1
|
Wang J, Lin Y, Zhuang X, Zhao D, Li B, Zhao Y, Xu Z, Liu F, Dai T, Li W, Jiang M, Yan C, Zhao Y, Ji K. Genotype-Phenotype Correlation in Progressive External Ophthalmoplegia: Insights From a Retrospective Analysis. Neuropathol Appl Neurobiol 2025; 51:e70001. [PMID: 39822040 DOI: 10.1111/nan.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND Progressive external ophthalmoplegia (PEO) is a classic manifestation of mitochondrial disease. However, the link between its genetic characteristics and clinical presentations remains poorly investigated. METHODS We analysed the clinical, pathological and genetic characteristics of a large cohort of patients with PEO, based on the type of their mtDNA variations. Eighty-two PEO patients were enrolled and grouped into three categories: mtDNA single large-scale deletions (SLDs), multiple deletions (MulDs) and the m.3243A > G point variant. Patients in the SLD category were further divided into 'common deletion' and 'noncommon deletion' groups based on the presence or absence of a 4977-bp deletion. The mutational load of deleted mtDNA of these patients was comprehensively detected by real-time polymerase chain reaction (RT-PCR). RESULTS SLD Patients showed the highest proportion of cytochrome C oxidase-negative (COX-n) fibres on muscle biopsy. The mutational load of deleted mtDNA exhibited an inverse relationship with deletion length and a direct relationship with the COX-n fibre ratio. Compared with patients having noncommon deletions, those with common deletions tend to have other muscle involvement, lower body mass index (BMI) scores (17 ± 3 vs. 22 ± 4 kg/m2), higher mutational load in muscle (63% ± 22% vs. 46% ± 24%), more COX-n fibres (26% vs. 9%, interquartile range [IQR]: 15%-32% vs. 6%-26%) and higher growth and differentiation factor 15 (GDF15) levels (2583 vs. 1472, IQR: 1746-4081 vs. 924-2155 pg/mL). MulDs patients displayed milder symptoms, especially compared to patients with m.3243A > G variant, as indicated by their later age of onset (31 vs. 13, IQR: 27-49 vs. 6-29 years), higher BMI scores (24.0 ± 4 vs. 16.5 ± 3.4 kg/m2), lower lactate (1.6 ± 1.1 vs. 6.3 ± 6.0 mmol/L) levels and lower proportion of ragged-blue fibres (RBFs) (3 vs. 16, IQR: 1%-9% vs. 7%-27%). CONCLUSION The m.3243A > G variant group exhibits more severe symptoms compared to other subgroups, particularly MulDs patients. In the SLD group, those with common deletions experience more severe clinical and pathological manifestations. These findings enhance our understanding of PEO, facilitating its diagnosis, prognosis and genetic counselling.
Collapse
Affiliation(s)
- Jiayin Wang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Lin
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xingyu Zhuang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dandan Zhao
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Busu Li
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying Zhao
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Fuchen Liu
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tingjun Dai
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Li
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chuanzhu Yan
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
| | - Yuying Zhao
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kunqian Ji
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Wang A, Corley J, Jaswa EG, Lin J, Smith DL, McCulloch CE, Huddleston H, Cedars MI. Association of polycystic ovary syndrome with endothelial health, cardiovascular risk, and cellular aging. Fertil Steril 2025:S0015-0282(25)00030-5. [PMID: 39818356 DOI: 10.1016/j.fertnstert.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVE To study measures of endothelial health, cardiovascular risk, and cellular aging between patients with polycystic ovary syndrome (PCOS) and a reproductive age normative cohort. DESIGN Cross-sectional study. SUBJECTS Community-based patients with PCOS and a normative ovarian aging cohort as controls, aged ≤45 years at the time of evaluation. EXPOSURE Noninvasive measure of endothelial health measured by the EndoPAT reactive hyperemia index. MAIN OUTCOME MEASURES Reactive hyperemia index as measure of endothelial health. The secondary outcomes included Framingham score, telomere length, and mitochondrial deoxyribonucleic acid copy number from leukocyte cells. RESULTS Our cohort included 63 participants with PCOS and 130 non-PCOS participants. The mean age was significantly lower in the PCOS cohort (33.1; standard deviation, 4.7 years) than in the non-PCOS cohort (40.8; standard deviation, 2.9 years). In multivariable-adjusted models, we found that PCOS was significantly associated with endothelial dysfunction as both categorical (odds ratio for PCOS, 0.31; 95% confidence interval [CI], 0.10-0.97) and continuous (PCOS coefficient, -0.37; 95% CI, -0.69 to -0.05) outcomes. For secondary outcomes, PCOS status was not significantly associated with mitochondrial deoxyribonucleic acid (PCOS coefficient, -48.1; 95% CI, -175.0 to 78.9), telomere length (PCOS coefficient, 0.05; 95% CI, -0.05 to 0.15), Framingham score (PCOS coefficient, 0.002; 95% CI, -0.01 to 0.02), or metabolic syndrome (odds ratio for PCOS, 1.29; 95% CI, 0.31-5.44). CONCLUSION Our findings suggest that patients with PCOS have impaired endothelial function compared with non-PCOS patients, although measures of cellular aging and cardiovascular risk as measured by the Framingham score did not differ between the cohorts.
Collapse
Affiliation(s)
- Ange Wang
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California.
| | - Jamie Corley
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| | - Eleni G Jaswa
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Dana L Smith
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Heather Huddleston
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| | - Marcelle I Cedars
- Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
Lempesis IG, Hoebers N, Essers Y, Jocken JWE, Dubois LJ, Blaak EE, Manolopoulos KN, Goossens GH. Impaired Mitochondrial Respiration in Upper Compared to Lower Body Differentiated Human Adipocytes and Adipose Tissue. J Clin Endocrinol Metab 2024; 109:e2291-e2301. [PMID: 38375937 PMCID: PMC11570378 DOI: 10.1210/clinem/dgae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
CONTEXT Abdominal obesity is associated with increased cardiometabolic disease risk, while lower body fat seems to confer protection against obesity-related complications. The functional differences between upper and lower body adipose tissue (AT) remain poorly understood. OBJECTIVE We aimed to examine whether mitochondrial respiration is impaired in abdominal as compared to femoral differentiated human multipotent adipose-derived stem cells (hMADS; primary outcome) and AT in postmenopausal women. DESIGN In this cross-sectional study, 23 postmenopausal women with normal weight or obesity were recruited at the University of Birmingham/Queen Elizabeth Hospital Birmingham (Birmingham, UK). We collected abdominal and femoral subcutaneous AT biopsies to determine mitochondrial oxygen consumption rates in differentiated abdominal and femoral hMADS. Furthermore, we assessed oxidative phosphorylation (OXPHOS) protein expression and mitochondrial DNA (mtDNA) content in abdominal and femoral AT as well as hMADS. Finally, we explored in vivo fractional oxygen extraction and carbon dioxide release across abdominal and femoral subcutaneous AT in a subgroup of the same individuals with normal weight or obesity. RESULTS We found lower basal and maximal uncoupled mitochondrial oxygen consumption rates in abdominal compared to femoral hMADS. In line, in vivo fractional oxygen extraction and carbon dioxide release were lower across abdominal than femoral AT. OXPHOS protein expression and mtDNA content did not significantly differ between abdominal and femoral differentiated hMADS and AT. CONCLUSION The present findings demonstrate that in vitro mitochondrial respiration and in vivo oxygen fractional extraction are less in upper compared to lower body differentiated hMADS and AT, respectively, in postmenopausal women.
Collapse
Affiliation(s)
- Ioannis G Lempesis
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Nicole Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Yvonne Essers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Konstantinos N Manolopoulos
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
4
|
Wang G, Liu S, Fan X, Li J, Xue Q, Liu K, Li X, Yang Y, Wang X, Song M, Shao M, Li W, Han Y, Lv L, Su X. Mitochondrial Dysfunction and Cognitive Impairment in Schizophrenia: The Role of Inflammation. Schizophr Bull 2024:sbae196. [PMID: 39535935 DOI: 10.1093/schbul/sbae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The complex immune-brain interactions and the regulatory role of mitochondria in the immune response suggest that mitochondrial damage reported in schizophrenia (SZ) may be related to abnormalities observed in immune and brain functions. STUDY DESIGN Mitochondrial DNA copy number (mtDNA CN), a biomarker of mitochondrial function, was assessed in peripheral blood leukocytes (PBLs) of 121 healthy individuals and 118 SZ patients before and after 8 weeks of antipsychotic treatment, and a meta-analysis related to blood mtDNA CN was conducted. Plasma C-reactive protein (CRP) levels in SZ patients were obtained from the medical record system. Spearman correlation analysis and hierarchical linear regression were used to analyze the relationships among mtDNA CN, CRP levels, and cognitive function. A mediation model was constructed using the PROCESS program. STUDY RESULTS Our results revealed the decreased mtDNA CN in PBLs from SZ patients (P = .05). The meta-analysis supported the decreased blood mtDNA CN in SZ patients (P < .01). The mtDNA CN in PBL was positively correlated with working memory (P = .02) and negatively correlated with plasma CRP levels (P = .039). Furthermore, a lower mtDNA CN in PBL in SZ patients was a significant predictor of worse working memory (P = .006). CRP acted as a mediator with an 8.0% effect. CONCLUSIONS This study revealed an association between peripheral mitochondrial dysfunction and cognitive impairment in SZ, with inflammation acting as a mediating effect. Therefore, mitochondrial dysfunction might provide novel targets for new treatments for cognitive impairment in SZ.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Senqi Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xiaoyun Fan
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Jinming Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Qianzi Xue
- The Second Clinical College of Xinxiang Medical University, Xinxiang 453003, China
| | - Kang Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xue Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| |
Collapse
|
5
|
Zhao Z, Song X, Wang Y, Yu L, Huang G, Li Y, Zong R, Liu T, Ji Q, Zheng Y, Liu B, Zhu Q, Chen L, Gao C, Liu H. E3 ubiquitin ligase TRIM31 alleviates dopaminergic neurodegeneration by promoting proteasomal degradation of VDAC1 in Parkinson's Disease model. Cell Death Differ 2024; 31:1410-1421. [PMID: 38918620 PMCID: PMC11519394 DOI: 10.1038/s41418-024-01334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the pathogenesis of Parkinson's disease (PD). As a mitochondrial governor, voltage-dependent anion channel 1 (VDAC1) is critical for cell survival and death signals and implicated in neurodegenerative diseases. However, the mechanisms of VDAC1 regulation are poorly understood and the role of tripartite motif-containing protein 31 (TRIM31), an E3 ubiquitin ligase which is enriched in mitochondria, in PD remains unclear. In this study, we found that TRIM31-/- mice developed age associated motor defects and dopaminergic (DA) neurodegeneration spontaneously. In addition, TRIM31 was markedly reduced both in nigrostriatal region of PD mice induced by MPTP and in SH-SY5Y cells stimulated by MPP+. TRIM31 deficiency significantly aggravated DA neurotoxicity induced by MPTP. Mechanistically, TRIM31 interacted with VDAC1 and catalyzed the K48-linked polyubiquitination to degrade it through its E3 ubiquitin ligase activity. In conclusion, we demonstrated for the first time that TRIM31 served as an important regulator in DA neuronal homeostasis by facilitating VDAC1 degradation through the ubiquitin-proteasome pathway. Our study identified TRIM31 as a novel potential therapeutic target and pharmaceutical intervention to the interaction between TRIM31 and VDAC1 may provide a promising strategy for PD.
Collapse
Affiliation(s)
- Ze Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Xiaomeng Song
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Lu Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Gan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yiquan Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Runzhe Zong
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Tengfei Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Qiuran Ji
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, Jinan, Shandong, PR China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, PR China.
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, PR China.
- Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
6
|
McCormick E, Han H, Abdel Azim S, Whiting C, Bhamidipati N, Kiss A, Efimova T, Berman B, Friedman A. Topical nanoencapsulated cannabidiol cream as an innovative strategy combating UV-A-induced nuclear and mitochondrial DNA injury: A pilot randomized clinical study. J Am Acad Dermatol 2024; 91:855-862. [PMID: 39025264 DOI: 10.1016/j.jaad.2024.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND UV-A radiation contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by the availability/utilization of UV-A filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of nuclear erythroid 2-related factor, heme oxygenase 1, and peroxisome proliferator-activated receptor gamma, could potentially mitigate damage from UV-A exposure. OBJECTIVE/METHODS This is a prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice daily for 14 days; then, the treated sites were irradiated with ≤3× UV-A minimal erythema dose. After 24 hours, punch biopsies were obtained for histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS At 24 hours, 21% of participants had less observed erythema on CBD-treated skin than on VC skin. Histologically, nCBD-treated skin had reduced UV-A-induced epidermal hyperplasia than VC (P = .01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxoguanine glycosylase 1 staining in nCBD-treated skin compared with VC (P < .01). Quantitative mtDNA polymerase chain reaction demonstrated that UV-A-induced deletion of ND4 (proxy:4977 bp deletion; P = .003) and ND1 (proxy:3895 bp deletion; P = .002) was significantly reduced by in vivo nCBD treatment compared with VC. LIMITATIONS Small sample size is this study's limitation. CONCLUSION Topically applied nCBD cream reduced UV-A-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UV-A-induced skin aging. To our knowledge, this trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.
Collapse
Affiliation(s)
- Erika McCormick
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Haowei Han
- Center for Clinical and Cosmetic Research, Aventura, Florida
| | - Sara Abdel Azim
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | - Cleo Whiting
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia
| | | | - Alexi Kiss
- George Washington Cancer Center, Washington, District of Columbia
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Brian Berman
- Center for Clinical and Cosmetic Research, Aventura, Florida; Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida.
| | - Adam Friedman
- Department of Dermatology, George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia.
| |
Collapse
|
7
|
Lin Y, Wang J, Xu R, Xu Z, Wang Y, Pan S, Zhang Y, Tao Q, Zhao Y, Yan C, Cao Z, Ji K. HiFi long-read amplicon sequencing for full-spectrum variants of human mtDNA. BMC Genomics 2024; 25:538. [PMID: 38822239 PMCID: PMC11141058 DOI: 10.1186/s12864-024-10433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) can be caused by single nucleotide variants (SNVs) and structural variants (SVs) in the mitochondrial genome (mtDNA). Presently, identifying deletions in small to medium-sized fragments and accurately detecting low-percentage variants remains challenging due to the limitations of next-generation sequencing (NGS). METHODS In this study, we integrated targeted long-range polymerase chain reaction (LR-PCR) and PacBio HiFi sequencing to analyze 34 participants, including 28 patients and 6 controls. Of these, 17 samples were subjected to both targeted LR-PCR and to compare the mtDNA variant detection efficacy. RESULTS Among the 28 patients tested by long-read sequencing (LRS), 2 patients were found positive for the m.3243 A > G hotspot variant, and 20 patients exhibited single or multiple deletion variants with a proportion exceeding 4%. Comparison between the results of LRS and NGS revealed that both methods exhibited similar efficacy in detecting SNVs exceeding 5%. However, LRS outperformed NGS in detecting SNVs with a ratio below 5%. As for SVs, LRS identified single or multiple deletions in 13 out of 17 cases, whereas NGS only detected single deletions in 8 cases. Furthermore, deletions identified by LRS were validated by Sanger sequencing and quantified in single muscle fibers using real-time PCR. Notably, LRS also effectively and accurately identified secondary mtDNA deletions in idiopathic inflammatory myopathies (IIMs). CONCLUSIONS LRS outperforms NGS in detecting various types of SNVs and SVs in mtDNA, including those with low frequencies. Our research is a significant advancement in medical comprehension and will provide profound insights into genetics.
Collapse
Affiliation(s)
- Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ran Xu
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Zhe Xu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Shirang Pan
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Yan Zhang
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Qing Tao
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, 266035, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China
| | - Zhenhua Cao
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China.
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Li F, Xiang R, Liu Y, Hu G, Jiang Q, Jia T. Approaches and challenges in identifying, quantifying, and manipulating dynamic mitochondrial genome variations. Cell Signal 2024; 117:111123. [PMID: 38417637 DOI: 10.1016/j.cellsig.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Mitochondria, the cellular powerhouses, possess their own unique genetic system, including replication, transcription, and translation. Studying these processes is crucial for comprehending mitochondrial disorders, energy production, and their related diseases. Over the past decades, various approaches have been applied in detecting and quantifying mitochondrial genome variations with also the purpose of manipulation of mitochondria or mitochondrial genome for therapeutics. Understanding the scope and limitations of above strategies is not only fundamental to the understanding of basic biology but also critical for exploring disease-related novel target(s), as well to develop innovative therapies. Here, this review provides an overview of different tools and techniques for accurate mitochondrial genome variations identification, quantification, and discuss novel strategies for the manipulation of mitochondria to develop innovative therapeutic interventions, through combining the insights gained from the study of mitochondrial genetics with ongoing single cell omics combined with advanced single molecular tools.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guoliang Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Quanbo Jiang
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; CNRS-UMR9187, INSERM U1196, PSL-Research University, 91405 Orsay, France; CNRS-UMR9187, INSERM U1196, Université Paris Saclay, 91405 Orsay, France.
| |
Collapse
|
9
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics. Angew Chem Int Ed Engl 2024; 63:e202401544. [PMID: 38470412 DOI: 10.1002/anie.202401544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single-mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Bonirath Chhay
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - James H Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
10
|
Natsui H, Watanabe M, Yokota T, Tsuneta S, Fumoto Y, Handa H, Shouji M, Koya J, Nishino K, Tatsuta D, Koizumi T, Kadosaka T, Nakao M, Koya T, Temma T, Ito YM, Kanako HC, Hatanaka Y, Yasushige S, Wakasa S, Miura S, Masuda T, Nishioka N, Naraoka S, Ochi K, Kudo T, Ishikawa T, Anzai T. Influence of epicardial adipose tissue inflammation and adipocyte size on postoperative atrial fibrillation in patients after cardiovascular surgery. Physiol Rep 2024; 12:e15957. [PMID: 38546216 PMCID: PMC10976808 DOI: 10.14814/phy2.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 04/28/2024] Open
Abstract
Epicardial adipose tissue (EAT) is an active endocrine organ that is closely associated with occurrence of atrial fibrillation (AF). However, the role of EAT in the development of postoperative AF (POAF) remains unclear. We aimed to investigate the association between EAT profile and POAF occurrence in patients who underwent cardiovascular surgery. We obtained EAT samples from 53 patients to evaluate gene expression, histological changes, mitochondrial oxidative phosphorylation (OXPHOS) capacity in the EAT, and protein secretion in EAT-conditioned medium. EAT volume was measured using computed tomography scan. Eighteen patients (34%) experienced POAF within 7 days after surgery. Although no significant difference was observed in EAT profile between patients with and without POAF, logistic regression analysis identified that the mRNA expression levels of tumor necrosis factor-alpha (TNF-α) were positively correlated and adipocyte size in the EAT was inversely correlated with onset of POAF, respectively. Mitochondrial OXPHOS capacity in the EAT was not associated with POAF occurrence; however, it showed an inverse correlation with adipocyte size and a positive correlation with adiponectin secretion. In conclusion, changes in the secretory profile and adipocyte morphology of the EAT, which represent qualitative aspects of the adipose tissue, were present before the onset of AF.
Collapse
Affiliation(s)
- Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takashi Yokota
- Institute of Health Science Innovation for Medical Care, Hokkaido University HospitalSapporoJapan
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional RadiologyHokkaido University HospitalSapporoJapan
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Haruka Handa
- Department of Molecular Biology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Matsushima Shouji
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Jiro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Kotaro Nishino
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Daishiro Tatsuta
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Yoichi M. Ito
- Institute of Health Science Innovation for Medical Care, Hokkaido University HospitalSapporoJapan
| | - Hatanaka C. Kanako
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
| | - Yutaka Hatanaka
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
| | - Shingu Yasushige
- Department of Cardiovascular Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Satoru Wakasa
- Department of Cardiovascular Surgery, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Shuhei Miura
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Takahiko Masuda
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Naritomo Nishioka
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Shuichi Naraoka
- Department of Cardiovascular Surgery, Teine Keijinkai HospitalSapporoJapan
| | - Kayoko Ochi
- Department of Clinical Laboratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Tomoko Kudo
- Department of Clinical Laboratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Tsugumine Ishikawa
- Department of Clinical Laboratory MedicineTeine Keijinkai HospitalSapporoJapan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
11
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-throughput single-cell, single-mitochondrial DNA assay using hydrogel droplet microfluidics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577854. [PMID: 38352577 PMCID: PMC10862758 DOI: 10.1101/2024.01.29.577854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and intracellular heteroplasmy of mtDNA, but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95% mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
|
12
|
Mihaylov SR, Castelli LM, Lin YH, Gül A, Soni N, Hastings C, Flynn HR, Păun O, Dickman MJ, Snijders AP, Goldstone R, Bandmann O, Shelkovnikova TA, Mortiboys H, Ultanir SK, Hautbergue GM. The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function. Nat Commun 2023; 14:5496. [PMID: 37679383 PMCID: PMC10485026 DOI: 10.1038/s41467-023-41304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.
Collapse
Affiliation(s)
- Simeon R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Aytac Gül
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Christopher Hastings
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oana Păun
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Life Science Mass Spectrometry, Bruker Daltonics, Banner Lane, Coventry, CV4 9GH, UK
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
13
|
Vandiver AR, Hoang AN, Herbst A, Lee CC, Aiken JM, McKenzie D, Teitell MA, Timp W, Wanagat J. Nanopore sequencing identifies a higher frequency and expanded spectrum of mitochondrial DNA deletion mutations in human aging. Aging Cell 2023; 22:e13842. [PMID: 37132288 PMCID: PMC10265159 DOI: 10.1111/acel.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.
Collapse
Affiliation(s)
- Amy R. Vandiver
- Division of Dermatology, Department of MedicineUCLALos AngelesCaliforniaUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Austin N. Hoang
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| | - Allen Herbst
- US Geological Survey National Wildlife Health CenterMadisonWisconsinUSA
| | - Cathy C. Lee
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| | - Judd M. Aiken
- Department of Agricultural, Food and Nutritional SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Debbie McKenzie
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Michael A. Teitell
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Bioengineering, California NanoSystems Institute, Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Winston Timp
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Mavraki E, Labrum R, Sergeant K, Alston CL, Woodward C, Smith C, Knowles CVY, Patel Y, Hodsdon P, Baines JP, Blakely EL, Polke J, Taylor RW, Fratter C. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur J Hum Genet 2023; 31:148-163. [PMID: 36513735 PMCID: PMC9905091 DOI: 10.1038/s41431-022-01249-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.
Collapse
Affiliation(s)
- Eleni Mavraki
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robyn Labrum
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Kate Sergeant
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Charlotte L Alston
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Cathy Woodward
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Charlotte V Y Knowles
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yogen Patel
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Philip Hodsdon
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jack P Baines
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emma L Blakely
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James Polke
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Robert W Taylor
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
15
|
Stochastic survival of the densest and mitochondrial DNA clonal expansion in aging. Proc Natl Acad Sci U S A 2022; 119:e2122073119. [PMID: 36442091 PMCID: PMC9894218 DOI: 10.1073/pnas.2122073119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The expansion of mitochondrial DNA molecules with deletions has been associated with aging, particularly in skeletal muscle fibers; its mechanism has remained unclear for three decades. Previous accounts have assigned a replicative advantage (RA) to mitochondrial DNA containing deletion mutations, but there is also evidence that cells can selectively remove defective mitochondrial DNA. Here we present a spatial model that, without an RA, but instead through a combination of enhanced density for mutants and noise, produces a wave of expanding mutations with speeds consistent with experimental data. A standard model based on RA yields waves that are too fast. We provide a formula that predicts that wave speed drops with copy number, consonant with experimental data. Crucially, our model yields traveling waves of mutants even if mutants are preferentially eliminated. Additionally, we predict that mutant loads observed in single-cell experiments can be produced by de novo mutation rates that are drastically lower than previously thought for neutral models. Given this exemplar of how spatial structure (multiple linked mtDNA populations), noise, and density affect muscle cell aging, we introduce the mechanism of stochastic survival of the densest (SSD), an alternative to RA, that may underpin other evolutionary phenomena.
Collapse
|
16
|
Zhu S, Xu N, Han Y, Ye X, Yang L, Zuo J, Liu W. MTERF3 contributes to MPP+-induced mitochondrial dysfunction in SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1113-1121. [PMID: 35904214 PMCID: PMC9828133 DOI: 10.3724/abbs.2022098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder causing severe social and economic burdens. The origin of PD has been usually attributed to mitochondrial dysfunction. To this end, mitochondrial transcription regulators become attractive subjects for understanding PD pathogenesis. Previously, we found that the expression of mitochondrial transcription termination factor 3 (MTERF3) was reduced in MPP+-induced mice model of PD. In the present study, we probe the function of MTERF3 and its role in MPP+-induced cellular model of PD. Initially, we observe that MTERF3 expression is also reduced in MPP+-induced cellular model of PD, which can be mainly attributed to the increase of MTERF3 degradation. Next, we examine the effect of MTERF3 knockdown and overexpression on the replication, transcription, and translation of mitochondrial DNA (mtDNA). We show that knockdown and overexpression of MTERF3 have opposite effects on mtDNA transcript level but similar effects on mtDNA expression level, in line with MTERF3's dual roles in mtDNA transcription and translation. In addition, we examine the effect of MTERF3 knockdown and overexpression on mitochondrial function with and without MPP+ treatment, and find that MTERF3 seems to play a generally protective role in MPP+-induced mitochondrial dysfunction. Together, this work suggests a regulatory role of MTERF3 in MPP+-induced cellular model of PD and may provide clues in designing novel therapeutics against PD.
Collapse
Affiliation(s)
| | | | - Yanyan Han
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Xiaofei Ye
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Ling Yang
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Ji Zuo
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wen Liu
- />Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
17
|
Smetanina MA, Oscorbin IP, Shadrina AS, Sevost'ianova KS, Korolenya VA, Gavrilov KA, Shevela AI, Shirshova AN, Oskina NA, Zolotukhin IA, Filipenko ML. Quantitative and structural characteristics of mitochondrial DNA in varicose veins. Vascul Pharmacol 2022; 145:107021. [PMID: 35690235 DOI: 10.1016/j.vph.2022.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We examined quantitative (in terms of mtDNA/nuclear DNA) and structural (in terms of common deletions in the MT-ND4 gene region) characteristics of mitochondrial DNA (mtDNA) in varicose veins (VVs) and venous wall layers by comparing mitochondrial genome parameters, as well as mitochondrial function (in terms of mitochondrial membrane potential (MtMP)), in varicose vein (VV) vs. non-varicose vein (NV) tissue samples. METHODS We analyzed paired great saphenous vein samples (VV vs. NV segments from each patient left after venous surgery) harvested from patients with VVs. Relative mtDNA level and the proportion of no-deletion mtDNA were determined by a multiplex quantitative PCR (qPCR), confirming the latter with a more sensitive method - droplet digital PCR (ddPCR). Mitochondria's functional state in VVs was assessed using fluorescent (dependent on MtMP) live-staining of mitochondria in venous tissues. RESULTS Total mtDNA level was lower in VV than in NV samples (predominantly in the t. media layer). ddPCR analysis showed lower proportion of no-deletion mtDNA in VVs. Because of the decrease in relative MtMP in VVs, our results suggest a possible reduction of mitochondrial function in VVs. CONCLUSION Quantitative and structural changes (copy number and integrity) of mtDNA are plausibly involved in VV pathogenesis. Future clinical studies implementing the mitochondrial targeting may be eventually fostered after auxiliary mechanistic studies.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Fundamental Medicine of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Kseniya S Sevost'ianova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arina N Shirshova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Natalya A Oskina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Department of Faculty Surgery, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Laboratory of Molecular Diagnostics Development, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Rahman MM, Young CKJ, Goffart S, Pohjoismäki JLO, Young MJ. Heterozygous p.Y955C mutation in DNA polymerase γ leads to alterations in bioenergetics, complex I subunit expression, and mtDNA replication. J Biol Chem 2022; 298:102196. [PMID: 35760101 PMCID: PMC9307957 DOI: 10.1016/j.jbc.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
In human cells, ATP is generated using oxidative phosphorylation machinery, which is inoperable without proteins encoded by mitochondrial DNA (mtDNA). The DNA polymerase gamma (Polγ) repairs and replicates the multicopy mtDNA genome in concert with additional factors. The Polγ catalytic subunit is encoded by the POLG gene, and mutations in this gene cause mtDNA genome instability and disease. Barriers to studying the molecular effects of disease mutations include scarcity of patient samples and a lack of available mutant models; therefore, we developed a human SJCRH30 myoblast cell line model with the most common autosomal dominant POLG mutation, c.2864A>G/p.Y955C, as individuals with this mutation can present with progressive skeletal muscle weakness. Using on-target sequencing, we detected a 50% conversion frequency of the mutation, confirming heterozygous Y955C substitution. We found mutated cells grew slowly in a glucose-containing medium and had reduced mitochondrial bioenergetics compared with the parental cell line. Furthermore, growing Y955C cells in a galactose-containing medium to obligate mitochondrial function enhanced these bioenergetic deficits. Also, we show complex I NDUFB8 and ND3 protein levels were decreased in the mutant cell line, and the maintenance of mtDNA was severely impaired (i.e., lower copy number, fewer nucleoids, and an accumulation of Y955C-specific replication intermediates). Finally, we show the mutant cells have increased sensitivity to the mitochondrial toxicant 2′-3′-dideoxycytidine. We expect this POLG Y955C cell line to be a robust system to identify new mitochondrial toxicants and therapeutics to treat mitochondrial dysfunction.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901.
| |
Collapse
|
19
|
Kageyama Y, Deguchi Y, Kasahara T, Tani M, Kuroda K, Inoue K, Kato T. Intra-individual state-dependent comparison of plasma mitochondrial DNA copy number and IL-6 levels in patients with bipolar disorder. J Affect Disord 2022; 299:644-651. [PMID: 34715189 DOI: 10.1016/j.jad.2021.10.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/23/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Patients with bipolar disorder (BD) have increased plasma IL-6 levels, which are higher in depressed BD (dBD) than remitted BD (rBD). However, the mechanism that differentiates the cytokine levels between dBD and rBD is not understood. First, we determined whether brain-derived mtDNA can be detected in plasma using neuron-specific mutant Polg1 transgenic (Tg) mice. Second, we investigated whether the plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) differentiate the cytokine levels between dBD and rBD. METHODS Mouse plasma ccf-mtDNA levels were measured using real-time PCR targeting two regions of the mtDNA (CO1 and d-loop) in Tg mice and non-Tg littermates. Human plasma ccf-mtDNA levels were measured using real-time PCR targeting two regions of the mtDNA (ND1 and ND4) and IL-6 levels were evaluated in 10 patients in different states (depressed and remitted) of BD in a longitudinal manner and 10 healthy controls. RESULTS The mouse plasma CO1/D-loop ratio was significantly lower in Tg than non-Tg mice (P = 0.0029). Human plasma ccf-mtDNA copy number, ND4/ND1 ratio, and IL-6 levels were not significantly different between dBD and rBD. Human plasma ccf-mtDNA levels showed a nominal significant correlation with delusional symptoms (P = 0.033, ρ = 0.68). LIMITATIONS A larger sample size is required to generalize the results and to determine whether plasma ccf-mtDNA is associated with systemic inflammation. CONCLUSIONS Tg mice revealed that brain-derived mtDNA could be present in peripheral blood. The present findings did not coincide with our hypothesis that plasma ccf-mtDNA differentiates the cytokine levels between dBD and rBD.
Collapse
Affiliation(s)
- Yuki Kageyama
- Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yasuhiko Deguchi
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takaoki Kasahara
- Career Development Program, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | | | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Koki Inoue
- Department of Neuropsychiatry, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Li W, Zhou S, Jia M, Li X, Li L, Wang Q, Qi Z, Zhou P, Li Y, Wang Z. Early Biomarkers Associated with P53 Signaling for Acute Radiation Injury. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010099. [PMID: 35054492 PMCID: PMC8778477 DOI: 10.3390/life12010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/18/2023]
Abstract
Accurate dose assessment within 1 day or even 12 h after exposure through current methods of dose estimation remains a challenge, in response to a large number of casualties caused by nuclear or radiation accidents. P53 signaling pathway plays an important role in DNA damage repair and cell apoptosis induced by ionizing radiation. The changes of radiation-induced P53 related genes in the early stage of ionizing radiation should compensate for the deficiency of lymphocyte decline and γ-H2AX analysis as novel biomarkers of radiation damage. Bioinformatic analysis was performed on previous data to find candidate genes from human peripheral blood irradiated in vitro. The expression levels of candidate genes were detected by RT-PCR. The expressions of screened DDB2, AEN, TRIAP1, and TRAF4 were stable in healthy population, but significantly up-regulated by radiation, with time specificity and dose dependence in 2–24 h after irradiation. They are early indicators for medical treatment in acute radiation injury. Their effective combination could achieve a more accurate dose assessment for large-scale wounded patients within 24 h post exposure. The effective combination of p53-related genes DDB2, AEN, TRIAP1, and TRAF4 is a novel biodosimetry for a large number of people exposed to acute nuclear accidents.
Collapse
Affiliation(s)
- Weihong Li
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Shixiang Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Meng Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Xiaoxin Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Lin Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Qi Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Zhenhua Qi
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Yaqiong Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-10-66930294 (Y.L.); +86-10-66930248 (Z.W.)
| | - Zhidong Wang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-10-66930294 (Y.L.); +86-10-66930248 (Z.W.)
| |
Collapse
|
21
|
Zhang C, Xue Y, Wang L, Wu Q, Fang B, Sheng Y, Bai H, Peng B, Yang N, Li L. Progress on the Physiological Function of Mitochondrial DNA and Its Specific Detection and Therapy. Chembiochem 2021; 23:e202100474. [PMID: 34661371 DOI: 10.1002/cbic.202100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Indexed: 11/10/2022]
Abstract
Mitochondrial DNA (mtDNA) is the genetic information of mitochondrion, and its structure is circular double-stranded. Despite the diminutive size of the mitochondrial genome, mtDNA mutations are an important cause of mitochondrial diseases which are characterized by defects in oxidative phosphorylation (OXPHOS). Mitochondrial diseases are involved in multiple systems, particularly in the organs that are highly dependent on aerobic metabolism. The diagnosis of mitochondrial disease is more complicated since mtDNA mutations can cause various clinical symptoms. To realize more accurate diagnosis and treatment of mitochondrial diseases, the detection of mtDNA and the design of drugs acting on it are extremely important. Over the past few years, many probes and therapeutic drugs targeting mtDNA have been developed, making significant contributions to fundamental research including elucidation of the mechanisms of mitochondrial diseases at the genetic level. In this review, we summarize the structure, function, and detection approaches for mtDNA. The most current topics in this field, such as mechanistic exploration and treatment of mtDNA mutation-related disorders, are also reviewed. Specific attention is given to discussing the design and development of these probes and drugs for mtDNA. We hope that this review will provide readers with a comprehensive understanding of the importance of mtDNA, and promote the development of effective molecules for theragnosis of mtDNA mutation-related diseases.
Collapse
Affiliation(s)
- Congcong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Lan Wang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yu Sheng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and, Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, P. R. China
| |
Collapse
|
22
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
23
|
Trifunov S, Paredes-Fuentes AJ, Badosa C, Codina A, Montoya J, Ruiz-Pesini E, Jou C, Garrabou G, Grau-Junyent JM, Yubero D, Montero R, Muchart J, Ortigoza-Escobar JD, O'Callaghan MM, Nascimento A, Català A, Garcia-Cazorla À, Jimenez-Mallebrera C, Artuch R. Circulating Cell-Free Mitochondrial DNA in Cerebrospinal Fluid as a Biomarker for Mitochondrial Diseases. Clin Chem 2021; 67:1113-1121. [PMID: 34352085 DOI: 10.1093/clinchem/hvab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD. METHODS Measurement of ccfmtDNA was performed by using droplet digital PCR. RESULTS The mean copy number of ccfmtDNA was approximately 6 times higher in the MD cohort compared to the control group; patients with mitochondrial deletion and depletion syndromes (MDD) had the higher levels. We also detected the presence of both wild-type mtDNA and mtDNA deletions in CSF samples of patients with single deletions. Patients with MDD with single deletions had significantly higher concentrations of GDF-15 in CSF than controls, whereas patients with point mutations in mitochondrial DNA presented no statistically significant differences. Additionally, we found a significant positive correlation between ccfmtDNA levels and GDF-15 concentrations (r = 0.59, P = 0.016). CONCLUSION CSF ccfmtDNA levels are significantly higher in patients with MD in comparison to controls and, thus, they can be used as a novel biomarker for MD research. Our results could also be valuable to support the clinical outcome assessment of MD patients.
Collapse
Affiliation(s)
- Selena Trifunov
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abraham J Paredes-Fuentes
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Badosa
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Julio Montoya
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Institute for Health Research of Aragón (IISAragón), University of Zaragoza, Zaragoza, Spain
| | - Cristina Jou
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Glòria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Josep M Grau-Junyent
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Laboratory of Muscle Research and Mitochondrial Function-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Science, University of Barcelona (UB), Hospital Clínic of Barcelona (HCB), Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jordi Muchart
- Department of Radiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | | | - Andrés Nascimento
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Hematology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Neuromuscular Unit, Department of Neuropediatrics, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Kang JI, Park CI, Lin J, Kim ST, Kim HW, Kim SJ. Alterations of cellular aging markers in obsessive- compulsive disorder: mitochondrial DNA copy number and telomere length. J Psychiatry Neurosci 2021; 46:E451-E458. [PMID: 34291629 PMCID: PMC8519490 DOI: 10.1503/jpn.200238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The present study examined whether mitochondrial DNA copy number (mtDNAcn) and telomere length - key markers of cellular aging - were altered in male and female participants with obsessive-compulsive disorder (OCD) compared to healthy controls. We also tested for associations between these alterations and OCD-related clinical features and inflammatory index. METHODS A total of 235 patients with OCD (38.7% female) and 234 healthy controls (41.5% female) were included. We quantified whole-blood mtDNAcn and leukocyte telomere length using quantitative polymerase chain reaction. We also calculated the neutrophil-to-lymphocyte ratio from complete blood cell counts. RESULTS Multivariate analysis of covariance showed that OCD status had a significant overall effect on cellular aging markers in men (Wilks λ = 0.889, F2,275 = 17.13, p < 0.001) and women (Wilks λ = 0.742, F2,182 = 31.61, p < 0.001) after controlling for age, body mass index and childhood trauma. In post-hoc comparisons, men with OCD had lower mtDNAcn than controls (p < 0.001), but we found no between-group difference for telomere length (p = 0.55). Women with OCD had a significantly lower mtDNAcn (p < 0.001) and shortened telomere length (p = 0.023) compared to controls. Moreover, the lower mtDNAcn shown in the OCD group was significantly correlated with an increase in systemic inflammation for both sexes, as measured by neutrophil-to-lymphocyte ratio. LIMITATIONS The present cross-sectional design did not allow us to infer a causal relationship between OCD disease status and cellular aging markers. CONCLUSION The present study is, to our knowledge, the first to demonstrate alterations in mtDNAcn and telomere shortening in OCD. These results suggest that aging-associated molecular mechanisms may be important in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Jee In Kang
- From the Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, S.-T. Kim, S.-J. Kim); the Department of Psychiatry, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea (Park); the Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA (Lin); and the Department of Medical Education, Yonsei University College of Medicine, Seoul, South Korea (H.-W. Kim)
| | - Chun Il Park
- From the Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, S.-T. Kim, S.-J. Kim); the Department of Psychiatry, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea (Park); the Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA (Lin); and the Department of Medical Education, Yonsei University College of Medicine, Seoul, South Korea (H.-W. Kim)
| | - Jue Lin
- From the Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, S.-T. Kim, S.-J. Kim); the Department of Psychiatry, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea (Park); the Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA (Lin); and the Department of Medical Education, Yonsei University College of Medicine, Seoul, South Korea (H.-W. Kim)
| | - Shin Tae Kim
- From the Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, S.-T. Kim, S.-J. Kim); the Department of Psychiatry, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea (Park); the Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA (Lin); and the Department of Medical Education, Yonsei University College of Medicine, Seoul, South Korea (H.-W. Kim)
| | - Hae Won Kim
- From the Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, S.-T. Kim, S.-J. Kim); the Department of Psychiatry, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea (Park); the Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA (Lin); and the Department of Medical Education, Yonsei University College of Medicine, Seoul, South Korea (H.-W. Kim)
| | - Se Joo Kim
- From the Department of Psychiatry and Institute of Behavioural Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, S.-T. Kim, S.-J. Kim); the Department of Psychiatry, CHA Bundang Medical Centre, CHA University, Seongnam, Republic of Korea (Park); the Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA (Lin); and the Department of Medical Education, Yonsei University College of Medicine, Seoul, South Korea (H.-W. Kim)
| |
Collapse
|
25
|
The Diagnostic Approach to Mitochondrial Disorders in Children in the Era of Next-Generation Sequencing: A 4-Year Cohort Study. J Clin Med 2021; 10:jcm10153222. [PMID: 34362006 PMCID: PMC8348083 DOI: 10.3390/jcm10153222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial diseases (MDs) are a large group of genetically determined multisystem disorders, characterized by extreme phenotypic heterogeneity, attributable in part to the dual genomic control (nuclear and mitochondrial DNA) of the mitochondrial proteome. Advances in next-generation sequencing technologies over the past two decades have presented clinicians with a challenge: to select the candidate disease-causing variants among the huge number of data provided. Unfortunately, the clinical tools available to support genetic interpretations still lack specificity and sensitivity. For this reason, the diagnosis of MDs continues to be difficult, with the new “genotype first” approach still failing to diagnose a large group of patients. With the aim of investigating possible relationships between clinical and/or biochemical phenotypes and definitive molecular diagnoses, we performed a retrospective multicenter study of 111 pediatric patients with clinical suspicion of MD. In this cohort, the strongest predictor of a molecular (in particular an mtDNA-related) diagnosis of MD was neuroimaging evidence of basal ganglia (BG) involvement. Regression analysis confirmed that normal BG imaging predicted negative genetic studies for MD. Psychomotor regression was confirmed as an independent predictor of a definitive diagnosis of MD. The findings of this study corroborate previous data supporting a role for neuroimaging in the diagnostic approach to MDs and reinforce the idea that mtDNA sequencing should be considered for first-line testing, at least in specific groups of children.
Collapse
|
26
|
Vega RB, Brouwers B, Parsons SA, Stephens NA, Pino MF, Hodges A, Yi F, Yu G, Pratley RE, Smith SR, Sparks LM. An improvement in skeletal muscle mitochondrial capacity with short-term aerobic training is associated with changes in Tribbles 1 expression. Physiol Rep 2021; 8:e14416. [PMID: 32562350 PMCID: PMC7305239 DOI: 10.14814/phy2.14416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Exercise training and physical activity are known to be associated with high mitochondrial content and oxidative capacity in skeletal muscle. Metabolic diseases including obesity and insulin resistance are associated with low mitochondrial capacity in skeletal muscle. Certain transcriptional factors such as PGC-1α are known to mediate the exercise response; however, the precise molecular mechanisms involved in the adaptation to exercise are not completely understood. We performed multiple measurements of mitochondrial capacity both in vivo and ex vivo in lean or overweight individuals before and after an 18-day aerobic exercise training regimen. These results were compared to lean, active individuals. Aerobic training in these individuals resulted in a marked increase in mitochondrial oxidative respiratory capacity without an appreciable increase in mitochondrial content. These adaptations were associated with robust transcriptome changes. This work also identifies the Tribbles pseudokinase 1, TRIB1, as a potential mediator of the exercise response in human skeletal muscle.
Collapse
Affiliation(s)
- Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Bram Brouwers
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | | | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fanchao Yi
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Gongxin Yu
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
27
|
Van Bergen NJ, Massey S, Stait T, Ellery M, Reljić B, Formosa LE, Quigley A, Dottori M, Thorburn D, Stroud DA, Christodoulou J. Abnormalities of mitochondrial dynamics and bioenergetics in neuronal cells from CDKL5 deficiency disorder. Neurobiol Dis 2021; 155:105370. [PMID: 33905871 DOI: 10.1016/j.nbd.2021.105370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental disorder caused by pathogenic variants in the Cyclin-dependent kinase-like 5 (CDKL5) gene, resulting in dysfunctional CDKL5 protein. It predominantly affects females and causes seizures in the first few months of life, ultimately resulting in severe intellectual disability. In the absence of targeted therapies, treatment is currently only symptomatic. CDKL5 is a serine/threonine kinase that is highly expressed in the brain, with a critical role in neuronal development. Evidence of mitochondrial dysfunction in CDD is gathering, but has not been studied extensively. We used human patient-derived induced pluripotent stem cells with a pathogenic truncating mutation (p.Arg59*) and CRISPR/Cas9 gene-corrected isogenic controls, differentiated into neurons, to investigate the impact of CDKL5 mutation on cellular function. Quantitative proteomics indicated mitochondrial defects in CDKL5 p.Arg59* neurons, and mitochondrial bioenergetics analysis confirmed decreased activity of mitochondrial respiratory chain complexes. Additionally, mitochondrial trafficking velocity was significantly impaired, and there was a higher percentage of stationary mitochondria. We propose mitochondrial dysfunction is contributing to CDD pathology, and should be a focus for development of targeted treatments for CDD.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Tegan Stait
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Molly Ellery
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Boris Reljić
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; BioFab3D@ACMD, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3010, Australia; Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - David Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Scozzi D, Cano M, Ma L, Zhou D, Zhu JH, O'Halloran JA, Goss C, Rauseo AM, Liu Z, Sahu SK, Peritore V, Rocco M, Ricci A, Amodeo R, Aimati L, Ibrahim M, Hachem R, Kreisel D, Mudd PA, Kulkarni HS, Gelman AE. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI Insight 2021; 6:143299. [PMID: 33444289 PMCID: PMC7934921 DOI: 10.1172/jci.insight.143299] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
BackgroundMitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether circulating cell-free MT-DNA quantitation could be used to predict the risk of poor COVID-19 outcomes remains undetermined.MethodsWe measured circulating MT-DNA levels in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at hospital presentation. Our primary outcome was mortality. Intensive care unit (ICU) admission, intubation, vasopressor, and renal replacement therapy requirements were secondary outcomes. Multivariate regression analysis determined whether MT-DNA levels were independent of other reported COVID-19 risk factors. Receiver operating characteristic and area under the curve assessments were used to compare MT-DNA levels with established and emerging inflammatory markers of COVID-19.ResultsCirculating MT-DNA levels were highly elevated in patients who eventually died or required ICU admission, intubation, vasopressor use, or renal replacement therapy. Multivariate regression revealed that high circulating MT-DNA was an independent risk factor for these outcomes after adjusting for age, sex, and comorbidities. We also found that circulating MT-DNA levels had a similar or superior area under the curve when compared against clinically established measures of inflammation and emerging markers currently of interest as investigational targets for COVID-19 therapy.ConclusionThese results show that high circulating MT-DNA levels are a potential early indicator for poor COVID-19 outcomes.FundingWashington University Institute of Clinical Translational Sciences COVID-19 Research Program and Washington University Institute of Clinical Translational Sciences (ICTS) NIH grant UL1TR002345.
Collapse
Affiliation(s)
- Davide Scozzi
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Marlene Cano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Dequan Zhou
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Ji Hong Zhu
- Division of Cardiothoracic Surgery, Department of Surgery
| | | | - Charles Goss
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiyi Liu
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Sanjaya K Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Monica Rocco
- Division of Anesthesiology, Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberto Ricci
- Division of Pulmonology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rachele Amodeo
- Laboratory Analysis-Flow Cytometry Section, Sapienza University of Rome, Rome, Italy
| | - Laura Aimati
- Laboratory Analysis-Flow Cytometry Section, Sapienza University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Division of Cardiothoracic Surgery, Department of Surgery.,Division of Thoracic Surgery and
| | - Ramsey Hachem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery
| | | | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Molecular Microbiology, and
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Oláhová M, Peter B, Szilagyi Z, Diaz-Maldonado H, Singh M, Sommerville EW, Blakely EL, Collier JJ, Hoberg E, Stránecký V, Hartmannová H, Bleyer AJ, McBride KL, Bowden SA, Korandová Z, Pecinová A, Ropers HH, Kahrizi K, Najmabadi H, Tarnopolsky MA, Brady LI, Weaver KN, Prada CE, Õunap K, Wojcik MH, Pajusalu S, Syeda SB, Pais L, Estrella EA, Bruels CC, Kunkel LM, Kang PB, Bonnen PE, Mráček T, Kmoch S, Gorman GS, Falkenberg M, Gustafsson CM, Taylor RW. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat Commun 2021; 12:1135. [PMID: 33602924 PMCID: PMC7893070 DOI: 10.1038/s41467-021-21279-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.
Collapse
Affiliation(s)
- Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Zsolt Szilagyi
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hector Diaz-Maldonado
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Meenakshi Singh
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack J Collier
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kim L McBride
- Center for Cardiovascular and Pulmonary Research, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, USA
| | - Sasigarn A Bowden
- Division of Endocrinology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, USA
| | - Zuzana Korandová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mark A Tarnopolsky
- Department of Pediatric and Medicines, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Children's Hospital, Hamilton, Canada
| | - Lauren I Brady
- Department of Pediatric and Medicines, Division of Neuromuscular and Neurometabolic Diseases, McMaster University Children's Hospital, Hamilton, Canada
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cardiovascular Foundation of Colombia, Floridablanca, Colombia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Safoora B Syeda
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elicia A Estrella
- Division of Genetics & Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christine C Bruels
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Louis M Kunkel
- Division of Genetics & Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Molecular Genetics & Microbiology, and Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Genetics Institute and Myology Institute, University of Florida, Gainesville, FL, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, 120 00, Czech Republic
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
30
|
Mehta AR, Gregory JM, Dando O, Carter RN, Burr K, Nanda J, Story D, McDade K, Smith C, Morton NM, Mahad DJ, Hardingham GE, Chandran S, Selvaraj BT. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol 2021; 141:257-279. [PMID: 33398403 PMCID: PMC7847443 DOI: 10.1007/s00401-020-02252-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.
Collapse
Affiliation(s)
- Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jenna M Gregory
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Jyoti Nanda
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - David Story
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
31
|
Summer S, Smirnova A, Gabriele A, Toth U, Fasemore AM, Förstner KU, Kuhn L, Chicher J, Hammann P, Mitulović G, Entelis N, Tarassov I, Rossmanith W, Smirnov A. YBEY is an essential biogenesis factor for mitochondrial ribosomes. Nucleic Acids Res 2020; 48:9762-9786. [PMID: 32182356 PMCID: PMC7515705 DOI: 10.1093/nar/gkaa148] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis requires numerous trans-acting factors, some of which are deeply conserved. In Bacteria, the endoribonuclease YbeY is believed to be involved in 16S rRNA 3′-end processing and its loss was associated with ribosomal abnormalities. In Eukarya, YBEY appears to generally localize to mitochondria (or chloroplasts). Here we show that the deletion of human YBEY results in a severe respiratory deficiency and morphologically abnormal mitochondria as an apparent consequence of impaired mitochondrial translation. Reduced stability of 12S rRNA and the deficiency of several proteins of the small ribosomal subunit in YBEY knockout cells pointed towards a defect in mitochondrial ribosome biogenesis. The specific interaction of mitoribosomal protein uS11m with YBEY suggests that the latter helps to properly incorporate uS11m into the nascent small subunit in its late assembly stage. This scenario shows similarities with final stages of cytosolic ribosome biogenesis, and may represent a late checkpoint before the mitoribosome engages in translation.
Collapse
Affiliation(s)
- Sabrina Summer
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Anna Smirnova
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Alessandro Gabriele
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | | | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg 97080, Germany.,TH Köln - University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne D-50678, Germany.,ZB MED - Information Centre for Life Sciences, Cologne D-50931, Germany
| | - Lauriane Kuhn
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Johana Chicher
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Philippe Hammann
- Proteomics Platform Strasbourg-Esplanade, FRC1589, IBMC, CNRS, Strasbourg F-67000, France
| | - Goran Mitulović
- Proteomics Core Facility, Clinical Department for Laboratory Medicine, Medical University of Vienna, Vienna A-1090, Austria
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna A-1090, Austria
| | - Alexandre Smirnov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, CNRS, Strasbourg F-67000, France
| |
Collapse
|
32
|
Lamperti C, Marchet S, Legati A, Ghezzi D. Response to: "Heterogeneous phenotypic expression of C1QBP variants is attributable to variable heteroplasmy of secondary mtDNA deletions and mtDNA copy number". Hum Mutat 2020; 41:2014-2015. [PMID: 33113594 DOI: 10.1002/humu.24122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Costanza Lamperti
- Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Silvia Marchet
- Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Andrea Legati
- Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Daniele Ghezzi
- Division of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| |
Collapse
|
33
|
Lv X, Zhou D, Ge B, Chen H, Du Y, Liu S, Ji Y, Sun C, Wang G, Gao Y, Li W, Huang G. Association of Folate Metabolites and Mitochondrial Function in Peripheral Blood Cells in Alzheimer's Disease: A Matched Case-Control Study. J Alzheimers Dis 2020; 70:1133-1142. [PMID: 31306134 DOI: 10.3233/jad-190477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The nutrition state plays an important role in the progress of aging. Folate may play a role in protecting mitochondrial (mt) DNA by reducing oxidative stress. OBJECTIVE The primary aim of this study was to examine the association of mitochondrial oxidative damage with risk of Alzheimer's disease (AD), and to explore the possible role of folate metabolites in this association in a matched case-control study. METHODS Serum folate metabolites and mitochondrial function in peripheral blood cells were determined in 82 AD cases and 82 healthy controls, individually matched by age, gender, and education. RESULTS AD patients had lower serum levels of folate and higher homocysteine (Hcy) concentration. AD patients had a reduced mtDNA copy number, higher mtDNA deletions, and increased 8-OHdG content in mtDNA indicative of reduced mitochondrial function. The highest level of mtDNA copy number would decrease the risk of AD (OR = 0.157, 95% CI: 0.058-0.422) compared to the lowest level, independently of serum folate, and Hcy levels. Serum folate levels correlated with low 8-OHdG content in mtDNA both in AD patients and controls, independently of serum Hcy level. Moreover, serum Hcy levels correlated with low copy number in mtDNA both in AD patients and controls, independently of serum folate levels. CONCLUSION In conclusion, mitochondrial function in peripheral blood cells could be associated with risk of AD independent of multiple covariates. AD patients with a folate deficiency or hyperhomocysteinemia had low mitochondrial function in peripheral blood cells. However, further randomized controlled trials are need to determine a causal effect.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Dongtao Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Baojin Ge
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Hui Chen
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Yue Du
- Department of Social Medicine and Health Management, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, and Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Changqing Sun
- Neurosurgical Department of Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Guangshun Wang
- Department of Tumor, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
34
|
Jeppesen TD, Duno M, Vissing J. Mutation Load of Single, Large-Scale Deletions of mtDNA in Mitotic and Postmitotic Tissues. Front Genet 2020; 11:547638. [PMID: 33133144 PMCID: PMC7566915 DOI: 10.3389/fgene.2020.547638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/26/2020] [Indexed: 11/22/2022] Open
Abstract
It is generally accepted that patients with chronic progressive ophthalmoplegia caused by single large-scale deletion (SLD) of mitochondrial DNA (mtDNA) only harbor mutation in skeletal and eye muscles. The aim of this study was to investigate the presence and the level of heteroplasmy of mtDNA deletions in mitotic tissues of patients displaying mtDNA deletion of mitotic tissues in patients with SLDs and pure muscle phenotype. MtDNA mutation load was studied in three mitotic (urine epithelial cells, buccal mucosa, and blood) and one postmitotic (skeletal muscle) tissues in 17 patients with SLDs of mtDNA and pure muscle involvement. All patients had mtDNA deletion in skeletal muscle, and 78% of the patients also displayed the mtDNA deletion in mitotic tissues. The mtDNA mutation load was higher in skeletal muscle versus mitotic tissues. The mtDNA mutation load did not correlate with age of sampling of tissues, but there was a correlation between the mtDNA mutations load in skeletal muscle and (1) the site of 5′ end breaking point of the SLD, (2) the size of SLD, (3) the number of affected tRNAs, and (4) age at onset (r > 0.58, P < 0.05). The findings indicate that mtDNA mutation in mitotic tissue is common in patients with SLDs of mtDNA. The lack of correlation between age of tissue sampling, age at onset, and mtDNA mutation load in mitotic tissues indicates that there is no extensive post-natal modification of mtDNA mutation load in mitotic tissues of patients with pure muscle phenotype.
Collapse
Affiliation(s)
- Tina D Jeppesen
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Shivakumar V, Rajasekaran A, Subbanna M, Kalmady SV, Venugopal D, Agrawal R, Amaresha AC, Agarwal SM, Joseph B, Narayanaswamy JC, Debnath M, Venkatasubramanian G, Gangadhar BN. Leukocyte mitochondrial DNA copy number in schizophrenia. Asian J Psychiatr 2020; 53:102193. [PMID: 32585632 DOI: 10.1016/j.ajp.2020.102193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Schizophrenia is a complex neuropsychiatric disorder with significant genetic predisposition. In a subset of schizophrenia patients, mitochondrial dysfunction could be explained by the genomic defects like mitochondrial DNA Copy Number Variations, which are considered as a sensitive index of cellular oxidative stress. Given the high energy demands for neuronal functions, altered Mitochondrial DNA copy number (mtDNAcn) and consequent impaired mitochondrial physiology would significantly influence schizophrenia pathogenesis. In this context, we have made an attempt to study mitochondrial dysfunction in schizophrenia by assessing mtDNAcn in antipsychotic-naïve/free schizophrenia patients. METHOD mtDNAcn was measured in 90 antipsychotic-naïve / free schizophrenia (SCZ) patients and 147 Healthy Controls (HC). The relative mtDNAcn was determined by quantitative real-time polymerase chain reaction (qPCR) using TaqMan® multiplex assay method. RESULT A statistically significant difference between groups [t = 5.22, P < 0.001] was observed, with significantly lower mtDNAcn in SCZ compared to HC. The group differences persisted even after controlling for age and sex [F (4, 232) = 22.68, P < 0.001, η2 = 0.09]. CONCLUSION Lower mtDNAcn in SCZ compared to HC suggests that mtDNAcn may hold potential to serve as an important proxy marker of mitochondrial function in antipsychotic-naïve/free SCZ patients.
Collapse
Affiliation(s)
- Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India.
| | - Ashwini Rajasekaran
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Manjula Subbanna
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Sunil Vasu Kalmady
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Deepthi Venugopal
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Rimjhim Agrawal
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Sociology and Social Work, CHRIST (Deemed to be University), Bangalore, India
| | - Sri Mahavir Agarwal
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Boban Joseph
- Department of Psychiatric Social Work, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Cognitive Neurobiology Division, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bengaluru, India; Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Bangalore N Gangadhar
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| |
Collapse
|
36
|
Lujan SA, Longley MJ, Humble MH, Lavender CA, Burkholder A, Blakely EL, Alston CL, Gorman GS, Turnbull DM, McFarland R, Taylor RW, Kunkel TA, Copeland WC. Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol 2020; 21:248. [PMID: 32943091 PMCID: PMC7500033 DOI: 10.1186/s13059-020-02138-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acquired human mitochondrial genome (mtDNA) deletions are symptoms and drivers of focal mitochondrial respiratory deficiency, a pathological hallmark of aging and late-onset mitochondrial disease. RESULTS To decipher connections between these processes, we create LostArc, an ultrasensitive method for quantifying deletions in circular mtDNA molecules. LostArc reveals 35 million deletions (~ 470,000 unique spans) in skeletal muscle from 22 individuals with and 19 individuals without pathogenic variants in POLG. This nuclear gene encodes the catalytic subunit of replicative mitochondrial DNA polymerase γ. Ablation, the deleted mtDNA fraction, suffices to explain skeletal muscle phenotypes of aging and POLG-derived disease. Unsupervised bioinformatic analyses reveal distinct age- and disease-correlated deletion patterns. CONCLUSIONS These patterns implicate replication by DNA polymerase γ as the deletion driver and suggest little purifying selection against mtDNA deletions by mitophagy in postmitotic muscle fibers. Observed deletion patterns are best modeled as mtDNA deletions initiated by replication fork stalling during strand displacement mtDNA synthesis.
Collapse
Affiliation(s)
- Scott A Lujan
- Genome Integrity and Structural Biology Laboratory, DNA Replication Fidelity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Margaret H Humble
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Adam Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Grainne S Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, DNA Replication Fidelity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, Mitochondrial DNA Replication Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
37
|
TaqMan-MGB probe quantitative PCR assays to genotype and quantify three mtDNA mutations of Leber hereditary optic neuropathy. Sci Rep 2020; 10:12264. [PMID: 32704028 PMCID: PMC7378831 DOI: 10.1038/s41598-020-69220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/23/2020] [Indexed: 11/08/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a degenerative disease of the optic nerve associated with one of three mitochondrial DNA (mtDNA) m.3460G>A, m.11778G>A and m.14484T>C mutations. Although several procedures are available to genotype these mutations, quantitative approaches with rapid, low-cost and easy to handle advantages for three LHON mtDNA mutations are rarely reported. Here, we firstly developed a “one-step” tetra-primer amplification-refractory mutation system (T-ARMS) PCR for qualitative genotyping of three LHON mtDNA mutations. Subsequently, we established single, duplex and triplex TaqMan MGB probe-based fluorescence quantitative PCR (qPCR) assays to perform both qualitative and quantitative analyses of three LHON mtDNA mutations. Standard curves based on tenfold diluted plasmid standard exhibited high specificity and sensitivity, stable repeatability and reliable detectable ability of TaqMan probe qPCR assays without cross-reactivity upon probes combination. Moreover, by comparing with SYBR Green qPCR, we further validated the feasibility of the triplex-probe qPCR assay for the quantitative detection of mtDNA copy number in blood samples. In conclusion, our study describes a rapid, low-cost, easy to-handle, and high-throughput TaqMan-MGB probe qPCR assay to perform both qualitative and quantitative analysis of three primary LHON mtDNA mutations, offering a promising approach for genetic screening and testing of LHON mutations.
Collapse
|
38
|
Cao S, Sha Y, Ke P, Li T, Yuan W, Huang X. Deafness Gene Mutations in Newborns in the Foshan Area of South China With Bloodspot-Based Genetic Screening Tests. Am J Audiol 2020; 29:165-169. [PMID: 32208970 DOI: 10.1044/2020_aja-19-00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose The aim of this study was to determine the rate of deafness gene mutations in the Foshan area of South China. Method We enrolled the infants delivered in Foshan Maternity and Children's Healthcare Hospital. Deafness gene mutation was detected by HibriMax method. Our study tested 47,538 newborns within 3 days after birth, including 13 sites in four genes: GJB2 (c.35 del G, c.176 del 16, c.235 del C, c.299 del AT, c.155 del TCTG), GJB3 (c.583 C>T), SLC26A4 (c.2168 A>G, c.919-2 A>G, c.1299 C>T), and mtDNA 12S rRNA (m.1555 A>G, m.1494 C>T, m.12201 T>C, m.7445 A>G). The birth condition of infants was collected, including sex, low or high birth weight, twins, and premature delivery. Results In a total of 47,538 newborns, 1,415 were positively identified with deafness gene mutations. The total rate of the deafness gene mutation was 2.976%. The carrier rates of GJB2 (c.35 del G, c.176 del 16, c.235 del C, c.299 del AT, c.155 del TCTG), GJB3 (c.583 C>T), SLC26A4 (c.2168 A>G, c.919-2 A>G, c.1299 C>T), and mtDNA 12S rRNA (m.1555 A>G, m.1494 C>T, m.12201 T>C, m.7445 A>G) mutations were 0.000%, 0.048%, 1.422%, 0.185%, 0.000%, 0.076%, 0.116%, 0.755%, 0.160%, 0.187%, 0.021%, 0.000%, and 0.006%, respectively. Conclusions Our study showed that the c.235 del C GJB2 mutation was the leading deafness-related mutation in the Foshan area of South China. Deafness gene mutations screening in newborns detected by bloodspot-based genetic screening tests can help the diagnosis of newborn congenital hearing loss.
Collapse
Affiliation(s)
- Shunwang Cao
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yanhua Sha
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Peifeng Ke
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Tingting Li
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Weixi Yuan
- Foshan Neonate Disease Screening Center, Foshan Maternity and Children's Healthcare Hospital, Guangdong, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
39
|
Joshi PR, Baty K, Hopton S, Cordts I, Falkous G, Schoser B, Blakely EL, Taylor RW, Deschauer M. Progressive external ophthalmoplegia due to a recurrent de novo m.15990C>T MT-TP (mt-tRNA Pro) gene variant. Neuromuscul Disord 2020; 30:346-350. [PMID: 32305257 DOI: 10.1016/j.nmd.2020.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
Progressive external ophthalmoplegia is typically associated with single or multiple mtDNA deletions but occasionally mtDNA single nucleotide variants within mitochondrial transfer RNAs (mt-tRNAs) are identified. We report a 34-year-old female sporadic patient with progressive external ophthalmoplegia accompanied by exercise intolerance but neither fixed weakness nor multisystemic involvement. Histopathologically, abundant COX-deficient fibres were present in muscle with immunofluorescence analysis confirming the loss of mitochondrial complex I and IV proteins. Molecular genetic analysis identified a rare heteroplasmic m.15990C>T mt-tRNAPro variant reported previously in a single patient with childhood-onset myopathy. The variant in our patient was restricted to muscle. Single muscle fibre analysis identified higher heteroplasmy load in COX-deficient fibres than COX-normal fibres, confirming segregation of high heteroplasmic load with a biochemical defect. Our case highlights the phenotypic variability typically observed with pathogenic mt-tRNA mutations, whilst the identification of a second case with the m.15990C>T mutation not only confirms pathogenicity but shows that de novo mt-tRNA point mutations can arise in multiple, unrelated patients.
Collapse
Affiliation(s)
- Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany.
| | - Karen Baty
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Isabell Cordts
- Department of Neurology, Technical University Munich, School of Medicine, Munich, Germany
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcus Deschauer
- Department of Neurology, Technical University Munich, School of Medicine, Munich, Germany
| |
Collapse
|
40
|
Sommerville EW, Dalla Rosa I, Rosenberg MM, Bruni F, Thompson K, Rocha M, Blakely EL, He L, Falkous G, Schaefer AM, Yu‐Wai‐Man P, Chinnery PF, Hedstrom L, Spinazzola A, Taylor RW, Gorman GS. Identification of a novel heterozygous guanosine monophosphate reductase (GMPR) variant in a patient with a late-onset disorder of mitochondrial DNA maintenance. Clin Genet 2020; 97:276-286. [PMID: 31600844 PMCID: PMC7004030 DOI: 10.1111/cge.13652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.
Collapse
Affiliation(s)
- Ewen W. Sommerville
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queens Square Institute of Neurology, Royal Free CampusUniversity College LondonLondonUK
| | | | - Francesco Bruni
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of Bari “ldo Moro”BariItaly
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Mariana Rocha
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Andrew M. Schaefer
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Patrick Yu‐Wai‐Man
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of OphthalmologyLondonUK
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
- Cambridge Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Patrick F. Chinnery
- Department of Clinical Neuroscience & Medical Research Council Mitochondrial Biology UnitSchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Lizbeth Hedstrom
- Department of BiologyBrandeis UniversityWalthamMA
- Department of ChemistryBrandeis University, 415 South St.WalthamMA
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queens Square Institute of Neurology, Royal Free CampusUniversity College LondonLondonUK
- MRC Centre for Neuromuscular DiseasesUCL Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondonUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
41
|
Li Y, Sun S, Tian X, Qiu JG, Jiang B, Wang LJ, Zhang CY. Dephosphorylation-directed tricyclic DNA amplification cascades for sensitive detection of protein tyrosine phosphatase. Chem Commun (Camb) 2020; 56:11581-11584. [DOI: 10.1039/d0cc04714g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new fluorescence method is developed for the sensitive detection of protein tyrosine phosphatase based on dephosphorylation-directed tricyclic DNA amplification cascades.
Collapse
Affiliation(s)
- Yueying Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Shuli Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaorui Tian
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian-Ge Qiu
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - BingHua Jiang
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - Li-juan Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
42
|
Lehmann D, Tuppen HAL, Campbell GE, Alston CL, Lawless C, Rosa HS, Rocha MC, Reeve AK, Nicholls TJ, Deschauer M, Zierz S, Taylor RW, Turnbull DM, Vincent AE. Understanding mitochondrial DNA maintenance disorders at the single muscle fibre level. Nucleic Acids Res 2019; 47:7430-7443. [PMID: 31147703 PMCID: PMC6698645 DOI: 10.1093/nar/gkz472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023] Open
Abstract
Clonal expansion of mitochondrial DNA (mtDNA) deletions is an important pathological mechanism in adults with mtDNA maintenance disorders, leading to a mosaic mitochondrial respiratory chain deficiency in skeletal muscle. This study had two aims: (i) to determine if different Mendelian mtDNA maintenance disorders showed similar pattern of mtDNA deletions and respiratory chain deficiency and (ii) to investigate the correlation between the mitochondrial genetic defect and corresponding respiratory chain deficiency. We performed a quantitative analysis of respiratory chain deficiency, at a single cell level, in a cohort of patients with mutations in mtDNA maintenance genes. Using the same tissue section, we performed laser microdissection and single cell genetic analysis to investigate the relationship between mtDNA deletion characteristics and the respiratory chain deficiency. The pattern of respiratory chain deficiency is similar with different genetic defects. We demonstrate a clear correlation between the level of mtDNA deletion and extent of respiratory chain deficiency within a single cell. Long-range and single molecule PCR shows the presence of multiple mtDNA deletions in approximately one-third of all muscle fibres. We did not detect evidence of a replicative advantage for smaller mtDNA molecules in the majority of fibres, but further analysis is needed to provide conclusive evidence.
Collapse
Affiliation(s)
- Diana Lehmann
- Department of Neurology, University of Ulm, 89075, Ulm, Germany.,Department of Neurology, University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Helen A L Tuppen
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Georgia E Campbell
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Hannah S Rosa
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mariana C Rocha
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Thomas J Nicholls
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcus Deschauer
- Department of Neurology, Technical University Munich, 81675, Munich, Germany
| | - Stephan Zierz
- Department of Neurology, University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
43
|
Hjelm BE, Rollins B, Morgan L, Sequeira A, Mamdani F, Pereira F, Damas J, Webb MG, Weber MD, Schatzberg AF, Barchas JD, Lee FS, Akil H, Watson SJ, Myers RM, Chao EC, Kimonis V, Thompson PM, Bunney WE, Vawter MP. Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders. Nucleic Acids Res 2019; 47:e59. [PMID: 30869147 PMCID: PMC6547454 DOI: 10.1093/nar/gkz164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp ‘common deletion’ was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns–Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA.,Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Brandi Rollins
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Ling Morgan
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Firoza Mamdani
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Filipe Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4050-123, Portugal
| | - Joana Damas
- The Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Matthieu D Weber
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Huda Akil
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stanley J Watson
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Elizabeth C Chao
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, Texas Tech University Health Sciences Center (TTUHSC), El Paso, TX 79905, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| |
Collapse
|
44
|
In vitro study of the protective effect of manganese against vanadium-mediated nuclear and mitochondrial DNA damage. Food Chem Toxicol 2019; 135:110900. [PMID: 31654710 DOI: 10.1016/j.fct.2019.110900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
We aimed to study the effect of vanadium(V) exposure on cell viability, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) and to elucidate if these effects can be reverted by co-exposure to V and manganese (Mn). HepG2 cells were incubated with various concentrations of bis(maltolato)oxovanadium(IV) or MnCl2 for 32 h for viability study. The higher concentrations (59 μM V, 54 nM Mn and 59 μM V+54 nM Mn) were used to study DNA damage and uptake of V and Mn. Comet assay was used for the study of nDNA damage; mtDNA damage was studied by determining deletions and number of copies of the ND1/ND4 mtDNA region. Cellular content of V and Mn was determined using ICPMS. Cellular exposure to 59 μM V decreased viability (14%) and damaged nDNA and mtDNA. This effect was partially prevented by the co-exposure to V + Mn. Exposure to V increased the cellular content of V and Mn (812.3% and 153.5%, respectively). Exposure to Mn decreased the content of V and Mn (62% and 56%, respectively). Exposure to V + Mn increased V (261%) and decreased Mn (56%) content. The positive effects on cell viability and DNA damage when incubated with V + Mn could be due to the Mn-mediated inhibition of V uptake.
Collapse
|
45
|
Garret P, Bris C, Procaccio V, Amati-Bonneau P, Vabres P, Houcinat N, Tisserant E, Feillet F, Bruel AL, Quéré V, Philippe C, Sorlin A, Tran Mau-Them F, Vitobello A, Costa JM, Boughalem A, Trost D, Faivre L, Thauvin-Robinet C, Duffourd Y. Deciphering exome sequencing data: Bringing mitochondrial DNA variants to light. Hum Mutat 2019; 40:2430-2443. [PMID: 31379041 DOI: 10.1002/humu.23885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/27/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
The expanding use of exome sequencing (ES) in diagnosis generates a huge amount of data, including untargeted mitochondrial DNA (mtDNA) sequences. We developed a strategy to deeply study ES data, focusing on the mtDNA genome on a large unspecific cohort to increase diagnostic yield. A targeted bioinformatics pipeline assembled mitochondrial genome from ES data to detect pathogenic mtDNA variants in parallel with the "in-house" nuclear exome pipeline. mtDNA data coming from off-target sequences (indirect sequencing) were extracted from the BAM files in 928 individuals with developmental and/or neurological anomalies. The mtDNA variants were filtered out based on database information, cohort frequencies, haplogroups and protein consequences. Two homoplasmic pathogenic variants (m.9035T>C and m.11778G>A) were identified in 2 out of 928 unrelated individuals (0.2%): the m.9035T>C (MT-ATP6) variant in a female with ataxia and the m.11778G>A (MT-ND4) variant in a male with a complex mosaic disorder and a severe ophthalmological phenotype, uncovering undiagnosed Leber's hereditary optic neuropathy (LHON). Seven secondary findings were also found, predisposing to deafness or LHON, in 7 out of 928 individuals (0.75%). This study demonstrates the usefulness of including a targeted strategy in ES pipeline to detect mtDNA variants, improving results in diagnosis and research, without resampling patients and performing targeted mtDNA strategies.
Collapse
Affiliation(s)
- Philippine Garret
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Laboratoire CERBA, Saint-Ouen-l'Aumône, France
| | - Céline Bris
- Institut MITOVASC, UMR CNRS 6015-INSERM1083, University of Angers, Angers, France.,Centre de Référence maladies mitochondriales, CHU Angers, Angers, France
| | - Vincent Procaccio
- Institut MITOVASC, UMR CNRS 6015-INSERM1083, University of Angers, Angers, France.,Centre de Référence maladies mitochondriales, CHU Angers, Angers, France
| | - Patrizia Amati-Bonneau
- Institut MITOVASC, UMR CNRS 6015-INSERM1083, University of Angers, Angers, France.,Centre de Référence maladies mitochondriales, CHU Angers, Angers, France
| | - Pierre Vabres
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Centre de Référence Maladies Rares « Maladies Dermatologiques en Mosaïque », Service de dermatologie, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Service Dermatologie, CHU Dijon Bourgogne, Dijon, France
| | - Nada Houcinat
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Emilie Tisserant
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - François Feillet
- Service de Pédiatrie, Hôpital d'Enfants Brabois, CHRU Nancy, Vandoeuvre les Nancy, France.,INSERM-University of Lorraine-CHRU Nancy, UMRS 1256 NGERE, Nancy, France.,Centre de Références des maladies héréditaires du métabolisme, CHRU de Nancy, Nancy, France
| | - Ange-Line Bruel
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Virginie Quéré
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Centre de Référence Maladies Rares « Maladies Dermatologiques en Mosaïque », Service de dermatologie, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Christophe Philippe
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Arthur Sorlin
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « Maladies Dermatologiques en Mosaïque », Service de dermatologie, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Frédéric Tran Mau-Them
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Antonio Vitobello
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | | | | | | | - Laurence Faivre
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de compétences des maladies mitochondriales, Dijon University Hospital, Dijon, France
| | - Christel Thauvin-Robinet
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France.,Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Yannis Duffourd
- INSERM-University of Burgundy-Franche Comté, UMR1231 GAD, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| |
Collapse
|
46
|
Toompuu M, Tuomela T, Laine P, Paulin L, Dufour E, Jacobs HT. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells. Nucleic Acids Res 2019. [PMID: 29518244 PMCID: PMC6007314 DOI: 10.1093/nar/gky159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA 3' polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the inducing stress led to rapid turnover of the polyadenylated tRNAs. The extent, kinetics and duration of tRNA polyadenylation were EtBr dose-dependent, with mitochondrial tRNAs differentially sensitive to the stress. RNA interference and inhibitor studies indicated that ongoing mitochondrial ATP synthesis, plus the mitochondrial poly(A) polymerase and SUV3 helicase were required for tRNA polyadenylation, while polynucleotide phosphorylase counteracted the process and was needed, along with SUV3, for degradation of the polyadenylated tRNAs. Doxycycline treatment inhibited both tRNA polyadenylation and turnover, suggesting a possible involvement of the mitoribosome, although other translational inhibitors had only minor effects. The dysfunctional tRNALeu(UUR) bearing the pathological A3243G mutation was constitutively polyadenylated at a low level, but this was markedly enhanced after doxycycline treatment. We propose that polyadenylation of structurally and functionally abnormal mitochondrial tRNAs entrains their PNPase/SUV3-mediated destruction, and that this pathway could play an important role in mitochondrial diseases associated with tRNA mutations.
Collapse
Affiliation(s)
- Marina Toompuu
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Pia Laine
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland.,Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
47
|
Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases. Sci Rep 2019; 9:10549. [PMID: 31332208 PMCID: PMC6646320 DOI: 10.1038/s41598-019-46772-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial respiratory chain complexes II, III, and IV and cytochrome c contain haem, which is generated by the insertion of Fe2+ into protoporphyrin IX. 5-Aminolevulinic acid (ALA) combined with sodium ferrous citrate (SFC) was reported to enhance haem production, leading to respiratory complex and haem oxygenase-1 (HO-1) upregulation. Here, we investigated the effects of different concentrations of ALA and SFC alone or in combination (ALA/SFC) on fibroblasts from 8 individuals with mitochondrial diseases and healthy controls. In normal fibroblasts, expression levels of oxidative phosphorylation (OXPHOS) complex subunits and corresponding genes were upregulated only by ALA/SFC. Additionally, the increased oxygen consumption rate (OCR) and ATP levels in normal fibroblasts were more obvious after treatment with ALA/SFC than after treatment with ALA or SFC. OXPHOS complex proteins were enhanced by ALA/SFC, whereas OCR and ATP levels were increased in 6 of the 8 patient-derived fibroblasts. Further, HO-1 protein and mRNA levels were enhanced by ALA/SFC in all fibroblasts. The relative mtDNA copy number was increased by ALA/SFC. Thus, our findings indicate that ALA/SFC is effective in elevating OXPHOS, HO-1 protein, and mtDNA copy number, resulting in an increase in OCR and ATP levels, which represents a promising therapeutic option for mitochondrial diseases.
Collapse
|
48
|
Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F, Fang K, Wang D, Li J, Zou X, Xu L, Dong H, Lu F. Berberine Protects Glomerular Podocytes via Inhibiting Drp1-Mediated Mitochondrial Fission and Dysfunction. Theranostics 2019; 9:1698-1713. [PMID: 31037132 PMCID: PMC6485199 DOI: 10.7150/thno.30640] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Elevated levels of plasma free fatty acid (FFA) and disturbed mitochondrial dynamics play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, the mechanisms by which FFA leads to mitochondrial damage in glomerular podocytes of DKD and the effects of Berberine (BBR) on podocytes are not fully understood. Methods: Using the db/db diabetic mice model and cultured mouse podocytes, we investigated the molecular mechanism of FFA-induced disturbance of mitochondrial dynamics in podocytes and testified the effects of BBR on regulating mitochondrial dysfunction, podocyte apoptosis and glomerulopathy in the progression of DKD. Results: Intragastric administration of BBR for 8 weeks in db/db mice significantly reversed glucose and lipid metabolism disorders, podocyte damage, basement membrane thickening, mesangial expansion and glomerulosclerosis. BBR strongly inhibited podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation and dysfunction both in vivo and in vitro. Mechanistically, BBR could stabilize mitochondrial morphology in podocytes via abolishing palmitic acid (PA)-induced activation of dynamin-related protein 1 (Drp1). Conclusions: Our study demonstrated for the first time that BBR may have a previously unrecognized role in protecting glomerulus and podocytes via positively regulating Drp1-mediated mitochondrial dynamics. It might serve as a novel therapeutic drug for the treatment of DKD.
Collapse
|
49
|
MiR-125b-2 Knockout in Testis Is Associated with Targeting to the PAP Gene, Mitochondrial Copy Number, and Impaired Sperm Quality. Int J Mol Sci 2019; 20:ijms20010148. [PMID: 30609807 PMCID: PMC6337273 DOI: 10.3390/ijms20010148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
It has been reported that the miR-125 family plays an important role in regulating embryo development. However, the function of miR-125b-2 in spermatogenesis remains unknown. In this study, we used a model of miR-125b knockout (KO) mice to study the relationship between miR-125b-2 and spermatogenesis. Among the KO mice, the progeny test showed that the litter size decreased significantly (p = 0.0002) and the rate of non-parous females increased significantly from 10% to 38%. At the same time, the testosterone concentration increased significantly (p = 0.007), with a remarkable decrease for estradiol (p = 0.02). Moreover, the sperm count decreased obviously (p = 0.011) and the percentage of abnormal sperm increased significantly (p = 0.0002). The testicular transcriptome sequencing revealed that there were 173 up-regulated genes, including Papolb (PAP), and 151 down-regulated genes in KO mice compared with wild type (WT). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis showed that many of these genes were involved in sperm mitochondrial metabolism and other cellular biological processes. Meanwhile, the sperm mitochondria DNA (mtDNA) copy number increased significantly in the KO mice, but there were no changes observed in the mtDNA integrity and mutations of mt-Cytb, as well as the mt-ATP6 between the WT mice and KO mice. In the top 10 up-regulated genes, PAP, as a testis specific expressing gene, affect the process of spermatogenesis. Western blotting and the Luciferase assay validated that PAP was the target of miR-125b-5p. Intriguingly, we also found that both miR-125b and PAP were only highly expressed in the germ cells (GC) instead of in the Leydig cells (LC) and Sertoli cells (SC). Additionally, miR-125b-5p down regulated the secretion of testosterone in the TM3 cell by targeting PAP (p = 0.021). Our study firstly demonstrated that miR-125b-2 regulated testosterone secretion by directly targeting PAP, and increased the sperm mtDNA copy number to affect semen quality. The study indicated that miR-125b-2 had a positive influence on the reproductive performance of animals by regulating the expression of the PAP gene, and could be a potential drugs and diagnostic target for male infertility.
Collapse
|
50
|
Ugun-Klusek A, Theodosi TS, Fitzgerald JC, Burté F, Ufer C, Boocock DJ, Yu-Wai-Man P, Bedford L, Billett EE. Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation. Redox Biol 2019; 20:167-181. [PMID: 30336354 PMCID: PMC6197572 DOI: 10.1016/j.redox.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023] Open
Abstract
Monoamine oxidases (MAOs) are located on the outer mitochondrial membrane and are drug targets for the treatment of neurological disorders. MAOs control the levels of neurotransmitters in the brain via oxidative deamination and contribute to reactive oxygen species (ROS) generation through their catalytic by-product H2O2. Increased ROS levels may modulate mitochondrial function and mitochondrial dysfunction is implicated in a vast array of disorders. However, the downstream effects of MAO-A mediated ROS production in a neuronal model has not been previously investigated. In this study, using MAO-A overexpressing neuroblastoma cells, we demonstrate that higher levels of MAO-A protein/activity results in increased basal ROS levels with associated increase in protein oxidation. Increased MAO-A levels result in increased Lysine-63 linked ubiquitination of mitochondrial proteins and promotes autophagy through Bcl-2 phosphorylation. Furthermore, ROS generated locally on the mitochondrial outer membrane by MAO-A promotes phosphorylation of dynamin-1-like protein, leading to mitochondrial fragmentation and clearance without complete loss of mitochondrial membrane potential. Cellular ATP levels are maintained following MAO-A overexpression and complex IV activity/protein levels increased, revealing a close relationship between MAO-A levels and mitochondrial function. Finally, the downstream effects of increased MAO-A levels are dependent on the availability of amine substrates and in the presence of exogenous substrate, cell viability is dramatically reduced. This study shows for the first time that MAO-A generated ROS is involved in quality control signalling, and increase in MAO-A protein levels leads to a protective cellular response in order to mediate removal of damaged macromolecules/organelles, but substrate availability may ultimately determine cell fate. The latter is particularly important in conditions such as Parkinson's disease, where a dopamine precursor is used to treat disease symptoms and highlights that the fate of MAO-A containing dopaminergic neurons may depend on both MAO-A levels and catecholamine substrate availability.
Collapse
Affiliation(s)
- Aslihan Ugun-Klusek
- School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | | | - Julia C Fitzgerald
- Hertie-Institute for Clinical Brain Research, University of Tübingen and German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Florence Burté
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, Germany
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Patrick Yu-Wai-Man
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - E Ellen Billett
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|