1
|
Thakur Z, Chaudhary R, Mehta PK. Deciphering the role of VapBC toxin-antitoxin systems in Mycobacterium tuberculosis stress adaptation. Future Microbiol 2024; 19:1587-1599. [PMID: 39431307 DOI: 10.1080/17460913.2024.2412447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) harbors a high number of Toxin-Antitoxin (TA) systems, wherein half of them belong to virulence associated proteins B and C (VapBC) family that has a characteristic PilT N-terminus domain and ribonuclease activity. Functional insights into Mtb VapBC TA modules unraveled their role in adaptation to various host-mediated stressors, including oxidative/nitrosative, chemical and nutrient starvation as well as multidrug tolerance and establishment of persistence. To understand the intricacies of Mtb's pathogenesis, absolute cellular targets of 19 VapC(s) were determined. Some exhibit a shared ribonuclease activity, whereas others harbor tRNAse and 23S rRNA cleavage activity. The detailed functional characterization of VapBC4, VapBC12 and VapBC22, including in vivo deletion mutant studies revealed their role in Mtb's virulence/persistence. For example, the VapC22 mutant was attenuated for Mtb's growth in mice and elicited a decreased TH1 response, whereas mice infected with VapC12 mutant displayed a substantially higher bacillary load and pro-inflammatory response than the wild type, showing a hyper-virulent phenotype. Further experimental studies are needed to decode the functional role of VapBC systems and unravel their cellular targets. Taken together, Mtb VapBC TA systems seem to be promising drug targets owing to their key role in enduring stressors, antibiotic resistance and persistence.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, 134003, India
| | - Renu Chaudhary
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), New Delhi, 110025, India
| | - Promod K Mehta
- Microbiology Department, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| |
Collapse
|
2
|
Ko EM, Min J, Kim H, Jeong JA, Lee S, Kim S. Molecular characteristics of drug-susceptible Mycobacterium tuberculosis clinical isolates based on treatment duration. Osong Public Health Res Perspect 2024; 15:385-394. [PMID: 39511960 PMCID: PMC11563727 DOI: 10.24171/j.phrp.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND In this study, we performed comparative genomic and transcriptomic analysis of clinical isolates of Mycobacterium tuberculosis collected from patients with drug-susceptible tuberculosis (DS-TB). The clinical isolates were categorized based on treatment duration: standard 6 months or >6 months. METHODS Study participants were recruited from a 2016 to 2018 tuberculosis cohort, and clinical M. tuberculosis isolates were collected from the sputum of patients with tuberculosis. We analyzed the genome and transcriptome of the isolated M. tuberculosis. RESULTS Genomic analysis revealed a specific non-synonymous single-nucleotide polymorphism in pe_pgrs9 and ppe34, exclusive to the group treated for >6 months. Transcriptomic analysis revealed increased expression of various virulence-associated protein family genes and decreased expression of ribosomal protein genes and ppe38 genes in the group treated for >6 months. CONCLUSION The identified genetic variation and gene expression patterns may influence treatment outcomes by modulating host immune responses, increasing virulence, and potentially contributing to persister cell formation in M. tuberculosis. This study provides insights into the genetic and transcriptomic factors associated with prolonged DS-TB treatment. However, our study identified molecular characteristics using a small sample size, and further detailed studies are warranted.
Collapse
Affiliation(s)
- Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyungjun Kim
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sungkyoung Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seonghan Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
4
|
Jin C, Kang SM, Kim DH, Lee Y, Lee BJ. Discovery of Antimicrobial Agents Based on Structural and Functional Study of the Klebsiella pneumoniae MazEF Toxin-Antitoxin System. Antibiotics (Basel) 2024; 13:398. [PMID: 38786127 PMCID: PMC11117207 DOI: 10.3390/antibiotics13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin-antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea;
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea;
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Yuno Lee
- Korea Research Institute of Chemical Technology, Korea Chemical Bank Daejeon, Daejeon 34114, Republic of Korea;
| | - Bong-Jin Lee
- Mastermeditech Ltd., Gangseo-gu, Seoul 16499, Republic of Korea
- College of Pharmacy, Ajou University, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Sundaram K, Vajravelu LK, Velayutham R, Mohan U. Identification of Genes Encoded Toxin-Antitoxin System in Mycobacterium Tuberculosis Strains from Clinical Sample. Infect Disord Drug Targets 2024; 24:e140324227967. [PMID: 38486387 DOI: 10.2174/0118715265274164240117104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 09/04/2024]
Abstract
BACKGROUND The toxin-antitoxin system is a genetic element that is highly present in Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. The toxin-antitoxin system comprises toxin protein and antitoxin protein or non-encoded RNA interacting with each other and inhibiting toxin activity. M. Tuberculosis has more classes of TA loci than non-tubercle bacilli and other microbes, including VapBC, HigBA, MazEF, ParDE, RelBE, MbcTA, PemIK, DarTG, MenTA, one tripartite type II TAC chaperone system, and hypothetical proteins. AIMS The study aims to demonstrate the genes encoded toxin-antitoxin system in mycobacterium tuberculosis strains from clinical samples. MATERIALS AND METHODS The pulmonary and extra-pulmonary tuberculosis clinical samples were collected, and smear microscopy (Ziehl-Neelsen staining) was performed for the detection of high bacilli (3+) count, followed by nucleic acid amplification assay. Bacterial culture and growth assay, genomic DNA extraction, and polymerase chain reaction were also carried out. RESULTS The positive PTB and EPTB samples were determined by 3+ in microscopy smear and the total count of tubercle bacilli determined by NAAT assay was 8.0×1005 in sputum and 1.3×1004 CFU/ml in tissue abscess. Moreover, the genomic DNA was extracted from culture, and the amplification of Rv1044 and Rv1045 genes in 624 and 412 base pairs (between 600-700 and 400-500 in ladder), respectively, in the H37Rv and clinical samples was observed. CONCLUSION It has been found that Rv1044 and Rv1045 are hypothetical proteins with 624 and 882 base pairs belonging to the AbiEi/AbiEii family of toxin-antitoxin loci. Moreover, the significant identification of TA-encoded loci genes may allow for the investigation of multidrugresistant and extensively drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Karthikeyan Sundaram
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| | - Ravichandiran Velayutham
- Department of Natural Products, NIPER- Kolkata, Bengal chemicals, Chunilal Bhawan, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, NIPER- Kolkata, Bengal Chemicals, Chunilal Bhawan, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
6
|
Kang SM. Focused Overview of Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems Regarding Their Structural and Functional Aspects: Including Insights on Biomimetic Peptides. Biomimetics (Basel) 2023; 8:412. [PMID: 37754163 PMCID: PMC10526153 DOI: 10.3390/biomimetics8050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a lethal infectious disease of significant public health concern. The rise of multidrug-resistant and drug-tolerant strains has necessitated novel approaches to combat the disease. Toxin-antitoxin (TA) systems, key players in bacterial adaptive responses, are prevalent in prokaryotic genomes and have been linked to tuberculosis. The genome of M. tuberculosis strains harbors an unusually high number of TA systems, prompting questions about their biological roles. The VapBC family, a representative type II TA system, is characterized by the VapC toxin, featuring a PilT N-terminal domain with nuclease activity. Its counterpart, VapB, functions as an antitoxin, inhibiting VapC's activity. Additionally, we explore peptide mimics designed to replicate protein helical structures in this review. Investigating these synthetic peptides offers fresh insights into molecular interactions, potentially leading to therapeutic applications. These synthetic peptides show promise as versatile tools for modulating cellular processes and protein-protein interactions. We examine the rational design strategies employed to mimic helical motifs, their biophysical properties, and potential applications in drug development and bioengineering. This review aims to provide an in-depth understanding of TA systems by introducing known complex structures, with a focus on both structural aspects and functional and molecular details associated with each system.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
7
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
8
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Kang SM. Mycobacterium tuberculosis Rv0229c Shows Ribonuclease Activity and Reveals Its Corresponding Role as Toxin VapC51. Antibiotics (Basel) 2023; 12:antibiotics12050840. [PMID: 37237743 DOI: 10.3390/antibiotics12050840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The VapBC system, which belongs to the type II toxin-antitoxin (TA) system, is the most abundant and widely studied system in Mycobacterium tuberculosis. The VapB antitoxin suppresses the activity of the VapC toxin through a stable protein-protein complex. However, under environmental stress, the balance between toxin and antitoxin is disrupted, leading to the release of free toxin and bacteriostatic state. This study introduces the Rv0229c, a putative VapC51 toxin, and aims to provide a better understanding of its discovered function. The structure of the Rv0229c shows a typical PIN-domain protein, exhibiting an β1-α1-α2-β2-α3-α4-β3-α5-α6-β4-α7-β5 topology. The structure-based sequence alignment showed four electronegative residues in the active site of Rv0229c, which is composed of Asp8, Glu42, Asp95, and Asp113. By comparing the active site with existing VapC proteins, we have demonstrated the justification for naming it VapC51 at the molecular level. In an in vitro ribonuclease activity assay, Rv0229c showed ribonuclease activity dependent on the concentration of metal ions such as Mg2+ and Mn2+. In addition, magnesium was found to have a greater effect on VapC51 activity than manganese. Through these structural and experimental studies, we provide evidence for the functional role of Rv0229c as a VapC51 toxin. Overall, this study aims to enhance our understanding of the VapBC system in M. tuberculosis.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
10
|
Sundaram K, Vajravelu LK, Paul AJ. Functional characterization of toxin-antitoxin system in Mycobacterium tuberculosis. Indian J Tuberc 2023; 70:149-157. [PMID: 37100570 DOI: 10.1016/j.ijtb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 04/28/2023]
Abstract
Toxin-Antitoxin (TA) system is abundant in the microbial genome, especially in bacteria and archaea. Its genetic elements and addiction modules with the role of bacterial persistence and virulence. The TA system consists of a toxin and most unstable antitoxin that could be a protein or non-encoded RNA, TA loci are chromosomally determined and their cellular functions are mostly unknown. Approximately 93 TA systems were demonstrated and more functionally available in M. tuberculosis (Mtb), the organism responsible for tuberculosis (TB). It is an airborne disease, which is causing ill-health to humans. M. tuberculosis possesses higher TA loci than other microbes and non-tubercle bacilli, the following TA types have been identified such as VapBC, MazEF, HigBA, RelBE, ParDE, DarTG, PemIK, MbcTA, and one tripartite type II TAC-Chaperone system. Toxin-antitoxin Database (TADB) brings a detailed update on Toxin-Antitoxin classification in the different pathogens such as staphylococcus aureus, streptococcus pneumonia, Vibrio cholerae, Salmonella typhimurium, Shigella flexneri, and helicobacter pylori, etc. So, this Toxin-Antitoxin system is a master regulator for bacterial growth, and an essential factor in analyzing the properties and function of disease persistence, biofilm formation, and pathogenicity. The TA system is an advanced tool to develop a new therapeutic agent against M. tuberculosis.
Collapse
Affiliation(s)
- Karthikeyan Sundaram
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India.
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| | - Alamu Juliana Paul
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, 603203, Tamilnadu, India
| |
Collapse
|
11
|
tRNA fMet Inactivating Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems as Therapeutic Targets. Antimicrob Agents Chemother 2022; 66:e0189621. [PMID: 35404073 DOI: 10.1128/aac.01896-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis genome contains an abundance of toxin-antitoxin (TA) systems, 50 of which belong to the VapBC family. The activity of VapC toxins is controlled by dynamic association with their cognate antitoxins-the toxin is inactive when complexed with VapB antitoxin but active when freed. Here, we determined the cellular target of two phylogenetically related VapC toxins and demonstrate how their properties can be harnessed for drug development. First, we used a specialized RNA sequencing (RNA-seq) approach, 5' RNA-seq, to accurately identify the in vivo RNA target of M. tuberculosis VapC2 and VapC21 toxins. Both toxins exclusively disable initiator tRNAfMet through cleavage at a single, identical site within their anticodon loop. Consistent with the essential role and global requirement for initiator tRNAfMet in bacteria, expression of each VapC toxin resulted in potent translation inhibition followed by growth arrest and cell death. Guided by previous structural studies, we then mutated two conserved amino acids in the antitoxin (WR→AA) that resided in the toxin-antitoxin interface and were predicted to inhibit toxin activity. Both mutants were markedly less efficient in rescuing growth over time, suggesting that screens for high-affinity small-molecule inhibitors against this or other crucial VapB-VapC interaction sites could drive constitutive inactivation of tRNAfMet by these VapC toxins. Collectively, the properties of the VapBC2 and VapBC21 TA systems provide a framework for development of bactericidal antitubercular agents with high specificity for M. tuberculosis cells.
Collapse
|
12
|
Abstract
Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.
Collapse
|
13
|
Sharma A, Sagar K, Chauhan NK, Venkataraman B, Gupta N, Gosain TP, Bhalla N, Singh R, Gupta A. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 2021; 12:748890. [PMID: 34917044 PMCID: PMC8669151 DOI: 10.3389/fmicb.2021.748890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
The extraordinary expansion of Toxin Antitoxin (TA) modules in the genome of Mycobacterium tuberculosis has received significant attention over the last few decades. The cumulative evidence suggests that TA systems are activated in response to stress conditions and are essential for M. tuberculosis pathogenesis. In M. tuberculosis, Rv1955-Rv1956-Rv1957 constitutes the only tripartite TAC (Toxin Antitoxin Chaperone) module. In this locus, Rv1955 (HigB1) encodes for the toxin and Rv1956 (HigA1) encodes for antitoxin. Rv1957 encodes for a SecB-like chaperone that regulates HigBA1 toxin antitoxin system by preventing HigA1 degradation. Here, we have investigated the physiological role of HigB1 toxin in stress adaptation and pathogenesis of Mycobacterium tuberculosis. qPCR studies revealed that higBA1 is upregulated in nutrient limiting conditions and upon exposure to levofloxacin. We also show that the promoter activity of higBA1 locus in M. tuberculosis is (p)ppGpp dependent. We observed that HigB1 locus is non-essential for M. tuberculosis growth under different stress conditions in vitro. However, guinea pigs infected with higB1 deletion strain exhibited significantly reduced bacterial loads and pathological damage in comparison to the animals infected with the parental strain. Transcriptome analysis suggested that deletion of higB1 reduced the expression of genes involved in virulence, detoxification and adaptation. The present study describes the role of higB1 toxin in M. tuberculosis physiology and highlights the importance of higBA1 locus during infection in host tissues.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Kalpana Sagar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| | - Neeraj Kumar Chauhan
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Balaji Venkataraman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Nidhi Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Nikhil Bhalla
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Amita Gupta
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Centre for Innovation in Infectious Disease Research, Education and Training, New Delhi, India
| |
Collapse
|
14
|
Jin C, Kang SM, Kim DH, Lee BJ. Structural and functional analysis of the Klebsiella pneumoniae MazEF toxin-antitoxin system. IUCRJ 2021; 8:362-371. [PMID: 33953923 PMCID: PMC8086154 DOI: 10.1107/s2052252521000452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Bacterial toxin-antitoxin (TA) systems correlate strongly with physiological processes in bacteria, such as growth arrest, survival and apoptosis. Here, the first crystal structure of a type II TA complex structure of Klebsiella pneumoniae at 2.3 Å resolution is presented. The K. pneumoniae MazEF complex consists of two MazEs and four MazFs in a heterohexameric assembly. It was estimated that MazEF forms a dodecamer with two heterohexameric MazEF complexes in solution, and a truncated complex exists in heterohexameric form. The MazE antitoxin interacts with the MazF toxin via two binding modes, namely, hydro-phobic and hydro-philic interactions. Compared with structural homologs, K. pneumoniae MazF shows distinct features in loops β1-β2, β3-β4 and β4-β5. It can be inferred that these three loops have the potential to represent the unique characteristics of MazF, especially various substrate recognition sites. In addition, K. pneumoniae MazF shows ribonuclease activity and the catalytic core of MazF lies in an RNA-binding pocket. Mutation experiments and cell-growth assays confirm Arg28 and Thr51 as critical residues for MazF ribonuclease activity. The findings shown here may contribute to the understanding of the bacterial MazEF TA system and the exploration of antimicrobial candidates to treat drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul, 01369, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju, 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
16
|
Kang SM, Moon H, Han SW, Kim BW, Kim DH, Kim BM, Lee BJ. Toxin-Activating Stapled Peptides Discovered by Structural Analysis Were Identified as New Therapeutic Candidates That Trigger Antibacterial Activity against Mycobacterium tuberculosis in the Mycobacterium smegmatis Model. Microorganisms 2021; 9:microorganisms9030568. [PMID: 33801872 PMCID: PMC8000039 DOI: 10.3390/microorganisms9030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
The structure-function relationships of toxin-antitoxin (TA) systems from Mycobacterium tuberculosis have prompted the development of novel and effective antimicrobial agents that selectively target this organism. The artificial activation of toxins by peptide inhibitors can lead to the growth arrest and eventual death of bacterial cells. Optimizing candidate peptides by hydrocarbon α-helix stapling based on structural information from the VapBC TA system and in vitro systematic validation led to V26-SP-8, a VapC26 activator of M. tuberculosis. This compound exhibited highly enhanced activity and cell permeability owing to the stabilizing helical propensity of the peptide. These characteristics will increase its efficacy against multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Similar approaches utilizing structural and biochemical information for new antibiotic targets opens a new era for developing TB therapies.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Heejo Moon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (H.M.); (B.W.K.)
| | - Sang-Woo Han
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (H.M.); (B.W.K.)
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (H.M.); (B.W.K.)
- Correspondence: (B.M.K.); (B.-J.L.); Tel.: +82-2-880-6634 (B.M.K.); +82-2-880-7868 (B.-J.L.)
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
- Correspondence: (B.M.K.); (B.-J.L.); Tel.: +82-2-880-6634 (B.M.K.); +82-2-880-7868 (B.-J.L.)
| |
Collapse
|
17
|
Kang S, Jin C, Kim D, Park SJ, Han S, Lee B. Structure-based design of peptides that trigger Streptococcus pneumoniae cell death. FEBS J 2021; 288:1546-1564. [PMID: 32770723 PMCID: PMC7984235 DOI: 10.1111/febs.15514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/30/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Toxin-antitoxin (TA) systems regulate key cellular functions in bacteria. Here, we report a unique structure of the Streptococcus pneumoniae HigBA system and a novel antimicrobial agent that activates HigB toxin, which results in mRNA degradation as an antibacterial strategy. In this study, protein structure-based peptides were designed and successfully penetrated the S. pneumoniae cell membrane and exerted bactericidal activity. This result represents the time during which inhibitors triggered S. pneumoniae cell death via the TA system. This discovery is a remarkable milestone in the treatment of antibiotic-resistant S. pneumoniae, and the mechanism of bactericidal activity is completely different from those of current antibiotics. Furthermore, we found that the HigBA complex shows a crossed-scissor interface with two intermolecular β-sheets at both the N and C termini of the HigA antitoxin. Our biochemical and structural studies provided valuable information regarding the transcriptional regulation mechanisms associated with the structural variability of HigAs. Our in vivo study also revealed the potential catalytic residues of HigB and their functional relationships. An inhibition study with peptides additionally proved that peptide binding may allosterically inhibit HigB activity. Overall, our results provide insights into the molecular basis of HigBA TA systems in S. pneumoniae, which can be applied for the development of new antibacterial strategies. DATABASES: Structural data are available in the PDB database under the accession number 6AF4.
Collapse
Affiliation(s)
- Sung‐Min Kang
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Chenglong Jin
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Do‐Hee Kim
- College of PharmacyJeju National UniversityJejuKorea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & ScienceJeju National UniversityJejuKorea
| | - Sung Jean Park
- Gachon Institute of Pharmaceutical Sciences, College of PharmacyGachon UniversityIncheonKorea
| | - Sang‐Woo Han
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| | - Bong‐Jin Lee
- Research Institute of Pharmaceutical Sciences, College of PharmacySeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
18
|
Kumar VS, Mary YS, Mary YS, Krátký M, Vinsova J, Baraldi C, Roxy MS, Gamberini MC. Spectroscopic investigations, concentration dependent SERS, and molecular docking studies of a hydroxybenzylidene derivative. J Biomol Struct Dyn 2021; 40:6952-6964. [PMID: 33645445 DOI: 10.1080/07391102.2021.1891971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering (SERS) of (E)-N'-(5-chloro-2-hydroxybenzylidene)-4-trifluoromethyl) benzohydrazide (CHTB) have been studied on different silver colloids in order to know the particular chemical species responsible for the spectra. Very significant shifts are observed for Raman and SERS wavenumbers. Observed changes in the υ-ring modes may be due to surface interaction of the π-electrons and the presence of this suggested that RingII is more tilted in both cases than RingI and the molecule assumes a tilted orientation for the concentration 10-3 M. Orientation changes are seen in concentration dependent SERS spectra. The molecular electrostatic potential has also been constructed to determine the electron rich and poor site of CHTB. The molecular docking studies indicate that the binding affinity and hydrogen bond interactions with the receptors may be supporting evidence for further studies in designing other pharmaceutical applications of CHTB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Veena S Kumar
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | | | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jarmila Vinsova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M S Roxy
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
19
|
Kang SM, Jin C, Kim DH, Lee Y, Lee BJ. Structural and Functional Study of the Klebsiella pneumoniae VapBC Toxin-Antitoxin System, Including the Development of an Inhibitor That Activates VapC. J Med Chem 2020; 63:13669-13679. [PMID: 33146528 DOI: 10.1021/acs.jmedchem.0c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Klebsiella pneumoniae is one of the most critical opportunistic pathogens. TA systems are promising drug targets because they are related to the survival of bacterial pathogens. However, structural information on TA systems in K. pneumoniae remains lacking; therefore, it is necessary to explore this information for the development of antibacterial agents. Here, we present the first crystal structure of the VapBC complex from K. pneumoniae at a resolution of 2.00 Å. We determined the toxin inhibitory mechanism of the VapB antitoxin through an Mg2+ switch, in which Mg2+ is displaced by R79 of VapB. This inhibitory mechanism of the active site is a novel finding and the first to be identified in a bacterial TA system. Furthermore, inhibitors, including peptides and small molecules, that activate the VapC toxin were discovered and investigated. These inhibitors can act as antimicrobial agents by disrupting the VapBC complex and activating VapC. Our comprehensive investigation of the K. pneumoniae VapBC system will help elucidate an unsolved conundrum in VapBC systems and develop potential antimicrobial agents.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Kang SM, Moon H, Han SW, Kim DH, Kim BM, Lee BJ. Structure-Based De Novo Design of Mycobacterium Tuberculosis VapC-Activating Stapled Peptides. ACS Chem Biol 2020; 15:2493-2498. [PMID: 32840352 DOI: 10.1021/acschembio.0c00492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Toxin-antitoxin (TA) systems have been considered essential factors for bacterial survival. During our drug development program aimed against tuberculosis (TB), we discovered certain peptides that mimic the binding of the VapBC30 complex, leading to the arrest of bacterial cell growth and eventually cell death. Herein, we optimized these candidate peptides based on a hydrocarbon stapling strategy and performed biological in vitro evaluations. The V30-SP-8 peptide successfully penetrated Mycobacterium smegmatis cell membranes and exerted bactericidal activity at a minimum inhibitory concentration that inhibited 50% of the isolates (MIC50) < 6.25 μM. With the aid of structural and biochemical information for the VapBC30 TA system from M. tuberculosis, we suggest potential antimicrobial agents that could provide a platform to establish a novel antibacterial strategy. Reflecting the limited number of therapeutic agents targeting TA systems, we believe that this study not only provides chemical tools for exploring the biological events relevant to TA systems but also opens a new gateway toward TB drug discovery.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Heejo Moon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Woo Han
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243 Republic of Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Sharma A, Chattopadhyay G, Chopra P, Bhasin M, Thakur C, Agarwal S, Ahmed S, Chandra N, Varadarajan R, Singh R. VapC21 Toxin Contributes to Drug-Tolerance and Interacts With Non-cognate VapB32 Antitoxin in Mycobacterium tuberculosis. Front Microbiol 2020; 11:2037. [PMID: 33042034 PMCID: PMC7517352 DOI: 10.3389/fmicb.2020.02037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-antitoxin (TA) modules encodes for a stable toxin and an unstable antitoxin. VapBC subfamily is the most abundant Type II TA system in M. tuberculosis genome. However, the exact physiological role for most of these Type II TA systems are still unknown. Here, we have comprehensively characterized the VapBC21 TA locus from M. tuberculosis. The overexpression of VapC21 inhibited mycobacterial growth in a bacteriostatic manner and as expected, growth inhibition was abrogated upon co-expression of the cognate antitoxin, VapB21. We observed that the deletion of vapC21 had no noticeable influence on the in vitro and in vivo growth of M. tuberculosis. Using co-expression and biophysical studies, we observed that in addition to VapB21, VapC21 is also able to interact with non-cognate antitoxin, VapB32. The strength of interaction varied between the cognate and non-cognate TA pairs. The overexpression of VapC21 resulted in differential expression of approximately 435 transcripts in M. tuberculosis. The transcriptional profiles obtained upon ectopic expression of VapC21 was similar to those reported in M. tuberculosis upon exposure to stress conditions such as nutrient starvation and enduring hypoxic response. Further, VapC21 overexpression also led to increased expression of WhiB7 regulon and bacterial tolerance to aminoglycosides and ethambutol. Taken together, these results indicate that a complex network of interactions exists between non-cognate TA pairs and VapC21 contributes to drug tolerance in vitro.
Collapse
Affiliation(s)
- Arun Sharma
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Pankaj Chopra
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sakshi Agarwal
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
22
|
Zaveri A, Wang R, Botella L, Sharma R, Zhu L, Wallach JB, Song N, Jansen RS, Rhee KY, Ehrt S, Schnappinger D. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA-damage response and leads to cell death. Mol Microbiol 2020; 114:641-652. [PMID: 32634279 PMCID: PMC7689832 DOI: 10.1111/mmi.14571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023]
Abstract
Of the ~80 putative toxin-antitoxin (TA) modules encoded by the bacterial pathogen Mycobacterium tuberculosis (Mtb), three contain antitoxins essential for bacterial viability. One of these, Rv0060 (DNA ADP-ribosyl glycohydrolase, DarGMtb ), functions along with its cognate toxin Rv0059 (DNA ADP-ribosyl transferase, DarTMtb ), to mediate reversible DNA ADP-ribosylation (Jankevicius et al., 2016). We demonstrate that DarTMtb -DarGMtb form a functional TA pair and essentiality of darGMtb is dependent on the presence of darTMtb , but simultaneous deletion of both darTMtb -darGMtb does not alter viability of Mtb in vitro or in mice. The antitoxin, DarGMtb , forms a cytosolic complex with DNA-repair proteins that assembles independently of either DarTMtb or interaction with DNA. Depletion of DarGMtb alone is bactericidal, a phenotype that is rescued by expression of an orthologous antitoxin, DarGTaq , from Thermus aquaticus. Partial depletion of DarGMtb triggers a DNA-damage response and sensitizes Mtb to drugs targeting DNA metabolism and respiration. Induction of the DNA-damage response is essential for Mtb to survive partial DarGMtb -depletion and leads to a hypermutable phenotype.
Collapse
Affiliation(s)
- Anisha Zaveri
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ritu Sharma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Linnan Zhu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Naomi Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Robert S Jansen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kyu Y Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
23
|
Eun HJ, Lee KY, Kim DG, Im D, Lee BJ. Crystal structure of the YoeB Sa1-YefM Sa1 complex from Staphylococcus aureus. Biochem Biophys Res Commun 2020; 527:264-269. [PMID: 32446378 DOI: 10.1016/j.bbrc.2020.04.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitously found in bacteria and are related to cell maintenance and survival under environmental stresses such as heat shock, nutrient starvation, and antibiotic treatment. Here, we report for the first time the crystal structure of the Staphylococcus aureus TA complex YoeBSa1-YefMSa1 at a resolution of 1.7 Å. This structure reveals a heterotetramer with a 2:2 stoichiometry between YoeBSa1 and YefMSa1. The N-terminal regions of the YefMSa1 antitoxin form a homodimer characteristic of a hydrophobic core, and the C-terminal extended region of each YefMSa1 protomer makes contact with each YoeBSa1 monomer. The binding stoichiometry of YoeBSa1 and YefMSa1 is different from that of YoeB and YefM of E. coli (YoeBEc and YefMEc), which is the only structural homologue among YoeB-YefM families; however, the structures of individual YoeBSa1 and YefMSa1 subunits in the complex are highly similar to the corresponding structures in E. coli. In addition, docking simulation with a minimal RNA substrate provides structural insight into the guanosine specificity of YoeBSa1 for cleavage in the active site, which is distinct from the specificity of YoeBEc for adenosine rather than guanosine. Given the previous finding that YoeBSa1 exhibits fatal toxicity without inducing persister cells, the structure of the YoeBSa1-YefMSa1 complex will contribute to the design of a new category of anti-staphylococcal agents that disrupt the YoeBSa1-YefMSa1 complex and increase YoeBSa1 toxicity.
Collapse
Affiliation(s)
- Hyun-Jong Eun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Gyun Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daseul Im
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Kang SM, Koo JS, Kim CM, Kim DH, Lee BJ. mRNA Interferase Bacillus cereus BC0266 Shows MazF-Like Characteristics Through Structural and Functional Study. Toxins (Basel) 2020; 12:toxins12060380. [PMID: 32521689 PMCID: PMC7354611 DOI: 10.3390/toxins12060380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022] Open
Abstract
Toxin–antitoxin (TA) systems are prevalent in bacteria and are known to regulate cellular growth in response to stress. As various functions related to TA systems have been revealed, the importance of TA systems are rapidly emerging. Here, we present the crystal structure of putative mRNA interferase BC0266 and report it as a type II toxin MazF. The MazF toxin is a ribonuclease activated upon and during stressful conditions, in which it cleaves mRNA in a sequence-specific, ribosome-independent manner. Its prolonged activity causes toxic consequences to the bacteria which, in turn, may lead to bacterial death. In this study, we conducted structural and functional investigations of Bacillus cereus MazF and present the first toxin structure in the TA system of B. cereus. Specifically, B. cereus MazF adopts a PemK-like fold and also has an RNA substrate-recognizing loop, which is clearly observed in the high-resolution structure. Key residues of B. cereus MazF involved in the catalytic activity are also proposed, and in vitro assay together with mutational studies affirm the ribonucleic activity and the active sites essential for its cellular toxicity.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Ji Sung Koo
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Chang-Min Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanakgu, Seoul 08826, Korea; (S.-M.K.); (J.S.K.); (C.-M.K.)
- Correspondence: ; Tel.: +82-2-880-7869
| |
Collapse
|
25
|
Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism. Commun Biol 2020; 3:216. [PMID: 32382148 PMCID: PMC7205606 DOI: 10.1038/s42003-020-0941-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) encodes an exceptionally large number of toxin-antitoxin (TA) systems, supporting the hypothesis that TA systems are involved in pathogenesis. We characterized the putative Mtb Rv1044-Rv1045 TA locus structurally and functionally, demonstrating that it constitutes a bona fide TA system but adopts a previously unobserved antitoxicity mechanism involving phosphorylation of the toxin. While Rv1045 encodes the guanylyltransferase TglT functioning as a toxin, Rv1044 encodes the novel atypical serine protein kinase TakA, which specifically phosphorylates the cognate toxin at residue S78, thereby neutralizing its toxicity. In contrast to previous predictions, we found that Rv1044-Rv1045 does not belong to the type IV TA family because TglT and TakA interact with each other as substrate and kinase, suggesting an unusual type of TA system. Protein homology analysis suggests that other COG5340-DUF1814 protein pairs, two highly associated but uncharacterized protein families widespread in prokaryotes, might share this unusual antitoxicity mechanism. Xia Yu et al. report the characterization of a toxin-antitoxin system with an unusual mechanism in Mycobacterium tuberculosis. They find that the antitoxin locus Rv1044 encodes an atypical serine protein kinase that phosphorylates the toxin to neutralize toxicity.
Collapse
|
26
|
|
27
|
Mori G, Orena BS, Chiarelli LR, Degiacomi G, Riabova O, Sammartino JC, Makarov V, Riccardi G, Pasca MR. Rv0579 Is Involved in the Resistance to the TP053 Antitubercular Prodrug. Front Microbiol 2020; 11:292. [PMID: 32158439 PMCID: PMC7052010 DOI: 10.3389/fmicb.2020.00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis remains one of the leading causes of death from a single pathogen globally. It is estimated that 1/4 of the world’s population harbors latent tuberculosis, but only a 5–10% of patients will develop active disease. During latent infection, Mycobacterium tuberculosis can persist unaffected by drugs for years in a non-replicating state with low metabolic activity. The rate of the successful tuberculosis treatment is curbed by the presence of these non-replicating bacilli that can resuscitate after decades and also by the spread of M. tuberculosis drug-resistant strains. International agencies, including the World Health Organization, urge the international community to combat this global health emergency. The thienopyrimidine TP053 is a promising new antitubercular lead compound highly active against both replicating and non-replicating M. tuberculosis cells, with an in vitro MIC of 0.125 μg/ml. TP053 is a prodrug activated by the reduced form of the mycothiol-dependent reductase Mrx2, encoded by Rv2466c gene. After its activation, TP053 releases nitric oxide and a highly reactive metabolite, explaining its activity also against M. tuberculosis non-replicating cells. In this work, a new mechanism of TP053 resistance was discovered. M. tuberculosis spontaneous mutants resistant to TP053 were isolated harboring the mutation L240V in Rv0579, a protein with unknown function, but without mutation in Rv2466c gene. Recombineering method demonstrated that this mutation is linked to TP053 resistance. To better characterize Rv0579, the protein was recombinantly produced in Escherichia coli and a direct interaction between the Mrx2 activated TP053 and Rv0579 was shown by an innovative target-fishing experiment based on click chemistry. Thanks to achieved results, a possible contribution of Rv0579 in M. tuberculosis RNA metabolism was hypothesized, linked to toxin anti-toxin system. Overall, these data confirm the role of Rv0579 in TP053 resistance and consequently in the metabolism of this prodrug.
Collapse
Affiliation(s)
- Giorgia Mori
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Beatrice Silvia Orena
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Olga Riabova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - José Camilla Sammartino
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Vadim Makarov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
28
|
Park D, Yoon HJ, Lee KY, Park SJ, Cheon SH, Lee HH, Lee SJ, Lee BJ. Crystal structure of proteolyzed VapBC and DNA-bound VapBC from Salmonella enterica Typhimurium LT2 and VapC as a putative Ca 2+ -dependent ribonuclease. FASEB J 2020; 34:3051-3068. [PMID: 31908032 DOI: 10.1096/fj.201901989r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
Bacterial toxin-antitoxin (TA) system has gained attention for its essential roles in cellular maintenance and survival under harsh environmental conditions such as nutrient deficiency and antibiotic treatment. There are at least 14 TA systems in Salmonella enterica serovar Typhimurium LT2, a pathogenic bacterium, and none of the structures of these TA systems have been determined. We determined the crystal structure of the VapBC TA complex from S. Typhimurium LT2 in proteolyzed and DNA-bound forms at 2.0 Å and 2.8 Å resolution, respectively. The VapC toxin possesses a pilT N-terminal domain (PIN-domain) that shows ribonuclease activity, and the VapB antitoxin has an AbrB-type DNA binding domain. In addition, the structure revealed details of interaction mode between VapBC and the cognate promoter DNA, including the inhibition of VapC by VapB and linear conformation of bound DNA in the VapBC complex. The complexation of VapBC with the linear DNA is not consistent with known structures of VapBC homologs in complex with bent DNA. We also identified VapC from S. Typhimurium LT2 as a putative Ca2+ -dependent ribonuclease, which differs from previous data showing that VapC homologs have Mg2+ or Mn2+ -dependent ribonuclease activities. The present studies could provide structural understanding of the physiology of VapBC systems and foundation for the development of new antibiotic drugs against Salmonella infection.
Collapse
Affiliation(s)
- DongWon Park
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ki-Young Lee
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sung-Jean Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung-Ho Cheon
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Agarwal S, Tiwari P, Deep A, Kidwai S, Gupta S, Thakur KG, Singh R. System-Wide Analysis Unravels the Differential Regulation and In Vivo Essentiality of Virulence-Associated Proteins B and C Toxin-Antitoxin Systems of Mycobacterium tuberculosis. J Infect Dis 2019. [PMID: 29529224 DOI: 10.1093/infdis/jiy109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toxin-antitoxin (TA) systems are bicistronic genetic modules that are ubiquitously present in bacterial genomes. The Mycobacterium tuberculosis genome encodes 90 putative TA systems, and these are considered to be associated with maintenance of bacterial genomic stability or bacterial survival under unfavorable environmental conditions. The majority of these in M. tuberculosis have been annotated as belonging to the virulence-associated protein B and C (VapBC) family. However, their precise role in bacterial physiology has not been elucidated. Here, we functionally characterized VapC toxins from M. tuberculosis and show that overexpression of some homologs inhibits growth of Mycobacterium bovis bacillus Calmette-Guérin in a bacteriostatic manner. Expression profiling of messenger RNA revealed that these VapC toxins were differentially induced upon exposure of M. tuberculosis to stress conditions. We also unraveled that transcriptional cross-activation exists between TA systems in M. tuberculosis. This study provides the first evidence for the essentiality of VapBC3 and VapBC4 systems in M. tuberculosis virulence.
Collapse
Affiliation(s)
- Sakshi Agarwal
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Prabhakar Tiwari
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Amar Deep
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana.,Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Shamba Gupta
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Faridabad, Haryana
| |
Collapse
|
30
|
Kang SM, Kim DH, Jin C, Ahn HC, Lee BJ. The crystal structure of AcrR from Mycobacterium tuberculosis reveals a one-component transcriptional regulation mechanism. FEBS Open Bio 2019; 9:1713-1725. [PMID: 31369208 PMCID: PMC6768106 DOI: 10.1002/2211-5463.12710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulator proteins are closely involved in essential survival strategies in bacteria. AcrR is a one-component allosteric repressor of the genes associated with lipid transport and antibiotic resistance. When fatty acid ligands bind to the C-terminal ligand-binding cavity of AcrR, a conformational change in the N-terminal operator-binding region of AcrR is triggered, which releases the repressed DNA and initiates transcription. This paper focuses on the structural transition mechanism of AcrR of Mycobacterium tuberculosis upon DNA and ligand binding. AcrR loses its structural integrity upon ligand-mediated structural alteration and bends toward the promoter DNA in a more compact form, initiating a rotational motion. Our functional characterization of AcrR and description of the ligand- and DNA-recognition mechanism may facilitate the discovery of new therapies for tuberculosis.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Ilsandong-gu, Goyang, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
31
|
Kim DH, Kang SM, Park SJ, Jin C, Yoon HJ, Lee BJ. Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Res 2019; 46:6371-6386. [PMID: 29878152 PMCID: PMC6159526 DOI: 10.1093/nar/gky469] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumonia has attracted increasing attention due to its resistance to existing antibiotics. TA systems are essential for bacterial persistence under stressful conditions such as nutrient deprivation, antibiotic treatment, and immune system attacks. In particular, S. pneumoniae expresses the HicBA TA gene, which encodes the stable HicA toxin and the labile HicB antitoxin. These proteins interact to form a non-toxic TA complex under normal conditions, but the toxin is activated by release from the antitoxin in response to unfavorable growth conditions. Here, we present the first crystal structure showing the complete conformation of the HicBA complex from S. pneumonia. The structure reveals that the HicA toxin contains a double-stranded RNA-binding domain that is essential for RNA recognition and that the C-terminus of the HicB antitoxin folds into a ribbon-helix-helix DNA-binding motif. The active site of HicA is sterically blocked by the N-terminal region of HicB. RNase activity assays show that His36 is essential for the ribonuclease activity of HicA, and nuclear magnetic resonance (NMR) spectra show that several residues of HicB participate in binding to the promoter DNA of the HicBA operon. A toxin-mimicking peptide that inhibits TA complex formation and thereby increases toxin activity was designed, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 13120, Republic of Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Deep A, Tiwari P, Agarwal S, Kaundal S, Kidwai S, Singh R, Thakur KG. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 2019; 46:11639-11655. [PMID: 30329074 PMCID: PMC6265470 DOI: 10.1093/nar/gky924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are involved in diverse physiological processes in prokaryotes, but their exact role in Mycobacterium tuberculosis (Mtb) virulence and in vivo stress adaptation has not been extensively studied. Here, we demonstrate that the VapBC11 TA module is essential for Mtb to establish infection in guinea pigs. RNA-sequencing revealed that overexpression of VapC11 toxin results in metabolic slowdown, suggesting that modulation of the growth rate is an essential strategy for in vivo survival. Interestingly, overexpression of VapC11 resulted in the upregulation of chromosomal TA genes, suggesting the existence of highly coordinated crosstalk among TA systems. In this study, we also present the crystal structure of the VapBC11 heterooctameric complex at 1.67 Å resolution. Binding kinetic studies suggest that the binding affinities of toxin–substrate and toxin–antitoxin interactions are comparable. We used a combination of structural studies, molecular docking, mutational analysis and in vitro ribonuclease assays to enhance our understanding of the mode of substrate recognition by the VapC11 toxin. Furthermore, we have also designed peptide-based inhibitors to target VapC11 ribonuclease activity. Taken together, we propose that the structure-guided design of inhibitors against in vivo essential ribonucleases might be a novel strategy to hasten clearance of intracellular Mtb.
Collapse
Affiliation(s)
- Amar Deep
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Prabhakar Tiwari
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Sakshi Agarwal
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Soni Kaundal
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad Gurgaon Expressway, Faridabad 121001, India
| | - Krishan G Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh 160036, India
| |
Collapse
|
33
|
In Silico Insight into the Dominant Type II Toxin–Antitoxin Systems and Clp Proteases in Listeria monocytogenes and Designation of Derived Peptides as a Novel Approach to Interfere with this System. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09868-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Roy M, Kundu A, Bhunia A, Das Gupta S, De S, Das AK. Structural characterization of VapB46 antitoxin from
Mycobacterium tuberculosis
: insights into VapB46–
DNA
binding. FEBS J 2019; 286:1174-1190. [DOI: 10.1111/febs.14737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/24/2018] [Accepted: 12/17/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Madhurima Roy
- Department of Biotechnology Indian Institute of Technology Kharagpur India
| | - Anirban Kundu
- Department of Biotechnology Indian Institute of Technology Kharagpur India
| | | | | | - Soumya De
- School of Bioscience Indian Institute of Technology Kharagpur India
| | - Amit Kumar Das
- Department of Biotechnology Indian Institute of Technology Kharagpur India
- School of Bioscience Indian Institute of Technology Kharagpur India
| |
Collapse
|
35
|
A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins (Basel) 2018; 10:toxins10120515. [PMID: 30518070 PMCID: PMC6315513 DOI: 10.3390/toxins10120515] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Toxin-antitoxin (TA) systems are known to play various roles in physiological processes, such as gene regulation, growth arrest and survival, in bacteria exposed to environmental stress. Type II TA systems comprise natural complexes consisting of protein toxins and antitoxins. Each toxin and antitoxin participates in distinct regulatory mechanisms depending on the type of TA system. Recently, peptides designed by mimicking the interfaces between TA complexes showed its potential to activate the activity of toxin by competing its binding counterparts. Type II TA systems occur more often in pathogenic bacteria than in their nonpathogenic kin. Therefore, they can be possible drug targets, because of their high abundance in some pathogenic bacteria, such as Mycobacterium tuberculosis. In addition, recent bioinformatic analyses have shown that type III TA systems are highly abundant in the intestinal microbiota, and recent clinical studies have shown that the intestinal microbiota is linked to inflammatory diseases, obesity and even several types of cancer. We therefore focused on exploring the putative relationship between intestinal microbiota-related human diseases and type III TA systems. In this paper, we review and discuss the development of possible druggable materials based on the mechanism of type II and type III TA system.
Collapse
|
36
|
In Silico Derived Peptides for Inhibiting the Toxin–Antitoxin Systems of Mycobacterium tuberculosis: Basis for Developing Peptide-Based Therapeutics. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9792-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Xu J, Zhang N, Cao M, Ren S, Zeng T, Qin M, Zhao X, Yuan F, Chen H, Bei W. Identification of Three Type II Toxin-Antitoxin Systems in Streptococcus suis Serotype 2. Toxins (Basel) 2018; 10:toxins10110467. [PMID: 30428568 PMCID: PMC6266264 DOI: 10.3390/toxins10110467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Type II toxin-antitoxin (TA) systems are highly prevalent in bacterial genomes and have been extensively studied. These modules involve in the formation of persistence cells, the biofilm formation, and stress resistance, which might play key roles in pathogen virulence. SezAT and yefM-yoeB TA modules in Streptococcus suis serotype 2 (S. suis 2) have been studied, although the other TA systems have not been identified. In this study, we investigated nine putative type II TA systems in the genome of S. suis 2 strain SC84 by bioinformatics analysis and identified three of them (two relBE loci and one parDE locus) that function as typical type II TA systems. Interestingly, we found that the introduction of the two RelBE TA systems into Escherichia coli or the induction of the ParE toxin led to cell filamentation. Promoter activity assays indicated that RelB1, RelB2, ParD, and ParDE negatively autoregulated the transcriptions of their respective TA operons, while RelBE2 positively autoregulated its TA operon transcription. Collectively, we identified three TA systems in S. suis 2, and our findings have laid an important foundation for further functional studies on these TA systems.
Collapse
Affiliation(s)
- Jiali Xu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Nian Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sujing Ren
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zeng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minglu Qin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xigong Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLoS One 2018; 13:e0203412. [PMID: 30169502 PMCID: PMC6118392 DOI: 10.1371/journal.pone.0203412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
The chromosome of Mycobacterium tuberculosis (Mtb) contains a large number of Type II toxin-antitoxin (TA) systems. The majority of these belong to the VapBC TA family, characterised by the VapC protein consisting of a PIN domain with four conserved acidic residues, and proposed ribonuclease activity. Characterisation of five VapC (VapC1, 19, 27, 29 and 39) proteins from various regions of the Mtb chromosome using a combination of pentaprobe RNA sequences and mass spectrometry revealed a shared ribonuclease sequence-specificity with a preference for UAGG sequences. The TA complex VapBC29 is auto-regulatory and interacts with inverted repeat sequences in the vapBC29 promoter, whereas complexes VapBC1 and VapBC27 display no auto-regulatory properties. The difference in regulation could be due to the different properties of the VapB proteins, all of which belong to different VapB protein families. Regulation of the vapBC29 operon is specific, no cross-talk among Type II TA systems was observed. VapC29 is bacteriostatic when expressed in Mycobacterium smegmatis, whereas VapC1 and VapC27 displayed no toxicity upon expression in M. smegmatis. The shared sequence specificity of the five VapC proteins characterised is intriguing, we propose that the differences observed in regulation and toxicity is the key to understanding the role of these TA systems in the growth and persistence of Mtb.
Collapse
|
39
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
40
|
Deep A, Kaundal S, Agarwal S, Singh R, Thakur KG. Crystal structure of Mycobacterium tuberculosis
VapC20 toxin and its interactions with cognate antitoxin, VapB20, suggest a model for toxin-antitoxin assembly. FEBS J 2017; 284:4066-4082. [DOI: 10.1111/febs.14289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Amar Deep
- Structural Biology Laboratory; G. N. Ramachandran Protein Centre; Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH); Chandigarh India
| | - Soni Kaundal
- Structural Biology Laboratory; G. N. Ramachandran Protein Centre; Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH); Chandigarh India
| | - Sakshi Agarwal
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; NCR-Biotech Science Cluster; Faridabad India
| | - Ramandeep Singh
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; NCR-Biotech Science Cluster; Faridabad India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory; G. N. Ramachandran Protein Centre; Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH); Chandigarh India
| |
Collapse
|
41
|
Gao X, Mu Z, Qin B, Sun Y, Cui S. Structure-Based Prototype Peptides Targeting the Pseudomonas aeruginosa Type VI Secretion System Effector as a Novel Antibacterial Strategy. Front Cell Infect Microbiol 2017; 7:411. [PMID: 28979890 PMCID: PMC5611513 DOI: 10.3389/fcimb.2017.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
The type VI secretion system (T6SS) secretes numerous toxins for bacteria-bacteria competition. TplE is a newly identified trans-kingdom toxin secreted by the T6SS in Pseudomonas aeruginosa, while TplEi neutralizes the toxic effect of TplE to protect bacteria autointoxication. Blocking the interaction of TplE-TplEi could unleash the toxin, causing bacterial cell death. In this study, we applied a crystallographic approach to design a structural-based antimicrobial peptides targeting the interaction of TplE and TplEi. We found that a peptide (designed as “L” peptide based on its shape) derived from TplE can form a crystal complex with TplEi after subtilisin treatment and the crystal structure was solved at 2.2Å. The “L” peptide displays strong binding affinity to TplEi in vitro and can release the TplE toxin to induce bacteria death in vivo. Our findings suggest that as a toxin activator, the “L” peptide could be a possible drug lead for treating P. aeruginosa infection. Our findings provide an example that the T6SS effector and immunity protein could be a potential drug target against bacteria infection.
Collapse
Affiliation(s)
- Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhixia Mu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bo Qin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Yicheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|