s)
- Chunwei Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Savaid Medical School, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Binjie Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinjie Zhuang
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Shuiqiao Yuan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Savaid Medical School, Beijing, China
| |
Collapse
|
32
|
Levis NA, Reed EMX, Pfennig DW, Burford Reiskind MO. Identification of candidate loci for adaptive phenotypic plasticity in natural populations of spadefoot toads. Ecol Evol 2020; 10:8976-8988. [PMID: 32884672 PMCID: PMC7452772 DOI: 10.1002/ece3.6602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Phenotypic plasticity allows organisms to alter their phenotype in direct response to changes in the environment. Despite growing recognition of plasticity's role in ecology and evolution, few studies have probed plasticity's molecular bases-especially using natural populations. We investigated the genetic basis of phenotypic plasticity in natural populations of spadefoot toads (Spea multiplicata). Spea tadpoles normally develop into an "omnivore" morph that is favored in long-lasting, low-density ponds. However, if tadpoles consume freshwater shrimp or other tadpoles, they can alternatively develop (via plasticity) into a "carnivore" morph that is favored in ephemeral, high-density ponds. By combining natural variation in pond ecology and morph production with population genetic approaches, we identified candidate loci associated with each morph (carnivores vs. omnivores) and loci associated with adaptive phenotypic plasticity (adaptive vs. maladaptive morph choice). Our candidate morph loci mapped to two genes, whereas our candidate plasticity loci mapped to 14 genes. In both cases, the identified genes tended to have functions related to their putative role in spadefoot tadpole biology. Our results thereby form the basis for future studies into the molecular mechanisms that mediate plasticity in spadefoots. More generally, these results illustrate how diverse loci might mediate adaptive plasticity.
Collapse
Affiliation(s)
| | - Emily M. X. Reed
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - David W. Pfennig
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | | |
Collapse
|
33
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
35
|
Lin HH, Lo YL, Wang WC, Huang KY, I KY, Chang GW. Overexpression of FAM46A, a Non-canonical Poly(A) Polymerase, Promotes Hemin-Induced Hemoglobinization in K562 Cells. Front Cell Dev Biol 2020; 8:414. [PMID: 32528962 PMCID: PMC7264091 DOI: 10.3389/fcell.2020.00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023] Open
Abstract
FAM46A belongs to the FAM46 subfamily of the nucleotidyltransferase-fold superfamily and is predicted to be a non-canonical poly(A) polymerase. FAM46A has been linked to several human disorders including retinitis pigmentosa, bone abnormality, cancer, and obesity. However, its molecular and functional characteristics are largely unknown. We herein report that FAM46A is expressed in cells of the hematopoietic system and plays a role in hemin-induced hemoglobinization. FAM46A is a nucleocytoplasmic shuttle protein modified by Tyr-phosphorylation only in the cytosol, where it is closely associated with ER. On the other hand, it is located proximal to the chromatin regions of active transcription in the nucleus. FAM46A is a cell cycle-dependent poly-ubiquitinated short-lived protein degraded mostly by proteasome and its overexpression inhibits cell growth and promotes hemin-induced hemoglobinization in K562 cell. Site-directed mutagenesis experiments confirm the non-canonical poly(A) polymerase activity of FAM46A is essential for enhanced hemin-induced hemoglobinization. In summary, FAM46A is a novel poly(A) polymerase that functions as a critical intracellular modulator of hemoglobinization.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Ling Lo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chih Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
36
|
Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020; 28:910-921.e4. [PMID: 32433990 DOI: 10.1016/j.str.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility. The molecular mechanisms of these functions of FAM46C remain elusive. We report the crystal structure of FAM46C to provide the basis for its poly(A) polymerase activity and rationalize mutations associated with multiple myeloma. In addition, we found that FAM46C interacts directly with the serine/threonine kinase Plk4, the master regulator of centrosome duplication. We present the structure of FAM46C in complex with the Cryptic Polo-Box 1-2 domains of Plk4. Our structure-based mutational analyses show that the interaction with Plk4 recruits FAM46C to centrosomes. Our data suggest that Plk4-mediated localization of FAM46C enables its regulation of centrosome structure and functions, which may underlie the roles for FAM46C in cell proliferation and sperm development.
Collapse
|
37
|
Hu JL, Liang H, Zhang H, Yang MZ, Sun W, Zhang P, Luo L, Feng JX, Bai H, Liu F, Zhang T, Yang JY, Gao Q, Long Y, Ma XY, Chen Y, Zhong Q, Yu B, Liao S, Wang Y, Zhao Y, Zeng MS, Cao N, Wang J, Chen W, Yang HT, Gao S. FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Res 2020; 48:2733-2748. [PMID: 32009146 PMCID: PMC7049688 DOI: 10.1093/nar/gkaa049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/11/2023] Open
Abstract
Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes.
Collapse
Affiliation(s)
- Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ming-Zhu Yang
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China.,Laboratory for Functional Genomics and Systems Biology, The Berlin Institute for Medical Systems Biology, 13092 Berlin, Germany
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huajun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Liu
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianpeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jin-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, The Berlin Institute for Medical Systems Biology, 13092 Berlin, Germany
| | - Yongkang Long
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Nan Cao
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jichang Wang
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
38
|
Bilska A, Kusio-Kobiałka M, Krawczyk PS, Gewartowska O, Tarkowski B, Kobyłecki K, Nowis D, Golab J, Gruchota J, Borsuk E, Dziembowski A, Mroczek S. Immunoglobulin expression and the humoral immune response is regulated by the non-canonical poly(A) polymerase TENT5C. Nat Commun 2020; 11:2032. [PMID: 32341344 PMCID: PMC7184606 DOI: 10.1038/s41467-020-15835-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
TENT5C is a non-canonical cytoplasmic poly(A) polymerase highly expressed by activated B cells to suppress their proliferation. Here we measure the global distribution of poly(A) tail lengths in responsive B cells using a Nanopore direct RNA-sequencing approach, showing that TENT5C polyadenylates immunoglobulin mRNAs regulating their half-life and consequently steady-state levels. TENT5C is upregulated in differentiating plasma cells by innate signaling. Compared with wild-type, Tent5c−/− mice produce fewer antibodies and have diminished T-cell-independent immune response despite having more CD138high plasma cells as a consequence of accelerated differentiation. B cells from Tent5c−/− mice also have impaired capacity of the secretory pathway, with reduced ER volume and unfolded protein response. Importantly, these functions of TENT5C are dependent on its enzymatic activity as catalytic mutation knock-in mice display the same defect as Tent5c−/−. These findings define the role of the TENT5C enzyme in the humoral immune response. Regulating polyadenylation is important for mRNA stability, which can in turn affect B cell maturation and humoral immune responses. Here the authors use Nanopore poly(A) sequencing to explore the importance of the cytoplasmic poly(A) polymerase TENT5C, particularly in the production of immunoglobulins.
Collapse
Affiliation(s)
- Aleksandra Bilska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Kusio-Kobiałka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Paweł S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Olga Gewartowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Bartosz Tarkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Kamil Kobyłecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Dominika Nowis
- Genomic Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Centre of Preclinical Research, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Jakub Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Ewa Borsuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.,Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
39
|
Herrero AB, Quwaider D, Corchete LA, Mateos MV, García-Sanz R, Gutiérrez NC. FAM46C controls antibody production by the polyadenylation of immunoglobulin mRNAs and inhibits cell migration in multiple myeloma. J Cell Mol Med 2020; 24:4171-4182. [PMID: 32141701 PMCID: PMC7171423 DOI: 10.1111/jcmm.15078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
FAM46C, frequently mutated in multiple myeloma (MM), has recently been shown to encode a non‐canonical poly(A) polymerase (ncPAP). However, its target mRNAs and its role in MM pathogenesis remain mostly unknown. Using CRISPR‐Cas9 technology and gene expression analysis, we found that the inactivation of FAM46C in MM down‐regulates immunoglobulins (Igs) and several mRNAs encoding ER‐resident proteins, including some involved in unfolded protein response and others that affect glycosylation. Interestingly, we show that FAM46C expression is induced during plasma cell (PC) differentiation and that Ig mRNAs encoding heavy and light chains are substrates of the ncPAP, as revealed by poly(A) tail‐length determination assays. The absence of the ncPAP results in Ig mRNA poly(A) tail‐shortening, leading to a reduction in mRNA and protein abundance. On the other hand, loss of FAM46C up‐regulates metastasis‐associated lncRNA MALAT1 and results in a sharp increase in the migration ability. This phenotype depends mainly on the activation of PI3K/Rac1 signalling, which might have significant therapeutic implications. In conclusion, our results identify Ig mRNAs as targets of FAM46C, reveal an important function of this protein during PC maturation to increase antibody production and suggest that its role as a tumour suppressor might be related to the inhibition of myeloma cell migration.
Collapse
Affiliation(s)
- Ana Belén Herrero
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Dalia Quwaider
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Luis Antonio Corchete
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Maria Victoria Mateos
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Ramón García-Sanz
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Norma C Gutiérrez
- Haematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| |
Collapse
|
40
|
Besio R, Chow CW, Tonelli F, Marini JC, Forlino A. Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J 2019; 286:3033-3056. [PMID: 31220415 PMCID: PMC7384889 DOI: 10.1111/febs.14963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
The limited accessibility of bone and its mineralized nature have restricted deep investigation of its biology. Recent breakthroughs in identification of mutant proteins affecting bone tissue homeostasis in rare skeletal diseases have revealed novel pathways involved in skeletal development and maintenance. The characterization of new dominant, recessive and X-linked forms of the rare brittle bone disease osteogenesis imperfecta (OI) and other OI-related bone fragility disorders was a key player in this advance. The development of in vitro models for these diseases along with the generation and characterization of murine and zebrafish models contributed to dissecting previously unknown pathways. Here, we describe the most recent advances in the understanding of processes involved in abnormal bone mineralization, collagen processing and osteoblast function, as illustrated by the characterization of new causative genes for OI and OI-related fragility syndromes. The coordinated role of the integral membrane protein BRIL and of the secreted protein PEDF in modulating bone mineralization as well as the function and cross-talk of the collagen-specific chaperones HSP47 and FKBP65 in collagen processing and secretion are discussed. We address the significance of WNT ligand, the importance of maintaining endoplasmic reticulum membrane potential and of regulating intramembrane proteolysis in osteoblast homeostasis. Moreover, we also examine the relevance of the cytoskeletal protein plastin-3 and of the nucleotidyltransferase FAM46A. Thanks to these advances, new targets for the development of novel therapies for currently incurable rare bone diseases have been and, likely, will be identified, supporting the important role of basic science for translational approaches.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chi-Wing Chow
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol 2019; 10:1121. [PMID: 31231360 PMCID: PMC6558388 DOI: 10.3389/fimmu.2019.01121] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
B cell activation and differentiation yields plasma cells with high affinity antibodies to a given antigen in a time-frame that allows for host protection. Although the end product is most commonly humoral immunity, the rapid proliferation and somatic mutation of the B cell receptor also results in oncogenic mutations that cause B cell malignancies including plasma cell neoplasms such as multiple myeloma. Myeloma is the second most common hematological malignancy and results in over 100,000 deaths per year worldwide. The genetic alterations that occur in the germinal center, however, are not sufficient to cause myeloma, but rather impart cell proliferation potential on plasma cells, which are normally non-dividing. This pre-malignant state, referred to as monoclonal gammopathy of undetermined significance or MGUS, provides the opportunity for further genetic and epigenetic alterations eventually resulting in a progressive disease that becomes symptomatic. In this review, we will provide a brief history of clonal gammopathies and detail how some of the key discoveries were interwoven with the study of plasma cells. We will also review the genetic and epigenetic alterations discovered over the past 25 years, how these are instrumental to myeloma pathogenesis, and what these events teach us about myeloma and plasma cell biology. These data will be placed in the context of normal B cell development and differentiation and we will discuss how understanding the biology of plasma cells can lead to more effective therapies targeting multiple myeloma.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Paula M. Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
42
|
Liu C, Pan A, Chen X, Tu J, Xia X, Sun L. MiR-5571-3p and miR-135b-5p, derived from analyses of microRNA profile sequencing, correlate with increased disease risk and activity of rheumatoid arthritis. Clin Rheumatol 2019; 38:1753-1765. [PMID: 30707326 DOI: 10.1007/s10067-018-04417-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study aimed to investigate microRNA (miRNA) expression profiles in synovium tissues of rheumatoid arthritis (RA) patients by RNA sequencing and to evaluate the values of dysregulated miRNAs in RA diagnosis and monitoring. METHODS Thirty RA patients who underwent knee arthroscopy and 30 controls with knee trauma who underwent surgery were consecutively recruited, and synovium tissue samples of both groups were obtained during surgeries. In the exploration part, miRNA and mRNA expression profiles of 3 RA samples and 3 control samples were detected using RNA sequencing then followed by bioinformatic analyses. In the validation part, 5 candidate miRNA levels were detected by quantitative polymerase chain reaction (qPCR) in 30 RA patients and 30 control patients. RESULTS In the exploration part, 78 miRNAs and 1582 mRNAs were upregulated while 40 miRNAs and 1295 mRNAs were downregulated in synovium tissue samples of RA patients compared with those of controls. Furthermore, enrichment analyses revealed that these dysregulated miRNAs and mRNAs were mainly implicated in immune activities and inflammatory diseases such as leukocyte migration, complement activation, and RA. In the validation part, qPCR assay revealed that miR-5571-3p and miR-135b-5p expressions were increased in RA patients compared with those in controls and disclosed good predictive values for RA risk with high area under the curves (AUCs). Besides, both miR-5571-3p and miR-135b-5p levels were positively correlated with disease activity and inflammation level of RA. CONCLUSIONS Analyses of miRNA expression profiles by sequencing indicate that miR-5571-3p and miR-135b-5p correlate with increased RA risk and activity.
Collapse
Affiliation(s)
- Cailong Liu
- Department of Orthopaedic Sports Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Axiao Pan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325000, China
| | - Xiaowei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325000, China
| | - Jianxin Tu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325000, China
| | - Xiaoru Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325000, China.
| | - Li Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325000, China.
| |
Collapse
|
43
|
Boonanuntanasarn S, Nakharuthai C, Schrama D, Duangkaew R, Rodrigues PM. Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). J Proteomics 2019; 192:208-222. [DOI: 10.1016/j.jprot.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/05/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023]
|
44
|
Abstract
Purpose FAM46C is known as a tumor suppressor in multiple myeloma. However, there are few studies about the expression and function of FAM46C in oral squamous cell carcinoma (OSCC), which is one of the most common oral cancers in the world. Methods mRNA and protein expression level were determined by real time PCR and Western blot, respectively. Cell Counting Kit-8 assay and flow cytometry analysis were used to analyze cell proliferation and apoptosis, respectively. Activity of caspase 3 and caspase 9 was determined using biochemical assays. Results Our results showed that the OSCC cells overexpressing FAM46C had a relatively slower cell proliferation rate and higher cell apoptosis rate compared with control groups. The results from Western blot showed that the expression levels of cleaved caspase 9 and cleaved caspase 3, which are the active forms of caspase 3 and caspase 9 in FAM46C overexpressed OSCC cells, were higher than in the control cells, while the phosphorylation of ERK1/2 together with its upstream regulators Ras and phosphorylation of MEK1/2 were relatively lower. Additionally, the results also showed that ERK1/2 agonist (EGF) or a caspase 3 inhibitor (Z-DEVD-FMK) inhibited activity of caspase 3 and caspase 9 and cell apoptosis rate. Furthermore, by analyzing FAM46C silencing OSCC cells, we found an increased proliferation rate and a reduced apoptosis rate compared with control cells. And those phenomena could be blocked by U0126, which is an ERK1/2 inhibitor. Conclusion Overall, our data suggest that FAM46C probably acts as a tumor suppressor gene in OSCC cells and the working mechanism of FAM46C may be involved in the caspases and ERK1/2 pathway.
Collapse
Affiliation(s)
- Xiaohua Zhuang
- Department of Stomatology, Gongli Hospital, The Second Military University, Shanghai, China
| | - Mengmeng Lu
- Department of Oral Surgery, Shanghai Stomatological Hospital, Shanghai, China,
| |
Collapse
|
45
|
Gagliardi D, Dziembowski A. 5' and 3' modifications controlling RNA degradation: from safeguards to executioners. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0160. [PMID: 30397097 DOI: 10.1098/rstb.2018.0160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
RNA degradation is a key process in the regulation of gene expression. In all organisms, RNA degradation participates in controlling coding and non-coding RNA levels in response to developmental and environmental cues. RNA degradation is also crucial for the elimination of defective RNAs. Those defective RNAs are mostly produced by 'mistakes' made by the RNA processing machinery during the maturation of functional transcripts from their precursors. The constant control of RNA quality prevents potential deleterious effects caused by the accumulation of aberrant non-coding transcripts or by the translation of defective messenger RNAs (mRNAs). Prokaryotic and eukaryotic organisms are also under the constant threat of attacks from pathogens, mostly viruses, and one common line of defence involves the ribonucleolytic digestion of the invader's RNA. Finally, mutations in components involved in RNA degradation are associated with numerous diseases in humans, and this together with the multiplicity of its roles illustrates the biological importance of RNA degradation. RNA degradation is mostly viewed as a default pathway: any functional RNA (including a successful pathogenic RNA) must be protected from the scavenging RNA degradation machinery. Yet, this protection must be temporary, and it will be overcome at one point because the ultimate fate of any cellular RNA is to be eliminated. This special issue focuses on modifications deposited at the 5' or the 3' extremities of RNA, and how these modifications control RNA stability or degradation.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
46
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
47
|
Watanabe T, Yamamoto T, Tsukano K, Hirano S, Horikawa A, Michiue T. Fam46a regulates BMP-dependent pre-placodal ectoderm differentiation in Xenopus. Development 2018; 145:dev.166710. [PMID: 30291163 DOI: 10.1242/dev.166710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
The pre-placodal ectoderm (PPE) is a specialized ectodermal region which gives rise to the sensory organs and other systems. The PPE is induced from the neural plate border during neurulation, but the molecular mechanism of PPE formation is not fully understood. In this study, we examined the role of a newly identified PPE gene, Fam46a, during embryogenesis. Fam46a contains a nucleoside triphosphate transferase domain, but its function in early development was previously unclear. We show that Fam46a is expressed in the PPE in Xenopus embryos, and Fam46a knockdown induces abnormalities in the eye formation and the body color. At the neurula stage, Fam46a upregulates the expression of PPE genes and inhibits neural crest formation. We also show that Fam46a physically interacts with Smad1/Smad4 and positively regulates BMP signaling. From these results, we conclude that Fam46a is required for PPE formation via the positive regulation of BMP signaling. Our study provides a new mechanism of ectodermal patterning via cell-autonomous regulation of BMP signaling in the PPE.
Collapse
Affiliation(s)
- Tomoko Watanabe
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takayoshi Yamamoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kohei Tsukano
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sayuki Hirano
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ayumi Horikawa
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
48
|
Xia E, Kanematsu S, Suenaga Y, Elzawahry A, Kondo H, Otsuka N, Moriya Y, Iizasa T, Kato M, Yoshino I, Yokoi S. MicroRNA induction by copy number gain is associated with poor outcome in squamous cell carcinoma of the lung. Sci Rep 2018; 8:15363. [PMID: 30337605 PMCID: PMC6194131 DOI: 10.1038/s41598-018-33696-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Copy number gains in cancer genomes have been shown to induce oncogene expression and promote carcinogenesis; however, their role in regulating oncogenic microRNAs (onco-miRNAs) remains largely unknown. Our aim was to identify onco-miRNAs induced by copy number gains in human squamous cell carcinoma (Sq) of the lung. We performed a genome-wide screen of onco-miRNAs from 245 Sqs using data sets from RNA-sequencing, comparative genomic hybridization, and the corresponding clinical information from The Cancer Genome Atlas. Among 1001 miRNAs expressed in the samples, 231 were correlated with copy number alternations, with only 11 of these being highly expressed in Sq compared to adenocarcinoma and normal tissues. Notably, miR-296-5p, miR-324-3p, and miR-3928-3p expression was significantly associated with poor prognosis. Multivariate analysis using the Cox proportional hazards model showed that miRNA expression and smoking were independent prognostic factors and were associated with poor prognosis. Furthermore, the three onco-miRNAs inhibited FAM46C to induce MYC expression, promoting proliferation of Sq cells. We found that copy number gains in Sq of the lung induce onco-miRNA expression that is associated with poor prognosis.
Collapse
Affiliation(s)
- Endi Xia
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sotaro Kanematsu
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Yusuke Suenaga
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Asmaa Elzawahry
- Department of Bioinformatics, National Cancer Center, Tokyo, Japan
| | - Hitomi Kondo
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Noriko Otsuka
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Yasumitsu Moriya
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Toshihiko Iizasa
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Mamoru Kato
- Department of Bioinformatics, National Cancer Center, Tokyo, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan. .,Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan.
| |
Collapse
|
49
|
Identifying and characterizing functional 3' nucleotide addition in the miRNA pathway. Methods 2018; 152:23-30. [PMID: 30138674 DOI: 10.1016/j.ymeth.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, modifications to microRNAs (miRNAs) via 3' end nucleotide addition have gone from a deep-sequencing curiosity to experimentally confirmed drivers of a range of regulatory activities. Here we overview the methods that have been deployed by researchers seeking to untangle these diverse functional roles and include characterizing not only the nucleotidyl transferases catalyzing the additions but also the nucleotides being added, and the timing of their addition during the miRNA pathway. These methods and their further development are key to clarifying the diverse and sometimes contradictory functional findings presently attributed to these nucleotide additions.
Collapse
|
50
|
Ugajin A, Uchiyama H, Miyata T, Sasaki T, Yajima S, Ono M. Identification and initial characterization of novel neural immediate early genes possibly differentially contributing to foraging-related learning and memory processes in the honeybee. INSECT MOLECULAR BIOLOGY 2018; 27:154-165. [PMID: 29096051 DOI: 10.1111/imb.12355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite possessing a limited number of neurones compared to vertebrates, honeybees show remarkable learning and memory performance, an example being 'dance communication'. In this phenomenon, foraging honeybees learn the location of a newly discovered food source and transmit the information to nestmates by symbolic abdomen vibrating behaviour, leading to navigation of nestmates to the new food source. As an initial step toward understanding the detailed molecular mechanisms underlying the sophisticated learning and memory performance of the honeybee, we focused on the neural immediate early genes (IEGs), which are specific genes quickly transcribed after neural activity without de novo protein synthesis. Although these have been reported to play an essential role in learning and memory processes in vertebrates, far fewer studies have been performed in insects in this regard. From RNA-sequencing analysis and subsequent assays, we identified three genes, Src homology 3 (SH3) domain binding kinase, family with sequence similarity 46 and GB47136, as novel neural IEGs in the honeybee. Foragers and/or orientating bees, which fly around their hives to memorize the positional information, showed induced expression of these IEGs in the mushroom body, a higher-order centre essential for learning and memory, indicating a possible role for the novel IEGs in foraging-related learning and memory processes in the honeybee.
Collapse
Affiliation(s)
- A Ugajin
- Laboratory of Applied Entomology and Zoology, Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - H Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - T Miyata
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - T Sasaki
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| | - S Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - M Ono
- Laboratory of Applied Entomology and Zoology, Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|