1
|
Bang NN, Hayes BJ, Lyons RE, Randhawa IAS, Gaughan JB, Trach NX, McNeill DM. Genomic Prediction and Genome-Wide Association Studies for Productivity, Conformation and Heat Tolerance Traits in Tropical Smallholder Dairy Cows. J Anim Breed Genet 2025; 142:322-341. [PMID: 39462234 DOI: 10.1111/jbg.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Genomic selection (GS) and genome-wide association studies (GWAS) have not been investigated in Vietnamese dairy cattle, even for basic milk production traits, largely due to the scarcity of individual phenotype recording in smallholder dairy farms (SDFs). This study aimed to estimate heritability (h 2) and test the applicability of GS and GWAS for milk production, body conformation and novel heat tolerance traits using single test day phenotypic data. Thirty-two SDFs located in either the north (a lowland vs. a highland) or the south (a lowland vs. a highland) of Vietnam were each visited for an afternoon and the next morning to collect phenotype data of all lactating cows (n = 345). Tail hair from each cow was sampled for subsequent genotyping with a 50K SNP chip at that same visit. Milk production traits (single-test day) were milk yield (MILK, kg/cow/day), energy corrected milk yield adjusted for body weight (ECMbw, kg/100 kg BW/day), fat (mFA, %), protein (mPR, %) and dry matter (mDM, %). Conformation traits were body weight (BW, kg) and body condition score (BCS, 1 = thin to 5 = obese). Heat tolerance traits were panting score (PS, 0 = normal to 4.5 = extremely heat-stressed) and infrared temperatures (IRTs, °C) at 11 areas on the external body surface of the cow (inner vulval lip, outer vulval surface, inner tail base surface, ocular area, muzzle, armpit area, paralumbar fossa area, fore udder, rear udder, forehoof and hind hoof), assessed by an Infrared Camera. Univariate linear mixed models and a 10-fold cross-validation approach were applied for GS. Univariate single SNP mixed linear models were applied for the GWAS. Estimated h 2 (using the genotype information to build relationships among animals) were moderate (0.20-0.37) for ECMbw, mFA, mPR, mRE, BW, BCS and IRT at rear udder; low (0.08-0.19) for PS and other IRTs; and very low (≤ 0.07) for MILK, ECM and mDM. Accuracy of genomic estimated breeding values (GEBVs) was low (≤ 0.12) for MILK, ECM, mDM and IRT at hind hoof; and moderate to high (0.32-0.46) for all other traits. The most significant regions on chromosomes (BTA) associated with milk production traits were 0.47-1.18 Mb on BTA14. Moderate to high h 2 and moderate accuracies of GEBVs for mFA, mPR, ECMbw, BCS, BW, PS and IRTs at rear udder and outer vulval surface suggested that GS using single test day phenotypic data could be applied for these traits. However, a greater sample size is required to decrease the bias of GEBVs by GS and increase the power of detecting significant quantitative trait loci (QTLs) by GWAS.
Collapse
Affiliation(s)
- Nguyen N Bang
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Imtiaz A S Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Nguyen X Trach
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - David M McNeill
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
2
|
Fiore D, Cappelli LV, Zhaoqi L, Kotlov N, Sorokina M, Phillip J, Zumbo P, Yoffe L, Ghione P, Wang A, Han X, Taylor A, Chiu W, Fragliasso V, Tabbo F, Zamponi N, Di Siervi N, Kayembe C, Medico G, Patel RP, Gaudiano M, Machiorlatti R, Astone G, Cacciapuoti MT, Zanetti G, Pignataro C, Eric RA, Patel S, Zammarchi F, Zanettini C, Queiroz L, Nikitina A, Kudryashova O, Karelin A, Nikitin D, Tychinin D, Postovalova E, Bagaev A, Svekolkin V, Belova E, Tikhonova K, Degryse S, Xu C, Novero D, Ponzoni M, Tiacci E, Falini B, Song J, Khodos I, De Stanchina E, Macari G, Cafforio L, Gardini S, Piva R, Medico E, Ng SY, Moskowitz A, Epstein Z, Intlekofer A, Ahmed D, Chan WC, Martin P, Ruan J, Bertoni F, Foà R, Brody JD, Weinstock DM, Osan J, Santambrogio L, Elemento O, Betel D, Tam W, Ruella M, Cerchietti L, Rabadan R, Horwitz S, Inghirami G. A patient-derived T cell lymphoma biorepository uncovers pathogenetic mechanisms and host-related therapeutic vulnerabilities. Cell Rep Med 2025; 6:102029. [PMID: 40147445 DOI: 10.1016/j.xcrm.2025.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Peripheral T cell lymphomas (PTCLs) comprise heterogeneous malignancies with limited therapeutic options. To uncover targetable vulnerabilities, we generate a collection of PTCL patient-derived tumor xenografts (PDXs) retaining histomorphology and molecular donor-tumor features over serial xenografting. PDX demonstrates remarkable heterogeneity, complex intratumor architecture, and stepwise trajectories mimicking primary evolutions. Combining functional transcriptional stratification and multiparametric imaging, we identify four distinct PTCL microenvironment subtypes with prognostic value. Mechanistically, we discover a subset of PTCLs expressing Epstein-Barr virus-specific T cell receptors and uncover the capacity of cancer-associated fibroblasts of counteracting treatments. PDXs' pre-clinical testing captures individual vulnerabilities, mirrors donor patients' clinical responses, and defines effective patient-tailored treatments. Ultimately, we assess the efficacy of CD5KO- and CD30- Chimeric Antigen Receptor T Cells (CD5KO-CART and CD30_CART, respectively), demonstrating their therapeutic potential and the synergistic role of immune checkpoint inhibitors for PTCL treatment. This repository represents a resource for discovering and validating intrinsic and extrinsic factors and improving the selection of drugs/combinations and immune-based therapies.
Collapse
Affiliation(s)
- Danilo Fiore
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute for Experimental Endocrinology and Oncology, "G.Salvatore" IEOS, Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Luca Vincenzo Cappelli
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Liu Zhaoqi
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Jude Phillip
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Chemical and Biomolecular Engineering, Oncology, Sidney Kimmel Comprehensive Cancer Center, Core Member, Institute for Nanobiotechnology (INBT), Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Liron Yoffe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paola Ghione
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Xueshuai Han
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA; China National Center for Bioinformation, Beijing, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Abigail Taylor
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - William Chiu
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Valentina Fragliasso
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Laboratory of translational research, Azienda USL - IRCCS di Reggio Emilia, 42122 Reggio Emila, Italy
| | - Fabrizio Tabbo
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; SC Oncologia ASL CN2 Alba Bra Ospedale Michele e Pietro Ferrero, 12060 Verduno, (CN), Italy
| | - Nahuel Zamponi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Nicolás Di Siervi
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Clarisse Kayembe
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Medico
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcello Gaudiano
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rodolfo Machiorlatti
- Department of Pathology, Center for Experimental Research and Medical Studies, University of Torino, 10126 Torino, Italy
| | - Giuseppina Astone
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maria Teresa Cacciapuoti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giorgia Zanetti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Ruiz Arvin Eric
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sanjay Patel
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Claudio Zanettini
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucio Queiroz
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Chengqi Xu
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Domenico Novero
- Division of Pathological Anatomy, Quality and Safety of Diagnosis and Treatment, Città della Salute e della Scienza, 10126 Turin, Italy
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Enrico Tiacci
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Brunangelo Falini
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia Italy
| | - Joo Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, US
| | | | | | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy
| | - Samuel Y Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; National Cancer Institute, Bethesda, MD 20892, USA
| | - Allison Moskowitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Epstein
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew Intlekofer
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dogan Ahmed
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, US
| | - Peter Martin
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Jia Ruan
- Lymphoma Service, Weill Cornell Medical Center, New York, NY 10065, USA
| | - Francesco Bertoni
- Lymphoma Genomics, Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, EOC,6500 Bellinzona, Switzerland
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Joshua D Brody
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, US; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jaspreet Osan
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Oliver Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, US
| | - Wayne Tam
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematopathology, Northwell Health, New York, NY 11740, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Perelman Center for Advanced Medicine, SPE 8-112, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065 US
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Department of Biomedical Informatics, Columbia University, New York, NY 10027 USA
| | - Steven Horwitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Awaya T, Ajiro M, Kobayashi H, Sawada T, Gotanda K, Noji T, Takemoto N, Iida K, Saito MK, Niu DM, Hagiwara M. Invention of an oral medication for cardiac Fabry disease caused by RNA mis-splicing. SCIENCE ADVANCES 2025; 11:eadt9695. [PMID: 40203112 PMCID: PMC11980850 DOI: 10.1126/sciadv.adt9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
Pathogenic RNA splicing variants have emerged as promising therapeutic targets due to their role in disease while preserving coding sequences. In this study, we developed RECTAS-2.0, a small molecule designed to correct RNA mis-splicing caused by the GLA c.639+919G>A mutation, which leads to the inclusion of a 57-nucleotide poison exon, resulting in later-onset Fabry disease, particularly prevalent in East Asia. RECTAS-2.0 restored normal GLA mRNA splicing and α-galactosidase activity in patient-derived B-lymphoblastoid cell lines and induced pluripotent stem cell-derived cardiomyocytes. Furthermore, oral administration of RECTAS-2.0 effectively corrected splicing in a transgenic mouse model, demonstrating its substantial splice-switching activity and safety for clinical application. RECTAS-2.0 demonstrated potential applicability to other genetic disorders that involve similar exon competition. These findings underscore the therapeutic potential of RECTAS-2.0 for Fabry disease and highlight its broader implications for RNA splicing-targeted therapies in genetic disorders.
Collapse
Affiliation(s)
- Tomonari Awaya
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroko Kobayashi
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Teruo Sawada
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kentoku Gotanda
- Modality Research Laboratories III, Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo 140-8710, Japan
| | - Toshiharu Noji
- Modality Research Laboratories I, Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo 140-8710, Japan
| | - Naohiro Takemoto
- Modality Research Laboratories I, Shinagawa R&D Center, Daiichi Sankyo Co. Ltd., Tokyo 140-8710, Japan
| | - Kei Iida
- Medical Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Castanheira CIGD, Anderson JR, Clarke EJ, Hackl M, James V, Clegg PD, Peffers MJ. Extracellular Vesicle-Derived microRNA Crosstalk Between Equine Chondrocytes and Synoviocytes-An In Vitro Approach. Int J Mol Sci 2025; 26:3353. [PMID: 40244190 DOI: 10.3390/ijms26073353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
This study describes a novel technique to analyze the extracellular vesicle (EV)-derived microRNA (miRNA) crosstalk between equine chondrocytes and synoviocytes. Donor cells (chondrocytes, n = 8; synoviocytes, n = 9) were labelled with 5-ethynyl uridine (5-EU); EVs were isolated from culture media and incubated with recipient cells (chondrocytes [n = 5] were incubated with synoviocyte-derived EVs, and synoviocytes [n = 4] were incubated with chondrocyte-derived EVs). Total RNA was extracted from recipient cells; the 5-EU-labelled RNA was recovered and sequenced. Differential expression analysis, pathway analysis, and miRNA target prediction were performed. Overall, 198 and 213 miRNAs were identified in recipient synoviocytes and chondrocytes, respectively. The top five most abundant miRNAs were similar for synoviocytes and chondrocytes (eca-miR-21, eca-miR-221, eca-miR-222, eca-miR-100, eca-miR-26a), and appeared to be linked to joint homeostasis. There were nine differentially expressed (p < 0.05) miRNAs (eca-miR-27b, eca-miR-23b, eca-miR-31, eca-miR-191a, eca-miR-199a-5p, eca-miR-143, eca-miR-21, eca-miR-181a, and eca-miR-181b) between chondrocytes and synoviocytes, which appeared to be linked to migration of cells, apoptosis, cell viability of connective tissue cell, and inflammation. In conclusion, the reported technique was effective in recovering and characterizing the EV-derived miRNA crosstalk between equine chondrocytes and synoviocytes and allowed for the identification of EV-communicated miRNA patterns potentially related to cell viability, inflammation, and joint homeostasis.
Collapse
Affiliation(s)
| | - James R Anderson
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RP, UK
| | - Emily J Clarke
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | | | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK
| | - Peter D Clegg
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
5
|
Sertbas M, Ulgen KO. Exploring Human Brain Metabolism via Genome-Scale Metabolic Modeling with Highlights on Multiple Sclerosis. ACS Chem Neurosci 2025; 16:1346-1360. [PMID: 40091499 PMCID: PMC11969529 DOI: 10.1021/acschemneuro.5c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Cerebral dysfunctions give rise to a wide range of neurological diseases due to the structural and functional complexity of the human brain stemming from the interactive cellular metabolism of its specific cells, including neurons and glial cells. In parallel with advances in isolation and measurement technologies, genome-scale metabolic models (GEMs) have become a powerful tool in the studies of systems biology to provide critical insights into the understanding of sophisticated eukaryotic systems. In this study, brain cell-specific GEMs were reconstructed for neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells by integrating single-cell RNA-seq data and global Human1 via a task-driven integrative network inference for tissues (tINIT) algorithm. Then, intercellular reactions among neurons, astrocytes, microglia, and oligodendrocytes were added to generate a combined brain model, iHumanBrain2690. This brain network was used in the prediction of metabolic alterations in glucose, ketone bodies, oxygen change, and reporter metabolites. Glucose supplementation increased the subsystems' activities in glycolysis, and ketone bodies elevated those in the TCA cycle and oxidative phosphorylation. Reporter metabolite analysis identified L-carnitine and arachidonate as the top reporter metabolites in gray and white matter microglia in multiple sclerosis (MS), respectively. Carbamoyl-phosphate was found to be the top reporter metabolite in primary progressive MS. Taken together, single and integrated iHumanBrain2690 metabolic networks help us elucidate complex metabolism in brain physiology and homeostasis in health and disease.
Collapse
Affiliation(s)
- Mustafa Sertbas
- Department
of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
- Department
of Chemical Engineering, Istanbul Technical
University, 34469 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
6
|
Zhou S, Zi J, Hu Y, Wang X, Cheng G, Xiong J. Genetic correlation, pleiotropic loci and shared risk genes between major depressive disorder and gastrointestinal tract disorders. J Affect Disord 2025; 374:84-90. [PMID: 39800072 DOI: 10.1016/j.jad.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with gastrointestinal tract (GIT) disorders, while genetic correlation, pleiotropic loci and shared risk genes remain to be explored. METHODS Leveraging genome-wide association study statistics for MDD (n = 170,756), peptic ulcer disease (PUD; n = 16,666), gastroesophageal reflux disease (GORD; n = 54,854), PUD and/or GORD and/or medications (PGM; n = 90,175), irritable bowel syndrome (IBS; n = 28,518), and inflammatory bowel disease (IBD; n = 7045), we determined global and local genetic correlations, identified pleiotropic loci, performed gene-level evaluations, and inferred causal associations using bidirectional Mendelian randomization. RESULTS We found global correlation of MDD with PUD (rg = 0.444, P = 3.135 × 10-24), GORD (rg = 0.459, P = 2.568 × 10-65), PGM (rg = 0.498, P = 6.094 × 10-114), IBS (rg = 0.621, P = 2.483 × 10-63), and IBD (rg = 0.171, P = 1.824 × 10-5). We identified 12 locally correlated regions between MDD and GIT disorders except for IBD, and one shared region (chr11:111985737-113,103,996) for PGM, GORD, and IBS. We found one pleiotropic locus for PUD, 12 for GORD, 30 for PGM, eight for IBS, and seven for IBD, and five shared loci (rs138786869, rs2284189, rs3130063, rs35789010, rs7568369) for GORD and PGM. We respectively observed 14 and 20 overlapping genes for MDD-GORD and MDD-PGM. We showed genetic liabilities to GORD, PGM, and IBS causally increase MDD risk, while all reverse causalities are significant. CONCLUSIONS Our work identifies genetic architectures shared between MDD and GIT disorders, contributes genetic insights to understand depression in the context of gut-brain interactions, and provides potential targets to treat gastrointestinal symptoms in depressive patients.
Collapse
Affiliation(s)
- Siquan Zhou
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
7
|
McManus DT, Valanparambil RM, Medina CB, Scharer CD, McGuire DJ, Sobierajska E, Hu Y, Chang DY, Wieland A, Lee J, Nasti TH, Hashimoto M, Ross JL, Prokhnevska N, Cardenas MA, Gill AL, Clark EC, Abadie K, Kumar AJ, Kaye J, Au-Yeung BB, Kueh HY, Kissick HT, Ahmed R. An early precursor CD8 + T cell that adapts to acute or chronic viral infection. Nature 2025; 640:772-781. [PMID: 39778710 DOI: 10.1038/s41586-024-08562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
This study examines the origin and differentiation of stem-like CD8+ T cells that are essential for sustained T cell immunity in chronic viral infections and cancer and also have a key role in PD-1 directed immunotherapy1-10. These PD-1+TCF-1+TOX+ stem-like CD8+ T cells (also known as precursors of exhausted T cells8,9) have a distinct program that enables them to adapt to chronic antigen stimulation. Here, using the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection, we find that virus-specific stem-like CD8+ T cells are generated early (day 5) during chronic infection, suggesting that this crucial fate commitment occurs irrespective of the infection outcome. Indeed, we find that nearly identical populations of stem-like CD8+ T cells were generated early during acute or chronic LCMV infection, and that antigen was essential for maintaining the stem-like phenotype. We performed reciprocal adoptive transfer experiments to determine the fate of these early stem-like CD8+ T cells after viral clearance versus persistence. After transfer of day 5 stem-like CD8+ T cells from chronically infected mice into acutely infected mice, these cells downregulated canonical markers of the chronic stem-like CD8+ T cells and expressed markers (CD127 and CD62L) associated with central memory CD8+ T cells. Reciprocally, when day 5 stem-like cells from acutely infected mice were transferred into chronically infected mice, these CD8+ T cells functioned like chronic resource cells and responded effectively to PD-1 therapy. These findings highlight the ability of these early PD-1+TCF-1+TOX+ stem-like CD8+ T cells to adapt their differentiation trajectory to either an acute or a chronic viral infection. Importantly, our study shows that the host is prepared a priori to deal with a potential chronic infection.
Collapse
Affiliation(s)
- Daniel T McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher B Medina
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald J McGuire
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yinghong Hu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Y Chang
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Judong Lee
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tahseen H Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - James L Ross
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nataliya Prokhnevska
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda L Gill
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa C Clark
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Arjun J Kumar
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Haydn T Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Di Rienzi SC, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. FASEB J 2025; 39:e70408. [PMID: 40098558 PMCID: PMC11914943 DOI: 10.1096/fj.202401669r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Intestinal microbes can beneficially impact host physiology, prompting investigations into the therapeutic usage of such microbes in a range of diseases. For example, human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments, including colic, infection, and inflammation, as well as for non-intestinal ailments, including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses, we postulated that L. reuteri may also regulate intestinal hormones to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promote the secretion of enteric hormones, including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta, and identify by metabolomics metabolites potentially mediating these effects on hormones. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Heather A. Danhof
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Micah D. Forshee
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Ari Roberts
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Robert A. Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
9
|
Frank JK, Kampleitner C, Heimel P, Leinfellner G, Hanetseder D, Sperger S, Frischer A, Schädl B, Tangl S, Lindner C, Gamauf J, Grillari-Voglauer R, O’Brien FJ, Pultar M, Redl H, Hackl M, Grillari J, Marolt Presen D. Circulating miRNAs are associated with successful bone regeneration. Front Bioeng Biotechnol 2025; 13:1527493. [PMID: 40225119 PMCID: PMC11985807 DOI: 10.3389/fbioe.2025.1527493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Bone healing is a well-orchestrated process involving various bone cells and signaling pathways, where disruptions can result in delayed or incomplete healing. MicroRNAs (miRNAs) are small non-coding RNAs capable of influencing various cellular processes, including bone remodeling. Due to their biological relevance and stable presence in biofluids, miRNAs may serve as candidates for diagnosis and prognosis of delayed bone healing. The aim of the study was to investigate changes in miRNAs circulating in the blood during the healing of rat calvaria defects as biomarkers of successful bone regeneration. Methods Standardized calvaria defects were created in 36 Wistar rats with a trephine drill and treated with collagen hydroxyapatite (CHA) scaffolds. The treatment groups included CHA scaffolds only, CHA scaffolds containing a plasmid coding for bone morphogenetic protein 2 (BMP2) and miR-590-5p, CHA scaffolds containing mesenchymal stromal cell-derived extracellular vesicles, and empty defects as a control group. After 1, 4 and 8 weeks of healing, the animals were evaluated by microcomputed tomography (microCT), as well as subjected to histological analyses. Blood was sampled from the tail vein prior to surgeries and after 1, 4, and 8 weeks of healing. miRNAs circulating in the plasma were determined using next-generation sequencing. Results Variability of bone regeneration within the four groups was unexpectedly high and did not result in significant differences between the groups, as indicated by the microCT and histological analyses of the newly formed bone tissue. However, irrespective of the treatment group and regenerative activity, we identified miRNAs with distinct expression patterns of up- and downregulation at different time points. Furthermore, rats with high and low regenerative activity were characterized by distinct circulating miRNA profiles. miR-133-3p was identified as the top upregulated miRNA and miR-375-3p was identified as the top downregulated miRNA in animals exhibiting strong regeneration over all time points evaluated. Conclusion Our study indicates that regardless of the treatment group, success or lack of bone regeneration is associated with a distinct expression pattern of circulating microRNAs. Further research is needed to determine whether their levels in the blood can be used as predictive factors of successful bone regeneration.
Collapse
Affiliation(s)
- Julia K. Frank
- Herz Jesu Krankenhaus, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Carina Kampleitner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Gabriele Leinfellner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Amelie Frischer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Claudia Lindner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Johanna Gamauf
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | | | - Fergal J O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| | - Marianne Pultar
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Centre for the Technologies of Gene and Cell Therapy, The National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
10
|
Yang Y, Chen J, Zhao X, Gong F, Liu R, Miao J, Lin M, Ge F, Chen W. Genetic analysis reveals the shared genetic architecture between breast cancer and atrial fibrillation. Front Genet 2025; 16:1450259. [PMID: 40201568 PMCID: PMC11975938 DOI: 10.3389/fgene.2025.1450259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Background Epidemiological studies have observed an association between atrial fibrillation (AF) and breast cancer (BC). However, the underlying mechanisms linking these two conditions remain unclear. This study aims to systematically explore the genetic association between AF and BC. Methods We utilized the largest available genome-wide association study (GWAS) datasets for European individuals, including summary data for AF (N = 1,030,836) and BC (N = 247,173). Multiple approaches were employed to systematically investigate the genetic relationship between AF and BC from the perspectives of pleiotropy and causality. Results Global genetic analysis using LDSC and HDL revealed a genetic correlation between AF and BC (rg = 0.0435, P = 0.039). Mixer predicted genetic overlap between non-MHC regions of the two conditions (n = 125, rg = 0.05). Local genetic analyses using LAVA and GWAS-PW identified 22 regions with potential genetic sharing. Cross-trait meta-analysis by CPASSOC identified one novel pleiotropic SNP and 14 pleiotropic SNPs, which were subsequently annotated. Eight of these SNPs passed Bayesian colocalization tests, including one novel pleiotropic SNP. Further fine-mapping analysis identified a set of causal SNPs for each significant SNP. TWAS analyses using JTI and FOCUS models jointly identified 10 pleiotropic genes. Phenome-wide association study (PheWAS) of novel pleiotropic SNPs identified two eQTLs (PELO, ITGA1). Gene-based PheWAS results showed strong associations with BMI, height, and educational attainment. PCGA methods combining GTEx V8 tissue data and single-cell RNA data identified 16 co-enriched tissue types (including cardiovascular, reproductive, and digestive systems) and 5 cell types (including macrophages and smooth muscle cells). Finally, univariable and multivariable bidirectional Mendelian randomization analyses excluded a causal relationship between AF and BC. Conclusion This study systematically investigated the shared genetic overlap between AF and BC. Several pleiotropic SNPs and genes were identified, and co-enriched tissue and cell types were revealed. The findings highlight common mechanisms from a genetic perspective rather than a causal relationship. This study provides new insights into the AF-BC association and suggests potential experimental targets and directions for future research. Additionally, the results underscore the importance of monitoring the potential risk of one disease in patients diagnosed with the other.
Collapse
Affiliation(s)
- Yang Yang
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Jiayi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - XiaoHua Zhao
- Department of Cardiology, Yan’an Hospital Affiliated To Kunming Medical University, Kunming, China
| | - Fuhong Gong
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Ruimin Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Jingge Miao
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
11
|
Han L, Liu Z, Jing Z, Liu Y, Peng Y, Chang H, Lei J, Wang K, Xu Y, Liu W, Wu Z, Li Q, Shi X, Zheng M, Wang H, Deng J, Zhong Y, Pan H, Lin J, Zhang R, Chen Y, Wu J, Xu M, Ren B, Cheng M, Yu Q, Song X, Lu Y, Tang Y, Yuan N, Sun S, An Y, Ding W, Sun X, Wei Y, Zhang S, Dou Y, Zhao Y, Han L, Zhu Q, Xu J, Wang S, Wang D, Bai Y, Liang Y, Liu Y, Chen M, Xie C, Bo B, Li M, Zhang X, Ting W, Chen Z, Fang J, Li S, Jiang Y, Tan X, Zuo G, Xie Y, Li H, Tao Q, Li Y, Liu J, Liu Y, Hao M, Wang J, Wen H, Liu J, Yan Y, Zhang H, Sheng Y, Yu S, Liao X, Jiang X, Wang G, Liu H, Wang C, Feng N, Liu X, Ma K, Xu X, Han T, Cao H, Zheng H, Chen Y, Lu H, Yu Z, Zhang J, Wang B, Wang Z, Xie Q, Pan S, Liu C, Xu C, Cui L, Li Y, Liu S, Liao S, Chen A, Wu QF, et alHan L, Liu Z, Jing Z, Liu Y, Peng Y, Chang H, Lei J, Wang K, Xu Y, Liu W, Wu Z, Li Q, Shi X, Zheng M, Wang H, Deng J, Zhong Y, Pan H, Lin J, Zhang R, Chen Y, Wu J, Xu M, Ren B, Cheng M, Yu Q, Song X, Lu Y, Tang Y, Yuan N, Sun S, An Y, Ding W, Sun X, Wei Y, Zhang S, Dou Y, Zhao Y, Han L, Zhu Q, Xu J, Wang S, Wang D, Bai Y, Liang Y, Liu Y, Chen M, Xie C, Bo B, Li M, Zhang X, Ting W, Chen Z, Fang J, Li S, Jiang Y, Tan X, Zuo G, Xie Y, Li H, Tao Q, Li Y, Liu J, Liu Y, Hao M, Wang J, Wen H, Liu J, Yan Y, Zhang H, Sheng Y, Yu S, Liao X, Jiang X, Wang G, Liu H, Wang C, Feng N, Liu X, Ma K, Xu X, Han T, Cao H, Zheng H, Chen Y, Lu H, Yu Z, Zhang J, Wang B, Wang Z, Xie Q, Pan S, Liu C, Xu C, Cui L, Li Y, Liu S, Liao S, Chen A, Wu QF, Wang J, Liu Z, Sun Y, Mulder J, Yang H, Wang X, Li C, Yao J, Xu X, Liu L, Shen Z, Wei W, Sun YG. Single-cell spatial transcriptomic atlas of the whole mouse brain. Neuron 2025:S0896-6273(25)00133-3. [PMID: 40132589 DOI: 10.1016/j.neuron.2025.02.015] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
A comprehensive atlas of genes, cell types, and their spatial distribution across a whole mammalian brain is fundamental for understanding the function of the brain. Here, using single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq techniques, we generated a mouse brain atlas with spatial information for 308 cell clusters at single-cell resolution, involving over 4 million cells, as well as for 29,655 genes. We have identified cell clusters exhibiting preference for cortical subregions and explored their associations with brain-related diseases. Additionally, we pinpointed 155 genes with distinct regional expression patterns within the brainstem and unveiled 513 long non-coding RNAs showing region-enriched expression in the adult brain. Parcellation of brain regions based on spatial transcriptomic information revealed fine structure for several brain areas. Furthermore, we have uncovered 411 transcription factor regulons showing distinct spatiotemporal dynamics during neurodevelopment. Thus, we have constructed a single-cell-resolution spatial transcriptomic atlas of the mouse brain with genome-wide coverage.
Collapse
Affiliation(s)
- Lei Han
- BGI Research, Hangzhou 310030, China
| | - Zhen Liu
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zehua Jing
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | - Junjie Lei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanfang Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Liu
- Lingang Laboratory, Shanghai 200031, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyuan Zheng
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yanqing Zhong
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Junkai Lin
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiyi Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinhua Wu
- Lingang Laboratory, Shanghai 200031, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Qian Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxiang Song
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanbing Lu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanchun Tang
- BGI Research, Hangzhou 310030, China; BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Nini Yuan
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingjie An
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenqun Ding
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Sun
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanrong Wei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yannong Dou
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luyao Han
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Junfeng Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwen Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Yikai Liang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengni Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Xie
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Binshi Bo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Li
- BGI Research, Shenzhen 518083, China
| | - Xinyan Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wang Ting
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Fang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xing Tan
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guolong Zuo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Xie
- BGI Research, Shenzhen 518083, China
| | - Huanhuan Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quyuan Tao
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuyang Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Hao
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Wen
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jiabing Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Sheng
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shui Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xuyin Jiang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangling Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Congcong Wang
- Lingang Laboratory, Shanghai 200031, China; Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning Feng
- BGI Research, Shenzhen 518083, China
| | - Xin Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Xiangjie Xu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Huateng Cao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Haorong Lu
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zixian Yu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Qing Xie
- BGI Research, Shenzhen 518083, China
| | | | - Chuanyu Liu
- BGI Research, Shenzhen 518083, China; Shenzhen Proof-of-Concept Center of Digital Cytopathology, BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Chan Xu
- BGI Research, Qingdao 266555, China
| | - Luman Cui
- BGI Research, Shenzhen 518083, China
| | - Yuxiang Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Sha Liao
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
| | - Ao Chen
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China; JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China; Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Wang
- BGI Research, Shenzhen 518083, China; China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jan Mulder
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | | | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | - Xun Xu
- BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China.
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Zhiming Shen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| | - Wu Wei
- Lingang Laboratory, Shanghai 200031, China; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
12
|
Lopez-Pajares V, Bhaduri A, Zhao Y, Gowrishankar G, Donohue LKH, Guo MG, Siprashvili Z, Miao W, Nguyen DT, Yang X, Li AM, Tung ASH, Shanderson RL, Winge MCG, Meservey LM, Srinivasan S, Meyers RM, Guerrero A, Ji AL, Garcia OS, Tao S, Gambhir SS, Long JZ, Ye J, Khavari PA. Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation. Cell Stem Cell 2025:S1934-5909(25)00088-8. [PMID: 40120584 DOI: 10.1016/j.stem.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Non-energetic roles for glucose are largely unclear, as is the interplay between transcription factors (TFs) and ubiquitous biomolecules. Metabolomic analyses uncovered elevation of intracellular glucose during differentiation of diverse cell types. Human and mouse tissue engineered with glucose sensors detected a glucose gradient that peaked in the outermost differentiated layers of the epidermis. Free glucose accumulation was essential for epidermal differentiation and required the SGLT1 glucose transporter. Glucose affinity chromatography uncovered glucose binding to diverse regulatory proteins, including the IRF6 TF. Direct glucose binding enabled IRF6 dimerization, DNA binding, genomic localization, and induction of IRF6 target genes, including essential pro-differentiation TFs GRHL1, GRHL3, HOPX, and PRDM1. These data identify a role for glucose as a gradient morphogen that modulates protein multimerization in cellular differentiation.
Collapse
Affiliation(s)
- Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aparna Bhaduri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Marten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey M Meservey
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Guerrero
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Dhangar S, Shanmukhaiah C, Ghatanatti J, Sawant L, Maurya N, Vundinti BR. Comprehensive analysis of tyrosine kinase domain mutations and imatinib resistance in chronic myeloid leukemia patients. Leuk Res 2025; 152:107679. [PMID: 40112623 DOI: 10.1016/j.leukres.2025.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Tyrosine kinase domain mutations (TKDMs) plays an important role in prognosis of chronic myeloid leukemia (CML). The aim of the present study was to identify the TKDMs associated with imatinib mesylate (IM) drug resistant in CML, following European leukemia Net (ELN) guidelines. Direct sequencing analysis revealed point mutations in 69.44 % (50/72), compound/ polyclonal mutations in 11.11 % (8/72) and large deletions in 4.16 % (3/72) of IM non-responder CML patients. Additionally, we have identified low level mutations in 30.55 % of warning group patients through NGS analysis, that include singly occurring point mutations (5) and polyclonal (6) mutations with mutant allele frequency ranging from 1.1 % to 14.70 %. The low-level mutations detected through NGS in warning group patients; may be responsible for suboptimal response in our study. However, follow-up studies are important to understand the mechanism of clonal evolution. We also identified 5 novel mutations that had not been reported in public databases which expands the spectrum of known mutations in BCR::ABL1 fusion gene. Our study also highlighted the impact on patient outcomes following the implementation of ELN guidelines underscores the importance of adherence to standardized protocols in clinical practice.
Collapse
Affiliation(s)
- Somprakash Dhangar
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | | | - Jagdeeshwar Ghatanatti
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Leena Sawant
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Nehakumari Maurya
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
14
|
Haws SA, Liu Y, Green CL, Chaiyakul K, Mishra P, Babygirija R, Armstrong EA, Mehendale AT, Ong IM, Lamming DW, Denu JM. Individual dietary amino acid restrictions induce distinct metabolic and chromatin states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.06.570456. [PMID: 38106163 PMCID: PMC10723491 DOI: 10.1101/2023.12.06.570456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dietary protein and essential amino acid (EAA) restriction promote favorable metabolic reprogramming, although the extent to which shared or EAA-specific mechanisms facilitate diet-associated phenotypes remains unclear. Here, we compared the physiological and molecular effects of dietary methionine, leucine, or isoleucine depletion (Met-D, Leu-D, and Ile-D) in C57BL/6J mice. Each diet elicited responses not phenocopied by mTORC1 inhibition, including reduced fat mass and hepatic amino acid catabolism. Ile-D yielded additional distinct responses, highlighted by histone H2A/H4 hypoacetylation and maintained hepatic acetyl-CoA levels despite downregulated FA β-oxidation. Multi-Omics Factor Analysis of 14,139 data points objectively affirmed Ile-D phenotypes are distinct from Met-D or Leu-D and identified several metabolic and chromatin features as primary discriminators. Metabolic and epigenetic responses to Ile-D were recapitulated in vitro , suggesting underlying mechanisms represent fundamental cellular properties. Together, these results demonstrate EAAs can stimulate unique phenotypes and highlight distinct molecular mechanisms by which EAAs may inform metabolic health.
Collapse
|
15
|
Kumari M, Chauhan R, Garg P. MedKG: enabling drug discovery through a unified biomedical knowledge graph. Mol Divers 2025:10.1007/s11030-025-11164-z. [PMID: 40085402 DOI: 10.1007/s11030-025-11164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Biomedical knowledge graphs have emerged as powerful tools for drug discovery, but existing platforms often suffer from outdated information, limited accessibility, and insufficient integration of complex data. This study presents MedKG, a comprehensive and continuously updated knowledge graph designed to address these challenges in precision medicine and drug discovery. MedKG integrates data from 35 authoritative sources, encompassing 34 node types and 79 relationships. A Continuous Integration/Continuous Update pipeline ensures MedKG remains current, addressing a critical limitation of static knowledge bases. The integration of molecular embeddings enhances semantic analysis capabilities, bridging the gap between chemical structures and biological entities. To demonstrate MedKG's utility, a novel hybrid Relational Graph Convolutional Network for disease-drug link prediction, MedLINK was developed and used in case studies on clinical trial data for disease drug link prediction. Furthermore, a web-based application with user-friendly APIs and visualization tools was built, making MedKG accessible to both technical and non-technical users, which is freely available at http://pitools.niper.ac.in/medkg/.
Collapse
Affiliation(s)
- Madhavi Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Rohit Chauhan
- Department of Computer Science, National Institute of Technology (NIT), Durgapur, MG Road, Durgapur, West Bengal, 713209, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Sector 67, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
16
|
Babaei S, Varkey DA, Adamack AT, LeBlanc NM, Puncher GN, Parent GJ, Wang Y, Rowe S, D’Aloia CC, Pavey SA. Genome-wide SNPs reveal novel genetic relationships among Atlantic cod (Gadus morhua) from the south coast of Newfoundland, Canada (subdivision 3Ps), Northern cod stock complex, and Gulf of St Lawrence. PLoS One 2025; 20:e0317768. [PMID: 40085548 PMCID: PMC11908700 DOI: 10.1371/journal.pone.0317768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/03/2025] [Indexed: 03/16/2025] Open
Abstract
The south coast of Newfoundland, Canada (Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps) is known to be a mixing zone for Atlantic cod (Gadus morhua). Tagging and genetic studies have shown cod from the Northern and Southern Gulf of St. Lawrence (NAFO Divisions 3Pn, 4RST), Southern Grand Banks (3NO), and the Northern cod stock complex (2J3KL) frequent the waters of 3Ps at various times throughout the year, but the extent of genetic mixing is unknown. However, 3Ps has not been the central focus of previous large-scale genomic analyses of population structure, a knowledge gap that we address using single nucleotide polymorphisms. Using 38,111 neutral markers from reduced representation next-generation sequencing data, we determined the provenance of 3Ps cod relative to the Northern stock complex, Gulf of St. Lawrence, Bay of Fundy, and Gulf of Maine. We present evidence for genetic similarity between 3Ps and the Northern stock complex, particularly NAFO Division 3L. Additionally, genetic clustering analyses suggest 3Ps to be a mixed stock, containing individuals from the Northern stock complex and Gulf of St. Lawrence. Genetic clustering also suggests that there are two subtle subclusters of Northern stock complex and 3Ps cod, indicating there may be subtle population structure within the Northern stock complex and surrounding zones. This new information on population structure gives insight into connectivity and may be useful in future management for rebuilding cod populations.
Collapse
Affiliation(s)
- Sarah Babaei
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Divya A. Varkey
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John, Newfoundland and Labrador, Canada
| | - Aaron T. Adamack
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John, Newfoundland and Labrador, Canada
| | - Nathalie M. LeBlanc
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Gregory N. Puncher
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Geneviève J. Parent
- Fisheries and Oceans Canada, Maurice-Lamontagne Institute, Mont-Joli, Quebec, Canada
| | - Yanjun Wang
- Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, New Brunswick, Canada
| | - Sherrylynn Rowe
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John, Newfoundland and Labrador, Canada
| | - Cassidy C. D’Aloia
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Scott A. Pavey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
17
|
Lima MFDO, Nogueira VB, Maury W, Wilson ME, Júnior METD, Teixeira DG, Bezerra Jeronimo SM. Altered Cellular Pathways in the Blood of Patients With Guillain-Barre Syndrome. J Peripher Nerv Syst 2025; 30:e70012. [PMID: 40099626 DOI: 10.1111/jns.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND AND AIMS Guillain-Barré syndrome (GBS) is a rare disorder, with a global incidence ranging from 1 to 2 individuals per 100,000 people/year. Infections and vaccines have been implicated as causes triggering GBS. The aim of the study was to identify host genes involved in the pathogenesis of GBS when Zika (ZIKV) and Chikungunya viruses (CHIKV) were introduced in Brazil. METHODS A case-control study of GBS was performed when ZIKV and CHIKV were introduced into a naïve population. GBS was studied during both acute and postacute phases. RNA sequencing was conducted using whole blood. RESULTS GBS typically manifested a week after rash and fever; acute inflammatory demyelinating polyradiculoneuropathy was more frequent. None of the GBS cases had a poor outcome. Serological assays for ZIKV and CHIKV revealed high titers of immunoglobulin G for both viruses in 9 out of 11 subjects. Metatranscriptomic analyses unveiled an increased abundance of reads attributed to Pseudomonas tolaasii and Toxoplasma gondii in the acute phase. Analysis of differentially expressed host genes during the acute phase revealed altered expression of genes associated with axogenesis, synapse assembly, and presynapse organization. Moreover, genes upregulated during acute GBS were primarily related to inflammation and the inflammasome pathways, including AIM2, NLR family genes and LRR-protein genes, and IL-10. INTERPRETATION These findings suggest that inflammasome activation via AIM2 could play a role in tissue damage during GBS. Further investigation into the general activation of innate inflammatory responses is warranted to elucidate their potential contribution to the pathology of GBS.
Collapse
Affiliation(s)
| | - Viviane Brito Nogueira
- Graduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Mary Edythe Wilson
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| | - Mário Emílio Teixeira Dourado Júnior
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
- Onofre Lopes University Hospital and Department of Integrative Medicine, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Diego Gomes Teixeira
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Selma Maria Bezerra Jeronimo
- Graduate Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Institute of Science and Technology of Tropical Diseases, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
18
|
Yang C, Lee GB, Hao L, Hu F. TMEM106B deficiency leads to alterations in lipid metabolism and obesity in the TDP-43 Q331K knock-in mouse model. Commun Biol 2025; 8:315. [PMID: 40011708 PMCID: PMC11865606 DOI: 10.1038/s42003-025-07752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
The TMEM106B gene, encoding a lysosomal membrane protein, is closely linked with brain aging and neurodegeneration. TMEM106B has been identified as a risk factor for several neurodegenerative diseases characterized by aggregation of the RNA-binding protein TDP-43, including frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). To investigate the role of TMEM106B in TDP-43 proteinopathy, we ablated TMEM106B in the TDP-43Q331K knock-in mouse line, which expresses an ALS-linked TDP-43 mutation at endogenous levels. We found that TMEM106B deficiency leads to glial activation, Purkinje cell loss, and behavioral deficits in TDP-43Q331K mice without inducing typical TDP-43 pathology. Interestingly, ablation of TMEM106B results in significant body weight gain, increased fat deposition, and hepatic triglyceride (TG) accumulation in TDP-43Q331K mice. In addition, lipidomic and transcriptome analysis shows a profound alteration in lipid metabolism in the liver of TDP-43Q331KTmem106b-/- mice. Our studies reveal a novel function of TMEM106B and TDP-43 in lipid metabolism and provide new insights into their roles in neurodegeneration.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gwang Bin Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Chen L, Qu Y, Cui H, Zhang W, Wu X, Zhao X, Xiao J, Tang M, Wang Y, Zou Y, Qiu L, Tan Z, Lei B, Ma X, Zhang D, Liu Y, Fan M, Li J, Zhang B, Jiang X. Genomic correlation, shared loci, and causal association between obesity, periodontitis and tooth loss. Sci Rep 2025; 15:5155. [PMID: 39934647 DOI: 10.1038/s41598-025-89782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Observational studies have reported an association of obesity with periodontitis and tooth loss, yet findings remain inconsistent. We aim to investigate the genetic link underlying obesity-related traits (BMI [body mass index], WHR [waist-to-hip ratio], WHRadjBMI and childhood BMI), periodontitis and tooth loss. Leveraging summary statistics from large-scale genome-wide association studies, we comprehensively investigated the pair-wise genetic correlation using linkage disequilibrium score regression (LDSC) and SUPERGNOVA, identified shared loci using cross-phenotype association analysis (CPASSOC), and estimated causal association using Mendelian randomization. We identified a significant genetic correlation of obesity with tooth loss, but not with periodontitis. Partitioning the genome into LD-independent regions revealed 10 significantly shared local signals across six regions. Genome-wide cross-trait analysis uncovered 14 shared loci, four of which were colocalized: rs2064044 (PP4 = 0.94), rs6000329 (PP4 = 0.86), rs7134628 (PP4 = 0.86), and rs1286769 (PP4 = 0.90). Notably, rs1286769, identified via CPASSOC and validated through colocalization analysis, is located near RARβ, a gene associated with both BMI and denture use. Mendelian randomization revealed a nominally-significant causal association of obesity with periodontitis (P = 0.045) but a robust causal association with tooth loss represented by number of teeth (BMI: beta = [Formula: see text]0.20, 95%CI = [Formula: see text]0.26 to [Formula: see text]0.14, P = 5.27 × 10-11; WHR: beta = [Formula: see text]0.16, 95%CI = [Formula: see text]0.24 to [Formula: see text]0.08, P = 3.71 × 10-5). Results of CAUSE were consistent with main findings. From a genetic perspective, our work highlights an intrinsic link between obesity, periodontitis and tooth loss, which may add new lines of evidence and provide insights for clinical and public oral health applications.
Collapse
Affiliation(s)
- Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xunying Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Jinyu Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Lingli Qiu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Zhixin Tan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Bowen Lei
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofeng Ma
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Di Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Mengyu Fan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
- Departments of Cardiology, Neurology, and Oncology, Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou, China.
- Department of Occupational and Environmental Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, China-PUMC C. C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
20
|
Muffels IJJ, Waterham HR, D'Alessandro G, Zagnoli-Vieira G, Sacher M, Lefeber DJ, Van der Vinne C, Roifman CM, Gassen KLI, Rehmann H, Van Haaften-Visser DY, Nieuwenhuis ESS, Jackson SP, Fuchs SA, Wijk F, van Hasselt P. Imaging flow cytometry-based cellular screening elucidates pathophysiology in individuals with Variants of Uncertain Significance. Genome Med 2025; 17:12. [PMID: 39920830 PMCID: PMC11806768 DOI: 10.1186/s13073-025-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Deciphering variants of uncertain significance (VUS) represents a major diagnostic challenge, partially due to the lack of easy-to-use and versatile cellular readouts that aid the interpretation of pathogenicity and pathophysiology. To address this challenge, we propose a high-throughput screening of cellular functionality through an imaging flow cytometry (IFC)-based platform. METHODS Six assays to evaluate autophagic-, lysosomal-, Golgi- health, mitochondrial function, ER stress, and NF-κβ activity were developed in fibroblasts. Assay sensitivity was verified with compounds (N = 5) and positive control patients (N = 6). Eight healthy controls and 20 individuals with VUS were screened. RESULTS All molecular compounds and positive controls showed significant changes on their cognate assays, confirming assay sensitivity. Simultaneous screening of positive control patients on all six assays revealed distinct phenotypic profiles. In addition, individuals with VUS(es) in well-known disease genes showed distinct - but similar-phenotypic profiles compared to patients with pathogenic variants in the same gene.. For all individuals with VUSes in Genes of Uncertain Significance (GUS), we found one or more of six assays were significantly altered. Broadening the screening to an untargeted approach led to the identification of two clusters that allowed for the recognition of altered cell cycle dynamics and DNA damage repair defects. Experimental follow-up of the 'DNA damage repair defect cluster' led to the discovery of highly specific defects in top2cc release from double-strand DNA breaks in one of these individuals, harboring a VUS in the RAD54L2 gene. CONCLUSIONS Our high-throughput IFC-based platform simplifies the process of identifying VUS pathogenicity through six assays and allows for the recognition of useful pathophysiological markers that structure follow-up experiments, thereby representing a novel valuable tool for precise functional diagnostics in genomics.
Collapse
Affiliation(s)
- Irena Josephina Johanna Muffels
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Hans R Waterham
- United For Metabolic Diseases (UMD), Amsterdam, the Netherlands
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | | | - Guido Zagnoli-Vieira
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Dirk J Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Celine Van der Vinne
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Chaim M Roifman
- The Hospital for Sick Children and Research Institute, The University of Toronto, Toronto, Canada
| | - Koen L I Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Desiree Y Van Haaften-Visser
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edward S S Nieuwenhuis
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Rare Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Femke Wijk
- Center for Translational Immunology (CTI), University Medical Center Utrecht (UMC), Utrecht University (UU), Utrecht, The Netherlands
| | - Peter van Hasselt
- Department of Metabolic Diseases, Division Pediatrics, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Paplińska-Goryca M, Misiukiewicz-Stępień P, Wróbel M, Mycroft-Rzeszotarska K, Adamska D, Rachowka J, Królikowska M, Goryca K, Krenke R. The impaired response of nasal epithelial cells to microplastic stimulation in asthma and COPD. Sci Rep 2025; 15:4242. [PMID: 39905077 PMCID: PMC11794662 DOI: 10.1038/s41598-025-87242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Microplastic particles from the air are inhaled and accumulate in the lungs, potentially causing immunological reactions and airway tissue injury. This study aimed to evaluate the biological effects of polyamide fibres on nasal epithelium co-cultivated with macrophages in control, asthma, and COPD groups. Nasal epithelial cells alone or in co-culture with monocyte-derived macrophages were exposed to polyamide fibres for 48 h. We identified 8 differentially expressed genes (DEGs) in controls, 309 DEGs in asthma (including ANKRD36C, BCL2L15, FCGBP, and IL-19), and 22 DEGs in COPD (e.g., BCL2L15, IL-19, CAPN14, PGBD5, PTPRH), particularly in epithelial/moMφ co-cultures. Microplastic exposure induced inflammatory cytokine secretion only for IL-8 production in controls (epithelial/ moMφs co-culture) and asthmatic (monoculture) epithelial cells in contrast to PM2.5, which was a strong inflammatory inducer. Gene Ontology analysis revealed that microplastic exposure affected sterol and cholesterol biosynthesis, secondary alcohol metabolism, and acetyl-CoA metabolism in asthma, and cell motility, chemokine signaling, leukocyte migration, and chemotaxis in COPD. Microplastic stimulation altered the response of airway epithelial cells in obstructive lung diseases differently than in controls, linking to Th2 inflammation, stress response modulation, and carcinogenesis. Asthmatic and COPD epithelial cells are more susceptible to damage from microplastic fibre exposure.
Collapse
Affiliation(s)
- Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| | - Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Monika Wróbel
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Katarzyna Mycroft-Rzeszotarska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Dorota Adamska
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Julia Rachowka
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Krzysztof Goryca
- Genomic Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| |
Collapse
|
22
|
Shankarappa B, Prasad VP, Kumar S, Rao RS, Royal AB, Swamy M, Prasad P, Niranjana Murthy AS, Ganesh S, Viswanath B, Jain S, Purushottam M, Thyloth M. A Novel Homozygous Variant in CPLANE1 Gene in a Patient with Developmental Deficits. Mol Syndromol 2025; 16:87-92. [PMID: 39911166 PMCID: PMC11793906 DOI: 10.1159/000541167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/27/2024] [Indexed: 02/07/2025] Open
Abstract
Background Oral-facial-digital syndrome (OFDS) type 6 is a rare subtype of Joubert syndrome characterized by orofacial anomalies and polydactyly with neurological features of Joubert syndrome. This rare syndrome is divided into thirteen subtypes, all of which demonstrate autosomal recessive inheritance, except for OFDS type 1 which demonstrates X-linked dominant inheritance. Case Presentation A 19-year-old man with mild developmental delay was brought to a rural community clinic, as he had become irritable and angry, in the recent past. There was no history of prior medical conditions. In view of orofacial anomalies, and developmental deficits, a genetic analysis was requested. Karyotype analysis revealed a normal male karyotype (46,XY) in all 30 metaphase spreads analyzed. No numerical or structural chromosomal abnormalities were observed. Clinical exome sequencing and chromosomal microarray detected a variant of uncertain significance in exon 5 of CPLANE1 gene c.365T>G (p.Val122Gly) leading to substitution of Glycine for Valine. This was confirmed by Sanger sequencing. Parents were heterozygous, and the unaffected sibling was homozygous for the wild-type allele. This variant has not been reported earlier in the mutation databases or gnomAD. Runs of homozygosity (ROH) analysis showed a 3.2 Mb ROH around the CPLANE1 gene in the proband, which was absent in both parents and the unaffected sibling. Conclusion We find a novel homozygous mutation in the CPLANE1 gene in a patient of non-consanguineous parentage with atypical orofacial features. This suggests that potentially deleterious, rare variants may occur in the heterozygous state in the population. Hence, sequencing of population samples might help understand the genetic epidemiology of rare syndromes.
Collapse
Affiliation(s)
- Bhagyalakshmi Shankarappa
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Vishnu P. Prasad
- Department of Psychiatry, MS Ramaiah Medical College, Bengaluru, India
| | - Sujith Kumar
- Department of Psychiatry, MS Ramaiah Medical College, Bengaluru, India
| | | | - Angel Beula Royal
- Department of Psychiatry, MS Ramaiah Medical College, Bengaluru, India
| | | | - Pannaga Prasad
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ashitha S. Niranjana Murthy
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Suhas Ganesh
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Biju Viswanath
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sanjeev Jain
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Meera Purushottam
- Molecular Genetics Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Murali Thyloth
- Department of Psychiatry, Oxford Medical College, Bengaluru, India
| |
Collapse
|
23
|
Babushkina NP, Nikolaeva AM, Dolbnya AD, Shavrak VE, Ryabov VV. The role of SELE gene polymorphism in ST-elevation myocardial infarction. Vavilovskii Zhurnal Genet Selektsii 2025; 29:135-143. [PMID: 40144370 PMCID: PMC11937004 DOI: 10.18699/vjgb-25-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 03/28/2025] Open
Abstract
Ischemic heart disease (IHD) is an important medical and social problem. ST-elevation myocardial infarction (STEMI) is the most severe form of IHD, affecting all layers of the heart muscle. One of the diagnostic criteria for endothelial dysfunction in myocardial infarction is the level of sE-selectin, a cell adhesion molecule that recruits neutrophils and induces neutrophil inflammation. The aim of this study is to investigate intronic polymorphisms rs5353, rs3917412 and rs1534904 of the E-selectin coding gene SELE in patients with STEMI. We have analyzed a group of patients with STEMI (n = 74) and a population sample of Tomsk (n = 136) as the control group. The frequencies of the rs5353 genotypes in the SELE gene have shown statistically significant differences between patients and the control sample (p = 0.004). The CC genotype is a predisposing factor to STEMI (OR = 6.93, CI:95 % (1.84-26.04), χ2 = 8.69, p = 0.002). The analyzed markers were not studied previously in cardiovascular diseases (CVDs) and were rarely involved in association studies at all; there is no information on these SNPs in the leading databases. At the same time, all three variants, according to the RegulomeDB classification, belong to the functional class 1f, and are highly likely to have regulatory potential relative not only to the SELE gene, but also to other genes in the nearby region. The analysis of the functional significance of the studied markers has shown the presence of a region more extensive than one gene, which is co-regulated by the studied nucleotide substitutions. The association of rs5353 with STEMI identified in this study once again confirms the involvement of the SELE gene in the pathogenesis of CVDs. It is possible that this entire region of the genome may be involved indirectly in the pathogenesis of CVD through the systems of inflammation, immune response and DNA repair.
Collapse
Affiliation(s)
- N P Babushkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A M Nikolaeva
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A D Dolbnya
- Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| | | | - V V Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia Tomsk State University, Tomsk, Russia
| |
Collapse
|
24
|
Diehl D, Brauer CL, Bachmann HS, Pembaur D, Weil PP, Friedmann A. Extracellular Vesicles Derived From Lipopolysaccharide-Challenged Gingival Fibroblast Reveal Distinct miRNA Expression Patterns Associated With Reduced Cancer Survival. Clin Exp Dent Res 2025; 11:e70099. [PMID: 39967042 PMCID: PMC11835758 DOI: 10.1002/cre2.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES Periodontitis is a prevalent inflammatory disease with established systemic implications. Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, potentially linking periodontitis to systemic diseases. However, the molecular cargo of EVs from inflamed periodontal cells remains poorly characterized. This study investigates the EV cargo of human gingival fibroblasts (hGF-hTERT) following lipopolysaccharide (LPS) stimulation and explores their potential role in cancer progression. MATERIALS AND METHODS EVs were isolated from LPS-treated and untreated fibroblasts via ultracentrifugation. Dynamic light scattering and scanning electron microscopy characterized EV size and morphology. RNA sequencing identified differentially expressed miRNAs, validated by qPCR. Functional pathway enrichment and in-silico analyses using The Cancer Genome Atlas (TCGA) were performed to assess EV-associated miRNA impact on tumorigenesis. RESULTS EV size and concentration remained unchanged after LPS stimulation. However, LPS-derived EVs exhibited a 2.6-fold increase in miRNA content, with three significantly upregulated miRNAs: miR-146a-5p, miR-486-5p, and miR-451a. Functional enrichment analysis revealed their involvement in inflammation, immune modulation, and cancer pathways. In vitro, LPS-derived EVs significantly enhanced prostate cancer (LnCap) cell proliferation. TCGA analysis linked the upregulated miRNAs to poor cancer prognosis. CONCLUSIONS LPS stimulation alters the miRNA cargo of gingival fibroblast-derived EVs, enhancing pathways associated with inflammation and cancer progression. These findings suggest a mechanistic role for periodontal EVs in systemic disease pathogenesis, warranting further investigation into their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Daniel Diehl
- Department of Periodontology, School of Dentistry, Faculty of HealthWitten/Herdecke UniversityWittenGermany
- Center for Biomedical Education and Research (ZBAF), Institute of Pharmacology and Toxicology, Faculty of HealthWitten/Herdecke UniversityWittenGermany
| | - Charlotte Lauren Brauer
- Department of Periodontology, School of Dentistry, Faculty of HealthWitten/Herdecke UniversityWittenGermany
- Center for Biomedical Education and Research (ZBAF), Institute of Pharmacology and Toxicology, Faculty of HealthWitten/Herdecke UniversityWittenGermany
| | - Hagen S. Bachmann
- Center for Biomedical Education and Research (ZBAF), Institute of Pharmacology and Toxicology, Faculty of HealthWitten/Herdecke UniversityWittenGermany
| | - Daniel Pembaur
- Center for Biomedical Education and Research (ZBAF), Institute of Biochemistry and Molecular Medicine, Faculty of HealthWitten/Herdecke UniversityWittenGermany
| | - Patrick Philipp Weil
- Centre for Biomedical Education and Research (ZBAF), Institute for Clinical Molecular Genetics and Epigenetics, Faculty of HealthWitten/Herdecke UniversityWittenGermany
| | - Anton Friedmann
- Department of Periodontology, School of Dentistry, Faculty of HealthWitten/Herdecke UniversityWittenGermany
| |
Collapse
|
25
|
Dwivedi A, Kumar A, Faruq M, Singh VK, Dwivedi N, Singh K, Hussain I, Parida S, Kumar Jha G, Kumar N, Joshi D. Co-occurrence of Parkinson's disease and Retinitis Pigmentosa: A genetic and in silico analysis. Neuroscience 2025; 565:519-526. [PMID: 39674535 DOI: 10.1016/j.neuroscience.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is primarily driven by the protein Alpha Synuclein (A-Syn) accumulation. Synphilin-1 protein, encoded by the SNCAIP gene, which co-localizes with A-Syn is a known risk factor for PD. Retinitis pigmentosa (RP), is a cluster of retinal degenerative disorders, and Cyclic Nucleotide Gated channel subunit Alpha 1 (CNGA1) is one of the initial genes associated with RP. Patients with PD can have various kinds of visual dysfunction as a non-motor manifestation, but to date, CNGA1 mutation and RP as a PD associated visual symptom has not been reported. We report a mutation in the SNCAIP gene in a PD patient, not reported earlier, and its co-occurrence with RP-associated CNGA1 gene mutation. METHOD Whole exome sequencing (WES) of the patient DNA sample and in-silico protein-protein interaction (PPI) analysis performed to find out proteins interacting with SNCAIP relevant concerning reported mutation of SNCAIP and further, CNGA1 interaction with SNCAIP. RESULT We are reporting, a missense mutation (p.Thr64Ser) at the SNCAIP gene, co-occurring with a missense variation (p.Gly509Arg) in the CNGA1 gene. In silico PPI analysis suggests SIAH1 as an important protein affected by SNCAIP mutation. LGALS4 and SNCA (gene encoding A-Syn) are common interactors between SNCAIP and CNGA1. CONCLUSION The current study has determined the co-occurrence of RP and PD, whole exome sequencing ascertains the mutations in SNCAIP and CNGA1 genes, which could be the cause of PD and RP co-occurrence.
Collapse
Affiliation(s)
- Archana Dwivedi
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anand Kumar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mohammed Faruq
- CSIR-Institute of Genomic and Integrative Biology, Mall Road, Delhi, India
| | - Varun Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nidhi Dwivedi
- Department of Community Medicine, NDMC Medical College and Hindu Rao Hospital, Delhi, India
| | - Kamaljeet Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS Delhi, India
| | - Ibrahim Hussain
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Parida
- Kalinga Institute of Medical Sciences, Bhuvaneshwar, Odisha 751024, India
| | - Gaurab Kumar Jha
- CSIR-Institute of Genomic and Integrative Biology, Mall Road, Delhi, India
| | - Niraj Kumar
- Department of Neurology, AIIMS, Bibinagar, Telangana, India
| | - Deepika Joshi
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
26
|
Neugebauer E, Walter S, Tan J, Drayman N, Franke V, van Gent M, Pennisi S, Veratti P, Stein KS, Welker I, Tay S, Verjans GMGM, Timmers HTM, Akalin A, Landthaler M, Ensser A, Wyler E, Full F. Herpesviruses mimic zygotic genome activation to promote viral replication. Nat Commun 2025; 16:710. [PMID: 39814710 PMCID: PMC11735616 DOI: 10.1038/s41467-025-55928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication. Analysis of single-cell sequencing data sets from patients shows that viral DUX4 activation is of relevance in vivo. Herpes-simplex virus 1 (HSV-1) immediate early proteins directly induce expression of DUX4 and its target genes, which mimics zygotic genome activation. Upon HSV-1 infection, DUX4 directly binds to the viral genome and promotes viral transcription. DUX4 is functionally required for infection, since genetic depletion by CRISPR/Cas9 as well as degradation of DUX4 by nanobody constructs abrogates HSV-1 replication. Our results show that DNA viruses including herpesviruses mimic an embryonic-like transcriptional program that prevents epigenetic silencing of the viral genome and facilitates herpesviral gene expression.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stephanie Walter
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Jiang Tan
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Nir Drayman
- The Department of Molecular Biology and Biochemistry, the Center for Virus Research and the Center for Complex Biological Systems, The University of California, Irvine, Irvine, CA, 92697, USA
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Society, Berlin, Germany
| | - Michiel van Gent
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sandra Pennisi
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Pia Veratti
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Karla S Stein
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Isabelle Welker
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany
| | - Savaş Tay
- The Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Georges M G M Verjans
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H T Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ and Medical Center-University of Freiburg, and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Society, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Society, Berlin, Germany
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Society, Berlin, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.
- German Consulting Laboratory for HSV and VZV, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Clutario KM, Abdusamad M, Ramirez I, Rich KJ, Gholkar AA, Zaragoza J, Torres JZ. Human REXO4 is Required for Cell Cycle Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631954. [PMID: 39829749 PMCID: PMC11741406 DOI: 10.1101/2025.01.08.631954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Human REXO4 is a poorly characterized exonuclease that is overexpressed in human cancers. To better understand the function of REXO4 and its relationship to cellular proliferation, we have undertaken multidisciplinary approaches to characterize its cell cycle phase-dependent subcellular localization and the cis determinants required for this localization, its importance to cell cycle progression and cell viability, its protein-protein association network, and its activity. We show that the localization of REXO4 to the nucleolus in interphase depends on an N-terminal nucleolar localization sequence and that its localization to the perichromosomal layer of mitotic chromosomes is dependent on Ki67. Depletion of REXO4 led to a G1/S cell cycle arrest, and reduced cell viability. REXO4 associated with ribosome components and other proteins involved in rRNA metabolism. We propose a model where REXO4 is important for proper rRNA processing, which is required for ribosome biogenesis, cell cycle progression, and proliferation.
Collapse
Affiliation(s)
- Kevin M. Clutario
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Kayla J. Rich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ankur A. Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian Zaragoza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Siano G, Varisco M, Terrigno M, Wang C, Scarlatti A, Iannone V, Groth M, Galas MC, Hoozemans JJM, Cellerino A, Cattaneo A, Di Primio C. Tau mediates the reshaping of the transcriptional landscape toward intermediate Alzheimer's disease stages. Front Cell Dev Biol 2025; 12:1459573. [PMID: 39830212 PMCID: PMC11739074 DOI: 10.3389/fcell.2024.1459573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Recent research revealed that Tau plays critical roles in various neuronal functions. We previously demonstrated that destabilization and nuclear delocalization of Tau alter the expression of glutamatergic genes, mediating early neuronal damage. Methods In this study, we discovered that changes in Tau availability are linked to global alterations in gene expression that affect multiple neuronal pathways. Comparison with the human temporal region showed that the Tau-dependent modulation of gene expression closely resembles the intermediate stages of Alzheimer's disease (AD) that precede the definitive pathological condition. Results Furthermore, we identified the chromatin remodeling pathway as being significantly affected by Tau in both our cellular model and AD brains, with reductions in heterochromatin markers. Our findings indicate that Tau is able to globally affect the neuronal transcriptome and that its subcellular unbalance changes gene expression in the intermediate stages of AD development. In addition, we found that the chromatin architecture is affected by Tau during the progression of AD. Discussion These results provide new insights into the molecular mechanisms underlying early stages of AD development and highlight the central role of Tau and the contribution of nuclear Tau in this process.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Martina Varisco
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Marco Terrigno
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Congwei Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arianna Scarlatti
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Vincenzo Iannone
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Ageing – Fritz Lipmann institute, Jena, Germany
| | - Marie-Christine Galas
- University of Lille, Institut national de la santé et de la recherche médicale, CHU-Lille, Centre national de la recherche scientifique, LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Jeroen J. M. Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alessandro Cellerino
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Ageing, Fritz Lipmann institute, Jena, Germany
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Cristina Di Primio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
29
|
Sommer B, Jaeger-Honz S. From Gene to Whole Cell: Modeling, Visualization, and Analysis. Methods Mol Biol 2025; 2859:65-92. [PMID: 39436597 DOI: 10.1007/978-1-0716-4152-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteogenomics combines proteomic and genetic data to gain new insights in molecular mechanisms. Here, we extend this approach toward structural biology from a tool perspective. The chapter starts with tools which can be used to explore genetic information and then enrich those with proteomic data. Based on the corresponding identifiers, three-dimensional structures of proteins are identified and used to embed them in their molecular environment, here the surrounding membrane. This membrane is then mapped onto the surface of an interpretative three-dimensional cell model. Then, the embedded protein and the cell environment are associated with a metabolic pathway, again based on the identifiers provided by biomedical databases. Accompanying the different chapters, related work is discussed which can alternatively be used. Finally, an outlook toward immersive analytics is given.
Collapse
Affiliation(s)
- Bjorn Sommer
- Innovation Design Engineering, School of Design, Royal College of Art, London, UK.
| | - Sabrina Jaeger-Honz
- Life Science Informatics, Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
Kumar P, Johnson JE, McGowan T, Chambers MC, Heydarian M, Mehta S, Easterly C, Griffin TJ, Jagtap PD. Discovering Novel Proteoforms Using Proteogenomic Workflows Within the Galaxy Bioinformatics Platform. Methods Mol Biol 2025; 2859:109-128. [PMID: 39436599 DOI: 10.1007/978-1-0716-4152-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteogenomics is a growing "multi-omics" research area that combines mass spectrometry-based proteomics and high-throughput nucleotide sequencing technologies. Proteogenomics has helped in genomic annotation for organisms whose complete genome sequences became available by using high-throughput DNA sequencing technologies. Apart from genome annotation, this multi-omics approach has also helped researchers confirm expression of variant proteins belonging to unique proteoforms that could have resulted from single-nucleotide polymorphism (SNP), insertion and deletions (Indels), splice isoforms, or other genome or transcriptome variations.A proteogenomic study depends on a multistep informatics workflow, requiring different software at each step. These integrated steps include creating an appropriate protein sequence database, matching spectral data against these sequences, and finally identifying peptide sequences corresponding to novel proteoforms followed by variant classification and functional analysis. The disparate software required for a proteogenomic study is difficult for most researchers to access and use, especially those lacking computational expertise. Furthermore, using them disjointedly can be error-prone as it requires setting up individual parameters for each software. Consequently, reproducibility suffers. Managing output files from each software is an additional challenge. One solution for these challenges in proteogenomics is the open-source Web-based computational platform Galaxy. Its capability to create and manage workflows comprised of disparate software while recording and saving all important parameters promotes both usability and reproducibility. Here, we describe a workflow that can perform proteogenomic analysis on a Galaxy-based platform. This Galaxy workflow facilitates matching of spectral data with a customized protein sequence database, identifying novel protein variants, assessing quality of results, and classifying variants along with visualization against the genome.
Collapse
Affiliation(s)
- Praveen Kumar
- Data Sciences & Quantitative Biology, Discovery Sciences, AstraZeneca, Waltham, MA, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - James E Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Thomas McGowan
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Caleb Easterly
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
Klein L, Petrozziello E. Antigen presentation for central tolerance induction. Nat Rev Immunol 2025; 25:57-72. [PMID: 39294277 DOI: 10.1038/s41577-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
The extent of central T cell tolerance is determined by the diversity of self-antigens that developing thymocytes 'see' on thymic antigen-presenting cells (APCs). Here, focusing on insights from the past decade, we review the functional adaptations of medullary thymic epithelial cells, thymic dendritic cells and thymic B cells for the purpose of tolerance induction. Their distinct cellular characteristics range from unconventional phenomena, such as promiscuous gene expression or mimicry of peripheral cell types, to strategic positioning in distinct microenvironments and divergent propensities to preferentially access endogenous or exogenous antigen pools. We also discuss how 'tonic' inflammatory signals in the thymic microenvironment may extend the intrathymically visible 'self' to include autoantigens that are otherwise associated with highly immunogenic peripheral environments.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
32
|
Khan AA, Fatima A. Gone with the Species: From Gene Loss to Gene Extinction. Front Biosci (Schol Ed) 2024; 16:22. [PMID: 39736015 DOI: 10.31083/j.fbs1604022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Vertebrae protein-coding genes exhibit remarkable diversity and are organized into many gene families. These gene families have emerged through various gene duplication events, the most prominent being the two rounds of whole-genome duplication (WGD). The current research project analyzed a unique class of genes called "singletons". Notably, we introduce the concept of "super-singletons": genes that stand as the last representatives of their ancestral families and the sole representatives of their genetic makeup with no ortholog in any other species. METHODS We used the Ensembl/Biomart pipeline to identify duplicated and unduplicated protein-coding genes in different vertebrate species and found orthologs of human genes. RESULTS We showed the frequency of duplicated genes and singletons, demonstrating that singletons are more vulnerable to evolutionary loss than duplicated genes. Additionally, we found that contractions in vertebrate gene families are more prevalent than expansion. CONCLUSION Our study provides insight into the evolution of gene families and presents a novel scenario where the extinction of species would lead to the extinction of a gene, ultimately shifting the narrative from the impact of genetics on species extinction to the extinction of genes.
Collapse
Affiliation(s)
- Ammad Aslam Khan
- Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan
| | - Anees Fatima
- Department of Biological Sciences, Virtual University of Pakistan, 55150 Lahore, Punjab, Pakistan
| |
Collapse
|
33
|
Du H, Yang C, Nana AL, Seeley WW, Smolka M, Hu F. WITHDRAWN: Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.06.535844. [PMID: 37066328 PMCID: PMC10104136 DOI: 10.1101/2023.04.06.535844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The authors have withdrawn this manuscript because more work is needed to fully define the role of sPLA2-IIA. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
34
|
Kutz J, Schmietendorf H, Rahman SA, Opel F, Pospiech H. HROB Is Implicated in DNA Replication. Genes (Basel) 2024; 15:1587. [PMID: 39766854 PMCID: PMC11675949 DOI: 10.3390/genes15121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair. We identified HROB independently as a nuclear protein whose expression is co-regulated with various DNA replication factors. Accordingly, the HROB protein level showed a maximum in S phase and a downregulation in quiescence. Structural prediction and homology searches revealed that HROB is a largely intrinsically disordered protein bearing a helix-rich region and a canonical oligonucleotide/oligosaccharide-binding-fold motif that originated early in eukaryotic evolution. Employing a flow cytometry Förster resonance energy transfer (FRET) assay, we detected associations between HROB and proteins of the DNA replication machinery. Moreover, ectopic expression of HROB protein led to an almost complete shutdown of DNA replication. The available data imply a function for HROB during DNA replication across barriers such as ICLs.
Collapse
Affiliation(s)
- Julia Kutz
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Hannes Schmietendorf
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Sheikh Anika Rahman
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Franz Opel
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Department of Medical Engineering and Biotechnology, Ernst-Abbe University of Applied Sciences, D-07745 Jena, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
- Department of Obstetrics and Gynecology, University Hospital Düsseldorf and Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Yeh CY, Chini LCS, Davidson JW, Garcia GG, Gallagher MS, Freichels IT, Calubag MF, Rodgers AC, Green CL, Babygirija R, Sonsalla MM, Pak HH, Trautman ME, Hacker TA, Miller RA, Simcox JA, Lamming DW. Late-life protein or isoleucine restriction impacts physiological and molecular signatures of aging. NATURE AGING 2024; 4:1760-1771. [PMID: 39604703 PMCID: PMC11672203 DOI: 10.1038/s43587-024-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Restricting the intake of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan in young or adult mice. However, their effects when initiated in aged animals are unknown. Here we investigate the consequences of consuming a diet with 67% reduction of all amino acids (low AA) or of isoleucine alone (low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. Both dietary regimens effectively promote overall metabolic health without reducing calorie intake. Both low AA and low Ile diets improve aspects of frailty and slow multiple molecular indicators of aging rate; however, the low Ile diet reduces grip strength in both sexes and has mixed, sexually dimorphic effects on the heart. These results demonstrate that low AA and low Ile diets can promote aspects of healthy aging in aged mice and suggest that similar interventions might promote healthy aging in older adults.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lucas C S Chini
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jessica W Davidson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Meredith S Gallagher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Isaac T Freichels
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison C Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
- University of Wisconsin-Madison Comprehensive Diabetes Center, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
36
|
Kesavelu D, Valliyappan S, Nalliannan S, Pande P, Mahalingam S. LPL Gene Mutation in Type 1 Familial Triglyceridemia Presenting as Recurrent Pancreatitis and Complicated by COVID19. J Pediatr Genet 2024; 13:326-329. [PMID: 39502850 PMCID: PMC11534425 DOI: 10.1055/s-0042-1757886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/06/2022] [Indexed: 03/12/2023]
Abstract
A 7-year-old girl with recurrent episodes of pancreatitis with risk factor of poorly controlled hyperglyceridemia presented with an acute episode of pancreatitis. She was managed conservatively and underwent whole exome sequencing which showed a likely pathogenic LPL gene mutation. Incidentally, she was diagnosed with COVID-19 on screening, which we hypothesize to have triggered the recent episode. On further examination, she was found to have bilateral cataracts. Her hypercholesterolemia was effectively managed with dietary therapy, high dose omega 3, and gemfibrozil. Our case report sensitizes the clinician to use a modern diagnostic tool such as whole exome sequencing in children with recurrent pancreatitis where hypertriglyceridemia is a known risk factor. This child is the first case of LPL mutation reported in India.
Collapse
Affiliation(s)
- Dhanasekhar Kesavelu
- Department of Pediatric Gastroenterology, Apollo Children's Hospital, Chennai, Tamil Nadu, India
| | - Soundaram Valliyappan
- Department of Pediatric Gastroenterology, Apollo Children's Hospital, Chennai, Tamil Nadu, India
| | - Sarah Nalliannan
- Department of Pediatric Gastroenterology, Apollo Children's Hospital, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
37
|
Mir Drikvand R, Sohrabi SM, Sohrabi SS, Samiei K. Molecular Identification and Characterization of Hevein Antimicrobial Peptide Genes in Two-Row and Six-Row Cultivars of Barley (Hordeum vulgare L.). Biochem Genet 2024; 62:5092-5114. [PMID: 38386212 DOI: 10.1007/s10528-024-10695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Heveins are one of the most important groups of plant antimicrobial peptides. So far, various roles in plant growth and development and in response to biotic and abiotic stresses have reported for heveins. The present study aimed to identify and characterize the hevein genes in two-row and six-row cultivars of barley. In total, thirteen hevein genes were identified in the genome of two-row and six-row cultivars of barley. The identified heveins were identical in two-row and six-row cultivars of barley and showed a high similarity with heveins from other plant species. The hevein coding sequences produced open reading frames (ORFs) ranged from 342 to 1002 bp. Most of the identified hevein genes were intronless, and the others had only one intron. The hevein ORFs produced proteins ranged from 113 to 333 amino acids. Search for conserved functional domains showed CBD and LYZ domains in barley heveins. All barley heveins comprised extracellular signal peptides ranged from 19 to 35 amino acids. The phylogenetic analysis divided barley heveins into two groups. The promoter analysis showed regulatory elements with different frequencies between two-row and six-row cultivars. These cis-acting elements included elements related to growth and development, hormone response, and environmental stresses. The expression analysis showed high expression level of heveins in root and reproductive organs of both two-row and six-row cultivars. The expression analysis also showed that barley heveins is induced by both biotic and abiotic stresses. The results of antimicrobial activity prediction showed the highest antimicrobial activity in CBD domain of barley heveins. The findings of the current study can improve our knowledge about the role of hevein genes in plant and can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Seyed Sajad Sohrabi
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Plant Genetics and Breeding, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran
| |
Collapse
|
38
|
Baskar D, Vengalil S, Polavarapu K, Preethish-Kumar V, Arunachal G, Sukrutha R, Bardhan M, Huddar A, Unnikrishnan G, Kulkarni GB, Chickabasaviah YT, Kumar RS, Nalini A, Nashi S. Phenotypic Heterogeneity in ORAI-1-Associated Congenital Myopathy. Glob Med Genet 2024; 11:297-303. [PMID: 39238562 PMCID: PMC11377103 DOI: 10.1055/s-0044-1790245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Introduction ORAI-1 is a plasma membrane calcium release-activated calcium channel that plays a crucial role in the excitation-contraction of skeletal muscles. Loss-of-function mutations of ORAI-1 cause severe combined immunodeficiency, nonprogressive muscle hypotonia, and anhidrotic ectodermal dysplasia. Autosomal dominant gain-of-function mutation causes Stormorken's syndrome, which includes tubular aggregate myopathy along with bleeding diathesis. Methods This is a description of a genetically confirmed case of ORAI-1-associated myopathy with clinical, histopathological, and imaging characteristics and a detailed literature review. Results We report an 18-year-old woman who presented with 2-and-a-half year history of slowly progressive proximal lower limb weakness and ophthalmoparesis. Her serum creatine kinase levels were normal. Magnetic resonance imaging of the muscle showed predominant fatty infiltration of the glutei and quadriceps femoris. Histopathological analysis of muscle biopsy was suggestive of congenital fiber-type disproportion (CFTD). Clinical exome sequencing showed novel homozygous nonsense pathogenic variant NC_000012.12 (NM_032790.3): c.205G > T (p.Glu69Ter) in ORAI-1 gene. Conclusion This report expands the phenotypic spectrum of ORAI-1-related myopathy to include congenital myopathy-CFTD with ophthalmoparesis, a novel manifestation.
Collapse
Affiliation(s)
- Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Kiran Polavarapu
- Division of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | - Veeramani Preethish-Kumar
- Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ramya Sukrutha
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Girish Baburao Kulkarni
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Rashmi Santhosh Kumar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
39
|
Schiabor Barrett KM, Telis N, McEwen LM, Burrows EK, Khuder B, Judge DP, Pawloski PA, Grzymski JJ, Washington NL, Bolze A, Cirulli ET. Underestimated risk of secondary complications in pathogenic and glucose-elevating GCK variant carriers with type 2 diabetes. COMMUNICATIONS MEDICINE 2024; 4:239. [PMID: 39567669 PMCID: PMC11579005 DOI: 10.1038/s43856-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Natural HbA1c levels in GCK Maturity-onset diabetes of the young (GCK-MODY) patients often sit above the diagnostic threshold for type 2 diabetes (T2D). Treatments to lower HbA1c levels show reduced effectiveness in these individuals, yet in case studies to date, GCK-MODY patients often evade secondary T2D complications. Given these deviations, genetic screening of GCK may be clinically useful, but population studies are needed to more broadly understand T2D-related complications in GCK variant carriers. METHODS To identify GCK variant carriers at the population level, we used both ACMG/AMP variant interpretation for GCK-MODY pathogenicity and a state-of-the-art variant interpretation strategy based on functional and statistical evidence to predict glucose elevations. Presence of pathogenic and glucose-elevating GCK variants was assessed in two cohorts (n~535,000). We identified 442 individuals with GCK variants predicted to increase glucose (~1/1200), with 150 (34%) of these individuals harboring variants reaching a pathogenic interpretation. RESULTS In a retrospective analysis, we show that in addition to elevated HbA1c, pathogenic variant carriers are 10x as likely, and all other glucose-elevating GCK variant carriers are 3x as likely, to receive a T2D diagnosis compared to non-GCK carriers. Surprisingly, carriers of pathogenic and glucose-elevating GCK variants with T2D develop T2D-related complications at rates more than double that of individuals without T2D, comparable to non-GCK individuals with T2D. CONCLUSIONS This population-level assessment shows secondary complications in individuals with pathogenic and glucose-elevating GCK variants and T2D and suggests that genotyping for these variants should be considered in a precision medicine approach for T2D treatment and prevention.
Collapse
Affiliation(s)
| | - Natalie Telis
- Helix, 101 S Ellsworth Ave Suite 350, San Mateo, CA, USA
| | - Lisa M McEwen
- Helix, 101 S Ellsworth Ave Suite 350, San Mateo, CA, USA
| | | | - Basil Khuder
- Helix, 101 S Ellsworth Ave Suite 350, San Mateo, CA, USA
| | - Daniel P Judge
- Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Joseph J Grzymski
- Renown Institute for Health Innovation, Reno, NV, USA
- Department of Internal Medicine, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | | | | | | |
Collapse
|
40
|
Huang T, Lam XJ, Lim CT, Jusoh N, Fakurazi S, Cheah PS, Ling KH. Understanding perspectives and research trends in Down syndrome neuropathogenesis: A bibliometric analysis. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2024:17446295241299160. [PMID: 39533897 DOI: 10.1177/17446295241299160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Down syndrome (DS), characterised by compromised brain development and intellectual challenges, often manifests Alzheimer's disease (AD) -like symptoms. Utilising the Web of Science Core Collection (WOSCC) database from January 1, 2000, to July 31, 2023, we conducted a comprehensive bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." Analyses included co-authorship, co-citation, co-occurrence, cooperative network, reference, and keyword burst citation. Analysing 5,082 papers, the U.S. demonstrated prominence with the highest number of research organisations and citations. Keyword analysis revealed promising research areas, including "Alzheimer's disease," "development," "inflammation," and "neurogenesis". This 22-year survey of the brain with trisomy 21 research unveils key trends, contributors, and focal areas in DS neuropathogenesis. Notably, Alzheimer 's-related genes and proteins play a pervasive role in DS neuropathological processes across patients' lifespans. The study contributes foundational knowledge for advancing research and care in the DS neuropathogenesis domain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Xin-Jieh Lam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Chong-Teik Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Norhazlin Jusoh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing®), Universiti Putra Malaysia, Malaysia
| |
Collapse
|
41
|
Francés-Herrero E, Lorenzo-Rebenaque L, Casto-Rebollo C, Vicente JS, Sebastian-Leon P, Bueno-Fernandez C, Rodríguez-Eguren A, Gómez-Álvarez M, Faus A, Diaz-Gimeno P, Marco-Jiménez F, Cervelló I. Oviductal extracellular matrix hydrogels enhance in vitro culture of rabbit embryos and reduce deficiencies during assisted reproductive technologies. Sci Rep 2024; 14:27579. [PMID: 39528559 PMCID: PMC11554825 DOI: 10.1038/s41598-024-77583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In vitro embryo culture often falls short of mimicking the physiological dynamism occurring in the reproductive tract, prompting developmental plasticity in mammalian embryos with consequential genotypic and phenotypic deviations. Recent research highlights the potential of biological derivatives in in vitro culture to mitigate these effects, being the extracellular matrix (ECM) one of the most important components in retaining structural and biological signals derived from the native source tissue. Current bioengineering techniques could provide ECM-based biomaterials mimicking the native environment and offering optimal embryonic development. Rabbit oviducts (n = 24) were decellularized and solubilized to create tissue-specific ECM (OviECM) hydrogels. Following physicochemical characterization, these hydrogels were applied as coatings for the in vitro culture of two-cell embryos over 48 h, along with embryos cultured under In vitro control conditions (n = 218/group), which were subsequently transferred to recipient females. A subset of embryos was recovered on day 6 for transcriptomic analysis (n = 75-80/group), while the remaining embryos were used to assess implantation and birth rates. Rabbit weights were monitored over 20 weeks post-delivery, with blood tests conducted at weeks 8 and 20. Bayesian inference methods were used for statistical analysis. Differences were considered relevant if P ≥ 0.8 (80%). No differences in embryo development and morphology were detected between the OviECM coating and In vitro control conditions. However, embryos cultured on these coatings exhibited upregulation of pathways involved in antigen presentation and immune system activation, as well as, increased cellular response to external stimulus and intracellular protein transport. The implantation and live birth rates were significantly higher in the coating group than in the In vitro control group (30.8% vs. 26.1% and 21.2% vs. 18.1%, respectively). During the first 20 weeks of life, the animals from the coating group showed higher weights than the In vitro control group P0 > 0.8. The animals of both experimental groups showed normal blood parameters. Implementation of OviECM coatings allows for improving in vitro conditions and decreases postnatal phenotypic deviations after assisted reproductive technology (ART). This study could initiate a new embryo culture techniques era to guarantee that ART is utilized in the most efficient and safest possible practice.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Universitat de València, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - José Salvador Vicente
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Patricia Sebastian-Leon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Clara Bueno-Fernandez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Universitat de València, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Patricia Diaz-Gimeno
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain.
| |
Collapse
|
42
|
Dufner-Almeida LG, Cardozo LFM, Schwind MR, Carvalho D, Almeida JPG, Cappellano AM, Alegria TGP, Nanhoe S, Nellist M, Passos-Bueno MR, Chiavegatto S, Silva NS, Rosemberg S, Pereira APA, Antoniuk SA, Haddad LA. Molecular and Functional Assessment of TSC1 and TSC2 in Individuals with Tuberous Sclerosis Complex. Genes (Basel) 2024; 15:1432. [PMID: 39596632 PMCID: PMC11593644 DOI: 10.3390/genes15111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 11/29/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and multisystem disease caused by pathogenic DNA alterations in the TSC1 and TSC2 tumor suppressor genes. A molecular genetic diagnosis of TSC confirms the clinical diagnosis, facilitating the implementation of appropriate care and surveillance. TSC1 and TSC2 encode the core components of the TSC1/2 complex (TSC1/2), a negative regulator of the mechanistic target of rapamycin (MTOR) complex 1 (TORC1). Functional analysis of the effects of TSC1 and TSC2 variants on TORC1 activity can help establish variant pathogenicity. We searched for pathogenic alterations to TSC1 and TSC2 in DNA isolated from 116 individuals with a definite clinical diagnosis of TSC. Missense variants and in-frame deletions were functionally assessed. Pathogenic DNA alterations were identified in 106 cases (91%); 18 (17%) in TSC1 and 88 (83%) in TSC2. Of these, 35 were novel. Disruption of TSC1/2 activity was demonstrated for seven TSC2 variants. Molecular diagnostics confirms the clinical diagnosis of TSC in a large proportion of cases. Functional assessment can help establish variant pathogenicity and is a useful adjunct to DNA analysis.
Collapse
Affiliation(s)
- Luiz Gustavo Dufner-Almeida
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
- Department of Clinical Genetics, Erasmus Medical Center, 3015 Rotterdam, The Netherlands
| | - Laís F. M. Cardozo
- Pediatric Neurology Center, Department of Pediatrics, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil (S.A.A.)
| | - Mariana R. Schwind
- Pediatric Neurology Center, Department of Pediatrics, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil (S.A.A.)
| | - Danielly Carvalho
- Pediatric Neurology Center, Department of Pediatrics, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil (S.A.A.)
| | - Juliana Paula G. Almeida
- Division of Neurology, Department of Pediatrics, Santa Casa de Misericórdia, São Paulo 01221-010, Brazil
| | - Andrea Maria Cappellano
- Grupo de Apoio ao Adolescente e à Criança com Câncer, Instituto de Oncologia Pediátrica, Universidade Federal de São Paulo, São Paulo 04039-001, Brazil
| | - Thiago G. P. Alegria
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Santoesha Nanhoe
- Department of Clinical Genetics, Erasmus Medical Center, 3015 Rotterdam, The Netherlands
| | - Mark Nellist
- Department of Clinical Genetics, Erasmus Medical Center, 3015 Rotterdam, The Netherlands
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Department of Psychiatry, Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-903, Brazil
| | - Nasjla S. Silva
- Grupo de Apoio ao Adolescente e à Criança com Câncer, Instituto de Oncologia Pediátrica, Universidade Federal de São Paulo, São Paulo 04039-001, Brazil
| | - Sérgio Rosemberg
- Division of Neurology, Department of Pediatrics, Santa Casa de Misericórdia, São Paulo 01221-010, Brazil
| | - Ana Paula A. Pereira
- Department of Psychology, Universidade Federal do Paraná, Curitiba 80060-000, Brazil
| | - Sérgio Antônio Antoniuk
- Pediatric Neurology Center, Department of Pediatrics, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil (S.A.A.)
| | - Luciana A. Haddad
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
43
|
Pagella P, Lai CF, Pirenne L, Cantù C, Schwab ME, Mitsiadis TA. An unexpected role of neurite outgrowth inhibitor A as regulator of tooth enamel formation. Int J Oral Sci 2024; 16:60. [PMID: 39426966 PMCID: PMC11490607 DOI: 10.1038/s41368-024-00323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Neurite outgrowth inhibitor A (Nogo-A) is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury. In this work, we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology. Using immunohistochemistry and in situ hybridization techniques, we showed that Nogo-A is highly expressed in the developing mouse teeth and, most specifically, in the ameloblasts that are responsible for the formation of enamel. Using both Nogo-A knockout and K14-Cre;Nogo-A fl/fl transgenic mice, we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel. This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production, such as amelogenin, ameloblastin and enamelin. By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals, we found that Nogo-A directly interacts with molecules important for regulating gene expression, and its deletion disturbs their cellular localisation. Furthermore, we demonstrated that inhibition of the intracellular, but not cell-surface, Nogo-A is responsible for gene expression modulation in ameloblasts. Taken together, these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.
Collapse
Affiliation(s)
- Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden
| | - Chai Foong Lai
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Laurence Pirenne
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
44
|
Yadav S, Madhumita RC, Gupta N, Chauhan S, Kusmakar S, Balakrishnan P, Jana M, Puri RD, Phadke SR, Kabra M. Isolated Lateralized Overgrowth - Phenotypic Spectrum and Molecular Alterations. Indian J Pediatr 2024:10.1007/s12098-024-05273-0. [PMID: 39425824 DOI: 10.1007/s12098-024-05273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES To evaluate the molecular aberrations at 11p15.5 locus in thirty-two patients with isolated lateralized overgrowth (ILO). METHODS Among selected 32 cases of ILO, methylation-sensitive multiplex ligation-dependent probe amplification (MS-MLPA) was performed initially followed by short tandem repeats (STR) marker analysis to confirm uniparental disomy (UPD). In those patients with normal MLPA reports, cyclin dependent kinase inhibitor 1C (CDKN1C) gene and whole exome sequencing was performed. RESULTS Molecular analysis by MS-MLPA showed methylation aberrations in 28% (9/32) of patients. Gain of methylation at IC1 imprinting center (H4, H7) and loss of methylation at IC2 (H6, H9) was observed in 2 patients each. Uniparental disomy was observed in 9% cases. Except one, all patients with methylation aberration had more than one limb hypertrophy. Two patients (H22/H29) also had loss of methylation at IC1. Though this molecular alteration is specifically associated with Silver Russel syndrome (SRS), but the affected children did not completely fulfill the diagnostic criteria for SRS. In a recent study, a discrepancy was reported between the diagnosis of Beckwith-Wiedemann syndrome (BWS)/SRS and the molecular findings in the patients. Many times, it is very difficult to differentiate between hemi hypertrophy/hemi hypotrophy. Patients, in whom no aberrations were detected on MS-MLPA, whole exome sequencing (WES) was performed and no pathogenic variant was identified. CONCLUSIONS Thus, ILO may be considered as a mild presentation on the extreme edge of BWS spectrum with methylation aberration and UPD in one third of cases which has implications in follow up.
Collapse
Affiliation(s)
- Sakshi Yadav
- Faith Diagnostic and Fetal Centre, Mohali, India
| | - R C Madhumita
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeepa Chauhan
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Shweta Kusmakar
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna D Puri
- Institute of Genetics & Genomics, Sir Gangaram Hospital, New Delhi, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
45
|
Giffen KP, Liu H, Yamane KL, Li Y, Chen L, Kramer KL, Zallocchi M, He DZ. Molecular specializations underlying phenotypic differences in inner ear hair cells of zebrafish and mice. Front Neurol 2024; 15:1437558. [PMID: 39484049 PMCID: PMC11524865 DOI: 10.3389/fneur.2024.1437558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral, and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). Methods To understand the genetic mechanisms underlying differences between adult zebrafish and mammalian HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. Results There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. For example, OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage-dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Discussion Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.
Collapse
Affiliation(s)
- Kimberlee P. Giffen
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA, United States
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kacey L. Yamane
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yi Li
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Marisa Zallocchi
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
46
|
Zarei M, Sadri F, Mohajeri Khorasani A, Mirinezhad M, Mousavi P. The pan-cancer landscape presented ITGA7 as a prognostic determinant, tumor suppressor, and oncogene in multiple tumor types. FASEB J 2024; 38:e70098. [PMID: 39373985 DOI: 10.1096/fj.202400917r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Integrin α7 (ITGA7) is an extracellular matrix-binding protein. Integrins are the main type of cell adhesive molecules in mammals, playing a role in many biological pathways. Although various studies have shown correlations between ITGA7 and various types of cancer, a comprehensive study at a pan-cancer level has not yet been conducted. In this study, we investigated the function of ITGA7 in distinct tumor types using the multi-omics relevant information, then two CeRNA regulatory network was drawn to identify the ITGA7 hub regulatory RNAs. The results indicated that the expression of ITGA7 varies in different tumors. Overexpression of ITGA7 was correlated with a worse OS in BLCA, LGG, and UVM, and the downregulation of ITGA7 was related to a worse OS in PAAD. In addition, BLCA, and UVM showed poor PFS in association with ITGA7 overexpression, and PAAD, SARC, and THCA indicated poor PFS in correlation with ITGA7 under expression. Further analyses of ITGA7 gene alteration data showed that ITGA7 amplifications may have an impact on Kidney Chromophobe prognosis. In 20 types of tumors, ITGA7 expression was linked to cancer-associated fibroblast infiltration. ITGA7 expression was linked to cancer-associated fibroblast infiltration. ITGA7-Related Gene Enrichment Analysis indicated that ITGA7 expression-correlated and functional binding genes were enriched in homotypic cell-cell adhesion, focal adhesion, and ECM-receptor interaction. This pan-cancer study found that abnormal expression of ITGA7 was correlated with poor prognosis and metastasis in different types of tumors. Thus, the ITGA7 gene may prove to be a promising biomarker for the prognosis and complication prevention of different cancers.
Collapse
Affiliation(s)
- Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sadri
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - MohammadReza Mirinezhad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
47
|
Moraga-Fernández A, de Sousa-Blanco M, Marques JP, Queirós J, Fernández-Melgar R, García-Álvarez O, Alves PC, Contreras M. Impact of vaccination with the Anaplasma phagocytophilum MSP4 chimeric antigen on gene expression in the rabbit host. Res Vet Sci 2024; 178:105370. [PMID: 39116823 DOI: 10.1016/j.rvsc.2024.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
There are currently no vaccines available to prevent and control of Anaplasma phagocytophilum, an intracellular bacterial pathogen transmitted by ticks that occurs in many regions of the world and causes disease in a wide range of domestic and wild hosts, including humans. Vaccines induce long-lasting immunity and could prevent or reduce transmission of this pathogen. Understanding how vaccines induce a protective response can be difficult due to the complexity of the immune system, which operates at many levels throughout the organism. New perspectives in vaccinology, based on systems biology approaches, integrate many scientific disciplines to fully understand the biological responses to vaccination, where a transcriptomic approach could reveal relevant information of the host immune system, allowing profiling for rational design of vaccine formulations, administration, and potential protection. In the present study we report the gene expression profiles by RNA-seq followed by functional analysis using whole blood samples from rabbits immunized with a recombinant chimeric protein containing peptides from the MSP4 protein of A. phagocytophilum, which showed satisfactory results in terms of potential protection. Transcriptomic analysis revealed differential expression of 720 genes, with 346 genes upregulated and 374 genes downregulated. Overrepresentation of biological and metabolic pathways correlated with immune response, protein signaling, cytoskeleton organization and protein synthesis were found. These changes in gene expression could provide a complete and unique picture of the biological response to the epitope candidate vaccine against A. phagocytophilum in the host.
Collapse
Affiliation(s)
- Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - María de Sousa-Blanco
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - João Pedro Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - João Queirós
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal
| | - Rubén Fernández-Melgar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Olga García-Álvarez
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
48
|
Nagar G, Gupta SRR, Rustagi V, Pramod RK, Singh A, Pahuja M, Singh IK. Unlocking the Door for Precision Medicine in Rare Conditions: Structural and Functional Consequences of Missense ACVR1 Variants. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:526-536. [PMID: 39288033 DOI: 10.1089/omi.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Rare diseases and conditions have thus far received relatively less attention in the field of precision/personalized medicine than common chronic diseases. There is a dire need for orphan drug discovery and therapeutics in ways that are informed by the precision/personalized medicine scholarship. Moreover, people with rare conditions, when considered collectively across diseases worldwide, impact many communities. In this overarching context, Activin A Receptor Type 1 (ACVR1) is a transmembrane kinase from the transforming growth factor-β superfamily and plays a critical role in modulating the bone morphogenetic protein signaling. Missense variants of the ACVR1 gene result in modifications in structure and function and, by extension, abnormalities and have been predominantly linked with two rare conditions: fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma. We report here an extensive bioinformatic analyses assessing the pool of 50,951 variants and forecast seven highly destabilizing mutations (R206H, G356D, R258S, G328W, G328E, R375P, and R202I) that can significantly alter the structure and function of the native protein. Protein-protein interaction and ConSurf analyses revealed the crucial interactions and localization of highly deleterious mutations in highly conserved domains that may impact the binding and functioning of the protein. cBioPortal, CanSAR Black, and existing literature affirmed the association of these destabilizing mutations with posterior fossa ependymoma, uterine corpus carcinoma, and pediatric brain cancer. The current findings suggest these deleterious nonsynonymous single nucleotide polymorphisms as potential candidates for future functional annotations and validations associated with rare conditions, further aiding the development of precision medicine in rare diseases.
Collapse
Affiliation(s)
- Garima Nagar
- Molecular Biology Research Lab, Department of Zoology, & DBC-I4 Center Deshbandhu College, University of Delhi, New Delhi, India
| | - Shradheya R R Gupta
- Molecular Biology Research Lab, Department of Zoology, & DBC-I4 Center Deshbandhu College, University of Delhi, New Delhi, India
| | - Vanshika Rustagi
- Molecular Biology Research Lab, Department of Zoology, & DBC-I4 Center Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravindran Kumar Pramod
- Indian Council of Medical Research, National Animal Resource Facility for Biomedical Research, Hyderabad, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Monika Pahuja
- Discovery Research Division, Extramural Wing, Indian Council of Medical Research, New Delhi, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, & DBC-I4 Center Deshbandhu College, University of Delhi, New Delhi, India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, India
- Division of Medical Oncology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
49
|
Jones RA, Cooper F, Kelly G, Barry D, Renshaw MJ, Sapkota G, Smith JC. Zebrafish reveal new roles for Fam83f in hatching and the DNA damage-mediated autophagic response. Open Biol 2024; 14:240194. [PMID: 39437839 PMCID: PMC11495952 DOI: 10.1098/rsob.240194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/25/2024] Open
Abstract
The FAM83 (Family with sequence similarity 83) family is highly conserved in vertebrates, but little is known of the functions of these proteins beyond their association with oncogenesis. Of the family, FAM83F is of particular interest because it is the only membrane-targeted FAM83 protein. When overexpressed, FAM83F activates the canonical Wnt signalling pathway and binds to and stabilizes p53; it therefore interacts with two pathways often dysregulated in disease. Insights into gene function can often be gained by studying the roles they play during development, and here we report the generation of fam83f knock-out (KO) zebrafish, which we have used to study the role of Fam83f in vivo. We show that endogenous fam83f is most strongly expressed in the hatching gland of developing zebrafish embryos, and that fam83f KO embryos hatch earlier than their wild-type (WT) counterparts, despite developing at a comparable rate. We also demonstrate that fam83f KO embryos are more sensitive to ionizing radiation than WT embryos-an unexpected finding, bearing in mind the previously reported ability of FAM83F to stabilize p53. Transcriptomic analysis shows that loss of fam83f leads to downregulation of phosphatidylinositol-3-phosphate (PI(3)P) binding proteins and impairment of cellular degradation pathways, particularly autophagy, a crucial component of the DNA damage response. Finally, we show that Fam83f protein is itself targeted to the lysosome when overexpressed in HEK293T cells, and that this localization is dependent upon a C' terminal signal sequence. The zebrafish lines we have generated suggest that Fam83f plays an important role in autophagic/lysosomal processes, resulting in dysregulated hatching and increased sensitivity to genotoxic stress in vivo.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ08544, USA
| | - Fay Cooper
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, UK
- Neuroscience Institute, University of Sheffield, SheffieldS10 2TN, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, UK
| | - David Barry
- The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, UK
| | | | - Gopal Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| | - James C. Smith
- The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, UK
| |
Collapse
|
50
|
Woolley SA, Hopkins B, Khatkar MS, Jerrett IV, Willet CE, O’Rourke BA, Tammen I. A Splice Site Variant in ADAMTS3 Is the Likely Causal Variant for Pulmonary Hypoplasia with Anasarca in Persian/Persian-Cross Sheep. Animals (Basel) 2024; 14:2811. [PMID: 39409761 PMCID: PMC11475510 DOI: 10.3390/ani14192811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pulmonary hypoplasia with anasarca, or hydrops fetalis, is characterized by stillbirth, diffuse oedema, and generalized lymph node hypoplasia. The enlarged fetus frequently causes dystocia. The disease has been reported in cattle and sheep as an inherited condition with a recessive mode of inheritance. This is the first report of the disease in Persian/Persian-cross sheep in Australia. Affected fetuses were reported from three flocks, and a total of eleven affected, eleven obligate carrier, and 188 related Persian/Persian-cross animals were available for analysis, as well as unrelated control animals. SNP genotyping revealed a region of homozygosity in affected animals on ovine chromosome six, which contained the functional candidate gene ADAMTS3. Whole genome sequencing of two affected fetuses and one obligate carrier ewe revealed a single nucleotide deletion, ENSOARG00000013204:g.87124344delC, located 3 bp downstream from a donor splice site region in the ADAMTS3 gene. Sanger sequencing of cDNA containing this variant further revealed that it is likely to introduce an early splice site in exon 14, resulting in a loss of 6 amino acids at the junction of exon 14 and intron 14/15. A genotyping assay was developed, and the ENSOARG00000013204:g.87124344delC segregated with disease in 209 animals, allowing for effective identification of carrier animals.
Collapse
Affiliation(s)
- Shernae A. Woolley
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bethany Hopkins
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ian V. Jerrett
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC 3083, Australia
| | - Cali E. Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brendon A. O’Rourke
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia;
| | - Imke Tammen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|