1
|
Destefanis E, Sighel D, Dalfovo D, Gilmozzi R, Broso F, Cappannini A, Bujnicki J, Romanel A, Dassi E, Quattrone A. The three YTHDF paralogs and VIRMA are strong cross-histotype tumor driver candidates among m 6A core genes. NAR Cancer 2024; 6:zcae040. [PMID: 39411658 PMCID: PMC11474903 DOI: 10.1093/narcan/zcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in mRNAs. Despite accumulating evidence for the profound impact of m6A on cancer biology, there are conflicting reports that alterations in genes encoding the m6A machinery proteins can either promote or suppress cancer, even in the same tumor type. Using data from The Cancer Genome Atlas, we performed a pan-cancer investigation of 15 m6A core factors in nearly 10000 samples from 31 tumor types to reveal underlying cross-tumor patterns. Altered expression, largely driven by copy number variations at the chromosome arm level, results in the most common mode of dysregulation of these factors. YTHDF1, YTHDF2, YTHDF3 and VIRMA are the most frequently altered factors and the only ones to be uniquely altered when tumors are grouped according to the expression pattern of the m6A factors. These genes are also the only ones with coherent, pan-cancer predictive power for progression-free survival. On the contrary, METTL3, the most intensively studied m6A factor as a cancer target, shows much lower levels of alteration and no predictive power for patient survival. Therefore, we propose the non-enzymatic YTHDF and VIRMA genes as preferred subjects to dissect the role of m6A in cancer and as priority cancer targets.
Collapse
Affiliation(s)
- Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Denise Sighel
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Davide Dalfovo
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Riccardo Gilmozzi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, PL-02-109 Warsaw, Poland
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Biology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
2
|
Xu Z, Zhou Y, Liu S, Zhao H, Chen Z, Li R, Li M, Huang X, Deng S, Zeng L, Zhao S, Zhang S, He X, Liu J, Xue C, Bai R, Zhuang L, Zhou Q, Chen R, Lin D, Zheng J, Zhang J. KHSRP Stabilizes m6A-Modified Transcripts to Activate FAK Signaling and Promote Pancreatic Ductal Adenocarcinoma Progression. Cancer Res 2024; 84:3602-3616. [PMID: 39120596 DOI: 10.1158/0008-5472.can-24-0927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
N 6-Methyladenosine (m6A) is the most prevalent RNA modification and is associated with various biological processes. Proteins that function as readers and writers of m6A modifications have been shown to play critical roles in human malignancies. Here, we identified KH-type splicing regulatory protein (KHSRP) as an m6A binding protein that contributes to the progression of pancreatic ductal adenocarcinoma (PDAC). High KHSRP levels were detected in PDAC and predicted poor patient survival. KHSRP deficiency suppressed PDAC growth and metastasis in vivo. Mechanistically, KHSRP recognized and stabilized FAK pathway mRNAs, including MET, ITGAV, and ITGB1, in an m6A-dependent manner, which led to activation of downstream FAK signaling that promoted PDAC progression. Targeting KHSRP with a PROTAC showed promising tumor suppressive effects in mouse models, leading to prolonged survival. Together, these findings indicate that KHSRP mediates FAK pathway activation in an m6A-dependent manner to support PDAC growth and metastasis, highlighting the potential of KHSRP as a therapeutic target in pancreatic cancer. Significance: KHSRP is a m6A-binding protein that stabilizes expression of FAK pathway mRNAs and that can be targeted to suppress FAK signaling and curb pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Zilan Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yifan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaoqiu Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hongzhe Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ziming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Rui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xudong Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shuang Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lingxing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Sihan Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shaoping Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaowei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chunling Xue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ruihong Bai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lisha Zhuang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Rufu Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P. R. China
| | - Dongxin Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, P. R. China
| | - Jian Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, P. R. China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, P. R. China
| | - Jialiang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
3
|
Jiang R, Jia Q, Li C, Gan X, Zhou Y, Pan Y, Fu Y, Chen X, Liang L, Jia E. Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease. Cell Biol Int 2024; 48:1664-1679. [PMID: 39004874 DOI: 10.1002/cbin.12224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.
Collapse
Affiliation(s)
- Rongli Jiang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Pan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lanyu Liang
- Department of Geriatric, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
He L, Xu R, Ma X, Yin X, Mueller E, Feng W, Menze M, Kim S, McClain CJ, Zhang X. Multiomics Studies on Metabolism Changes in Alcohol-Associated Liver Disease. J Proteome Res 2024; 23:4962-4972. [PMID: 39418671 DOI: 10.1021/acs.jproteome.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction in the liver represents a predominant feature in the early stages of alcohol-associated liver disease (ALD). However, the mechanisms underlying this are only partially understood. To investigate the metabolic characteristics of the liver in ALD, we did a relative quantification of polar metabolites and lipids in the liver of mice with experimental ALD using untargeted metabolomics and untargeted lipidomics. A total of 99 polar metabolites had significant abundance alterations in the livers of alcohol-fed mice. Pathway analysis revealed that amino acid metabolism was the most affected by alcohol in the mouse liver. Metabolites involved in glycolysis and the TCA cycle were decreased, while glycerol 3-phosphate (G3P) and long-chain fatty acids were increased. Relative quantification of lipids unveiled an upregulation of multiple lipid classes, suggesting that alcohol consumption drives metabolism toward lipid synthesis. Results from enzyme expression and activity detection indicated that the decreased activity of mitochondrial glycerol 3-phosphate dehydrogenase contributed to the disordered metabolism.
Collapse
Affiliation(s)
- Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
| | - Eugene Mueller
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
| | - Wenke Feng
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
| | - Michael Menze
- Department of Biology, University of Louisville, Louisville, Kentucky 40208, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Medicine, University of Louisville, Louisville, Kentucky 40208, United States
- Robley Rex Louisville VAMC, Louisville, Kentucky 40292, United States
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky 40208, United States
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, Kentucky 40208, United States
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40208, United States
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky 40208, United States
| |
Collapse
|
5
|
Ganguly DR, Li Y, Bhat SS, Tiwari S, Ng PJ, Gregory BD, Sunkar R. mRNA ADENOSINE METHYLASE promotes drought tolerance through N 6-methyladenosine-dependent and independent impacts on mRNA regulation in Arabidopsis. THE NEW PHYTOLOGIST 2024. [PMID: 39462792 DOI: 10.1111/nph.20227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Among many mRNA modifications, adenine methylation at the N6 position (N6-methyladenosine, m6A) is known to affect mRNA biology extensively. The influence of m6A has yet to be assessed under drought, one of the most impactful abiotic stresses. We show that Arabidopsis thaliana (L.) Heynh. (Arabidopsis) plants lacking mRNA ADENOSINE METHYLASE (MTA) are drought-sensitive. Subsequently, we comprehensively assess the impacts of MTA-dependent m6A changes during drought on mRNA abundance, stability, and translation in Arabidopsis. During drought, there is a global trend toward hypermethylation of many protein-coding transcripts that does not occur in mta. We also observe complex regulation of m6A at a transcript-specific level, possibly reflecting compensation by other m6A components. Importantly, a subset of transcripts that are hypermethylated in an MTA-dependent manner exhibited reduced turnover and translation in mta, compared with wild-type (WT) plants, during drought. Additionally, MTA impacts transcript stability and translation independently of m6A. We also correlate drought-associated deposition of m6A with increased translation of modulators of drought response, such as RD29A, COR47, COR413, ALDH2B, ERD7, and ABF4 in WT, which is impaired in mta. m6A is dynamic during drought and, alongside MTA, promotes tolerance by regulating drought-responsive changes in transcript turnover and translation.
Collapse
Affiliation(s)
- Diep R Ganguly
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yongfang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Susheel Sagar Bhat
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shalini Tiwari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Pei Jia Ng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
6
|
Oberdoerffer S, Gilbert WV. All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00784-2. [PMID: 39433914 DOI: 10.1038/s41580-024-00784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
RNA modifications are essential for human health - too much or too little of them leads to serious illnesses ranging from neurodevelopmental disorders to cancer. Technical advances in RNA modification sequencing are beginning to uncover the RNA targets of diverse RNA-modifying enzymes that are dysregulated in disease. However, the emerging transcriptome-wide maps of modified nucleosides installed by these enzymes should be considered as first drafts. In particular, a range of technical artefacts lead to false negatives - modified sites that are overlooked owing to technique-dependent, and often sequence-context-specific, 'blind spots'. In this Review, we discuss potential sources of false negatives in sequencing-based RNA modification maps, propose mitigation strategies and suggest guidelines for transparent reporting of sensitivity to detect modified sites in profiling studies. Important considerations for recognition and avoidance of false negatives include assessment and reporting of position-specific sequencing depth, identification of protocol-dependent RNA capture biases and applying controls for false negatives as well as for false positives. Despite their limitations, emerging maps of RNA modifications reveal exciting and largely uncharted potential for post-transcriptional control of all aspects of RNA function.
Collapse
Affiliation(s)
- Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Xiao L, Fang L, Zhong W, Kool ET. RNA infrastructure profiling illuminates transcriptome structure in crowded spaces. Cell Chem Biol 2024:S2451-9456(24)00405-7. [PMID: 39447577 DOI: 10.1016/j.chembiol.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2'-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m6A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wenrui Zhong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Wu Z, Liu W, Si X, Liang J. Screening of key genes related to M6A methylation in patients with heart failure. BMC Cardiovasc Disord 2024; 24:565. [PMID: 39415091 PMCID: PMC11481427 DOI: 10.1186/s12872-024-04228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVE This study aims to identify m6A methylation-related and immune cell-related key genes with diagnostic potential for heart failure (HF) by leveraging various bioinformatics techniques. METHODS The GSE116250 and GSE141910 datasets were sourced from the Gene Expression Omnibus (GEO) database. Correlation analysis was conducted between differentially expressed genes (DEGs) in HF and control groups, alongside differential m6A regulatory factors, to identify m6A-related DEGs (m6A-DEGs). Subsequently, candidate genes were narrowed down by intersecting key module genes derived from weighted gene co-expression network analysis (WGCNA) with m6A-DEGs. Key genes were then identified through the Least Absolute Shrinkage and Selection Operator (LASSO) analysis. Correlation analyses between key genes and differentially expressed immune cells were performed, followed by the validation of key gene expression levels in public datasets. To ensure clinical applicability, five pairs of blood samples were collected for quantitative real-time fluorescence PCR (qRT-PCR) validation. RESULTS A total of 93 m6A-DEGs were identified (|COR| > 0.6, P < 0.05), and five key genes (LACTB2, NAMPT, SCAMP5, HBA1, and PRKAR2A) were selected for further analysis. Correlation analysis revealed that differential immune cells were negatively associated with the expression of LACTB2, NAMPT, and PRKAR2A (P < 0.05), while positively correlated with SCAMP5 and HBA1 (P < 0.05). Subsequent expression validation confirmed significant differences in key gene expression between the HF and control groups, with consistent expression trends observed across both training and validation sets. The expression trends of LACTB2, PRKAR2A, and HBA1 in blood samples from the qRT-PCR assay aligned with the results derived from public databases. CONCLUSION This study successfully identified five m6A methylation-related key genes with diagnostic significance, providing a theoretical foundation for further exploration of m6A methylation's molecular mechanisms in HF.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wupeng Liu
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jinfeng Liang
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Tao X, Kang N, Zheng Z, Zhu Z, Ma J, He W. The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis. Life Sci 2024; 355:123011. [PMID: 39181316 DOI: 10.1016/j.lfs.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
HEADING AIMS Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Zongqin Zheng
- Department of Anesthesiology, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ziyi Zhu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Junting Ma
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Wei He
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
10
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
11
|
Xhemalçe B, Miller KM, Gromak N. Epitranscriptome in action: RNA modifications in the DNA damage response. Mol Cell 2024; 84:3610-3626. [PMID: 39366350 DOI: 10.1016/j.molcel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Blerta Xhemalçe
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road OX1 3RE, UK.
| |
Collapse
|
12
|
Liao X, Zhang S, Li X, Qian W, Li M, Chen S, Wu X, Yu X, Li Z, Tang M, Xu Y, Yu R, Zhang Q, Wu G, Zhang N, Song L, Li J. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. Sci Transl Med 2024; 16:eado1573. [PMID: 39356744 DOI: 10.1126/scitranslmed.ado1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.
Collapse
Affiliation(s)
- Xinyi Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xincheng Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Wanying Qian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Man Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Suwen Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xuexin Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Miaoling Tang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Qiliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Geyan Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangdong 510080, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
| | - Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| |
Collapse
|
13
|
Siachisumo C, Luzzi S, Aldalaqan S, Hysenaj G, Dalgliesh C, Cheung K, Gazzara MR, Yonchev ID, James K, Kheirollahi Chadegani M, Ehrmann IE, Smith GR, Cockell SJ, Munkley J, Wilson SA, Barash Y, Elliott DJ. An anciently diverged family of RNA binding proteins maintain correct splicing of a class of ultra-long exons through cryptic splice site repression. eLife 2024; 12:RP89705. [PMID: 39356106 PMCID: PMC11446547 DOI: 10.7554/elife.89705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.
Collapse
Affiliation(s)
- Chileleko Siachisumo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Sara Luzzi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Saad Aldalaqan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - Ivaylo D Yonchev
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Katherine James
- School of Computing, Newcastle UniversityNewcastleUnited Kingdom
| | | | - Ingrid E Ehrmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Jennifer Munkley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Stuart A Wilson
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - David J Elliott
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
14
|
Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m 6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Ther 2024; 31:1439-1453. [PMID: 38839892 DOI: 10.1038/s41417-024-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Post-transcriptional RNA modification is an emerging epigenetic control mechanism in cells that is important in many different cellular and organismal processes. N6-methyladenosine (m6A) is one of the most prevalent, prolific, and ubiquitous internal transcriptional alterations in eukaryotic mRNAs, making it an important topic in the field of Epigenetics. m6A methylation acts as a dynamical regulatory process that regulates the activity of genes and participates in multiple physiological processes, by supporting multiple aspects of essential mRNA metabolic processes, including pre-mRNA splicing, nuclear export, translation, miRNA synthesis, and stability. Extensive research has linked aberrations in m6A modification and m6A-associated proteins to a wide range of human diseases. However, the impact of m6A on mRNA metabolism and its pathological connection between m6A and other non-communicable diseases, including cardiovascular disease, neurodegenerative disorders, liver diseases, and cancer remains in fragmentation. Here, we review the existing understanding of the overall role of mechanisms by which m6A exerts its activities and address new discoveries that highlight m6A's diverse involvement in gene expression regulation. We discuss m6A deposition on mRNA and its consequences on degradation, translation, and transcription, as well as m6A methylation of non-coding chromosomal-associated RNA species. This study could give new information about the molecular process, early detection, tailored treatment, and predictive evaluation of human non-communicable diseases like cancer. We also explore more about new data that suggests targeting m6A regulators in diseases may have therapeutic advantages.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.
| | - Bernard Nsengimana
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Usman Ayub Awan
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin-Ying Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
| | - Shaoping Ji
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Yu L, Alariqi M, Li B, Hussain A, Zhou H, Wang Q, Wang F, Wang G, Zhu X, Hui F, Yang X, Nie X, Zhang X, Jin S. CRISPR/dCas13(Rx) Derived RNA N 6-methyladenosine (m 6A) Dynamic Modification in Plant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401118. [PMID: 39229923 PMCID: PMC11497087 DOI: 10.1002/advs.202401118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Indexed: 09/05/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of mRNA and plays an important role in regulating plant growth. However, there is still a lack of effective tools to precisely modify m6A sites of individual transcripts in plants. Here, programmable m6A editing tools are developed by combining CRISPR/dCas13(Rx) with the methyltransferase GhMTA (Targeted RNA Methylation Editor, TME) or the demethyltransferase GhALKBH10 (Targeted RNA Demethylation Editor, TDE). These editors enable efficient deposition or removal of m6A modifications at targeted sites of endo-transcripts GhECA1 and GhDi19 within a broad editing window ranging from 0 to 46 nt. TDE editor significantly decreases m6A levels by 24%-76%, while the TME editor increases m6A enrichment, ranging from 1.37- to 2.51-fold. Furthermore, installation and removal of m6A modifications play opposing roles in regulating GhECA1 and GhDi19 mRNA transcripts, which may be attributed to the fact that their m6A sites are located in different regions of the genes. Most importantly, targeting the GhDi19 transcript with TME editor plants results in a significant increase in root length and enhanced drought resistance. Collectively, these m6A editors can be applied to study the function of specific m6A modifications and have the potential for future applications in crop improvement.
Collapse
Affiliation(s)
- Lu Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Huifang Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Guanying Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiangqian Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco‐agriculturalXinjiang Production and Construction Corps/Agricultural CollegeShihezi UniversityShihezi832003China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
16
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
17
|
Zhang B, Hao Y, Liu H, Wu J, Lu L, Wang X, Bajpai AK, Yang X. Interplay of RNA m 6A Modification-Related Geneset in Pan-Cancer. Biomedicines 2024; 12:2211. [PMID: 39457524 PMCID: PMC11504890 DOI: 10.3390/biomedicines12102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: N6-methyladenosine (m6A), is the most common modification found in mRNA and lncRNA in higher organisms and plays an important role in physiology and pathology. However, its role in pan-cancer has not been explored. Results: A total of 31 m6A modification regulators, including 12 writers, 2 erasers, and 17 readers are identified in the current study. The functional analysis of the regulators results in the enrichment of processes, primarily related to RNA modification and metabolism, and the PPI network reveals multiple interactions among the regulators. The mRNA expression analysis reveals a high expression for most of the regulators in pan-cancer. Most of the m6A regulators are found to be mutated across the cancers, with ZC3H13, VIRMA, and PRRC2A having a higher frequency rate. Significant correlations of the regulators with clinicopathological parameters, such as age, gender, tumor stage, and grade are identified in pan-cancer. The m6A regulators' expression is found to have significant positive correlations with the miRNAs in pan-cancer. The expression pattern of the m6A regulators is able to classify the tumors into different subclusters as well as into high- and low-risk groups. These tumor groups show differential patterns in terms of their immune cell infiltration, tumor stemness score, genomic heterogeneity score, expression of immune regulatory/checkpoint genes, and correlations between the regulators and the drugs. Conclusions: Our study provide a comprehensive overview of the functional roles, genetic and epigenetic alterations, and prognostic value of the RNA m6A regulators in pan-cancer.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Yajuan Hao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| |
Collapse
|
18
|
Yu B, Nagae G, Midorikawa Y, Tatsuno K, Dasgupta B, Aburatani H, Ueda H. m6ATM: a deep learning framework for demystifying the m6A epitranscriptome with Nanopore long-read RNA-seq data. Brief Bioinform 2024; 25:bbae529. [PMID: 39438075 PMCID: PMC11495873 DOI: 10.1093/bib/bbae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant and well-known modifications in messenger RNAs since its discovery in the 1970s. Recent studies have demonstrated that m6A is involved in various biological processes, such as alternative splicing and RNA degradation, playing an important role in a variety of diseases. To better understand the role of m6A, transcriptome-wide m6A profiling data are indispensable. In recent years, the Oxford Nanopore Technology Direct RNA Sequencing (DRS) platform has shown promise for RNA modification detection based on current disruptions measured in transcripts. However, decoding current intensity data into modification profiles remains a challenging task. Here, we introduce the m6A Transcriptome-wide Mapper (m6ATM), a novel Python-based computational pipeline that applies deep neural networks to predict m6A sites at a single-base resolution using DRS data. The m6ATM model architecture incorporates a WaveNet encoder and a dual-stream multiple-instance learning model to extract features from specific target sites and characterize the m6A epitranscriptome. For validation, m6ATM achieved an accuracy of 80% to 98% across in vitro transcription datasets containing varying m6A modification ratios and outperformed other tools in benchmarking with human cell line data. Moreover, we demonstrated the versatility of m6ATM in providing reliable stoichiometric information and used it to pinpoint PEG10 as a potential m6A target transcript in liver cancer cells. In conclusion, m6ATM is a high-performance m6A detection tool, and our results pave the way for future advancements in epitranscriptomic research.
Collapse
Affiliation(s)
- Boyi Yu
- Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Genta Nagae
- Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Yutaka Midorikawa
- Department of Digestive Surgery, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku 173-8601, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Bhaskar Dasgupta
- Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| | - Hiroki Ueda
- Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan
| |
Collapse
|
19
|
Liu ZY, You QY, Liu ZY, Lin LC, Yang JJ, Tao H. m6A control programmed cell death in cardiac fibrosis. Life Sci 2024; 353:122922. [PMID: 39032691 DOI: 10.1016/j.lfs.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
N6-methyladenosine (m6A) modification is closely related to cardiac fibrosis. As the most common and abundant form of mRNA modification in eukaryotes, m6A is deposited by methylases ("writers"), recognized and effected by RNA-binding proteins ("readers"), and removed by demethylases ("erasers"), achieving highly dynamic reversibility. m6A modification is involved in regulating the entire biological process of target RNA, including transcription, processing and splicing, export from the nucleus to the cytoplasm, and enhancement or reduction of stability and translation. Programmed cell death (PCD) comprises many forms and pathways, with apoptosis and autophagy being the most common. Other forms include pyroptosis, ferroptosis, necroptosis, mitochondrial permeability transition (MPT)-dependent necrosis, and parthanatos. In recent years, increasing evidence suggests that m6A modification can mediate PCD, affecting cardiac fibrosis. Since the correlation between some PCD types and m6A modification is not yet clear, this article mainly introduces the relationship between four common PCD types (apoptosis, autophagy, pyroptosis, and ferroptosis) and m6A modification, as well as their role and influence in cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Qing-Ye You
- Anhui Women and Children's Medical Center, Hefei 230001, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
20
|
Rupareliya M, Shende P. Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39259424 DOI: 10.1007/5584_2024_820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
21
|
Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne) 2024; 15:1462146. [PMID: 39296713 PMCID: PMC11408340 DOI: 10.3389/fendo.2024.1462146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
He D, He X, Shen D, Liu L, Yang X, Hao M, Wang Y, Li Y, Liu Q, Liu M, Wang J, Zhang X, Cui L. Loss-of-function variants in RNA binding motif protein X-linked induce neuronal defects contributing to amyotrophic lateral sclerosis pathogenesis. MedComm (Beijing) 2024; 5:e712. [PMID: 39263607 PMCID: PMC11387721 DOI: 10.1002/mco2.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024] Open
Abstract
Despite being one of the most prevalent RNA modifications, the role of N6-methyladenosine (m6A) in amyotrophic lateral sclerosis (ALS) remains ambiguous. In this investigation, we explore the contribution of genetic defects of m6A-related genes to ALS pathogenesis. We scrutinized the mutation landscape of m6A genes through a comprehensive analysis of whole-exome sequencing cohorts, encompassing 508 ALS patients and 1660 population-matched controls. Our findings reveal a noteworthy enrichment of RNA binding motif protein X-linked (RBMX) variants among ALS patients, with a significant correlation between pathogenic m6A variants and adverse clinical outcomes. Furthermore, Rbmx knockdown in NSC-34 cells overexpressing mutant TDP43Q331K results in cell death mediated by an augmented p53 response. Similarly, RBMX knockdown in ALS motor neurons derived from induced pluripotent stem cells (iPSCs) manifests morphological defects and activation of the p53 pathway. Transcriptional analysis using publicly available single-cell sequencing data from the primary motor cortex indicates that RBMX-regulated genes selectively influence excitatory neurons and exhibit enrichment in ALS-implicated pathways. Through integrated analyses, our study underscores the emerging roles played by RBMX in ALS, suggesting a potential nexus between the disease and dysregulated m6A-mediated mRNA metabolism.
Collapse
Affiliation(s)
- Di He
- Department of Neurology Beijing Tiantan Hospital, Capital Medical University Beijing China
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Xinyi He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Dongchao Shen
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Liyang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing China
| | - Xunzhe Yang
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Meng Hao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
| | - Qing Liu
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Mingsheng Liu
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute Fudan University Shanghai China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases Chinese Academy of Medical Sciences (2019RU058) Shanghai China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing China
- Neuroscience Center Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS) Beijing China
| | - Liying Cui
- Department of Neurology Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
23
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Li W, Liu Y, Xu R, Zong Y, He L, Hu J, Li G. M 6A modification in cardiovascular disease: With a focus on programmed cell death. Genes Dis 2024; 11:101039. [PMID: 38988324 PMCID: PMC11233881 DOI: 10.1016/j.gendis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.
Collapse
Affiliation(s)
- Wen Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruiyan Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Zong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guohua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
25
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Bai H, Dai Y, Fan P, Zhou Y, Wang X, Chen J, Jiao Y, Du C, Huang Z, Xie Y, Guo X, Lang X, Ling Y, Deng Y, Liu Q, He S, Zhang Z. The METHYLTRANSFERASE B-SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m 6A modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39206840 DOI: 10.1111/jipb.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.
Collapse
Affiliation(s)
- Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yanghuan Dai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Panting Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiangying Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jingjing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuzhe Jiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chang Du
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhuoxi Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuting Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyu Guo
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Xiaoqiang Lang
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongqing Ling
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
27
|
Cao Y, Jia M, Duan C, Yang Z, Cheng B, Wang R. The m 6A regulators in prostate cancer: molecular basis and clinical perspective. Front Pharmacol 2024; 15:1448872. [PMID: 39268470 PMCID: PMC11391310 DOI: 10.3389/fphar.2024.1448872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in western countries. Evidence has indicated the significant role of the androgen receptor (AR) as the main driving factor in controlling the development of PCa, making androgen receptor inhibition (ARI) therapy a pivotal management approach. In addition, AR independent signaling pathways also contribute to PCa progression. One such signaling pathway that has garnered our attention is N6-Methyladenosine (m6A) signaling, which refers to a chemical modification on RNA with crucial roles in RNA metabolism and disease progression, including PCa. It is important to comprehensively summarize the role of each individual m6A regulator in PCa development and understand its interaction with AR signaling. This review aims to provide a thorough summary of the involvement of m6A regulators in PCa development, shedding light on their upstream and downstream signaling pathways. This summary sets the stage for a comprehensive review that would benefit the scientific community and clinical practice by enhancing our understanding of the biology of m6A regulators in the context of PCa.
Collapse
Affiliation(s)
- Yu Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chunyan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Wang CH, Zhou H. Discovery of a new inhibitor for YTH domain-containing m 6A RNA readers. RSC Chem Biol 2024; 5:914-923. [PMID: 39211476 PMCID: PMC11353026 DOI: 10.1039/d4cb00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
N 6-methyladenosine (m6A) is an abundant modification in mammalian mRNAs and plays important regulatory roles in gene expression, primarily mediated through specific recognition by "reader" proteins. YTH family proteins are one major family of known m6A readers, which specifically recognize m6A-modified transcripts via the YTH domains. Despite the significant relevance of YTH-m6A recognition in biology and diseases, few small molecule inhibitors are available for specifically perturbing this interaction. Here we report the discovery of a new inhibitor ("N-7") for YTH-m6A RNA recognition, from the screening of a nucleoside analogue library against the YTH domain of the YTHDF1 protein. N-7 is characterized to be a pan-inhibitor in vitro against five YTH domains from human YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 proteins, with IC50 values in the range of 30-48 μM measured using a fluorescence polarization competition assay. We demonstrated that N-7 directly interacts with the YTH domain proteins via a thermal shift assay. N-7 expands the chemical structure landscape of the m6A YTH domain-containing reader inhibitors and potentiates future inhibitor development for reader functional studies and therapeutic efforts in targeting the epitranscriptome.
Collapse
Affiliation(s)
- Chuan-Hui Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Huiqing Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
29
|
Wang S, Xu L, Wang D, Zhao S, Li K, Ma F, Yao Q, Zhang Y, Wu Z, Shao Y, Song S, Yan W. YTHDF1 promotes the osteolytic bone metastasis of breast cancer via inducing EZH2 and CDH11 translation. Cancer Lett 2024; 597:217047. [PMID: 38871245 DOI: 10.1016/j.canlet.2024.217047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Bone metastasis is common in breast cancer and more effective therapies are required, however, its molecular mechanism is poorly understood. Additionally, the role of the m6A reader YTHDF1 in bone metastasis of breast cancer has not been reported. Here, we reveal that the increased expression of YTHDF1 is clinically correlated with breast cancer bone metastases. YTHDF1 promotes migration, invasion, and osteoblast adhesion and induces osteoclast differentiation of cancer cells in vitro and vivo. Mechanically, RNA-seq, MeRIP-seq and RIP-seq analysis, and molecular biology experiments demonstrate that YTHDF1 translationally enhances EZH2 and CDH11 expression by reading m6A-enriched sites of their transcripts. Moreover, adeno-associated virus (AAV) was used to deliver shYTHDF1 (shYTHDF1-AAV) in intratibial injection models, eliciting a significant suppressive effect on breast cancer bone metastatic formation and osteolytic destruction. Overall, we uncovered that YTHDF1 promotes osteolytic bone metastases of breast cancer by inducing EZH2 and CDH11 translation.
Collapse
Affiliation(s)
- Shuoer Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songjiao Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkui Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Bu FT, Wang HY, Xu C, Song KL, Dai Z, Wang LT, Ying J, Chen J. The role of m6A-associated membraneless organelles in the RNA metabolism processes and human diseases. Theranostics 2024; 14:4683-4700. [PMID: 39239525 PMCID: PMC11373618 DOI: 10.7150/thno.99019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcriptional dynamic RNA modification process in eukaryotes, extensively implicated in cellular growth, embryonic development and immune homeostasis. One of the most profound biological functions of m6A is to regulate RNA metabolism, thereby determining the fate of RNA. Notably, the regulation of m6A-mediated organized RNA metabolism critically relies on the assembly of membraneless organelles (MLOs) in both the nucleus and cytoplasm, such as nuclear speckles, stress granules and processing bodies. In addition, m6A-associated MLOs exert a pivotal role in governing diverse RNA metabolic processes encompassing transcription, splicing, transport, decay and translation. However, emerging evidence suggests that dysregulated m6A levels contribute to the formation of pathological condensates in a range of human diseases, including tumorigenesis, reproductive diseases, neurological diseases and respiratory diseases. To date, the molecular mechanism by which m6A regulates the aggregation of biomolecular condensates associated with RNA metabolism is unclear. In this review, we comprehensively summarize the updated biochemical processes of m6A-associated MLOs, particularly focusing on their impact on RNA metabolism and their pivotal role in disease development and related biological mechanisms. Furthermore, we propose that m6A-associated MLOs could serve as predictive markers for disease progression and potential drug targets in the future.
Collapse
Affiliation(s)
- Fang-Tian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai-Yan Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Kang-Li Song
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Dai
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lin-Ting Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Ying
- Department of Gastroenterology, Affiliated Nanjing Jiangbei Hospital of Xinglin College, Nantong University, Nanjing 210044, P. R. China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 169610, Singapore
| |
Collapse
|
31
|
Harrahill NJ, Hadden MK. Small molecules that regulate the N 6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem 2024; 274:116526. [PMID: 38805939 DOI: 10.1016/j.ejmech.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.
Collapse
Affiliation(s)
- Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States.
| |
Collapse
|
32
|
Xia X, Qu R. The Roles of RNA N6-methyladenosine Modifications in Systemic Lupus Erythematosus. Cell Biochem Biophys 2024:10.1007/s12013-024-01464-w. [PMID: 39095568 DOI: 10.1007/s12013-024-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
N6-methyladenosine (m6A) modification is the most widespread RNA internal modification involved in RNA metabolism. M6A regulators consist of writers, erasers and readers. They exert their function by methylation, demethylation and recognization respectively, participating in cell biology and immune responses. Previously, the focus of m6A modification is its effect on tumor progress. Currently, extensive m6A-related studies have been performed in autoimmune diseases, such as RA, IBD and SLE, revealing that the unique influence of m6A modification in autoimmunity is undeniable. In this review, we summarize the function of m6A regulators, analyze their roles in pathogenic immune cells, summarize the m6A modification in SLE, and provide the potential m6A-targeting therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Xin Xia
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Rui Qu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
33
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
34
|
Zha X, Gao Z, Li M, Xia X, Mao Z, Wang S. Insight into the regulatory mechanism of m 6A modification: From MAFLD to hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116966. [PMID: 38906018 DOI: 10.1016/j.biopha.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
In recent years, there has been a significant increase in the incidence of metabolic-associated fatty liver disease (MAFLD), which has been attributed to the increasing prevalence of type 2 diabetes mellitus (T2DM) and obesity. MAFLD affects more than one-third of adults worldwide, making it the most prevalent liver disease globally. Moreover, MAFLD is considered a significant risk factor for hepatocellular carcinoma (HCC), with MAFLD-related HCC cases increasing. Approximately 1 in 6 HCC patients are believed to have MAFLD, and nearly 40 % of these HCC patients do not progress to cirrhosis, indicating direct transformation from MAFLD to HCC. N6-methyladenosine (m6A) is commonly distributed in eukaryotic mRNA and plays a crucial role in normal development and disease progression, particularly in tumors. Numerous studies have highlighted the close association between abnormal m6A modification and cellular metabolic alterations, underscoring its importance in the onset and progression of MAFLD. However, the specific impact of m6A modification on the progression of MAFLD to HCC remains unclear. Can targeting m6A effectively halt the progression of MAFLD-related HCC? In this review, we investigated the pivotal role of abnormal m6A modification in the transition from MAFLD to HCC, explored the potential of m6A modification as a therapeutic target for MAFLD-related HCC, and proposed possible directions for future investigations.
Collapse
Affiliation(s)
- Xuan Zha
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zewei Gao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
35
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Liu F, Gu W, Shao Y. Cross-talk between circRNAs and m6A modifications in solid tumors. J Transl Med 2024; 22:694. [PMID: 39075555 PMCID: PMC11288061 DOI: 10.1186/s12967-024-05500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Circular RNAs (circRNAs) possess unique biological properties and distribution characteristics that enable a variety of biological functions. N6-methyladenosine (m6A), a prevalent epigenetic modification in organisms, is regulated by factors including methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). These factors play critical roles in various pathophysiological processes. There is growing evidence that m6A modifications are common within circRNAs, affecting their synthesis, translation, translocation, degradation, and stability. Additionally, circRNAs regulate biological processes that influence m6A modifications. This review explores the metabolism and functions of m6A modifications and circRNAs, their interactions, and their specific regulatory mechanisms in different tumors, offering insights into m6A-circRNA interaction in cancer.
Collapse
Affiliation(s)
- Fenfang Liu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
37
|
Becker MA, Meiser N, Schmidt-Dengler M, Richter C, Wacker A, Schwalbe H, Hengesbach M. m 6A Methylation of Transcription Leader Sequence of SARS-CoV-2 Impacts Discontinuous Transcription of Subgenomic mRNAs. Chemistry 2024; 30:e202401897. [PMID: 38785102 DOI: 10.1002/chem.202401897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.
Collapse
Affiliation(s)
- Matthias A Becker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
38
|
Ambrosino L, Riccardi A, Welling MS, Lauritano C. Comparative Transcriptomics to Identify RNA Writers and Erasers in Microalgae. Int J Mol Sci 2024; 25:8005. [PMID: 39125576 PMCID: PMC11312118 DOI: 10.3390/ijms25158005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Epitranscriptomics is considered as a new regulatory step in eukaryotes for developmental processes and stress responses. The aim of this study was, for the first time, to identify RNA methyltransferase (writers) and demethylase (erasers) in four investigated species, i.e., the dinoflagellates Alexandrium tamutum and Amphidinium carterae, the diatom Cylindrotheca closterium, and the green alga Tetraselmis suecica. As query sequences for the enzymatic classes of interest, we selected those ones that were previously detected in marine plants, evaluating their expression upon nutrient starvation stress exposure. The hypothesis was that upon stress exposure, the activation/deactivation of specific writers and erasers may occur. In microalgae, we found almost all plant writers and erasers (ALKBH9B, ALKBH10B, MTB, and FIP37), except for three writers (MTA, VIRILIZER, and HAKAI). A sequence similarity search by scanning the corresponding genomes confirmed their presence. Thus, we concluded that the three writer sequences were lacking from the studied transcriptomes probably because they were not expressed in those experimental conditions, rather than a real lack of these genes from their genomes. This study showed that some of them were expressed only in specific culturing conditions. We also investigated their expression in other culturing conditions (i.e., nitrogen depletion, phosphate depletion, and Zinc addition at two different concentrations) in A. carterae, giving new insights into their possible roles in regulating gene expression upon stress.
Collapse
Affiliation(s)
- Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy;
| | - Alessia Riccardi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Melina S. Welling
- Marine Biology Research Group, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium;
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
39
|
Bao N, Wang Z, Fu J, Dong H, Jin Y. RNA structure in alternative splicing regulation: from mechanism to therapy. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39034824 DOI: 10.3724/abbs.2024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Alternative splicing is a highly intricate process that plays a crucial role in post-transcriptional regulation and significantly expands the functional proteome of a limited number of coding genes in eukaryotes. Its regulation is multifactorial, with RNA structure exerting a significant impact. Aberrant RNA conformations lead to dysregulation of splicing patterns, which directly affects the manifestation of disease symptoms. In this review, the molecular mechanisms of RNA secondary structure-mediated splicing regulation are summarized, with a focus on the complex interplay between aberrant RNA conformations and disease phenotypes resulted from splicing defects. This study also explores additional factors that reshape structural conformations, enriching our understanding of the mechanistic network underlying structure-mediated splicing regulation. In addition, an emphasis has been placed on the clinical role of targeting aberrant splicing corrections in human diseases. The principal mechanisms of action behind this phenomenon are described, followed by a discussion of prospective development strategies and pertinent challenges.
Collapse
|
40
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
41
|
Zou Z, He C. The YTHDF proteins display distinct cellular functions on m 6A-modified RNA. Trends Biochem Sci 2024; 49:611-621. [PMID: 38677920 PMCID: PMC11227416 DOI: 10.1016/j.tibs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
YTHDF proteins are main cytoplasmic 'reader' proteins of RNA N6-methyladenosine (m6A) methylation in mammals. They are largely responsible for m6A-mediated regulation in the cell cytosol by controlling both mRNA translation and degradation. Recent functional and mechanistic investigations of the YTHDF proteins revealed that these proteins have different functions to enable versatile regulation of the epitranscriptome. Their divergent functions largely originate from their different amino acid sequences in the low-complexity N termini. Consequently, they have different phase separation propensities and possess distinct post-translational modifications (PTMs). Different PTMs, subcellular localizations, and competition among partner proteins have emerged as three major mechanisms that control the functions of these YTHDF proteins. We also summarize recent progress on critical roles of these YTHDF proteins in anticancer immunity and the potential for targeting these proteins for developing new anticancer therapies.
Collapse
Affiliation(s)
- Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Hu H, Li Z, Xie X, Liao Q, Hu Y, Gong C, Gao N, Yang H, Xiao Y, Chen Y. Insights into the role of RNA m 6A modification in the metabolic process and related diseases. Genes Dis 2024; 11:101011. [PMID: 38560499 PMCID: PMC10978549 DOI: 10.1016/j.gendis.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/30/2023] [Indexed: 04/04/2024] Open
Abstract
According to the latest consensus, many traditional diseases are considered metabolic diseases, such as cancer, type 2 diabetes, obesity, and cardiovascular disease. Currently, metabolic diseases are increasingly prevalent because of the ever-improving living standards and have become the leading threat to human health. Multiple therapy methods have been applied to treat these diseases, which improves the quality of life of many patients, but the overall effect is still unsatisfactory. Therefore, intensive research on the metabolic process and the pathogenesis of metabolic diseases is imperative. N6-methyladenosine (m6A) is an important modification of eukaryotic RNAs. It is a critical regulator of gene expression that is involved in different cellular functions and physiological processes. Many studies have indicated that m6A modification regulates the development of many metabolic processes and metabolic diseases. In this review, we summarized recent studies on the role of m6A modification in different metabolic processes and metabolic diseases. Additionally, we highlighted the potential m6A-targeted therapy for metabolic diseases, expecting to facilitate m6A-targeted strategies in the treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | | | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
43
|
Hasan M, Nishat ZS, Hasan MS, Hossain T, Ghosh A. Identification of m 6A RNA methylation genes in Oryza sativa and expression profiling in response to different developmental and environmental stimuli. Biochem Biophys Rep 2024; 38:101677. [PMID: 38511186 PMCID: PMC10950732 DOI: 10.1016/j.bbrep.2024.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Eukaryotic messenger RNAs (mRNAs) transcend their predominant function of protein encoding by incorporating auxiliary components that ultimately contribute to their processing, transportation, translation, and decay. In doing so, additional layers of modifications are incorporated in mRNAs at post-transcriptional stage. Among them, N6-methyladenosine (m6A) is the most frequently found mRNA modification that plays crucial roles in plant development and stress response. In the overall mechanism of m6A methylation, key proteins classified based on their functions such as writers, readers, and erasers dynamically add, read, and subtract methyl groups respectively to deliver relevant functions in response to external stimuli. In this study, we identified 30 m6A regulatory genes (9 writers, 5 erasers, and 16 readers) in rice that encode 53 proteins (13 writers, 7 erasers, and 33 readers) where segmental duplication was found in one writer and four reader gene pairs. Reproductive cells such as sperm, anther and panicle showed high levels of expression for most of the m6A regulatory genes. Notably, writers like OsMTA, OsMTD, and OsMTC showed varied responses in different stress and infection contexts, with initial upregulation in response to early exposure followed by downregulation later. OsALKBH9A, a noteworthy eraser, displayed varied expression in response to different stresses at different time intervals, but upregulation in certain infections. Reader genes like OsECT5, OsCPSF30-L3, and OsECT8 showed continuous upregulation in exertion of all kinds of stress relevant here. Conversely, other reader genes along with OsECT11 and OsCPSF30-L2 were observed to be consistently downregulated. The apparent correlation between the expression patterns of m6A regulatory genes and stress modulation pathways in this study underscores the need for additional research to unravel their intricate regulatory mechanisms that could ultimately contribute to the substantial development of enhanced stress tolerance in rice through mRNA modification.
Collapse
Affiliation(s)
| | | | - Md. Soyib Hasan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
44
|
Zhao R, Chen J, Wang Y, Xiao H, Mei P, Lin W, Diao M, He S, Liao Y, Meng W. Prognostic roles of dysregulated METTL3 protein expression in cancers and potential anticancer value by inhibiting METTL3 function. Fundam Clin Pharmacol 2024. [PMID: 38849971 DOI: 10.1111/fcp.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Many studies have demonstrated the relationship between METTL3 protein expression and clinical outcomes in various cancers and elucidated the mechanism by which METTL3 disrupts the behavior of cancer cells. Here, we attempted to define the prognostic value of METTL3 protein in patients with cancer via systematic analysis and explored the potential effect of inhibiting METTL3 using its specific inhibitor. METHODS We searched PubMed, Embase, and the Web of Science databases for studies that elucidated the prognostic value of METTL3 protein expression in all cancer types and then calculated the pooled hazard ratios with 95% confidence intervals for the overall survival (OS) of all cancer types and subgroups. Data from The Cancer Genome Atlas dataset were used to study METTL3 mRNA expression in cancers. Further, the effects of a METTL3-specific inhibitor were studied in cancer cells via the colony formation assay, the cell proliferation assay, and apoptosis detection. RESULTS Meta-analysis of the 33 cohorts in 32 studies (3666 patients in total) revealed that higher METTL3 protein expression indicated poor OS in the majority of cancers. Bioinformatics analysis of METTL3 mRNA expression and cancer prognosis did not show the extremely prominent prognostic value of METTL3 mRNA. Nevertheless, the METTL3-specific inhibitor attenuated cell proliferation and cell cloning formation and promoted apoptosis. CONCLUSIONS METTL3 protein expression is associated with poor prognosis in most cancer types and could be a biomarker for OS. Further, METTL3 inhibition might be a potential treatment strategy for cancers.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Chen
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Diao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiwen He
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Ma RT, Wang Y, Ji F, Chen JN, Wang TJ, Liu Y, Hou MX, Guo ZG. YTHDF1's grip on CRC vasculature: insights into LINC01106 and miR-449b-5p-VEGFA axis. Cancer Cell Int 2024; 24:195. [PMID: 38835070 DOI: 10.1186/s12935-024-03360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Investigating the unexplored territory of lncRNA m6A modification in colorectal cancer (CRC) vasculature, this study focuses on LINC01106 and YTHDF1. METHODS Clinical assessments reveal upregulated LINC01106 promoting vascular generation via the miR-449b-5p-VEGFA pathway. RESULTS YTHDF1, elevated in CRC tissues, emerges as an adverse prognostic factor. Functional experiments showcase YTHDF1's inhibitory effects on CRC cell dynamics. Mechanistically, Me-CLIP identifies m6A-modified LINC01106, validated as a YTHDF1 target through Me-RIP. CONCLUSIONS This study sheds light on the YTHDF1-mediated m6A modification of LINC01106, presenting it as a key player in suppressing CRC vascular generation.
Collapse
Affiliation(s)
- Rui-Ting Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jian-Nan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Tian-Jun Wang
- Nanjing Medical University, Nanjing, Jiangsu, 210097, China
| | - Yan Liu
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China
| | - Ming-Xing Hou
- The Affiliated Hospital of Inner Mongolia Medical University, No.1, North Channel Road, Huimin District, Hohhot, 010050, China.
| | - Zhi-Gang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
- The Academy of Life Sciences, Nanjing Normal University, Nanjing, 210097, China.
| |
Collapse
|
46
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
47
|
Feng Z, Xiao H, Wang X, Niu Y, Zhao D, Tian C, Wang S, Peng B, Yang F, Geng B, Guo M, Sheng X, Xia Y. Unraveling Key m 6A Modification Regulators Signatures in Postmenopausal Osteoporosis through Bioinformatics and Experimental Verification. Orthop Surg 2024; 16:1418-1433. [PMID: 38658320 PMCID: PMC11144519 DOI: 10.1111/os.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.
Collapse
Affiliation(s)
- Zhi‐wei Feng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Department of OrthopaedicsNanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical CollegeNanchongChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - He‐fang Xiao
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Xing‐wen Wang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Yong‐kang Niu
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Da‐cheng Zhao
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Cong Tian
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Sheng‐hong Wang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Bo Peng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Fei Yang
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Department of OrthopaedicsNanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical CollegeNanchongChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Bin Geng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Ming‐gang Guo
- Department of OrthopaedicsNanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical CollegeNanchongChina
| | - Xiao‐yun Sheng
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| | - Ya‐yi Xia
- Department of OrthopaedicsLanzhou University Second HospitalLanzhouChina
- Gansu Province Intelligent Orthopedics Industry Technology CenterLanzhouChina
- Gansu Province Orthopaedic Clinical Medicine Research CenterLanzhouChina
| |
Collapse
|
48
|
Li YJ, Qiu YL, Li MR, Shen M, Zhang F, Shao JJ, Xu XF, Zhang ZL, Zheng SZ. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1130-1141. [PMID: 38195693 PMCID: PMC11130213 DOI: 10.1038/s41401-023-01214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.
Collapse
Affiliation(s)
- Yu-Jia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang-Ling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang-Juan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shi-Zhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
49
|
Mansfield KD. RNA Binding by the m6A Methyltransferases METTL16 and METTL3. BIOLOGY 2024; 13:391. [PMID: 38927271 PMCID: PMC11200852 DOI: 10.3390/biology13060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Methyltransferases are a wide-ranging, yet well-conserved, class of molecules that have been found to modify a wide variety of substrates. Interest in RNA methylation has surged in recent years with the identification of the major eukaryotic mRNA m6A methyltransferase METTL3. METTL16 has also been identified as an RNA m6A methyltransferase; however, much less is known about its targets and actions. Interestingly, in addition to their catalytic activities, both METTL3 and METTL16 also have "methylation-independent" functions, including translational regulation, which have been discovered. However, evidence suggests that METTL16's role as an RNA-binding protein may be more significant than is currently recognized. In this review, we will introduce RNA methylation, specifically m6A, and the enzymes responsible for its deposition. We will discuss the varying roles that these enzymes perform and delve deeper into their RNA targets and possible roles as methylation-independent RNA binding proteins. Finally, we will touch upon the many open questions still remaining.
Collapse
Affiliation(s)
- Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
50
|
Feng G, Wu Y, Hu Y, Shuai W, Yang X, Li Y, Ouyang L, Wang G. Small molecule inhibitors targeting m 6A regulators. J Hematol Oncol 2024; 17:30. [PMID: 38711100 PMCID: PMC11075261 DOI: 10.1186/s13045-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.
Collapse
Affiliation(s)
- Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yuan Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and West China Second Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|