1
|
Li Y, Zhang D, Zeng X, Liu C, Wu Y, Fu C. Advances in Aptamer-Based Biosensors for the Detection of Foodborne Mycotoxins. Molecules 2024; 29:3974. [PMID: 39203052 PMCID: PMC11356850 DOI: 10.3390/molecules29163974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Foodborne mycotoxins (FBMTs) are toxins produced by food itself or during processing and transportation that pose an enormous threat to public health security. However, traditional instrumental and chemical methods for detecting toxins have shortcomings, such as high operational difficulty, time consumption, and high cost, that limit their large-scale applications. In recent years, aptamer-based biosensors have become a new tool for food safety risk assessment and monitoring due to their high affinity, good specificity, and fast response. In this review, we focus on the progress of single-mode and dual-mode aptasensors in basic research and device applications over recent years. Furthermore, we also point out some problems in the current detection strategies, with the aim of stimulating future toxin detection systems for a transition toward ease of operation and rapid detection.
Collapse
Affiliation(s)
- Yangyang Li
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Dan Zhang
- School of Cable Engineering, Henan Institute of Technology, Xinxiang 453003, China
| | - Xiaoyuan Zeng
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cheng Liu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yan Wu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Cuicui Fu
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| |
Collapse
|
2
|
Li T, Liu X, Qian H, Zhang S, Hou Y, Zhang Y, Luo G, Zhu X, Tao Y, Fan M, Wang H, Sha C, Lin A, Qin J, Gu K, Chen W, Fu T, Wang Y, Wei Y, Wu Q, Tan W. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nat Commun 2024; 15:6751. [PMID: 39117705 PMCID: PMC11310338 DOI: 10.1038/s41467-024-51197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Collapse
Affiliation(s)
- Tongqing Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Haifeng Qian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Sheyu Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yu Hou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Xun Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Hong Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ailan Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jingjing Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Kedan Gu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Weichang Chen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ting Fu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yajun Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Qin Wu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Gao L, Zhang Y, Chen L, Zhou Q, Zhou N, Xia X. Study of dual binding specificity of aptamer to ochratoxin A and norfloxacin and the development of fluorescent aptasensor in milk detection. Talanta 2024; 273:125935. [PMID: 38503123 DOI: 10.1016/j.talanta.2024.125935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Target specificity, one of aptamer characteristics that determine recognition efficiency of biosensors, is generally considered to be an intrinsic property of aptamer. However, a high-affinity aptamer may have additional target binding specificity, little is known about the specificity of aptamer binding to multiple targets, which may result in false-positive results that hinder the accuracy of detection. Herein, an aptamer OBA3 with dual target ochratoxin A (OTA) and norfloxacin (NOR) was used as an example to explore the binding specificity mechanism and developed rapid fluorescent aptasensing methods. The nucleotide 15th T of aptamer OBA3 was demonstrated to be critical for specificity and affinity binding of target OTA via site-saturation mutagenesis. Substituting the 15th T base for C base could directly improve recognition specificity of aptamer for NOR and remove the binding affinity for OTA. The combination of π-π stacking interactions, salt bridges and hydrogen bonds between loop pocket of aptamer and quinolone skeleton, piperazinyl group may contributes to the fluoroquinolone antibiotics (NOR and difloxacin)-aptamer recognition interaction. Based on this understanding, a dual-aptamer fluorescent biosensor was fabricated for simultaneous detection of OTA and NOR, which has a linear detection range of 50-6000 nM with a detection limit of 31 nM for OTA and NOR. Combined with T15C biosensor for eliminating interference of OTA, the assay was applied to milk samples with satisfactory recovery (94.06-100.93%), which can achieve detection of OTA and NOR individually within 40 min.
Collapse
Affiliation(s)
- Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yue Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nandi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Li Y, Jia B, Song P, Long N, Shi L, Li P, Wang J, Zhou L, Kong W. Precision-SELEX aptamer screening for the colorimetric and fluorescent dual-readout aptasensing of AFB 1 in food. Food Chem 2024; 436:137661. [PMID: 37826895 DOI: 10.1016/j.foodchem.2023.137661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
As nucleic acid-based affinity elements, aptamers have attracted significant attention for a wide range of analytical applications. Although several aflatoxin B1 (AFB1) aptamers have been identified, they are unsuitable for overcoming the unavoidable cross-reactions from interferents in complex food matrices due to their poor binding affinities and specificities. Herein, a novel precision-systematic evolution of ligands by exponential enrichment (P-SELEX) strategy through introducing the counter (matrix without target AFB1) and positive (with AFB1) screening steps was implemented to accurately identify AFB1 aptamers. A DNA aptamer A-42-2 at a 24-nt length was selected finally, which possessed nanomolar-level affinity of 5.55 nM, high specificity to other interferents, and strong anti-cross-reactivity ability for matrix components. Then, an A-42-2 aptamer-based ultra-sensitive colorimetric and fluorescent dual-readout aptasensor was fabricated for AFB1 detection in three kinds of complex food samples rich in starch without cross-reactions. The aptasensor displayed outstanding detection capacity with a wide liner range of 0.25-30 nM (1.95-234.4 μg/kg), while the detection limit for colorimetric measurement as low as 0.22 nM (1.72 μg/kg) and 0.048 nM (0.20 μg/kg) for fluorescent determination. P-SELEX is ideal for screening and applying aptamers in complex food matrices, creating more opportunities for the efficient and cost-effective development of high-quality aptamers and aptasensors for other targets.
Collapse
Affiliation(s)
- Ying Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Li Z, Jallow A, Nidiaye S, Huang Y, Zhang Q, Li P, Tang X. Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Up-to-date strategies and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13255. [PMID: 38284606 DOI: 10.1111/1541-4337.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxins are dangerous human and animal health-threatening secondary fungal metabolites that can be found in various food and agricultural products. Several countries have established regulations to restrict their presence in food and agricultural products destined for human and animal consumption. Consequently, the need to develop highly sensitive and smart detection systems was recognized worldwide. Lateral flow assay possesses the advantages of easy operation, rapidity, stability, accuracy, and specificity, and it plays an important role in the detection of mycotoxins. Nevertheless, strategies to comprehensively improve the sensitivity of lateral flow assay to mycotoxins in food have rarely been highlighted and discussed. In this article, a comprehensive overview was presented on the application of lateral flow assay in mycotoxin detection in food samples by highlighting the principle of lateral flow assay, presenting a detailed discussion on various analytical performance-improvement strategies, such as the development of high-affinity recognition reagents, immunogen immobilization methods, and signal amplification. Additionally, a detailed discussion on the various signal analyzers and interpretation approaches was provided. Finally, current hurdles and future perspectives on the application of lateral flow assay in the detection of mycotoxins were discussed.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Abdoulie Jallow
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Seyni Nidiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| | - Xiaoqian Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs; Quality Inspection and Test Center for Oil seed Products, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Food Safety Research Institute, HuBei University, Wuhan, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
7
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
8
|
Binet T, Padiolleau-Lefèvre S, Octave S, Avalle B, Maffucci I. Comparative Study of Single-stranded Oligonucleotides Secondary Structure Prediction Tools. BMC Bioinformatics 2023; 24:422. [PMID: 37940855 PMCID: PMC10634105 DOI: 10.1186/s12859-023-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Single-stranded nucleic acids (ssNAs) have important biological roles and a high biotechnological potential linked to their ability to bind to numerous molecular targets. This depends on the different spatial conformations they can assume. The first level of ssNAs spatial organisation corresponds to their base pairs pattern, i.e. their secondary structure. Many computational tools have been developed to predict the ssNAs secondary structures, making the choice of the appropriate tool difficult, and an up-to-date guide on the limits and applicability of current secondary structure prediction tools is missing. Therefore, we performed a comparative study of the performances of 9 freely available tools (mfold, RNAfold, CentroidFold, CONTRAfold, MC-Fold, LinearFold, UFold, SPOT-RNA, and MXfold2) on a dataset of 538 ssNAs with known experimental secondary structure. RESULTS The minimum free energy-based tools, namely mfold and RNAfold, and some tools based on artificial intelligence, namely CONTRAfold and MXfold2, provided the best results, with [Formula: see text] of exact predictions, whilst MC-fold seemed to be the worst performing tool, with only [Formula: see text] of exact predictions. In addition, UFold and SPOT-RNA are the only options for pseudoknots prediction. Including in the analysis of mfold and RNAfold results 5-10 suboptimal solutions further improved the performances of these tools. Nevertheless, we could observe issues in predicting particular motifs, such as multiple-ways junctions and mini-dumbbells, or the ssNAs whose structure has been determined in complex with a protein. In addition, our benchmark shows that some effort has to be paid for ssDNA secondary structure predictions. CONCLUSIONS In general, Mfold, RNAfold, and MXfold2 seem to currently be the best choice for the ssNAs secondary structure prediction, although they still show some limits linked to specific structural motifs. Nevertheless, actual trends suggest that artificial intelligence has a high potential to overcome these remaining issues, for example the recently developed UFold and SPOT-RNA have a high success rate in predicting pseudoknots.
Collapse
Affiliation(s)
- Thomas Binet
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France
| | - Séverine Padiolleau-Lefèvre
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France
| | - Stéphane Octave
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France
| | - Bérangère Avalle
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France.
| | - Irene Maffucci
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France.
| |
Collapse
|
9
|
Dong X, Qi S, Qin M, Ding N, Zhang Y, Wang Z. A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO 2@Fe 3O 4 nanomaterials for ochratoxin A detection. Mikrochim Acta 2023; 190:443. [PMID: 37848735 DOI: 10.1007/s00604-023-06018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
A novel ternary Y-DNA walker amplification strategy designed fluorescence aptasensor based on Au@SiO2@Fe3O4 nanomaterials for ultrasensitive and specific ochratoxin A detection in food samples is presented. Au@SiO2@Fe3O4 nanomaterials provide the loading platform as well as separation and recovery properties for the ternary Y-DNA walker. The ternary Y-DNA walker is designed to be driven by Nb.BbvCI cleaving a large number of FAM probes to achieve signal amplification. Since Ochratoxin A (OTA) can bind to the constituent aptamer in the ternary Y-DNA walker, adding OTA will destroy the structure of the ternary Y-DNA walker, thereby inhibiting the driving process of the walker. After optimization of various parameters, a standard curve was obtained from 100 to 0.05 ng·mL-1 of OTA with the limit of determination of 0.027 ng·mL-1. The spiked recovery of peanut samples by this method was 82.00-93.30%, and the aptasensor showed excellent specificity and long-term stability. This simple, robust, and scalable oligonucleotide chain-based ternary Y-DNA walker can provide a general signal amplification strategy for trace analysis.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ning Ding
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China.
- School of Food Science and Technology, National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Food, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Yu J, Ai S, Zhang W, Wang C, Shi P. Ratiometric fluorescent aptasensor for convenient detection of ochratoxin A in beer and orange juice. Analyst 2023; 148:5172-5177. [PMID: 37721150 DOI: 10.1039/d3an01360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Based on the principle of fluorescence resonance energy transfer (FRET), a simple ratiometric fluorescent aptasensor for convenient detection of ochratoxin A (OTA), a Group IIB carcinogen secreted by some fungi, was established. Initially, the anti-OTA aptamer with a quadruplex structure was flanked with FAM and BHQ1, and its partially complementary DNA (cDNA) was tagged with Cy3. In the absence of OTA, this aptamer hybridized with the cDNA strand forming a DNA duplex structure, in which BHQ1 was adjacent to Cy3 and distant from FAM. Due to the FRET principle, the fluorescence intensity emitted by Cy3 (FCy3) was quenched by BHQ1, and the fluorescence intensity emitted by FAM (FFAM) recovered. In the presence of OTA, the prepared aptamer preferred to bind with OTA instead of cDNA, forming an aptamer-OTA complex structure in which BHQ1 was adjacent to FAM and distant from Cy3. As a result, FFAM was quenched and FCy3 was restored. OTA can be accurately detected via the determination of the FCy3/FFAM ratio value. Under optimal conditions, this ratiometric fluorescent aptasensor offers excellent OTA detection in the range of 0.6 nmol L-1-5 μmol L-1, with a limit of detection (LOD) of 0.3 nmol L-1. This ratiometric aptasensor showed the advantages of easy operation, accuracy and sensitive analysis. Good specificity of this aptasensor was demonstrated. This ratiometric aptasensor could be used for the detection of OTA in real samples, e.g. beer and orange juice, showing its promising application potential.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Shuheng Ai
- School of Medicine, Linyi University, Linyi 276000, China
| | - Wenhan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Chao Wang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
- School of Medicine, Linyi University, Linyi 276000, China
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| |
Collapse
|
11
|
Xu G, Wang C, Yu H, Li Y, Zhao Q, Zhou X, Li C, Liu M. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer. Nucleic Acids Res 2023; 51:7666-7674. [PMID: 37351632 PMCID: PMC10415127 DOI: 10.1093/nar/gkad541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
The 26-mer DNA aptamer (AF26) that specifically binds aflatoxin B1 (AFB1) with nM-level high affinity is rare among hundreds of aptamers for small molecules. Despite its predicted stem-loop structure, the molecular basis of its high-affinity recognition of AFB1 remains unknown. Here, we present the first high-resolution nuclear magnetic resonance structure of AFB1-AF26 aptamer complex in solution. AFB1 binds to the 16-residue loop region of the aptamer, inducing it to fold into a compact structure through the assembly of two bulges and one hairpin structure. AFB1 is tightly enclosed within a cavity formed by the bulges and hairpin, held in a place between the G·C base pair, G·G·C triple and multiple T bases, mainly through strong π-π stacking, hydrophobic and donor atom-π interactions, respectively. We further revealed the mechanism of the aptamer in recognizing AFB1 and its analogue AFG1 with only one-atom difference and introduced a single base mutation at the binding site of the aptamer to increase the discrimination between AFB1 and AFG1 based on the structural insights. This research provides an important structural basis for understanding high-affinity recognition of the aptamer, and for further aptamer engineering, modification and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
- Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
12
|
Fan Y, Li J, Amin K, Yu H, Yang H, Guo Z, Liu J. Advances in aptamers, and application of mycotoxins detection: A review. Food Res Int 2023; 170:113022. [PMID: 37316026 DOI: 10.1016/j.foodres.2023.113022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
13
|
Wang J, Chen D, Huang W, Yang N, Yuan Q, Yang Y. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. EXPLORATION (BEIJING, CHINA) 2023; 3:20210027. [PMID: 37933385 PMCID: PMC10624392 DOI: 10.1002/exp.20210027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Nano-biosensors that are composed of recognition molecules and nanomaterials have been extensively utilized in disease diagnosis, health management, and environmental monitoring. As a type of nano-biosensors, molecular specificity field-effect transistor (FET) biosensors with signal amplification capability exhibit prominent advantages including fast response speed, ease of miniaturization, and integration, promising their high sensitivity for molecules detection and identification. With intrinsic characteristics of high stability and structural tunability, aptamer has become one of the most commonly applied biological recognition units in the FET sensing fields. This review summarizes the recent progress of FET biosensors based on aptamer functionalized nanomaterials in medical diagnosis and environmental monitoring. The structure, sensing principles, preparation methods, and functionalization strategies of aptamer modified FET biosensors were comprehensively summarized. The relationship between structure and sensing performance of FET biosensors was reviewed. Furthermore, the challenges and future perspectives of FET biosensors were also discussed, so as to provide support for the future development of efficient healthcare management and environmental monitoring devices.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Wanting Huang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| | - Nianjun Yang
- Department of Chemistry, Insititute of Materials ResearchHasselt UniversityHasseltBelgium
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Institute of Molecular MedicineRenmin Hospital of Wuhan University, School of Microelectronics, Wuhan UniversityWuhanChina
| |
Collapse
|
14
|
Passalacqua LFM, Banco MT, Moon JD, Li X, Jaffrey SR, Ferré-D'Amaré AR. Intricate 3D architecture of a DNA mimic of GFP. Nature 2023; 618:1078-1084. [PMID: 37344591 PMCID: PMC10754392 DOI: 10.1038/s41586-023-06229-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Banco
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared D Moon
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Xing Li
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
He J, Duan Q, Ran C, Fu T, Liu Y, Tan W. Recent progress of aptamer‒drug conjugates in cancer therapy. Acta Pharm Sin B 2023; 13:1358-1370. [PMID: 37139427 PMCID: PMC10150127 DOI: 10.1016/j.apsb.2023.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/28/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that can specifically bind with the target protein or molecule via specific secondary structures. Compared to antibody-drug conjugates (ADC), aptamer‒drug conjugate (ApDC) is also an efficient, targeted drug for cancer therapy with a smaller size, higher chemical stability, lower immunogenicity, faster tissue penetration, and facile engineering. Despite all these advantages, several key factors have delayed the clinical translation of ApDC, such as in vivo off-target effects and potential safety issues. In this review, we highlight the most recent progress in the development of ApDC and discuss solutions to the problems noted above.
Collapse
Affiliation(s)
- Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiao Duan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyan Ran
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Zhang C, Zhao J, Lu B, Seeman NC, Sha R, Noinaj N, Mao C. Engineering DNA Crystals toward Studying DNA-Guest Molecule Interactions. J Am Chem Soc 2023; 145:4853-4859. [PMID: 36791277 DOI: 10.1021/jacs.3c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Brandon Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Zhang Q, Zhang M, Guo Z, Li J, Zhu Z, Wang Y, Liu S, Huang J, Yu J. DNA tetrahedron-besieged primer and DNAzyme-activated programmatic RCA for low-background electrochemical detection of ochratoxin A. Anal Chim Acta 2023; 1242:340782. [PMID: 36657887 DOI: 10.1016/j.aca.2023.340782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Ochratoxin A (OTA) is the most toxic class of ochratoxins and has become a major threat to the environment, humans and animals. Therefore, research on the methods for its detection is also more urgent. Herein, we propose a low-background electrochemical biosensor based on a DNA tetrahedron-besieged primer and a DNAzyme-activated programmatic rolling circle amplification (RCA) that can be ultimately utilized for OTA detection in wine samples. Low-background detection can be achieved using the besieged primer via sequenced assembly of DNA tetrahedral nanostructures so that non-specific extensions of primer can be avoided. The target OTA-mediated DNAzyme activation initiates the programmatic RCA. Additionally, the catalytic property of silver nanoclusters (AgNCs) is integrated with the electrochemical assay to achieve high sensitivity for OTA detection. Benefiting from the aforementioned processes, a low-background, and highly sensitive electrochemical biosensor has been successfully constructed. This design is capable of detecting OTA at concentrations from 1 pg/mL to 10 ng/mL, and its lowest concentration limit is 0.773 pg/mL. Simultaneously, its validation in the detection of actual samples reveals that the proposed electrochemical biosensor has a lot of potential in food safety and environmental detection.
Collapse
Affiliation(s)
- Qingxin Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Manru Zhang
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, 250101, PR China
| | - Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jingjing Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Zhixue Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
18
|
Chen Z, Luo H, Gubu A, Yu S, Zhang H, Dai H, Zhang Y, Zhang B, Ma Y, Lu A, Zhang G. Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Front Cell Dev Biol 2023; 11:1091809. [PMID: 36910146 PMCID: PMC9996316 DOI: 10.3389/fcell.2023.1091809] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize targets. However, the pharmacodynamic properties of natural aptamers consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally restricted for inferior binding affinity than the cognate antibodies. The development of high-affinity modification strategies has attracted extensive attention in aptamer applications. Chemically modified aptamers with stable three-dimensional shapes can tightly interact with the target proteins via enhanced non-covalent bonding, possibly resulting in hundreds of affinity enhancements. This review overviewed high-affinity modification strategies used in aptamers, including nucleobase modifications, fluorine modifications (2'-fluoro nucleic acid, 2'-fluoro arabino nucleic acid, 2',2'-difluoro nucleic acid), structural alteration modifications (locked nucleic acid, unlocked nucleic acid), phosphate modifications (phosphorothioates, phosphorodithioates), and extended alphabets. The review emphasized how these high-affinity modifications function in effect as the interactions with target proteins, thereby refining the pharmacodynamic properties of aptamers.
Collapse
Affiliation(s)
- Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Hang Luo
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hong Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yihao Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, Hong Kong SAR, China
| |
Collapse
|
19
|
Bruno JG. Successes and Failures of Static Aptamer-Target 3D Docking Models. Int J Mol Sci 2022; 23:ijms232214410. [PMID: 36430888 PMCID: PMC9695435 DOI: 10.3390/ijms232214410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
While Molecular Dynamics simulation programs are probably superior for predicting the binding and affinity of aptamers and their cognate ligands, such molecular dynamics programs require more computing power and analysis time than static docking programs that are more widely accessible to the scientific community on the internet. Static docking programs can be used to investigate the geometric fit of rigid DNA or RNA aptamer 3D structures and their ligands to aid in predicting the relative affinities and cross-reactivity of various potential ligands. Herein, the author describes when such static 3D docking analysis has worked well to produce useful predictions or confirmation of high-affinity aptamer interactions or successful aptamer beacon behavior and when it has not worked well. The analysis of why failures may occur with static 3D computer models is also discussed.
Collapse
|
20
|
Wang J, Yang X, Wang X, Wang W. Recent Advances in CRISPR/Cas-Based Biosensors for Protein Detection. Bioengineering (Basel) 2022; 9:512. [PMID: 36290480 PMCID: PMC9598526 DOI: 10.3390/bioengineering9100512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
CRISPR is an acquired immune system found in prokaryotes that can accurately recognize and cleave foreign nucleic acids, and has been widely explored for gene editing and biosensing. In the past, CRISPR/Cas-based biosensors were mainly applied to detect nucleic acids in the field of biosensing, and their applications for the detection of other types of analytes were usually overlooked such as small molecules and disease-related proteins. The recent work shows that CRISPR/Cas biosensors not only provide a new tool for protein analysis, but also improve the sensitivity and specificity of protein detections. However, it lacks the latest review to summarize CRISPR/Cas-based biosensors for protein detection and elucidate their mechanisms of action, hindering the development of superior biosensors for proteins. In this review, we summarized CRISPR/Cas-based biosensors for protein detection based on their mechanism of action in three aspects: antibody-assisted CRISPR/Cas-based protein detection, aptamer-assisted CRISPR/Cas-based protein detection, and miscellaneous CRISPR/Cas-based methods for protein detection, respectively. Moreover, the prospects and challenges for CRISPR/Cas-based biosensors for protein detection are also discussed.
Collapse
Affiliation(s)
- Jing Wang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Xifang Yang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Xueliang Wang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Wanhe Wang
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| |
Collapse
|
21
|
Optimization of Gonyautoxin1/4-Binding G-Quadruplex Aptamers by Label-Free Surface-Enhanced Raman Spectroscopy. Toxins (Basel) 2022; 14:toxins14090622. [PMID: 36136560 PMCID: PMC9505997 DOI: 10.3390/toxins14090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids with G-quadruplex (G4) structures play an important role in physiological function, analysis and detection, clinical diagnosis and treatment, and new drug research and development. Aptamers obtained using systematic evolution of ligands via exponential enrichment (SELEX) screening technology do not always have the best affinity or binding specificity to ligands. Therefore, the establishment of a structure-oriented experimental method is of great significance. To study the potential of surface-enhanced Raman spectroscopy (SERS) in aptamer optimization, marine biotoxin gonyautoxin (GTX)1/4 and its G4 aptamer obtained using SELEX were selected. The binding site and the induced fit of the aptamer to GTX1/4 were confirmed using SERS combined with two-dimensional correlation spectroscopy. The intensity of interaction between GTX1/4 and G4 was also quantified by measuring the relative intensity of SERS bands corresponding to intramolecular hydrogen bonds. Furthermore, the interaction between GTX1/4 and optimized aptamers was analyzed. The order of intensity change in the characteristic bands of G4 aptamers was consistent with the order of affinity calculated using microscale thermophoresis and molecular dynamics simulations. SERS provides a rapid, sensitive, and economical post-SELEX optimization of aptamers. It is also a reference for future research on other nucleic acid sequences containing G4 structures.
Collapse
|
22
|
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. SENSORS (BASEL, SWITZERLAND) 2022; 22:3684. [PMID: 35632093 PMCID: PMC9143886 DOI: 10.3390/s22103684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Veronika Oravczova
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|
23
|
Xu G, Zhao J, Yu H, Wang C, Huang Y, Zhao Q, Zhou X, Li C, Liu M. Structural Insights into the Mechanism of High-Affinity Binding of Ochratoxin A by a DNA Aptamer. J Am Chem Soc 2022; 144:7731-7740. [PMID: 35442665 DOI: 10.1021/jacs.2c00478] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 36-mer guanine (G)-rich DNA aptamer (OBA36) is able to distinguish one atomic difference between ochratoxin analogues A (OTA) and B (OTB), showing prominent recognition specificity and affinity among hundreds of aptamers for small molecules. Why OBA36 has >100-fold higher binding affinity to OTA than OTB remains a long-standing question due to the lack of high-resolution structure. Here we report the solution NMR structure of the aptamer-OTA complex. It was found that OTA binding induces the aptamer to fold into a well-defined unique duplex-quadruplex structural scaffold stabilized by Mg2+ and Na+ ions. OTA does not directly interact with the G-quadruplex, but specifically binds at the junction between the double helix and G-quadruplex through π-π stacking, halogen bonding (X-bond), and hydrophobic interaction. OTB has the same binding site as OTA but lacks the X-bond. The strong X-bond formed between the chlorine atom of OTA and the aromatic ring of C5 is the key to discriminating the strong binding toward OTA. The present research contributes to a deeper insight of aptamer molecular recognition, reveals structural basis of the high-affinity binding of aptamers, and provides a foundation for further aptamer engineering and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,Xi'an Modern Chemistry Research Institute, Xi'an, 710065, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yangyu Huang
- Shaoyang University, Shaoyang, 422000, People's Republic of China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| |
Collapse
|
24
|
Manuel BA, Sterling SA, Sanford AA, Heemstra JM. Systematically Modulating Aptamer Affinity and Specificity by Guanosine-to-Inosine Substitution. Anal Chem 2022; 94:6436-6440. [PMID: 35435665 DOI: 10.1021/acs.analchem.2c00422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aptamers are widely used in small molecule detection applications due to their specificity, stability, and cost effectiveness. One key challenge in utilizing aptamers in sensors is matching the binding affinity of the aptamer to the desired concentration range for analyte detection. The most common methods for modulating affinity have inherent limitations, such as the likelihood of drastic changes in aptamer folding. Here, we propose that substituting guanosine for inosine at specific locations in the aptamer sequence provides a less perturbative approach to modulating affinity. Inosine is a naturally occurring nucleotide that results from hydrolytic deamination of adenosine, and like guanine, it base pairs with cytosine. Using the well-studied cocaine binding aptamer, we systematically replaced guanosine with inosine and were able to generate sequences having a range of binding affinities from 230 nM to 80 μM. Interestingly, we found that these substitutions could also modulate the specificity of the aptamers, leading to a range of binding affinities for structurally related analytes. Analysis of folding stability via melting temperature shows that, as expected, aptamer structure is impacted by guanosine-to-inosine substitutions. The ability to tune binding affinity and specificity through guanosine-to-inosine substitution provides a convenient and reliable approach for rapidly generating aptamers for diverse biosensing applications.
Collapse
Affiliation(s)
- Brea A Manuel
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sierra A Sterling
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aimee A Sanford
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Alkhamis O, Canoura J, Bukhryakov KV, Tarifa A, DeCaprio AP, Xiao Y. DNA Aptamer–Cyanine Complexes as Generic Colorimetric Small‐Molecule Sensors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
- Department of Chemistry North Carolina State University 2620 Yarbrough Dr. Raleigh NC 27695 USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
- Department of Chemistry North Carolina State University 2620 Yarbrough Dr. Raleigh NC 27695 USA
| | - Konstantin V. Bukhryakov
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Anamary Tarifa
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Anthony P. DeCaprio
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
- Department of Chemistry North Carolina State University 2620 Yarbrough Dr. Raleigh NC 27695 USA
| |
Collapse
|
26
|
Liu Y, He L, Zhao Y, Cao Y, Yu Z, Lu F. Optimization of Surface-Enhanced Raman Spectroscopy Detection Conditions for Interaction between Gonyautoxin and Its Aptamer. Toxins (Basel) 2022; 14:toxins14010049. [PMID: 35051026 PMCID: PMC8779825 DOI: 10.3390/toxins14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
This study aimed to optimize the detection conditions for surface-enhanced Raman spectroscopy (SERS) of single-stranded DNA (ssDNA) in four different buffers and explore the interaction between gonyautoxin (GTX1/4) and its aptamer, GO18. The influence of the silver colloid solution and MgSO4 concentration (0.01 M) added under four different buffered conditions on DNA SERS detection was studied to determine the optimum detection conditions. We explored the interaction between GTX1/4 and GO18 under the same conditions as those in the systematic evolution of ligands by exponential enrichment technique, using Tris-HCl as the buffer. The characteristic peaks of GO18 and its G-quadruplex were detected in four different buffer solutions. The change in peak intensity at 1656 cm−1 confirmed that the binding site between GTX1/4 and GO18 was in the G-quadruplex plane. The relative intensity of the peak at 1656 cm−1 was selected for the GTX1/4–GO18 complex (I1656/I1099) to plot the ratio of GTX1/4 in the Tris-HCl buffer condition (including 30 μL of silver colloid solution and 2 μL of MgSO4), and a linear relationship was obtained as follows: Y = 0.1867X + 1.2205 (R2 = 0.9239). This study provides a basis for subsequent application of SERS in the detection of ssDNA, as well as the binding of small toxins and aptamers.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Naval Medical University, Shanghai 200433, China;
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
| | - Lijuan He
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
| | - Yunli Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| | - Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.H.); (Y.Z.)
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| | - Feng Lu
- Department of Pharmaceutical Analysis, College of Pharmacy, Naval Medical University, Shanghai 200433, China;
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Naval Medical University, Shanghai 200433, China
- Correspondence: (Y.C.); (Z.Y.); (F.L.)
| |
Collapse
|
27
|
Tan X, Yu H, Liang B, Han M, Ge S, Zhang L, Li L, Li L, Yu J. A Target-Driven Self-Feedback Paper-Based Photoelectrochemical Sensing Platform for Ultrasensitive Detection of Ochratoxin A with an In 2S 3/WO 3 Heterojunction Structure. Anal Chem 2022; 94:1705-1712. [PMID: 35014798 DOI: 10.1021/acs.analchem.1c04259] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, developing versatile, easy-to-operate, and effective signal amplification strategies hold great promise in photoelectrochemical (PEC) biosensing. Herein, an ultrasensitive polyvinylpyrrolidone-treated In2S3/WO3 (In2S3-P/WO3)-functionalized paper-based PEC sensor was established for sensing ochratoxin A (OTA) based on a target-driven self-feedback (TDSF) mechanism enabled by a dual cycling tactic of PEC chemical-chemical (PECCC) redox and exonuclease III (Exo III)-assisted complementary DNA. The In2S3-P/WO3 heterojunction structure with 3D open-structure and regulable topology was initially in situ grown on Au nanoparticle-functionalized cellulose paper, which was served as a universal signal transducer to directly record photocurrent signals without complicated electrode modification, endowing the paper chip with admirable anti-interference ability and unexceptionable photoelectric conversion efficiency. With the assistance of Exo III-assisted cycling process, a trace amount of OTA could trigger substantial signal reporter ascorbic acid (AA) generated by the enzymatic catalysis of alkaline phosphatase, which could effectively provoke the PECCC redox cycling among the tris(2-carboxyethyl)phosphine acid, AA, and ferrocenecarboxylic at the In2S3-P/WO3 photoelectrode, initiating TDSF signal amplification. Based on the TDSF process induced by the Exo III-assisted recycling and PECCC redox cycling strategy, the developed paper-based PEC biosensor realized ultrasensitive determination of OTA with persuasive selectivity, high stability, and excellent reproducibility. It is believed that the proposed paper-based PEC sensing platform exhibited enormous potential for the detection of other targets in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoran Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bing Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengting Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
28
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
29
|
Sun K, Li J. A new method based on guanine rich aptamer structural change for carcinoembryonic antigen detection. Talanta 2022; 236:122867. [PMID: 34635249 DOI: 10.1016/j.talanta.2021.122867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023]
Abstract
Carcinoembryonic antigen (CEA) is one of the most widely used tumor marker around the world, it mainly used for gastrointestinal cancers, especially in colorectal malignancy. At present, the detection methods of CEA are mostly based on antigen-antibody binding, whereas these methods were limited by the high costs and long waiting times in massive population tumor screening. During the experiments, we interestingly found that the fluorescence signal would be dramatically altered when the secondary structure of fluorescent modified guanine-rich DNA changed. Then we explored the reasons and established a new method for CEA detection, this method brings a simple, fast and cheap sensing platform for detection of biomarkers. It has great potential in screening of tumors among the group and is expected to provide prospective effects for tumor treatment.
Collapse
Affiliation(s)
- Kexin Sun
- Laboratory of Endocrinology, Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Junlong Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Alkhamis O, Canoura J, Bukhryakov KV, Tarifa A, DeCaprio AP, Xiao Y. DNA Aptamer-Cyanine Complexes as Generic Colorimetric Small-Molecule Sensors. Angew Chem Int Ed Engl 2021; 61:e202112305. [PMID: 34706127 DOI: 10.1002/anie.202112305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Aptamers are promising biorecognition elements for sensors. However, aptamer-based assays often lack the requisite levels of sensitivity and/or selectivity because they typically employ structure-switching aptamers with attenuated affinity and/or utilize reporters that require aptamer labeling or which are susceptible to false positives. Dye-displacement assays offer a label-free, sensitive means for overcoming these issues, wherein target binding liberates a dye that is complexed with the aptamer, producing an optical readout. However, broad utilization of these assays has been limited. Here, we demonstrate a rational approach to develop colorimetric cyanine dye-displacement assays that can be broadly applied to DNA aptamers regardless of their structure, sequence, affinity, or the physicochemical properties of their targets. Our approach should accelerate the development of mix-and-measure assays that could be applied for diverse analytical applications.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| | - Konstantin V Bukhryakov
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Anamary Tarifa
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Anthony P DeCaprio
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.,Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695, USA
| |
Collapse
|
31
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small‐Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry Florida International University 11200 SW 8th Street Miami FL 33199 USA
| |
Collapse
|
32
|
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021; 60:16800-16823. [PMID: 33559947 PMCID: PMC8292151 DOI: 10.1002/anie.202008663] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor-intensive to develop aptamer-based sensors for small-molecule detection. Here, we review the challenges and advances in the isolation and characterization of small-molecule-binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer-target binding and structure. Afterwards, we discuss various small-molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer-based small-molecule sensors for real-world applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yingzhu Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
33
|
Xing X, Yao L, Yan C, Xu Z, Xu J, Liu G, Yao B, Chen W. Recent progress of personal glucose meters integrated methods in food safety hazards detection. Crit Rev Food Sci Nutr 2021; 62:7413-7426. [PMID: 34047213 DOI: 10.1080/10408398.2021.1913990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Development of personal glucose meters (PGMs) for blood glucose monitoring and management by the diabetic patients has been a long history since its first invention in 1968 and commercial application in 1975. The main reasons for its wide acceptance and popularity can be attributed mainly to the easy operation, test-to-result model, low cost, and small volume of sample required for blood glucose concentration test. During past decades, advances in analytical techniques have repurposed the use of PGMs into a general point-of-care testing platform for a variety of non-glucose targets, especially the food hazards. In this review, we summarized the recent published research using PGMs to detect the food safety hazards of mycotoxins, illegal additives, pathogen bacteria, and pesticide and veterinary drug residues detection with PGMs. The progress on PGM-based detection achieved in food safety have been carefully compared and analyzed. Furthermore, the current bottlenecks and challenges for practical applications of PGM for hazards detection in food safety have also been proposed.
Collapse
Affiliation(s)
- Xiuguang Xing
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Yao
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Yan
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Zhenlin Xu
- Guangdong Provincial Key Lab of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, China
| | - Bangben Yao
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Wei Chen
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
34
|
Qin M, Zhang X, Zhao X, Song Y, Zhang J, Xia X, Han Q. Complementary chain competition and fluorescence quenching detection of Deoxynivalenol and analytical applications using a novel aptamer. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1886176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mingwei Qin
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaomeng Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xinyue Zhao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xueshan Xia
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
35
|
Canoura J, Yu H, Alkhamis O, Roncancio D, Farhana R, Xiao Y. Accelerating Post-SELEX Aptamer Engineering Using Exonuclease Digestion. J Am Chem Soc 2021; 143:805-816. [PMID: 33378616 PMCID: PMC7855447 DOI: 10.1021/jacs.0c09559] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The systematic evolution of ligands by exponential enrichment (SELEX) process enables the isolation of aptamers from random oligonucleotide libraries. However, it is generally difficult to identify the best aptamer from the resulting sequences, and the selected aptamers often exhibit suboptimal affinity and specificity. Post-SELEX aptamer engineering can improve aptamer performance, but current methods exhibit inherent bias and variable rates of success or require specialized instruments. Here, we describe a generalizable method that utilizes exonuclease III and exonuclease I to interrogate the binding properties of small-molecule-binding aptamers in a rapid, label-free assay. By analyzing an ochratoxin-binding DNA aptamer and six of its mutants, we determined that ligand binding alters the exonuclease digestion kinetics to an extent that closely correlates with the aptamer's ligand affinity. We then utilized this assay to enhance the binding characteristics of a DNA aptamer which binds indiscriminately to ATP, ADP, AMP, and adenosine. We screened 13 mutants derived from this aptamer against all these analogues and identified two new high-affinity aptamers that solely bind to adenosine. We incorporated these two aptamers directly into an electrochemical aptamer-based sensor, which achieved a detection limit of 1 μM adenosine in 50% serum. We also confirmed the generality of our method to characterize target-binding affinities of protein-binding aptamers. We believe our approach is generalizable for DNA aptamers regardless of sequence, structure, and length and could be readily adapted into an automated format for high-throughput engineering of small-molecule-binding aptamers to acquire those with improved binding properties suitable for various applications.
Collapse
Affiliation(s)
- Juan Canoura
- Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Haixiang Yu
- Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Obtin Alkhamis
- Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Daniel Roncancio
- Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Rifat Farhana
- Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| | - Yi Xiao
- Department of Chemistry and Biochemistry, Florida International University, 11200 Southwest Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
36
|
Zhang K, Li H, Wang W, Cao J, Gan N, Han H. Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sens 2020; 5:3721-3738. [PMID: 33284002 DOI: 10.1021/acssensors.0c01740] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The existence of contaminants in food poses a serious threat to human health. In recent years, aptamer sensors (aptasensors) have been developed rapidly for the detection of food contaminants because of their high specificity, design flexibility, and high efficiency. However, the development of high-throughput, highly sensitive, on-site, and cost-effective methods for simultaneous detection of food contaminants is still restricted due to multiple signal overlap or mutual interference and cross-reaction between different analytes with similar molecular structures. To overcome these problems, this Review summarizes some effective strategies from the articles published in recent years about multiplexed aptasensors for the simultaneous detection of food contaminants. This work focuses on the application of multiplexed aptasensors to simultaneously detect antibiotics, pathogens, and mycotoxins in food. These aptasensors mainly contain fluorescent aptasensors, electrochemical aptasensors, surface-enhanced Raman scattering-based aptasensors, microfluidic chip aptasensors, and paper-based multiplexed aptasensors. In addition, this Review also covers the application of nucleic acid cycle amplification and nanomaterial amplification strategies to improve the detection sensitivity. Finally, the limitations and challenges in the design of multiplexed aptasensor are also taken into account.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Hongyang Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, P.R. China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ning Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| |
Collapse
|
37
|
Aschl T, Frison G, Moraillon A, Ozanam F, Allongue P, Gouget-Laemmel AC. Insights into the Ochratoxin A/Aptamer Interactions on a Functionalized Silicon Surface by Fourier Transform Infrared and UV-Vis Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13908-13917. [PMID: 33166140 DOI: 10.1021/acs.langmuir.0c02358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The association of a mycotoxin-ochratoxin A (OTA)-with a high-affinity DNA aptamer (anti-OTA) immobilized on a functionalized surface has been investigated at the molecular level. Anti-OTA aptamers are coupled by aminolysis in several steps on an acid-terminated alkyl monolayer grafted on a silicon substrate, and Fourier transform infrared spectroscopy in attenuated total reflection geometry is used to assess the immobilization of anti-OTA (in its unfolded single-strand form) and determine its areal density (ca. 1.4/nm2). IR spectra further demonstrate that the OTA/anti-OTA association is efficient and selective and that several association/dissociation cycles may be conducted on the same surface. The areal density of OTA measured after association on the surface (IR spectroscopy) and after dissociation from the surface (UV-vis spectroscopy) falls in the range 0.16-0.3/nm2 which is close to the areal density of a closed-packed monolayer of anti-OTA aptamers folded to form their G-quadruplex structure. The interactions between OTA and its aptamer at the surface are discussed with the help of density functional theory calculations-to identify the complex IR vibrational modes of OTA in solution-and UV-vis spectroscopy-to determine the protonation state of the adsorbing species (i.e., OTA dissolved in the buffer solution).
Collapse
Affiliation(s)
- Timothy Aschl
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Gilles Frison
- Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Anne Moraillon
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - François Ozanam
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Philippe Allongue
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Anne Chantal Gouget-Laemmel
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
38
|
Song M, Li G, Zhang Q, Liu J, Huang Q. De novo post-SELEX optimization of a G-quadruplex DNA aptamer binding to marine toxin gonyautoxin 1/4. Comput Struct Biotechnol J 2020; 18:3425-3433. [PMID: 33294137 PMCID: PMC7689369 DOI: 10.1016/j.csbj.2020.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/31/2022] Open
Abstract
Ligand-binding aptamers obtained by SELEX (Systematic Evolution of Ligands by EXponential enrichment) often have low affinity or/and specificity, and post-SELEX optimization is usually needed. Due to experimental difficulty in determining three-dimensional (3D) structures of aptamer-ligand complexes, there are few structure-guided methods for rational post-SELEX optimization. Here, we employed a de novo optimization approach to engineer high-affinity variants for a G-quadruplex (GQ) aptamer (GO18-T-d) that specifically binds to marine toxin gonyautoxin 1/4 (GTX1/4). First, temperature-dependent modeling was carried out to predict the atomic structure of GO18-T-d. Then, to identify key bases for the optimization, spontaneous binding simulations were performed to reveal the complex structure of GO18-T-d with GTX1/4. Finally, binding energy analysis was conducted to evaluate the designed variants for high affinity. We predicted that GO18-T-d has the typical parallel GQ topology, consistent with circular dichroism (CD) measurements. Our simulations showed that the 5′-end of GO18-T-d hinders the GTX1/4 movement toward the binding pocket, leading to a designed variant that removes the first 5 nucleotides at the 5′-end. Microscale thermophoresis (MST) experiments verified that the binding affinity of the engineered aptamer increases by ~20 folds. Thus, this study not only provides a high-affinity variant of GO18-T-d, but also suggests that our computational approach is useful for the structure-guided optimization of GQ aptamers.
Collapse
Affiliation(s)
- Menghua Song
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Gan Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qi Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianping Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
39
|
Aptamer binding assays and molecular interaction studies using fluorescence anisotropy - A review. Anal Chim Acta 2020; 1125:267-278. [PMID: 32674773 DOI: 10.1016/j.aca.2020.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022]
Abstract
Binding of nucleic acid aptamers to specific targets and detection with fluorescence anisotropy (FA) or fluorescence polarization (FP) take advantage of the complementary features of aptamers and the fluorescence techniques. We review recent advances in affinity binding assays using aptamers and FA/FP, with an emphasis on studies of molecular interactions and identification of binding sites. Aptamers provide several benefits, including the ease of labelling fluorophores on specific sites, binding-induced changes in aptamer structures, hybridization of the aptamers to complementary sequences, changes in molecular volume upon binding of the aptamer to its target, and adsorption of aptamers onto nanomaterials. Some of these benefits have been utilized for FA/FP assays. Once the aptamer binds to its target, the resulting changes in molecular volume (size), structure, local rotation of the fluorophore, and/or the fluorescence lifetime influence changes to the FA/FP values. Measurements of these fluorescence anisotropy/polarization changes have provided insights into the molecular interactions, such as the binding affinity and the site of binding. Studies of molecular interactions conducted in homogeneous solutions, as well as those with separations, e.g., capillary electrophoresis, have been summarized in this review. Studies on mapping the position of binding in aptamers at the single nucleotide level have demonstrated a unique benefit of the FA/FP techniques and pointed to an exciting direction for future research.
Collapse
|
40
|
Zhang Z, Cheng W, Pan Y, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J Mater Chem B 2020; 8:655-665. [PMID: 31904073 DOI: 10.1039/c9tb02284h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stimuli response or controlled release is a new research hotspot in nanomedicine; however, there is scarce research on organic nanomedicines with stimuli responses, which limits their practical biological applications. In addition, homoharringtonine (HHT) has been used as an effective anticancer agent, but reducing its toxicity and side effects is an urgent problem to be solved. Herein, an EGFR (epidermal growth factor receptor) aptamer-modified HHT-loaded PLGA-SS-PEG nanomedicine was developed. The nanomaterial possesses spherical morphology and admirable biocompatibility. After targeted endocytosis in tumour cells via the selective recognition between EGFR and its aptamer, the PLGA nanomedicine is triggered by a high GSH level and releases its cargo in lung cancer cells. The in vitro and in vivo results reveal that the PLGA nanomedicine not only inhibited the proliferation and promoted the apoptosis of lung cancer cells, but also possessed better therapeutic efficacy and less toxic side effects compared with the free anticancer agent. Consequently, this study provides a novel approach to construct a biodegradable nanomedicine with targeted recognition and stimuli response. Moreover, it inhibited the proliferation of lung cancer cells with high efficiency and low toxicity. Importantly, the PLGA nanomedicine demonstrates encouraging potential as a multifunctional nano-system applicable for cancer therapy.
Collapse
Affiliation(s)
- Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Wei Cheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Shanghai, 200032, China.
| |
Collapse
|