1
|
Oberdoerffer S, Gilbert WV. All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies. Nat Rev Mol Cell Biol 2025; 26:237-248. [PMID: 39433914 DOI: 10.1038/s41580-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
RNA modifications are essential for human health - too much or too little of them leads to serious illnesses ranging from neurodevelopmental disorders to cancer. Technical advances in RNA modification sequencing are beginning to uncover the RNA targets of diverse RNA-modifying enzymes that are dysregulated in disease. However, the emerging transcriptome-wide maps of modified nucleosides installed by these enzymes should be considered as first drafts. In particular, a range of technical artefacts lead to false negatives - modified sites that are overlooked owing to technique-dependent, and often sequence-context-specific, 'blind spots'. In this Review, we discuss potential sources of false negatives in sequencing-based RNA modification maps, propose mitigation strategies and suggest guidelines for transparent reporting of sensitivity to detect modified sites in profiling studies. Important considerations for recognition and avoidance of false negatives include assessment and reporting of position-specific sequencing depth, identification of protocol-dependent RNA capture biases and applying controls for false negatives as well as for false positives. Despite their limitations, emerging maps of RNA modifications reveal exciting and largely uncharted potential for post-transcriptional control of all aspects of RNA function.
Collapse
Affiliation(s)
- Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Sun B, Yang J, Wang Z, Wang Z, Feng W, Li X, Liu S, Li J, Zhu Y, Zhang P, Wang W. Exon junction complexes regulate osteoclast-induced bone resorption by influencing the NFATc1 m6A distribution through the "shield effect". Clin Transl Med 2025; 15:e70266. [PMID: 40051055 PMCID: PMC11885169 DOI: 10.1002/ctm2.70266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND The distribution of the m6A methylation modification on the transcriptome is highly regionally selective and is mainly concentrated in abnormally long exons and stop codons. However, in-depth research on the selective mechanism of m6A methylation is still lacking. METHODS In this research, meRIP sequencing, mRNA sequencing, meRIP, luciferase reporter assays and CRISPR/Cas9 conditional knockout mice were used to elucidate the distribution characteristics of NFATc1 m6A. RESULTS METTL14 controls osteoclast-mediated bone resorption by means of the methylation (4249 A) of the NFATc1 gene during osteoclast differentiation. Exon junction complexes (EJCs) selectively protect the m6A methylation sites of the NFATc1 gene. When the methylation sites are located within short exon fragments (50-200 nt), EJCs prevent their hypermethylation and degradation through the "shield effect"; when the methylation sites are located in the 3' UTR region or long exon fragments (greater than 300 nt), the "shield effect" disappears. Downstream, YTHDF2 induced the degradation of hypermethylation NFATc1 transcripts without site restriction. CONCLUSIONS EJCs act as "shields" to regulate the m6A region selectivity of the NFATc1 gene, thereby determining the characteristics of m6A distribution in the gene. Importantly, EJCs can raise the level of m6A methylation of NFATc1 and degrade its mRNA, thereby inhibiting osteoclast differentiation and preserving bone mass. These results will be helpful for identifying potential molecular targets for osteoporosis treatment. KEY POINTS METTL14 controls osteoclast-mediated bone resorption by means of the methylation (4249 A) of the NFATc1 gene during osteoclast differentiation. Exon junction complexes (EJCs) protect the remaining methylation sites of the NFATc1 gene (located in the inner exon fragment of 50-200 nt) from hypermethylation and degradation. The "shield effect" disappears when the exon fragment is extended to 300 nt. Downstream, YTHDF2 induced the degradation of hypermethylation NFATc1 transcripts without site restriction.
Collapse
Affiliation(s)
- Bao Sun
- Department of Oral PathologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Jin‐Gang Yang
- Department of StomatologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhe Wang
- Department of GynecologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Zheng Wang
- Concordia Institute for Information Systems Engineering, Concordia UniversityMontrealQCCanada
| | - Wei Feng
- Department of EndodonticsCentral Laboratory of Jinan Stomatological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue RegenerationJinanShandongPeople's Republic of China
| | - Xing Li
- Department of Oral Maxillofacial‐Head Neck OncologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Sheng‐Nan Liu
- Department of Oral PathologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiang Li
- Department of Oral PathologyShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Ya‐Qin Zhu
- Department of General DentistryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| | - Ping Zhang
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of Stomatology, Nanjing Medical UniversityNanjingChina
| | - Wei Wang
- Department of General DentistryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
3
|
Yan L, Guo L. The role and mechanism of m6A methylation in diabetic nephropathy. Life Sci 2025; 363:123355. [PMID: 39778764 DOI: 10.1016/j.lfs.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus, characterized by progressive deterioration of renal structure and function, which may eventually lead to end-stage kidney disease (ESKD). The N6-methyladenosine (m6A) methylation, an important modality of RNA modification, involves three classes of key regulators, writers (e.g., METTL3), erasers (e.g., FTO, ALKBH5) and readers (e.g., YTHDF2), which play important roles in DN. Writers are responsible for introducing m6A modifications on RNAs, erasers remove m6A modifications and readers recognize and bind m6A-modified RNAs to regulate RNAs functions, such as mRNA stability, translation and localization. In DN, abnormal m6A modification may promote kidney injury and proteinuria by regulating key pathways involved in multiple processes, including lipid metabolism and inflammatory response, in kidney cells such as podocytes. Therefore, an in-depth study of the role and mechanism of m6A methylation that are regulated by "writers", "erasers" and "readers" in DN is expected to provide new targets and strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
4
|
Li X, Guo W, Wen Y, Meng C, Zhang Q, Chen H, Zhao X, Wu B. Structural basis for the RNA binding properties of mouse IGF2BP3. Structure 2025:S0969-2126(25)00022-X. [PMID: 39986276 DOI: 10.1016/j.str.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
IGF2BP family proteins (IGF2BPs) contain six tandem RNA-binding domains (RBDs), resulting in highly complex RNA binding properties. Dissecting how IGF2BPs recognize their RNA targets is essential for understanding their regulatory roles in gene expression. Here, we have determined the crystal structures of mouse IGF2BP3 constructs complexed with different RNA substrates. Our structures reveal that the IGF2BP3-RRM12 domains can recognize CA-rich elements up to 5-nt in length, mainly through RRM1. We also captured the antiparallel RNA-binding mode of the IGF2BP3-KH12 domains, with five nucleotides bound by KH1 and two nucleotides bound by KH2. Furthermore, our structural and biochemical studies suggest that the IGF2BP3-KH12 domains could recognize the "zipcode" RNA element within the β-actin mRNA. Finally, we analyzed the similarities and differences of the RNA-binding properties between the KH12 and KH34. Our studies provide structural insights into RNA target recognition by mouse IGF2BP3.
Collapse
Affiliation(s)
- Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
5
|
Wang H, Han J, Kong H, Ma C, Zhang XA. The Emerging Role of m6A and Programmed Cell Death in Cardiovascular Diseases. Biomolecules 2025; 15:247. [PMID: 40001550 PMCID: PMC11853213 DOI: 10.3390/biom15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death (PCD), a tightly controlled process encompassing apoptosis, pyroptosis, ferroptosis, autophagy, and necroptosis, plays a crucial role in maintaining cellular homeostasis, tissue development, and function. Recently, m6A modification has emerged as a significant research area due to its role in regulating PCD and its implications in cardiovascular diseases (CVDs). In this review, we delve into the intricate relationship between various PCD types and m6A modification, emphasizing their pivotal roles in the initiation and progression of CVDs such as myocardial ischemia-reperfusion (I/R), atherosclerosis (AS), pulmonary hypertension (PH), cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity (DIC), heart failure (HF), and myocardial infarction (MI). Our findings underscore the potential of elucidating the roles of m6A and PCD in CVD to pave new pathways for prevention and treatment strategies.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
- College of Exercise and Health, Shanghai Sport University, Shanghai 200438, China
| | - Ce Ma
- Sports Training Teaching and Research Office, Shenyang Sport University, Shenyang 110102, China;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| |
Collapse
|
6
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
7
|
Sun XF, Liu C, Chen W, Chen MZ, Tian H. N6-methyladenosine (m6A) RNA methylation of LncRNA LINC01214 accelerates the progression of non-small cell lung cancer (NSCLC) by targeting miR-195-5p/ROCK1 axis. Cytotechnology 2025; 77:29. [PMID: 39744313 PMCID: PMC11685359 DOI: 10.1007/s10616-024-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 03/08/2025] Open
Abstract
Long non-coding RNA LINC01214 is reported to be up-regulated in non-small cell lung cancer (NSCLC), however, its function in NSCLC has not been elucidated yet. In our study, we verified that LINC01214 was aberrantly higher in the tumor tissues and cell lines than that in the normal controls, and was relevant to the severity and prognosis of NSCLC through using real-time quantitative PCR. Then, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry illustrated that knocking down LINC01214 restrained cell proliferation and promoted apoptosis in A549 and H1299 cells. Additionally, western blot results confirmed that LINC01214 silence reduced the protein expression of CDK2, CDK6, CyclinD1 and Bcl2, but increased the protein expression of Bax and Caspase-3. Of note, compared to normal cells, NSCLC cells had higher enrichment level of N6-methyladenosine (m6A) modification of LINC01214, while reducing m6A modification of LINC01214 weakened the stability of LINC01214 and diminished its level in A549 and H1299 through down-regulating methyltransferase METTL3 or overexpressing demethylase ALKBH5. Subsequently, molecular experiments proved that LINC01214 acted as a sponge for miR-195-5p to elevate ROCK1 expression in NSCLC. Furthermore, data from functional recovery experiments showed that elevating miR-195-5p also exerted tumor-suppressive effects in NSCLC; meanwhile, the effects were reversed by overexpressing ROCK1 or inhibiting miR-195-5p. In short, m6A modification-mediated up-regulation of LINC01214 advances cell proliferation and tumorigenesis to promote NSCLC progression through inhibiting miR-195-5p to up-regulate ROCK1.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- Department of Cardiovascular Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150006 China
| | - Chang Liu
- Future Medical Laboratory, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Wei Chen
- Department of Cardiovascular Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| | - Ming-Zhu Chen
- Department of Cardiovascular Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150006 China
| | - Hai Tian
- Future Medical Laboratory, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
- Department of Cardiovascular Surgery, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China
| |
Collapse
|
8
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
Li Y, Chen J, Sun Z. N6-methyladenosine (m6A) modification: Emerging regulators in plant-virus interactions. Virology 2025; 603:110373. [PMID: 39729962 DOI: 10.1016/j.virol.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
N6-methyladenosine (m6A), a reversible epigenetic modification, is widely present on both cellular and viral RNAs. This modification undergoes catalysis by methyltransferases (writers), removal by demethylases (erasers), and recognition by m6A-binding proteins (readers), ultimately influencing the fate and function of modified RNA molecules. With recent advances in sequencing technologies, the genome-wide mapping of m6A has become possible, enabling a deeper exploration of its roles during viral infections. So far, while the significance of m6A in regulating virus-host interactions has been well-established in animal viruses, research on its involvement in plant viruses remains in its early stages. In this review, we summarize the current knowledge regarding the functions and molecular mechanisms of m6A in plant-virus interactions. A better understanding of these complex interactions may provide valuable insights for developing novel antiviral strategies, potentially leading to more effective control of plant viral diseases in the field.
Collapse
Affiliation(s)
- Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
Oh M, Kadam RN, Charania ZS, Somarowthu S. LncRNA SChLAP1 promotes cancer cell proliferation and invasion via its distinct structural domains and conserved regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635288. [PMID: 39975023 PMCID: PMC11838354 DOI: 10.1101/2025.01.28.635288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) play key roles in a range of biological processes and disease progression. Despite their functional significance and therapeutic potential, lncRNAs' mechanisms of action remain understudied. One such lncRNA is the Second Chromosome Locus Associated with Prostate-1 (SChLAP1). SChLAP1 is overexpressed in malignant prostate cancer and is associated with unfavorable patient outcomes, such as metastasis and increased mortality. In this study, we demonstrated that SChLAP1 possesses distinct structural domains and conserved regions that may contribute to its function. We determined the secondary structure of SChLAP1 using chemical probing methods combined with mutational profiling (DMS-MaP and SHAPE-MaP). Our in vitro secondary structural model revealed that SChLAP1 consists of two distinct secondary-structural modules located at its 5' and 3' ends, both featuring regions with a high degree of structural organization. Our in vivo chemical probing identified potential protein-binding hotspots within the two modules. Overexpression of the modules led to a notable increase in cancer cell proliferation and invasion, proving their functional significance on the oncogenicity of SChLAP1. In conclusion, we discovered functionally important, independent modules with well-defined structures of SChLAP1. These results will serve as a guide to explore the detailed molecular mechanisms by which SChLAP1 promotes aggressive prostate cancer, ultimately contributing to the development of SChLAP1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Mihyun Oh
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Roshni Nagesh Kadam
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Zahra Sadruddin Charania
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Gou J, Bi J, Wang K, Lei L, Feng Y, Tan Z, Gao J, Song Y, Kang E, Guan F, Li X. O-GlcNAcylated FTO promotes m6A modification of SOX4 to enhance MDS/AML cell proliferation. Cell Commun Signal 2025; 23:43. [PMID: 39849461 PMCID: PMC11761745 DOI: 10.1186/s12964-025-02058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) was the first m6A demethylase identified, which is responsible for eliminating m6A modifications in target RNAs. While it is well-established that numerous cytosolic and nuclear proteins undergo O-GlcNAcylation, the possibility of FTO being O-GlcNAcylated and its functional implications remain unclear. This study found that a negative correlation between FTO expression and O-GlcNAcylation in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The decreased O-GlcNAcylation on FTO can result in diminished m6A modification of SRY-related high mobility group box 4 (SOX4). This led to the promotion of cell apoptosis and inhibition of cell proliferation in MDS/AML. The O-GlcNAcylation of FTO stabilized SOX4 transcripts in an m6A-dependent manner, resulting in increased AKT and MAPK phosphorylation and decreased cell apoptosis. Inhibiting FTO O-GlcNAcylation significantly slowed AML progression in vitro, a finding supported by clinical data in MDS/AML patients. In conclusion, our study highlights the crucial role of FTO O-GlcNAcylation in RNA m6A methylation and the progression of MDS/AML, thereby providing a potential therapeutic avenue for these formidable diseases.
Collapse
Affiliation(s)
- Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Jingjing Bi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Kexin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Yanli Feng
- Department of Hematology, Provincial People's Hospital, Xi'an, P. R. China
| | - Zengqi Tan
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, P. R. China
| | - Jiaojiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Yanan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Enci Kang
- Xi'an Gaoxin No.1 High School, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China.
- College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
12
|
Zhang H, Yi C, Li J, Lu Y, Wang H, Tao L, Zhou J, Tan Y, Li J, Chen Z, Asadikaram G, Cao J, Peng J, Li W, He J, Wang H. N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis. J Biomed Sci 2025; 32:8. [PMID: 39800682 PMCID: PMC11726933 DOI: 10.1186/s12929-024-01100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Recent studies indicate that N6-methyladenosine (m6A) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation. METHODS Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in m6A levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS). RNA sequencing (RNA-seq) was employed to analyze the factors regulating ferroptosis. Chromatin immunoprecipitation (ChIP) was used to assess the binding of regulatory factors to the SLC7A11 promoter, and a Dual-Luciferase reporter assay measured promoter activity of SLC7A11. The dm6ACRISPR system was utilized for the demethylation of specific transcripts. The Cancer Genome Atlas Program (TCGA) database and immunohistochemistry validated the role of the METTL3/SLC7A11 axis in cancer progression. RESULTS The m6A methyltransferase METTL3 was upregulated during cancer cell ferroptosis and facilitated erastin-induced ferroptosis by enhancing mitochondrial ROS. Mechanistic studies showed that METTL3 negatively regulated the transcription and promoter activity of SLC7A11. Specifically, METTL3 induced H3K27 trimethylation of the SLC7A11 promoter by suppressing the mRNA stability of H3K27 demethylases KDM6B. Furthermore, METTL3 suppressed the expression of GATA3, which regulated SLC7A11 transcription by binding to the putative site at - 597 to - 590 of the SLC7A11 promoter. METTL3 decreased the precursor mRNA stability of GATA3 through m6A/YTHDF2-dependent recruitment of the 3'-5' exoribonuclease Dis3L2. Targeted demethylation of KDM6B and GATA3 m6A using the dm6ACRISPR system significantly increased the expression of SLC7A11. Moreover, the transcription factor YY1 was responsible for erastin-induced upregulation of METTL3 by binding to its promoter-proximal site. In vivo and clinical data supported the positive roles of the METTL3/SLC7A11 axis in tumor growth and progression. CONCLUSIONS METTL3 regulated the transcription of SLC7A11 through GATA3 and KDM6B to modulate ferroptosis in an m6A-dependent manner. This study provides a novel potential strategy and experimental support for the future treatment of cancer.
Collapse
Affiliation(s)
- Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheng Yi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jianing Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yunqing Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haoran Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lijun Tao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yonghuang Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhuojia Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Medical University Campus, Kerman, Iran
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China
| | - Wanglin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China.
- Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, China.
| | - Junming He
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China.
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Zhang C, Yang T, Chen H, Ding X, Chen H, Liang Z, Zhao Y, Ma S, Liu X. METTL3 inhibition promotes radiosensitivity in hepatocellular carcinoma through regulation of SLC7A11 expression. Cell Death Dis 2025; 16:9. [PMID: 39799112 PMCID: PMC11724875 DOI: 10.1038/s41419-024-07317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025]
Abstract
Radiotherapy is one of the main treatment modalities for advanced hepatocellular carcinoma (HCC). Ferroptosis has been shown to promote the radiosensitivity of HCC cells, but it remains unclear whether epigenetic regulations function in this process. In this study, we found that the overexpression of METTL3 was associated with poor prognosis. Knockdown of METTL3 promoted radiosensitivity of HCC by inducing ferroptosis. Mechanistically, METTL3 targeted adenine (+1795) on the SLC7A11 mRNA, and the m6A reader IGF2BP2 promoted SLC7A11 mRNA stability by recognizing and binding to the m6A site. Additionally, METTL3 decreased the ubiquitination of SLC7A11 protein through the m6A/YTHDF2/SOCS2 axis. Furthermore, in vivo studies showed that HCC models with low METTL3/IGF2BP2 expression have higher radiosensitivity. In conclusion, our study suggests that METTL3 regulates the stability of SLC7A11 mRNA in an m6A/IGF2BP2-dependent manner and the ubiquitination of SLC7A11 protein through the m6A/YTHDF2/SOCS2 pathway, both of which require the m6A methyltransferase activity of METTL3. METTL3 or IGF2BP2 may be promising targets for radiotherapy of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/radiotherapy
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/radiotherapy
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Radiation Tolerance/genetics
- Amino Acid Transport System y+/metabolism
- Amino Acid Transport System y+/genetics
- Animals
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Mice
- Mice, Nude
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Ubiquitination
- Male
- Ferroptosis/genetics
- Mice, Inbred BALB C
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Suppressor of Cytokine Signaling Proteins/genetics
- Female
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health, Wenzhou Medical University, the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianpeng Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbin Chen
- the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaofeng Ding
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huajian Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhenzhen Liang
- School of Public Health, Wenzhou Medical University, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yinlong Zhao
- Department of Nuclear Medicine, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, 325035, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University; Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
14
|
Liu L, Zhao YJ, Zhang F. RNA methylation modifications in neurodegenerative diseases: Focus on their enzyme system. J Adv Res 2025:S2090-1232(25)00027-X. [PMID: 39765326 DOI: 10.1016/j.jare.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention. At present, several regulatory genes associated with mRNA methylation have been identified and closely associated with neurodegenerative disorders. AIM OF REVIEW This review aimed to summarize the RNA methylation enzymes system, including the writer, reader, and eraser proteins and delve into their functions in the central nervous system (CNS), hoping to open new avenues for exploring the mechanisms and therapeutic strategies for NDs. KEY SCIENTIFIC CONCEPTS OF REVIEW Recently, studies have highlighted the critical role of RNA methylation in the development and function of the CNS, and abnormalities in this process may contribute to brain damage and NDs, aberrant expression of enzymes involved in RNA methylation has been implicated in the onset and development of NDs.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu-Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
15
|
Su N, Yu X, Duan M, Shi N. Recent advances in methylation modifications of microRNA. Genes Dis 2025; 12:101201. [PMID: 39524539 PMCID: PMC11550756 DOI: 10.1016/j.gendis.2023.101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
microRNAs (miRNAs) are short single-stranded non-coding RNAs between 21 and 25 nt in length in eukaryotic organisms, which control post-transcriptional gene expression. Through complementary base pairing, miRNAs generally bind to their target messenger RNAs and repress protein production by destabilizing the messenger RNA and translational silencing. They regulate almost all life activities, such as cell proliferation, differentiation, apoptosis, tumorigenesis, and host-pathogen interactions. Methylation modification is the most common RNA modification in eukaryotes. miRNA methylation exists in different types, mainly N6-methyladenosine, 5-methylcytosine, and 7-methylguanine, which can change the expression level and biological mode of action of miRNAs and improve the activity of regulating gene expression in a very fine-tuned way with flexibility. In this review, we will summarize the recent findings concerning methylation modifications of miRNA, focusing on their biogenesis and the potential role of miRNA fate and functions.
Collapse
Affiliation(s)
| | | | | | - Ning Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
16
|
Rupareliya M, Shende P. Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:79-103. [PMID: 39259424 DOI: 10.1007/5584_2024_820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
17
|
Ganguly DR, Li Y, Bhat SS, Tiwari S, Ng PJ, Gregory BD, Sunkar R. mRNA ADENOSINE METHYLASE promotes drought tolerance through N 6-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:183-199. [PMID: 39462792 PMCID: PMC11617654 DOI: 10.1111/nph.20227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Among many mRNA modifications, adenine methylation at the N6 position (N6-methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses. We show that Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought-sensitive. Subsequently, we comprehensively assess the impacts of MTA-dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis. During drought, there is a global trend toward hypermethylation of many protein-coding transcripts that does not occur in mta. We also observe complex regulation of m6A at a transcript-specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA-dependent manner exhibited reduced turnover and translation in mta, compared with wild-type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought-associated deposition of m6A with increased translation of modulators of drought response, such as RD29A, COR47, COR413, ALDH2B, ERD7, and ABF4 in WT, which is impaired in mta. m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought-responsive changes in transcript turnover and translation.
Collapse
Affiliation(s)
- Diep R. Ganguly
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yongfang Li
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | | | - Shalini Tiwari
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Pei Jia Ng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| |
Collapse
|
18
|
Yu J, Sun W, Zhao X, Chen Y. The therapeutic potential of RNA m(6)A in lung cancer. Cell Commun Signal 2024; 22:617. [PMID: 39736743 DOI: 10.1186/s12964-024-01980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer (LC) is a highly malignant and metastatic form of cancer. The global incidence of and mortality from LC is steadily increasing; the mean 5-year overall survival (OS) rate for LC is less than 20%. This frustrating situation may be attributed to the fact that the pathogenesis of LC remains poorly understood and there is still no cure for mid to advanced LC. Methylation at the N6-position of adenosine (N6mA) of RNA (m(6)A) is widely present in human tissues and organs, and has been found to be necessary for cell development and maintenance of homeostasis. However, numerous basic and clinical studies have demonstrated that RNA m(6)A is deregulated in many human malignancies including LC. This can drive LC malignant characteristics such as proliferation, stemness, invasion, epithelial-mesenchymal transition (EMT), metastasis, and therapeutic resistance. Intriguingly, an increasing number of studies have also shown that eliminating RNA m(6)A dysfunction can exert significant anti-cancer effects on LC such as suppression of cell proliferation and viability, induction of cell death, and reversal of treatment insensitivity. The current review comprehensively discusses the therapeutic potential of RNA m(6)A and its underlying molecular mechanisms in LC, providing useful information for the development of novel LC treatment strategies.
Collapse
Affiliation(s)
- Jingran Yu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xiangxuan Zhao
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, No.79 Chongshandong Road, Shenyang, 110847, China.
- Health Sciences Institute, China Medical University, Puhe Road, Shenyang North New Area, Shenyang, 110022, China.
| | - Yingying Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang , Liaoning, 110022, China.
| |
Collapse
|
19
|
Shen L. Epitranscriptomic regulation through phase separation in plants. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00313-3. [PMID: 39706711 DOI: 10.1016/j.tplants.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Epitranscriptomic regulation has emerged as a crucial layer of gene control where RNA modifications, particularly N6-methyladenosine (m6A), introduce complexity and versatility to gene regulation. Increasing evidence suggests that epitranscriptomic regulation through phase separation plays critical roles in mediating RNA metabolism during plant development and stress responses. m6A-associated biomolecular condensates formed via phase separation act as dynamic cellular hotspots where m6A effectors, RNAs, and other regulatory proteins coalesce to facilitate RNA regulation. Moreover, m6A modulates condensate assembly. Herein, I summarize the current understanding of how m6A- and m6A effector-mediated formation of biomolecular condensates mediates plant development and stress adaptation. I also discuss several working models for m6A-associated biomolecular condensates and highlight the prospects for future research on epitranscriptomic regulation through phase separation.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
20
|
Xiao L, Fang L, Zhong W, Kool ET. RNA infrastructure profiling illuminates transcriptome structure in crowded spaces. Cell Chem Biol 2024; 31:2156-2167.e5. [PMID: 39447577 DOI: 10.1016/j.chembiol.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2'-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m6A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wenrui Zhong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
22
|
Bai H, Dai Y, Fan P, Zhou Y, Wang X, Chen J, Jiao Y, Du C, Huang Z, Xie Y, Guo X, Lang X, Ling Y, Deng Y, Liu Q, He S, Zhang Z. The METHYLTRANSFERASE B-SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m 6A modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2613-2631. [PMID: 39206840 PMCID: PMC11622539 DOI: 10.1111/jipb.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
Collapse
Affiliation(s)
- Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Yanghuan Dai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Panting Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Xiangying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Zhuoxi Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| | - Xiaoqiang Lang
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhou510640China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou510640China
| | - Yongqing Ling
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhou510640China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou510640China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
| | - Qi Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural AffairsGuangzhou510640China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryRice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou510640China
| | - Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSchool of Life Science, South China Normal UniversityGuangzhou510631China
| |
Collapse
|
23
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
24
|
Xia X, Qu R. The Roles of RNA N6-methyladenosine Modifications in Systemic Lupus Erythematosus. Cell Biochem Biophys 2024; 82:3223-3234. [PMID: 39095568 DOI: 10.1007/s12013-024-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
N6-methyladenosine (m6A) modification is the most widespread RNA internal modification involved in RNA metabolism. M6A regulators consist of writers, erasers and readers. They exert their function by methylation, demethylation and recognization respectively, participating in cell biology and immune responses. Previously, the focus of m6A modification is its effect on tumor progress. Currently, extensive m6A-related studies have been performed in autoimmune diseases, such as RA, IBD and SLE, revealing that the unique influence of m6A modification in autoimmunity is undeniable. In this review, we summarize the function of m6A regulators, analyze their roles in pathogenic immune cells, summarize the m6A modification in SLE, and provide the potential m6A-targeting therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xin Xia
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rui Qu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
25
|
Zhang Y, Zhao J, Chen X, Qiao Y, Kang J, Guo X, Yang F, Lyu K, Ding Y, Zhao Y, Sun H, Kwok CK, Wang H. DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m 6A reader YTHDF1. Nat Commun 2024; 15:9890. [PMID: 39543097 PMCID: PMC11564809 DOI: 10.1038/s41467-024-54000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
RNA structure constitutes a new layer of gene regulatory mechanisms. RNA binding proteins can modulate RNA secondary structures, thus participating in post-transcriptional regulation. The DEAH-box helicase 36 (DHX36) is known to bind and unwind RNA G-quadruplex (rG4) structure but the transcriptome-wide RNA structure remodeling induced by DHX36 binding and the impact on RNA fate remain poorly understood. Here, we investigate the RNA structurome alteration induced by DHX36 depletion. Our findings reveal that DHX36 binding induces structural remodeling not only at the localized binding sites but also on the entire mRNA transcript most pronounced in 3'UTR regions. DHX36 binding increases structural accessibility at 3'UTRs which is correlated with decreased post-transcriptional mRNA abundance. Further analyses and experiments uncover that DHX36 binding sites are enriched for N6-methyladenosine (m6A) modification and YTHDF1 binding; and DHX36 induced structural changes may facilitate YTHDF1 binding to m6A sites leading to RNA degradation. Altogether, our findings uncover the structural remodeling effect of DHX36 binding and its impact on RNA abundance through regulating m6A dependent YTHDF1 binding.
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 32300703 National Natural Science Foundation of China (National Science Foundation of China)
- 32270587 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China to H.W. (2022YFA0806003);General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14115319, 14100620, 14106521 and 14105823 to H.W.);the research funds from Health@InnoHK program launched by Innovation Technology Commission, the Government of the Hong Kong SAR, China to H.W.; Collaborative Research Fund (CRF) from RGC to H.W. (C6018-19GF); Theme-based Research Scheme (TRS) from RGC (project number: T13-602/21-N); Hong Kong Epigenomics Project (EpiHK) Fund to H.W.; Area of Excellence Scheme (AoE) from RGC (project number: AoE/M-402/20); Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China (project Code: 10210906 and 08190626 to H.W.).
- CUHK Direct Grant to X.C. (project No.: 2022.038)
- General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14120420, 14103522 and 14105123); Hong Kong Epigenomics Project (EpiHK) Fund
- General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (CityU 11100123, CityU 11100222, CityU 11100421); National Natural Science Foundation of China (NSFC) Excellent Young Scientists Fund (Hong Kong and Macau) Project (32222089) to C.K.K.; Croucher Foundation Project (9509003) to C.K.K.; State Key Laboratory of Marine Pollution Seed Collaborative Research Fund (SCRF/0037, SCRF/0040, SCRF0070) to C.K.K.; City University of Hong Kong projects (9678302 and 6000827) to C.K.K.; the Hong Kong Institute for Advanced Study, City University of Hong Kong [9360157] to C.K.K..
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jieyu Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Yulong Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Jinjin Kang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiaofan Guo
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hao Sun
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Chun-Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China.
| |
Collapse
|
26
|
Xu Z, Zhou Y, Liu S, Zhao H, Chen Z, Li R, Li M, Huang X, Deng S, Zeng L, Zhao S, Zhang S, He X, Liu J, Xue C, Bai R, Zhuang L, Zhou Q, Chen R, Lin D, Zheng J, Zhang J. KHSRP Stabilizes m6A-Modified Transcripts to Activate FAK Signaling and Promote Pancreatic Ductal Adenocarcinoma Progression. Cancer Res 2024; 84:3602-3616. [PMID: 39120596 DOI: 10.1158/0008-5472.can-24-0927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
N 6-Methyladenosine (m6A) is the most prevalent RNA modification and is associated with various biological processes. Proteins that function as readers and writers of m6A modifications have been shown to play critical roles in human malignancies. Here, we identified KH-type splicing regulatory protein (KHSRP) as an m6A binding protein that contributes to the progression of pancreatic ductal adenocarcinoma (PDAC). High KHSRP levels were detected in PDAC and predicted poor patient survival. KHSRP deficiency suppressed PDAC growth and metastasis in vivo. Mechanistically, KHSRP recognized and stabilized FAK pathway mRNAs, including MET, ITGAV, and ITGB1, in an m6A-dependent manner, which led to activation of downstream FAK signaling that promoted PDAC progression. Targeting KHSRP with a PROTAC showed promising tumor suppressive effects in mouse models, leading to prolonged survival. Together, these findings indicate that KHSRP mediates FAK pathway activation in an m6A-dependent manner to support PDAC growth and metastasis, highlighting the potential of KHSRP as a therapeutic target in pancreatic cancer. Significance: KHSRP is a m6A-binding protein that stabilizes expression of FAK pathway mRNAs and that can be targeted to suppress FAK signaling and curb pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Zilan Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yifan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaoqiu Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ziming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Rui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xudong Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shuang Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Sihan Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaoping Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaowei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chunling Xue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lisha Zhuang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Rufu Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, P. R. China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, P. R. China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
27
|
Sharma G, Gutierrez M, Jones AE, Jaiswal AK, Neeb ZT, Rios A, Thaxton ML, Lin TL, Tran TM, Kabbani LES, Ritter AJ, Stiles L, Hoeve JT, Divakaruni AS, Sanford JR, Rao DS. Metabolic regulation of RNA methylation by the m 6A-reader IGF2BP3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621399. [PMID: 39554138 PMCID: PMC11565949 DOI: 10.1101/2024.10.31.621399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The interplay of RNA modifications - deposited by "writers", removed by "erasers" and identified by RNA binding proteins known as "readers" - forms the basis of the epitranscriptomic gene regulation hypothesis. Recent studies have identified the oncofetal RNA-binding protein IGF2BP3 as a "reader" of the N6-methyladenosine (m6A) modification and crucial for regulating gene expression. Yet, how its function as a reader overlaps with its critical oncogenic function in leukemia remains an open question. Here, we report the novel finding that the reader IGF2BP3 reprograms cellular metabolism, resulting in an altered ability of the "writers" to modify the epitranscriptome. In leukemia cells, IGF2BP3 supports increased glycolytic flux and one-carbon metabolism, leading to increased production of S-adenosyl methionine (SAM), a key substrate for methylation reactions within the cell. IGF2BP3 directly regulates the translation of MAT2B, the regulatory subunit of the methionine-adenosyltransferase complex, which is the final enzyme in a pathway leading to SAM production. This, in turn, results in increased m6A modifications on RNA, resulting in positive feedback regulation. This novel mechanism illustrates how metabolism mutually acts with epitranscriptomic modifications, underscoring the pervasive impact of IGF2BP3 in gene regulatory mechanisms governing a broad range of cancer-specific processes.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Martin Gutierrez
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amit Kumar Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Zachary T Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle L Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tasha L Lin
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lyna E S Kabbani
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Alexander J Ritter
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
28
|
Jiang R, Jia Q, Li C, Gan X, Zhou Y, Pan Y, Fu Y, Chen X, Liang L, Jia E. Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease. Cell Biol Int 2024; 48:1664-1679. [PMID: 39004874 DOI: 10.1002/cbin.12224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.
Collapse
Affiliation(s)
- Rongli Jiang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lanyu Liang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
29
|
He L, Xu R, Ma X, Yin X, Mueller E, Feng W, Menze M, Kim S, McClain CJ, Zhang X. Multiomics Studies on Metabolism Changes in Alcohol-Associated Liver Disease. J Proteome Res 2024; 23:4962-4972. [PMID: 39418671 DOI: 10.1021/acs.jproteome.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction in the liver represents a predominant feature in the early stages of alcohol-associated liver disease (ALD). However, the mechanisms underlying this are only partially understood. To investigate the metabolic characteristics of the liver in ALD, we did a relative quantification of polar metabolites and lipids in the liver of mice with experimental ALD using untargeted metabolomics and untargeted lipidomics. A total of 99 polar metabolites had significant abundance alterations in the livers of alcohol-fed mice. Pathway analysis revealed that amino acid metabolism was the most affected by alcohol in the mouse liver. Metabolites involved in glycolysis and the TCA cycle were decreased, while glycerol 3-phosphate (G3P) and long-chain fatty acids were increased. Relative quantification of lipids unveiled an upregulation of multiple lipid classes, suggesting that alcohol consumption drives metabolism toward lipid synthesis. Results from enzyme expression and activity detection indicated that the decreased activity of mitochondrial glycerol 3-phosphate dehydrogenase contributed to the disordered metabolism.
Collapse
Affiliation(s)
- Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Eugene Mueller
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
| | - Wenke Feng
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
| | - Michael Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40208, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
- Robley Rex Louisville VAMC, Louisville, Kentucky 40292, United States
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
| |
Collapse
|
30
|
Wu Z, Liu W, Si X, Liang J. Screening of key genes related to M6A methylation in patients with heart failure. BMC Cardiovasc Disord 2024; 24:565. [PMID: 39415091 PMCID: PMC11481427 DOI: 10.1186/s12872-024-04228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE This study aims to identify m6A methylation-related and immune cell-related key genes with diagnostic potential for heart failure (HF) by leveraging various bioinformatics techniques. METHODS The GSE116250 and GSE141910 datasets were sourced from the Gene Expression Omnibus (GEO) database. Correlation analysis was conducted between differentially expressed genes (DEGs) in HF and control groups, alongside differential m6A regulatory factors, to identify m6A-related DEGs (m6A-DEGs). Subsequently, candidate genes were narrowed down by intersecting key module genes derived from weighted gene co-expression network analysis (WGCNA) with m6A-DEGs. Key genes were then identified through the Least Absolute Shrinkage and Selection Operator (LASSO) analysis. Correlation analyses between key genes and differentially expressed immune cells were performed, followed by the validation of key gene expression levels in public datasets. To ensure clinical applicability, five pairs of blood samples were collected for quantitative real-time fluorescence PCR (qRT-PCR) validation. RESULTS A total of 93 m6A-DEGs were identified (|COR| > 0.6, P < 0.05), and five key genes (LACTB2, NAMPT, SCAMP5, HBA1, and PRKAR2A) were selected for further analysis. Correlation analysis revealed that differential immune cells were negatively associated with the expression of LACTB2, NAMPT, and PRKAR2A (P < 0.05), while positively correlated with SCAMP5 and HBA1 (P < 0.05). Subsequent expression validation confirmed significant differences in key gene expression between the HF and control groups, with consistent expression trends observed across both training and validation sets. The expression trends of LACTB2, PRKAR2A, and HBA1 in blood samples from the qRT-PCR assay aligned with the results derived from public databases. CONCLUSION This study successfully identified five m6A methylation-related key genes with diagnostic significance, providing a theoretical foundation for further exploration of m6A methylation's molecular mechanisms in HF.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wupeng Liu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jinfeng Liang
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Tao X, Kang N, Zheng Z, Zhu Z, Ma J, He W. The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis. Life Sci 2024; 355:123011. [PMID: 39181316 DOI: 10.1016/j.lfs.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
HEADING AIMS Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Zongqin Zheng
- Department of Anesthesiology, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ziyi Zhu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Junting Ma
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Wei He
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
32
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
33
|
Xhemalçe B, Miller KM, Gromak N. Epitranscriptome in action: RNA modifications in the DNA damage response. Mol Cell 2024; 84:3610-3626. [PMID: 39366350 DOI: 10.1016/j.molcel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Blerta Xhemalçe
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road OX1 3RE, UK.
| |
Collapse
|
34
|
Liao X, Zhang S, Li X, Qian W, Li M, Chen S, Wu X, Yu X, Li Z, Tang M, Xu Y, Yu R, Zhang Q, Wu G, Zhang N, Song L, Li J. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. Sci Transl Med 2024; 16:eado1573. [PMID: 39356744 DOI: 10.1126/scitranslmed.ado1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.
Collapse
Affiliation(s)
- Xinyi Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xincheng Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Wanying Qian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Man Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Suwen Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xuexin Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Miaoling Tang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Qiliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Geyan Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangdong 510080, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
| | - Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| |
Collapse
|
35
|
Siachisumo C, Luzzi S, Aldalaqan S, Hysenaj G, Dalgliesh C, Cheung K, Gazzara MR, Yonchev ID, James K, Kheirollahi Chadegani M, Ehrmann IE, Smith GR, Cockell SJ, Munkley J, Wilson SA, Barash Y, Elliott DJ. An anciently diverged family of RNA binding proteins maintain correct splicing of a class of ultra-long exons through cryptic splice site repression. eLife 2024; 12:RP89705. [PMID: 39356106 PMCID: PMC11446547 DOI: 10.7554/elife.89705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.
Collapse
Affiliation(s)
- Chileleko Siachisumo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Sara Luzzi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Saad Aldalaqan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - Ivaylo D Yonchev
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Katherine James
- School of Computing, Newcastle UniversityNewcastleUnited Kingdom
| | | | - Ingrid E Ehrmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Jennifer Munkley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Stuart A Wilson
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - David J Elliott
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
36
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Yu L, Alariqi M, Li B, Hussain A, Zhou H, Wang Q, Wang F, Wang G, Zhu X, Hui F, Yang X, Nie X, Zhang X, Jin S. CRISPR/dCas13(Rx) Derived RNA N 6-methyladenosine (m 6A) Dynamic Modification in Plant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401118. [PMID: 39229923 PMCID: PMC11497087 DOI: 10.1002/advs.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Indexed: 09/05/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of mRNA and plays an important role in regulating plant growth. However, there is still a lack of effective tools to precisely modify m6A sites of individual transcripts in plants. Here, programmable m6A editing tools are developed by combining CRISPR/dCas13(Rx) with the methyltransferase GhMTA (Targeted RNA Methylation Editor, TME) or the demethyltransferase GhALKBH10 (Targeted RNA Demethylation Editor, TDE). These editors enable efficient deposition or removal of m6A modifications at targeted sites of endo-transcripts GhECA1 and GhDi19 within a broad editing window ranging from 0 to 46 nt. TDE editor significantly decreases m6A levels by 24%-76%, while the TME editor increases m6A enrichment, ranging from 1.37- to 2.51-fold. Furthermore, installation and removal of m6A modifications play opposing roles in regulating GhECA1 and GhDi19 mRNA transcripts, which may be attributed to the fact that their m6A sites are located in different regions of the genes. Most importantly, targeting the GhDi19 transcript with TME editor plants results in a significant increase in root length and enhanced drought resistance. Collectively, these m6A editors can be applied to study the function of specific m6A modifications and have the potential for future applications in crop improvement.
Collapse
Affiliation(s)
- Lu Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Huifang Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Guanying Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiangqian Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco‐agriculturalXinjiang Production and Construction Corps/Agricultural CollegeShihezi UniversityShihezi832003China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
38
|
Zhao R, Chen J, Wang Y, Xiao H, Mei P, Lin W, Diao M, He S, Liao Y, Meng W. Prognostic roles of dysregulated METTL3 protein expression in cancers and potential anticancer value by inhibiting METTL3 function. Fundam Clin Pharmacol 2024; 38:924-939. [PMID: 38849971 DOI: 10.1111/fcp.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Many studies have demonstrated the relationship between METTL3 protein expression and clinical outcomes in various cancers and elucidated the mechanism by which METTL3 disrupts the behavior of cancer cells. Here, we attempted to define the prognostic value of METTL3 protein in patients with cancer via systematic analysis and explored the potential effect of inhibiting METTL3 using its specific inhibitor. METHODS We searched PubMed, Embase, and the Web of Science databases for studies that elucidated the prognostic value of METTL3 protein expression in all cancer types and then calculated the pooled hazard ratios with 95% confidence intervals for the overall survival (OS) of all cancer types and subgroups. Data from The Cancer Genome Atlas dataset were used to study METTL3 mRNA expression in cancers. Further, the effects of a METTL3-specific inhibitor were studied in cancer cells via the colony formation assay, the cell proliferation assay, and apoptosis detection. RESULTS Meta-analysis of the 33 cohorts in 32 studies (3666 patients in total) revealed that higher METTL3 protein expression indicated poor OS in the majority of cancers. Bioinformatics analysis of METTL3 mRNA expression and cancer prognosis did not show the extremely prominent prognostic value of METTL3 mRNA. Nevertheless, the METTL3-specific inhibitor attenuated cell proliferation and cell cloning formation and promoted apoptosis. CONCLUSIONS METTL3 protein expression is associated with poor prognosis in most cancer types and could be a biomarker for OS. Further, METTL3 inhibition might be a potential treatment strategy for cancers.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Chen
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Diao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiwen He
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
40
|
Zhang B, Hao Y, Liu H, Wu J, Lu L, Wang X, Bajpai AK, Yang X. Interplay of RNA m 6A Modification-Related Geneset in Pan-Cancer. Biomedicines 2024; 12:2211. [PMID: 39457524 PMCID: PMC11504890 DOI: 10.3390/biomedicines12102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: N6-methyladenosine (m6A), is the most common modification found in mRNA and lncRNA in higher organisms and plays an important role in physiology and pathology. However, its role in pan-cancer has not been explored. Results: A total of 31 m6A modification regulators, including 12 writers, 2 erasers, and 17 readers are identified in the current study. The functional analysis of the regulators results in the enrichment of processes, primarily related to RNA modification and metabolism, and the PPI network reveals multiple interactions among the regulators. The mRNA expression analysis reveals a high expression for most of the regulators in pan-cancer. Most of the m6A regulators are found to be mutated across the cancers, with ZC3H13, VIRMA, and PRRC2A having a higher frequency rate. Significant correlations of the regulators with clinicopathological parameters, such as age, gender, tumor stage, and grade are identified in pan-cancer. The m6A regulators' expression is found to have significant positive correlations with the miRNAs in pan-cancer. The expression pattern of the m6A regulators is able to classify the tumors into different subclusters as well as into high- and low-risk groups. These tumor groups show differential patterns in terms of their immune cell infiltration, tumor stemness score, genomic heterogeneity score, expression of immune regulatory/checkpoint genes, and correlations between the regulators and the drugs. Conclusions: Our study provide a comprehensive overview of the functional roles, genetic and epigenetic alterations, and prognostic value of the RNA m6A regulators in pan-cancer.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Yajuan Hao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| |
Collapse
|
41
|
Yu B, Nagae G, Midorikawa Y, Tatsuno K, Dasgupta B, Aburatani H, Ueda H. m6ATM: a deep learning framework for demystifying the m6A epitranscriptome with Nanopore long-read RNA-seq data. Brief Bioinform 2024; 25:bbae529. [PMID: 39438075 PMCID: PMC11495873 DOI: 10.1093/bib/bbae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant and well-known modifications in messenger RNAs since its discovery in the 1970s. Recent studies have demonstrated that m6A is involved in various biological processes, such as alternative splicing and RNA degradation, playing an important role in a variety of diseases. To better understand the role of m6A, transcriptome-wide m6A profiling data are indispensable. In recent years, the Oxford Nanopore Technology Direct RNA Sequencing (DRS) platform has shown promise for RNA modification detection based on current disruptions measured in transcripts. However, decoding current intensity data into modification profiles remains a challenging task. Here, we introduce the m6A Transcriptome-wide Mapper (m6ATM), a novel Python-based computational pipeline that applies deep neural networks to predict m6A sites at a single-base resolution using DRS data. The m6ATM model architecture incorporates a WaveNet encoder and a dual-stream multiple-instance learning model to extract features from specific target sites and characterize the m6A epitranscriptome. For validation, m6ATM achieved an accuracy of 80% to 98% across in vitro transcription datasets containing varying m6A modification ratios and outperformed other tools in benchmarking with human cell line data. Moreover, we demonstrated the versatility of m6ATM in providing reliable stoichiometric information and used it to pinpoint PEG10 as a potential m6A target transcript in liver cancer cells. In conclusion, m6ATM is a high-performance m6A detection tool, and our results pave the way for future advancements in epitranscriptomic research.
Collapse
Affiliation(s)
- Boyi Yu
- Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Genta Nagae
- Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Digestive Surgery, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku 173-8601, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Bhaskar Dasgupta
- Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Hiroki Ueda
- Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| |
Collapse
|
42
|
Liu ZY, You QY, Liu ZY, Lin LC, Yang JJ, Tao H. m6A control programmed cell death in cardiac fibrosis. Life Sci 2024; 353:122922. [PMID: 39032691 DOI: 10.1016/j.lfs.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
N6-methyladenosine (m6A) modification is closely related to cardiac fibrosis. As the most common and abundant form of mRNA modification in eukaryotes, m6A is deposited by methylases ("writers"), recognized and effected by RNA-binding proteins ("readers"), and removed by demethylases ("erasers"), achieving highly dynamic reversibility. m6A modification is involved in regulating the entire biological process of target RNA, including transcription, processing and splicing, export from the nucleus to the cytoplasm, and enhancement or reduction of stability and translation. Programmed cell death (PCD) comprises many forms and pathways, with apoptosis and autophagy being the most common. Other forms include pyroptosis, ferroptosis, necroptosis, mitochondrial permeability transition (MPT)-dependent necrosis, and parthanatos. In recent years, increasing evidence suggests that m6A modification can mediate PCD, affecting cardiac fibrosis. Since the correlation between some PCD types and m6A modification is not yet clear, this article mainly introduces the relationship between four common PCD types (apoptosis, autophagy, pyroptosis, and ferroptosis) and m6A modification, as well as their role and influence in cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Qing-Ye You
- Anhui Women and Children's Medical Center, Hefei 230001, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
43
|
Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne) 2024; 15:1462146. [PMID: 39296713 PMCID: PMC11408340 DOI: 10.3389/fendo.2024.1462146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
He D, He X, Shen D, Liu L, Yang X, Hao M, Wang Y, Li Y, Liu Q, Liu M, Wang J, Zhang X, Cui L. Loss-of-function variants in RNA binding motif protein X-linked induce neuronal defects contributing to amyotrophic lateral sclerosis pathogenesis. MedComm (Beijing) 2024; 5:e712. [PMID: 39263607 PMCID: PMC11387721 DOI: 10.1002/mco2.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024] Open
Abstract
Despite being one of the most prevalent RNA modifications, the role of N6-methyladenosine (m6A) in amyotrophic lateral sclerosis (ALS) remains ambiguous. In this investigation, we explore the contribution of genetic defects of m6A-related genes to ALS pathogenesis. We scrutinized the mutation landscape of m6A genes through a comprehensive analysis of whole-exome sequencing cohorts, encompassing 508 ALS patients and 1660 population-matched controls. Our findings reveal a noteworthy enrichment of RNA binding motif protein X-linked (RBMX) variants among ALS patients, with a significant correlation between pathogenic m6A variants and adverse clinical outcomes. Furthermore, Rbmx knockdown in NSC-34 cells overexpressing mutant TDP43Q331K results in cell death mediated by an augmented p53 response. Similarly, RBMX knockdown in ALS motor neurons derived from induced pluripotent stem cells (iPSCs) manifests morphological defects and activation of the p53 pathway. Transcriptional analysis using publicly available single-cell sequencing data from the primary motor cortex indicates that RBMX-regulated genes selectively influence excitatory neurons and exhibit enrichment in ALS-implicated pathways. Through integrated analyses, our study underscores the emerging roles played by RBMX in ALS, suggesting a potential nexus between the disease and dysregulated m6A-mediated mRNA metabolism.
Collapse
Affiliation(s)
- Di He
- Department of Neurology Beijing Tiantan Hospital, Capital Medical University Beijing China
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xinyi He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Dongchao Shen
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Liyang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing China
| | - Xunzhe Yang
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Qing Liu
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Mingsheng Liu
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases Chinese Academy of Medical Sciences (2019RU058) Shanghai China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing China
- Neuroscience Center Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS) Beijing China
| | - Liying Cui
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
45
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
46
|
Li W, Liu Y, Xu R, Zong Y, He L, Hu J, Li G. M 6A modification in cardiovascular disease: With a focus on programmed cell death. Genes Dis 2024; 11:101039. [PMID: 38988324 PMCID: PMC11233881 DOI: 10.1016/j.gendis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.
Collapse
Affiliation(s)
- Wen Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruiyan Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Zong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guohua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
47
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
48
|
Cao Y, Jia M, Duan C, Yang Z, Cheng B, Wang R. The m 6A regulators in prostate cancer: molecular basis and clinical perspective. Front Pharmacol 2024; 15:1448872. [PMID: 39268470 PMCID: PMC11391310 DOI: 10.3389/fphar.2024.1448872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in western countries. Evidence has indicated the significant role of the androgen receptor (AR) as the main driving factor in controlling the development of PCa, making androgen receptor inhibition (ARI) therapy a pivotal management approach. In addition, AR independent signaling pathways also contribute to PCa progression. One such signaling pathway that has garnered our attention is N6-Methyladenosine (m6A) signaling, which refers to a chemical modification on RNA with crucial roles in RNA metabolism and disease progression, including PCa. It is important to comprehensively summarize the role of each individual m6A regulator in PCa development and understand its interaction with AR signaling. This review aims to provide a thorough summary of the involvement of m6A regulators in PCa development, shedding light on their upstream and downstream signaling pathways. This summary sets the stage for a comprehensive review that would benefit the scientific community and clinical practice by enhancing our understanding of the biology of m6A regulators in the context of PCa.
Collapse
Affiliation(s)
- Yu Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chunyan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
49
|
Wang CH, Zhou H. Discovery of a new inhibitor for YTH domain-containing m 6A RNA readers. RSC Chem Biol 2024; 5:914-923. [PMID: 39211476 PMCID: PMC11353026 DOI: 10.1039/d4cb00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
N 6-methyladenosine (m6A) is an abundant modification in mammalian mRNAs and plays important regulatory roles in gene expression, primarily mediated through specific recognition by "reader" proteins. YTH family proteins are one major family of known m6A readers, which specifically recognize m6A-modified transcripts via the YTH domains. Despite the significant relevance of YTH-m6A recognition in biology and diseases, few small molecule inhibitors are available for specifically perturbing this interaction. Here we report the discovery of a new inhibitor ("N-7") for YTH-m6A RNA recognition, from the screening of a nucleoside analogue library against the YTH domain of the YTHDF1 protein. N-7 is characterized to be a pan-inhibitor in vitro against five YTH domains from human YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 proteins, with IC50 values in the range of 30-48 μM measured using a fluorescence polarization competition assay. We demonstrated that N-7 directly interacts with the YTH domain proteins via a thermal shift assay. N-7 expands the chemical structure landscape of the m6A YTH domain-containing reader inhibitors and potentiates future inhibitor development for reader functional studies and therapeutic efforts in targeting the epitranscriptome.
Collapse
Affiliation(s)
- Chuan-Hui Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Huiqing Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
50
|
Wang S, Xu L, Wang D, Zhao S, Li K, Ma F, Yao Q, Zhang Y, Wu Z, Shao Y, Song S, Yan W. YTHDF1 promotes the osteolytic bone metastasis of breast cancer via inducing EZH2 and CDH11 translation. Cancer Lett 2024; 597:217047. [PMID: 38871245 DOI: 10.1016/j.canlet.2024.217047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Bone metastasis is common in breast cancer and more effective therapies are required, however, its molecular mechanism is poorly understood. Additionally, the role of the m6A reader YTHDF1 in bone metastasis of breast cancer has not been reported. Here, we reveal that the increased expression of YTHDF1 is clinically correlated with breast cancer bone metastases. YTHDF1 promotes migration, invasion, and osteoblast adhesion and induces osteoclast differentiation of cancer cells in vitro and vivo. Mechanically, RNA-seq, MeRIP-seq and RIP-seq analysis, and molecular biology experiments demonstrate that YTHDF1 translationally enhances EZH2 and CDH11 expression by reading m6A-enriched sites of their transcripts. Moreover, adeno-associated virus (AAV) was used to deliver shYTHDF1 (shYTHDF1-AAV) in intratibial injection models, eliciting a significant suppressive effect on breast cancer bone metastatic formation and osteolytic destruction. Overall, we uncovered that YTHDF1 promotes osteolytic bone metastases of breast cancer by inducing EZH2 and CDH11 translation.
Collapse
Affiliation(s)
- Shuoer Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songjiao Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkui Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|