1
|
Sharma K, Deco G, Solodkin A. The localization of coma. Cogn Neuropsychol 2024:1-20. [PMID: 39471280 DOI: 10.1080/02643294.2024.2420406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Coma and disorders of consciousness (DoC) are common manifestations of acute severe brain injuries. Research into their neuroanatomical basis can be traced from Hippocrates to the present day. Lesions causing DoC have traditionally been conceptualized as decreasing "alertness" from damage to the ascending arousal system, and/or, reducing level of "awareness" due to structural or functional impairment of large-scale brain networks. Within this framework, pharmacological and neuromodulatory interventions to promote recovery from DoC have hitherto met with limited success. This is partly due to inter-individual heterogeneity of brain injury patterns, and an incomplete understanding of brain network properties that characterize consciousness. Advances in multiscale computational modelling of brain dynamics have opened a unique opportunity to explore the causal mechanisms of brain activity at the biophysical level. These models can provide a novel approach for selection and optimization of potential interventions by simulation of brain network dynamics individualized for each patient.
Collapse
Affiliation(s)
- Kartavya Sharma
- Neurocritical care division, Departments of Neurology & Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Solodkin
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
2
|
Camassa A, Torao-Angosto M, Manasanch A, Kringelbach ML, Deco G, Sanchez-Vives MV. The temporal asymmetry of cortical dynamics as a signature of brain states. Sci Rep 2024; 14:24271. [PMID: 39414871 PMCID: PMC11484927 DOI: 10.1038/s41598-024-74649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the irreversibility of emergent cortical activity was quantified from local field potential recordings in male Lister-hooded rats at different anesthesia levels and during the sleep-wake cycle. This measure was carried out on five distinct brain states: slow-wave sleep, awake, deep anesthesia-slow waves, light anesthesia-slow waves, and microarousals. Low levels of irreversibility were associated with synchronous activity found both in deep anesthesia and slow-wave sleep states, suggesting that slow waves were the state closest to the thermodynamic equilibrium (maximum symmetry), thus requiring minimum energy. Higher levels of irreversibility were found when brain dynamics became more asynchronous, for example, in wakefulness. These changes were also reflected in the hierarchy of cortical dynamics across different cortical areas. The neural dynamics associated with different brain states were characterized by different degrees of irreversibility and hierarchy, also acting as markers of brain state transitions. This could open new routes to monitoring, controlling, and even changing brain states in health and disease.
Collapse
Affiliation(s)
- Alessandra Camassa
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Melody Torao-Angosto
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
3
|
Lin Y, Atad D, Zanesco AP. Using EEG to advance mindfulness science: A survey of emerging methods and approaches. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00280-5. [PMID: 39369988 DOI: 10.1016/j.bpsc.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Throughout the brief history of contemplative neuroscience, electroencephalography (EEG) has been a valuable and enduring methodology used to elucidate the neural correlates and mechanisms of mindfulness. In this review article, we provide a reminder that longevity should not be conflated with obsoletion, and that EEG continues to offer exceptional promise for addressing key questions and challenges that pervade the field today. Toward this end, we outline the unique advantages of EEG from a research strategy and experimental design perspective, before highlighting an array of new sophisticated data analytic approaches and translational paradigms. Along the way, we provide illustrative examples from our own work and the broader literature to showcase how these innovations can be leveraged to spark new insights and stimulate progress across both basic science and translational applications of mindfulness. Ultimately, we argue that EEG still has much to contribute to contemplative neuroscience, and hope to solicit the interest of other investigators to make full use of its capabilities in service of maximizing its potential within the field.
Collapse
Affiliation(s)
- Yanli Lin
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | - Daniel Atad
- Faculty of Education, Department of Counseling and Human Development, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel; Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa, Israel
| | - Anthony P Zanesco
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Baez S, Hernandez H, Moguilner S, Cuadros J, Santamaria‐Garcia H, Medel V, Migeot J, Cruzat J, Valdes‐Sosa PA, Lopera F, González‐Hernández A, Bonilla‐Santos J, Gonzalez‐Montealegre RA, Aktürk T, Legaz A, Altschuler F, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, Huepe D, Soto‐Añari M, Coronel‐Oliveros C, Herrera E, Abasolo D, Clark RA, Güntekin B, Duran‐Aniotz C, Parra MA, Lawlor B, Tagliazucchi E, Prado P, Ibanez A. Structural inequality and temporal brain dynamics across diverse samples. Clin Transl Med 2024; 14:e70032. [PMID: 39360669 PMCID: PMC11447638 DOI: 10.1002/ctm2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Structural income inequality - the uneven income distribution across regions or countries - could affect brain structure and function, beyond individual differences. However, the impact of structural income inequality on the brain dynamics and the roles of demographics and cognition in these associations remains unexplored. METHODS Here, we assessed the impact of structural income inequality, as measured by the Gini coefficient on multiple EEG metrics, while considering the subject-level effects of demographic (age, sex, education) and cognitive factors. Resting-state EEG signals were collected from a diverse sample (countries = 10; healthy individuals = 1394 from Argentina, Brazil, Colombia, Chile, Cuba, Greece, Ireland, Italy, Turkey and United Kingdom). Complexity (fractal dimension, permutation entropy, Wiener entropy, spectral structure variability), power spectral and aperiodic components (1/f slope, knee, offset), as well as graph-theoretic measures were analysed. FINDINGS Despite variability in samples, data collection methods, and EEG acquisition parameters, structural inequality systematically predicted electrophysiological brain dynamics, proving to be a more crucial determinant of brain dynamics than individual-level factors. Complexity and aperiodic activity metrics captured better the effects of structural inequality on brain function. Following inequality, age and cognition emerged as the most influential predictors. The overall results provided convergent multimodal metrics of biologic embedding of structural income inequality characterised by less complex signals, increased random asynchronous neural activity, and reduced alpha and beta power, particularly over temporoposterior regions. CONCLUSION These findings might challenge conventional neuroscience approaches that tend to overemphasise the influence of individual-level factors, while neglecting structural factors. Results pave the way for neuroscience-informed public policies aimed at tackling structural inequalities in diverse populations.
Collapse
Affiliation(s)
- Sandra Baez
- Departamento de PsicologíaUniversidad de los AndesBogotaColombia
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
| | - Hernan Hernandez
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Sebastian Moguilner
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - Jhosmary Cuadros
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa MaríaValparaísoChile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del TáchiraSan CristóbalVenezuela
| | - Hernando Santamaria‐Garcia
- PhD Program in NeurosciencePontificia Universidad JaverianaBogotaColombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio BogotáSan IgnacioColombia
| | - Vicente Medel
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Joaquín Migeot
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Josephine Cruzat
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of AntioquiaMedellínColombia
| | | | | | | | - Tuba Aktürk
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Agustina Legaz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdobaArgentina
| | - Florencia Altschuler
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Sol Fittipaldi
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- School of Psychology, Trinity College DublinDublinIreland
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of EconomicsIzmirTurkey
- Brain Dynamics Multidisciplinary Research CenterDokuz Eylul UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of EdinburghScotlandUK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Susanna Lopez
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- School of Psychology, Trinity College DublinDublinIreland
| | - Alberto A Fernández Lucas
- Department of Legal MedicinePsychiatry and Pathology at the Complutense University of MadridMadridSpain
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo IbáñezPenalolenChile
| | | | - Carlos Coronel‐Oliveros
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaísoChile
| | - Eduar Herrera
- Departamento de Estudios PsicológicosUniversidad IcesiCaliColombia
| | - Daniel Abasolo
- Faculty of Engineering and Physical Sciences, Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of SurreyGuildfordUK
| | - Ruaridh A. Clark
- Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
- Department of Electronic and Electrical EngineeringCentre for Signal and Image ProcessingUniversity of StrathclydeGlasgowUK
| | - Bahar Güntekin
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Health Sciences and Technology Research Institute (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Claudia Duran‐Aniotz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Mario A. Parra
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Brian Lawlor
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Enzo Tagliazucchi
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- University of Buenos AiresBuenos AiresArgentina
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- Trinity College Dublin, The University of DublinDublinIreland
| |
Collapse
|
5
|
Kim H, Min BK, Lee U, Sim JH, Noh GJ, Lee EK, Choi BM. Electroencephalographic Features of Elderly Patients during Anesthesia Induction with Remimazolam: A Substudy of a Randomized Controlled Trial. Anesthesiology 2024; 141:681-692. [PMID: 38207285 DOI: 10.1097/aln.0000000000004904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND Although remimazolam is used as a general anesthetic in elderly patients due to its hemodynamic stability, the electroencephalogram characteristics of remimazolam are not well known. The purpose of this study was to identify the electroencephalographic features of remimazolam-induced unconsciousness in elderly patients and compare them with propofol. METHODS Remimazolam (n = 26) or propofol (n = 26) were randomly administered for anesthesia induction in surgical patients. The hypnotic agent was blinded only to the patients. During the induction of anesthesia, remimazolam was administered at a rate of 6 mg · kg-1 · h-1, and propofol was administered at a target effect-site concentration of 3.5 μg/ml. The electroencephalogram signals from eight channels (Fp1, Fp2, Fz, F3, F4, Pz, P3, and P4, referenced to A2, using the 10 to 20 system) were acquired during the induction of anesthesia and in the postoperative care unit. Power spectrum analysis was performed, and directed functional connectivity between frontal and parietal regions was evaluated using normalized symbolic transfer entropy. Functional connectivity in unconscious processes induced by remimazolam or propofol was compared with baseline. To compare each power of frequency over time of the two hypnotic agents, a permutation test with t statistic was conducted. RESULTS Compared to the baseline in the alpha band, the feedback connectivity decreased by averages of 46% and 43%, respectively, after the loss of consciousness induced by remimazolam and propofol (95% CI for the mean difference: -0.073 to -0.044 for remimazolam [P < 0.001] and -0.068 to -0.042 for propofol [P < 0.001]). Asymmetry in the feedback and feedforward connectivity in the alpha band was suppressed after the loss of consciousness induced by remimazolam and propofol. There were no significant differences in the power of each frequency over time between the two hypnotic agents (minimum q value = 0.4235). CONCLUSIONS Both regimens showed a greater decrease in feedback connectivity compared to a decrease in feedforward connectivity after loss of consciousness, leading to a disruption of asymmetry between the frontoparietal connectivity. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Hyoungkyu Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - UnCheol Lee
- Department of Anesthesiology, Center for Consciousness Science, Center for the Study of Complex Systems, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ji-Hoon Sim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyu-Jeong Noh
- Department of Anesthesiology and Pain Medicine and Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Lee
- Department of Statistics, Ewha Womans University, Seoul, Korea
| | - Byung-Moon Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Castro P, Luppi A, Tagliazucchi E, Perl YS, Naci L, Owen AM, Sitt JD, Destexhe A, Cofré R. Dynamical structure-function correlations provide robust and generalizable signatures of consciousness in humans. Commun Biol 2024; 7:1224. [PMID: 39349600 PMCID: PMC11443142 DOI: 10.1038/s42003-024-06858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Resting-state functional magnetic resonance imaging evolves through a repertoire of functional connectivity patterns which might reflect ongoing cognition, as well as the contents of conscious awareness. We investigated whether the dynamic exploration of these states can provide robust and generalizable markers for the state of consciousness in human participants, across loss of consciousness induced by general anaesthesia or slow wave sleep. By clustering transient states of functional connectivity, we demonstrated that brain activity during unconsciousness is dominated by a recurrent pattern primarily mediated by structural connectivity and with a reduced capacity to transition to other patterns. Our results provide evidence supporting the pronounced differences between conscious and unconscious brain states in terms of whole-brain dynamics; in particular, the maintenance of rich brain dynamics measured by entropy is a critical aspect of conscious awareness. Collectively, our results may have significant implications for our understanding of consciousness and the neural basis of human awareness, as well as for the discovery of robust signatures of consciousness that are generalizable among different brain conditions.
Collapse
Affiliation(s)
- Pablo Castro
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Andrea Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Yonatan S Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorina Naci
- Trinity College Institute of Neuroscience Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Adrian M Owen
- Departments of Physiology and Pharmacology and Psychology, Western University, London, Canada
| | - Jacobo D Sitt
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| | - Rodrigo Cofré
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Edlow BL, Menon DK. Covert Consciousness in the ICU. Crit Care Med 2024; 52:1414-1426. [PMID: 39145701 DOI: 10.1097/ccm.0000000000006372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVES For critically ill patients with acute severe brain injuries, consciousness may reemerge before behavioral responsiveness. The phenomenon of covert consciousness (i.e., cognitive motor dissociation) may be detected by advanced neurotechnologies such as task-based functional MRI (fMRI) and electroencephalography (EEG) in patients who appear unresponsive on the bedside behavioral examination. In this narrative review, we summarize the state-of-the-science in ICU detection of covert consciousness. Further, we consider the prognostic and therapeutic implications of diagnosing covert consciousness in the ICU, as well as its potential to inform discussions about continuation of life-sustaining therapy for patients with severe brain injuries. DATA SOURCES We reviewed salient medical literature regarding covert consciousness. STUDY SELECTION We included clinical studies investigating the diagnostic performance characteristics and prognostic utility of advanced neurotechnologies such as task-based fMRI and EEG. We focus on clinical guidelines, professional society scientific statements, and neuroethical analyses pertaining to the implementation of advanced neurotechnologies in the ICU to detect covert consciousness. DATA EXTRACTION AND DATA SYNTHESIS We extracted study results, guideline recommendations, and society scientific statement recommendations regarding the diagnostic, prognostic, and therapeutic relevance of covert consciousness to the clinical care of ICU patients with severe brain injuries. CONCLUSIONS Emerging evidence indicates that covert consciousness is present in approximately 15-20% of ICU patients who appear unresponsive on behavioral examination. Covert consciousness may be detected in patients with traumatic and nontraumatic brain injuries, including patients whose behavioral examination suggests a comatose state. The presence of covert consciousness in the ICU may predict the pace and extent of long-term functional recovery. Professional society guidelines now recommend assessment of covert consciousness using task-based fMRI and EEG. However, the clinical criteria for patient selection for such investigations are uncertain and global access to advanced neurotechnologies is limited.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Sanfey J. Conscious Causality, Observer-Observed Simultaneity, and the Problem of Time for Integrated Information Theory. ENTROPY (BASEL, SWITZERLAND) 2024; 26:647. [PMID: 39202117 PMCID: PMC11353450 DOI: 10.3390/e26080647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024]
Abstract
Without proven causal power, consciousness cannot be integrated with physics except as an epiphenomenon, hence the term 'hard problem'. Integrated Information Theory (IIT) side-steps the issue by stating that subjective experience must be identical to informational physical structures whose cause-and-effect power is greater than the sum of their parts. But the focus on spatially oriented structures rather than events in time introduces a deep conceptual flaw throughout its entire structure, including the measure of integrated information, known as Φ (phi). However, the problem can be corrected by incorporating the temporal feature of consciousness responsible for the hard problem, which can ultimately resolve it, namely, that experiencer and experienced are not separated in time but exist simultaneously. Simultaneous causation is not possible in physics, hence the hard problem, and yet it can be proven deductively that consciousness does have causal power because of this phenomenological simultaneity. Experiencing presence makes some facts logically possible that would otherwise be illogical. Bypassing the hard problem has caused much of the criticism that IIT has attracted, but by returning to its roots in complexity theory, it can repurpose its model to measure causal connections that are temporally rather than spatially related.
Collapse
|
9
|
Perez Velazquez JL, Mateos DM, Guevara R, Wennberg R. Unifying biophysical consciousness theories with MaxCon: maximizing configurations of brain connectivity. Front Syst Neurosci 2024; 18:1426986. [PMID: 39135560 PMCID: PMC11317472 DOI: 10.3389/fnsys.2024.1426986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
There is such a vast proliferation of scientific theories of consciousness that it is worrying some scholars. There are even competitions to test different theories, and the results are inconclusive. Consciousness research, far from converging toward a unifying framework, is becoming more discordant than ever, especially with respect to theoretical elements that do not have a clear neurobiological basis. Rather than dueling theories, an integration across theories is needed to facilitate a comprehensive view on consciousness and on how normal nervous system dynamics can develop into pathological states. In dealing with what is considered an extremely complex matter, we try to adopt a perspective from which the subject appears in relative simplicity. Grounded in experimental and theoretical observations, we advance an encompassing biophysical theory, MaxCon, which incorporates aspects of several of the main existing neuroscientific consciousness theories, finding convergence points in an attempt to simplify and to understand how cellular collective activity is organized to fulfill the dynamic requirements of the diverse theories our proposal comprises. Moreover, a computable index indicating consciousness level is presented. Derived from the level of description of the interactions among cell networks, our proposal highlights the association of consciousness with maximization of the number of configurations of neural network connections -constrained by neuroanatomy, biophysics and the environment- that is common to all consciousness theories.
Collapse
Affiliation(s)
- Jose Luis Perez Velazquez
- The Ronin Institute, Montclair, NJ, United States
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - Diego Martin Mateos
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
| | - Ramon Guevara
- Department of Physics and Astronomy, Department of Developmental Psychology and Socialization, University of Padua, Padova, Italy
| | - Richard Wennberg
- University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Herzog R, Barbey FM, Islam MN, Rueda-Delgado L, Nolan H, Prado P, Krylova M, Izyurov I, Javaheripour N, Danyeli LV, Sen ZD, Walter M, O'Donnell P, Buhl DL, Murphy B, Ibanez A. High-order brain interactions in ketamine during rest and task: a double-blinded cross-over design using portable EEG on male participants. Transl Psychiatry 2024; 14:310. [PMID: 39068157 PMCID: PMC11283531 DOI: 10.1038/s41398-024-03029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Ketamine is a dissociative anesthetic that induces a shift in global consciousness states and related brain dynamics. Portable low-density EEG systems could be used to monitor these effects. However, previous evidence is almost null and lacks adequate methods to address global dynamics with a small number of electrodes. This study delves into brain high-order interactions (HOI) to explore the effects of ketamine using portable EEG. In a double-blinded cross-over design, 30 male adults (mean age = 25.57, SD = 3.74) were administered racemic ketamine and compared against saline infusion as a control. Both task-driven (auditory oddball paradigm) and resting-state EEG were recorded. HOI were computed using advanced multivariate information theory tools, allowing us to quantify nonlinear statistical dependencies between all possible electrode combinations. Ketamine induced an increase in redundancy in brain dynamics (copies of the same information that can be retrieved from 3 or more electrodes), most significantly in the alpha frequency band. Redundancy was more evident during resting state, associated with a shift in conscious states towards more dissociative tendencies. Furthermore, in the task-driven context (auditory oddball), the impact of ketamine on redundancy was more significant for predictable (standard stimuli) compared to deviant ones. Finally, associations were observed between ketamine's HOI and experiences of derealization. Ketamine appears to increase redundancy and HOI across psychometric measures, suggesting these effects are correlated with alterations in consciousness towards dissociation. In comparisons with event-related potential (ERP) or standard functional connectivity metrics, HOI represent an innovative method to combine all signal spatial interactions obtained from low-density dry EEG in drug interventions, as it is the only approach that exploits all possible combinations between electrodes. This research emphasizes the potential of complexity measures coupled with portable EEG devices in monitoring shifts in consciousness, especially when paired with low-density configurations, paving the way for better understanding and monitoring of pharmacological-induced changes.
Collapse
Affiliation(s)
- Rubén Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile.
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France.
| | | | | | | | - Hugh Nolan
- Cumulus Neuroscience Ltd, Dublin, Ireland
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Marina Krylova
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Igor Izyurov
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Jena, Germany
| | - Patricio O'Donnell
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, 02390, USA
| | - Derek L Buhl
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, 02390, USA
| | | | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile.
- Global Brain Health Institute, UCSF and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Mofakham S, Robertson J, Lubin N, Cleri NA, Mikell CB. An Unpredictable Brain Is a Conscious, Responsive Brain. J Cogn Neurosci 2024; 36:1643-1652. [PMID: 38579270 DOI: 10.1162/jocn_a_02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Severe traumatic brain injuries typically result in loss of consciousness or coma. In deeply comatose patients with traumatic brain injury, cortical dynamics become simple, repetitive, and predictable. We review evidence that this low-complexity, high-predictability state results from a passive cortical state, represented by a stable repetitive attractor, that hinders the flexible formation of neuronal ensembles necessary for conscious experience. Our data and those from other groups support the hypothesis that this cortical passive state is because of the loss of thalamocortical input. We identify the unpredictability and complexity of cortical dynamics captured by local field potential as a sign of recovery from this passive coma attractor. In this Perspective article, we discuss how these electrophysiological biomarkers of the recovery of consciousness could inform the design of closed-loop stimulation paradigms to treat disorders of consciousness.
Collapse
|
13
|
Páleník J. What does it mean for consciousness to be multidimensional? A narrative review. Front Psychol 2024; 15:1430262. [PMID: 38966739 PMCID: PMC11222411 DOI: 10.3389/fpsyg.2024.1430262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
A recent development in the psychological and neuroscientific study of consciousness has been the tendency to conceptualize consciousness as a multidimensional phenomenon. This narrative review elucidates the notion of dimensionality of consciousness and outlines the key concepts and disagreements on this topic through the viewpoints of several theoretical proposals. The reviewed literature is critically evaluated, and the main issues to be resolved by future theoretical and empirical work are identified: the problems of dimension selection and dimension aggregation, as well as some ethical considerations. This narrative review is seemingly the first to comprehensively overview this specific aspect of consciousness science.
Collapse
Affiliation(s)
- Julie Páleník
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
| |
Collapse
|
14
|
Cardone P, Alnagger N, Annen J, Bicego A, Gosseries O, Martial C. Psychedelics and disorders of consciousness: the current landscape and the path forward. Neurosci Conscious 2024; 2024:niae025. [PMID: 38881630 PMCID: PMC11179162 DOI: 10.1093/nc/niae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Modern medicine has been shaken by the surge of psychedelic science that proposes a new approach to mitigate mental disorders, such as depression and post-traumatic stress disorder. Clinical trials to investigate whether psychedelic substances can treat psychiatric conditions are now underway, yet less discussion gravitates around their use in neurological disorders due to brain injury. One suggested implementation of brain-complexity enhancing psychedelics is to treat people with post-comatose disorders of consciousness (DoC). In this article, we discuss the rationale of this endeavour, examining possible outcomes of such experiments by postulating the existence of an optimal level of complexity. We consider the possible counterintuitive effects of both psychedelics and DoC on the functional connectivity of the default mode network and its possible impact on selfhood. We also elaborate on the role of computational modelling in providing complementary information to experimental studies, both contributing to our understanding of the treatment mechanisms and providing a path towards personalized medicine. Finally, we update the discourse surrounding the ethical considerations, encompassing clinical and scientific values.
Collapse
Affiliation(s)
- Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Department of Data Analysis, University of Ghent, Henri Dunantlaan 1, Ghent 9000, Belgium
| | - Aminata Bicego
- Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
- Centre du Cerveau2, University Hospital of Liège, Avenue de l'hôpital 11, Liège 4000, Belgium
| |
Collapse
|
15
|
Chis-Ciure R, Melloni L, Northoff G. A measure centrality index for systematic empirical comparison of consciousness theories. Neurosci Biobehav Rev 2024; 161:105670. [PMID: 38615851 DOI: 10.1016/j.neubiorev.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Consciousness science is marred by disparate constructs and methodologies, making it challenging to systematically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distribution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory (GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the state-of-the-art neuroscience of consciousness.
Collapse
Affiliation(s)
- Robert Chis-Ciure
- New York University (NYU), New York, USA; International Center for Neuroscience and Ethics (CINET), Tatiana Foundation, Madrid, Spain; Wolfram Physics Project, USA.
| | - Lucia Melloni
- Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
16
|
Murray CH, Frohlich J, Haggarty CJ, Tare I, Lee R, de Wit H. Neural complexity is increased after low doses of LSD, but not moderate to high doses of oral THC or methamphetamine. Neuropsychopharmacology 2024; 49:1120-1128. [PMID: 38287172 PMCID: PMC11109226 DOI: 10.1038/s41386-024-01809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Neural complexity correlates with one's level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15 mg) and methamphetamine (MA; 10 and 20 mg). In three separate studies (N = 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power, and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral, or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of Los Angeles, California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076, Tübingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, California; 2811 Wilshire Blvd # 510, Santa Monica, CA, 90403, USA
| | - Connor J Haggarty
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Ilaria Tare
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Nilsen AS, Arena A, Storm JF. Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG. Neurosci Conscious 2024; 2024:niae021. [PMID: 38757120 PMCID: PMC11097907 DOI: 10.1093/nc/niae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Johan F Storm
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
18
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
19
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Forti B. The hidden structure of consciousness. Front Psychol 2024; 15:1344033. [PMID: 38650907 PMCID: PMC11033517 DOI: 10.3389/fpsyg.2024.1344033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
According to Loorits, if we want consciousness to be explained in terms of natural sciences, we should be able to analyze its seemingly non-structural aspects, like qualia, in structural terms. However, the studies conducted over the last three decades do not seem to be able to bridge the explanatory gap between physical phenomena and phenomenal experience. One possible way to bridge the explanatory gap is to seek the structure of consciousness within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience. First, this analysis leads us to identify the explanandum concerning the simplest forms of experience not in qualia but in the unitary set of qualities found in early vision. Second, it leads us to hypothesize that consciousness is also made up of non-apparent parts, and that there exists a hidden structure of consciousness. This structure, corresponding to a simple early visual experience, is constituted by a Hierarchy of Spatial Belongings nested within each other. Each individual Spatial Belonging is formed by a primary content and a primary space. The primary content can be traced in the perceptibility of the contents we can distinguish in the phenomenal field. The primary space is responsible for the perceptibility of the content and is not perceptible in itself. However, the phenomenon I refer to as subtraction of visibility allows us to characterize it as phenomenally negative. The hierarchical relationships between Spatial Belongings can ensure the qualitative nature of components of perceptual organization, such as object, background, and detail. The hidden structure of consciousness presents aspects that are decidedly counterintuitive compared to our idea of phenomenal experience. However, on the one hand, the Hierarchy of Spatial Belongings can explain the qualities of early vision and their appearance as a unitary whole, while on the other hand, it might be more easily explicable in terms of brain organization. In other words, the hidden structure of consciousness can be considered a bridge structure which, placing itself at an intermediate level between experience and physical properties, can contribute to bridging the explanatory gap.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
21
|
Ibanez A, Herzog R, Barbey F, Islam MN, Rueda-Delgado L, Nolan H, Prado P, Krylova M, Javaheripour N, Danyeli L, Sen Z, Walter M, Odonnell P, Buhl D, Murphy B, Izyurov I. High-order brain interactions in ketamine during rest and task: A double-blinded cross-over design using portable EEG. RESEARCH SQUARE 2024:rs.3.rs-3954073. [PMID: 38562802 PMCID: PMC10984031 DOI: 10.21203/rs.3.rs-3954073/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In a double-blinded cross-over design, 30 adults (mean age = 25.57, SD = 3.74; all male) were administered racemic ketamine and compared against saline infusion as a control. Both task-driven (auditory oddball paradigm) and resting-state EEG were recorded. HOI were computed using advanced multivariate information theory tools, allowing us to quantify nonlinear statistical dependencies between all possible electrode combinations. Results: Ketamine increased redundancy in brain dynamics, most significantly in the alpha frequency band. Redundancy was more evident during the resting state, associated with a shift in conscious states towards more dissociative tendencies. Furthermore, in the task-driven context (auditory oddball), the impact of ketamine on redundancy was more significant for predictable (standard stimuli) compared to deviant ones. Finally, associations were observed between ketamine's HOI and experiences of derealization. Conclusions: Ketamine appears to increase redundancy and genuine HOI across metrics, suggesting these effects correlate with consciousness alterations towards dissociation. HOI represents an innovative method to combine all signal spatial interactions obtained from low-density dry EEG in drug interventions, as it is the only approach that exploits all possible combinations from different electrodes. This research emphasizes the potential of complexity measures coupled with portable EEG devices in monitoring shifts in consciousness, especially when paired with low-density configurations, paving the way for better understanding and monitoring of pharmacological-induced changes.
Collapse
|
22
|
Negro N. (Dis)confirming theories of consciousness and their predictions: towards a Lakatosian consciousness science. Neurosci Conscious 2024; 2024:niae012. [PMID: 38495333 PMCID: PMC10944285 DOI: 10.1093/nc/niae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
The neuroscience of consciousness is undergoing a significant empirical acceleration thanks to several adversarial collaborations that intend to test different predictions of rival theories of consciousness. In this context, it is important to pair consciousness science with confirmation theory, the philosophical discipline that explores the interaction between evidence and hypotheses, in order to understand how exactly, and to what extent, specific experiments are challenging or validating theories of consciousness. In this paper, I examine this intricate relationship by adopting a Lakatosian lens. I propose that Lakatos' philosophy of science can aid consciousness scientists to better interpret adversarial collaborations in consciousness science and, more generally, to develop a confirmation-theoretic model of theory-appraisal in this field. I do so by suggesting that such a model be built upon three Lakatos-inspired criteria for assessing the relationship between empirical evidence and theoretical predictions: (i) the model should represent the 'distinction between prediction and accommodation'; (ii) the model should represent the 'structural relevance' of predictions; (iii) the model should represent the 'boldness' of the predictions. I argue that a Lakatosian model of theory-appraisal has both normative and descriptive virtues, and can move the debate forward by acknowledging that theory-appraisal needs to consider the diachronic development of theories, their logical structure, and their relationship with background beliefs and knowledge.
Collapse
Affiliation(s)
- Niccolò Negro
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| |
Collapse
|
23
|
Alnes SL, Bächlin LZM, Schindler K, Tzovara A. Neural complexity and the spectral slope characterise auditory processing in wakefulness and sleep. Eur J Neurosci 2024; 59:822-841. [PMID: 38100263 DOI: 10.1111/ejn.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Auditory processing and the complexity of neural activity can both indicate residual consciousness levels and differentiate states of arousal. However, how measures of neural signal complexity manifest in neural activity following environmental stimulation and, more generally, how the electrophysiological characteristics of auditory responses change in states of reduced consciousness remain under-explored. Here, we tested the hypothesis that measures of neural complexity and the spectral slope would discriminate stages of sleep and wakefulness not only in baseline electroencephalography (EEG) activity but also in EEG signals following auditory stimulation. High-density EEG was recorded in 21 participants to determine the spatial relationship between these measures and between EEG recorded pre- and post-auditory stimulation. Results showed that the complexity and the spectral slope in the 2-20 Hz range discriminated between sleep stages and had a high correlation in sleep. In wakefulness, complexity was strongly correlated to the 20-40 Hz spectral slope. Auditory stimulation resulted in reduced complexity in sleep compared to the pre-stimulation EEG activity and modulated the spectral slope in wakefulness. These findings confirm our hypothesis that electrophysiological markers of arousal are sensitive to sleep/wake states in EEG activity during baseline and following auditory stimulation. Our results have direct applications to studies using auditory stimulation to probe neural functions in states of reduced consciousness.
Collapse
Affiliation(s)
- Sigurd L Alnes
- Institute of Computer Science, University of Bern, Bern, Switzerland
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Lea Z M Bächlin
- Institute of Computer Science, University of Bern, Bern, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern, Switzerland
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Sleep-Wake-Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Casarotto S, Hassan G, Rosanova M, Sarasso S, Derchi CC, Trimarchi PD, Viganò A, Russo S, Fecchio M, Devalle G, Navarro J, Massimini M, Comanducci A. Dissociations between spontaneous electroencephalographic features and the perturbational complexity index in the minimally conscious state. Eur J Neurosci 2024; 59:934-947. [PMID: 38440949 DOI: 10.1111/ejn.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.
Collapse
Affiliation(s)
- Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Simone Russo
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guya Devalle
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Angela Comanducci
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
25
|
Comanducci A, Casarotto S, Rosanova M, Derchi CC, Viganò A, Pirastru A, Blasi V, Cazzoli M, Navarro J, Edlow BL, Baglio F, Massimini M. Unconsciousness or unresponsiveness in akinetic mutism? Insights from a multimodal longitudinal exploration. Eur J Neurosci 2024; 59:860-873. [PMID: 37077023 DOI: 10.1111/ejn.15994] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
The clinical assessment of patients with disorders of consciousness (DoC) relies on the observation of behavioural responses to standardised sensory stimulation. However, several medical comorbidities may directly impair the production of reproducible and appropriate responses, thus reducing the sensitivity of behaviour-based diagnoses. One such comorbidity is akinetic mutism (AM), a rare neurological syndrome characterised by the inability to initiate volitional motor responses, sometimes associated with clinical presentations that overlap with those of DoC. In this paper, we describe the case of a patient with large bilateral mesial frontal lesions, showing prolonged behavioural unresponsiveness and severe disorganisation of electroencephalographic (EEG) background, compatible with a vegetative state/unresponsive wakefulness syndrome (VS/UWS). By applying an unprecedented multimodal battery of advanced imaging and electrophysiology-based techniques (AIE) encompassing spontaneous EEG, evoked potentials, event-related potentials, transcranial magnetic stimulation combined with EEG and structural and functional MRI, we provide the following: (i) a demonstration of the preservation of consciousness despite unresponsiveness in the context of AM, (ii) a plausible neurophysiological explanation for behavioural unresponsiveness and its subsequent recovery during rehabilitation stay and (iii) novel insights into the relationships between DoC, AM and parkinsonism. The present case offers proof-of-principle evidence supporting the clinical utility of a multimodal hierarchical workflow that combines AIEs to detect covert signs of consciousness in unresponsive patients.
Collapse
Affiliation(s)
| | - Silvia Casarotto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Marcello Massimini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Gallucci A, Varoli E, Del Mauro L, Hassan G, Rovida M, Comanducci A, Casarotto S, Lo Re V, Romero Lauro LJ. Multimodal approaches supporting the diagnosis, prognosis and investigation of neural correlates of disorders of consciousness: A systematic review. Eur J Neurosci 2024; 59:874-933. [PMID: 38140883 DOI: 10.1111/ejn.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/24/2023]
Abstract
The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.
Collapse
Affiliation(s)
- Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
| | - Erica Varoli
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Margherita Rovida
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Leonor J Romero Lauro
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
27
|
Kalkach Aparicio M, Lazaridis C. Conceptualizing Consciousness: a Change in Perspective: The Elephant Still Surprises Those only Touching Its Trunk. Phys Med Rehabil Clin N Am 2024; 35:1-13. [PMID: 37993181 DOI: 10.1016/j.pmr.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Providers of patients with disorders of consciousness (DoC) face clinical and ethical challenges that could be lessened by becoming acquainted with the subjective and objective aspects of consciousness. A first step to improving DoC taxonomies, management, and outcomes might be to recognize the shortcomings of the medical concept of consciousness and to improve the terminology used for the clinical parameters assessed. The authors critically review the medical perspective of consciousness represented by three sub-concepts that do not necessarily correlate with one another and discuss how none of them reflects fully the personal subjective nature of consciousness.
Collapse
Affiliation(s)
- Mariel Kalkach Aparicio
- Department of Neurology, University of Wisconsin, 1685 Highland Avenue, 7th Floor, Madison, WI 53705-2281, USA; Centro Anahuac de Desarrollo Estrategico en Bioetica (CADEBI), Universidad Anahuac Mexico, Edo. Mex. MEX; UNESCO Chair of Bioethics and Human Rights, Rome, ITA.
| | - Christos Lazaridis
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, MC 2030, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Krause BM, Campbell DI, Kovach CK, Mueller RN, Kawasaki H, Nourski KV, Banks MI. Analogous cortical reorganization accompanies entry into states of reduced consciousness during anesthesia and sleep. Cereb Cortex 2023; 33:9850-9866. [PMID: 37434363 PMCID: PMC10472497 DOI: 10.1093/cercor/bhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.
Collapse
Affiliation(s)
- Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Declan I Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Christopher K Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
29
|
Frohlich J, Crone JS, Mediano PAM, Toker D, Bor D. Editorial: Dissociations between neural activity and conscious state: a key to understanding consciousness. Front Hum Neurosci 2023; 17:1256168. [PMID: 37600551 PMCID: PMC10433896 DOI: 10.3389/fnhum.2023.1256168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Julia S. Crone
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Pedro A. M. Mediano
- Department of Computing, Imperial College London, London, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
30
|
Ort A, Smallridge JW, Sarasso S, Casarotto S, von Rotz R, Casanova A, Seifritz E, Preller KH, Tononi G, Vollenweider FX. TMS-EEG and resting-state EEG applied to altered states of consciousness: oscillations, complexity, and phenomenology. iScience 2023; 26:106589. [PMID: 37138774 PMCID: PMC10149373 DOI: 10.1016/j.isci.2023.106589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Exploring the neurobiology of the profound changes in consciousness induced by classical psychedelic drugs may require novel neuroimaging methods. Serotonergic psychedelic drugs such as psilocybin produce states of increased sensory-emotional awareness and arousal, accompanied by increased spontaneous electroencephalographic (EEG) signal diversity. By directly stimulating cortical tissue, the altered dynamics and propagation of the evoked EEG activity can reveal drug-induced changes in the overall brain state. We combine Transcranial Magnetic Stimulation (TMS) and EEG to reveal that psilocybin produces a state of increased chaotic brain activity which is not a result of altered complexity in the underlying causal interactions between brain regions. We also map the regional effects of psilocybin on TMS-evoked activity and identify changes in frontal brain structures that may be associated with the phenomenology of psychedelic experiences.
Collapse
Affiliation(s)
- Andres Ort
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - John W. Smallridge
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi Milano, Milan, Italy
| | - Robin von Rotz
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andrea Casanova
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H. Preller
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - Franz X. Vollenweider
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Varley TF, Pope M, Faskowitz J, Sporns O. Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex. Commun Biol 2023; 6:451. [PMID: 37095282 PMCID: PMC10125999 DOI: 10.1038/s42003-023-04843-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
One of the most well-established tools for modeling the brain is the functional connectivity network, which is constructed from pairs of interacting brain regions. While powerful, the network model is limited by the restriction that only pairwise dependencies are considered and potentially higher-order structures are missed. Here, we explore how multivariate information theory reveals higher-order dependencies in the human brain. We begin with a mathematical analysis of the O-information, showing analytically and numerically how it is related to previously established information theoretic measures of complexity. We then apply the O-information to brain data, showing that synergistic subsystems are widespread in the human brain. Highly synergistic subsystems typically sit between canonical functional networks, and may serve an integrative role. We then use simulated annealing to find maximally synergistic subsystems, finding that such systems typically comprise ≈10 brain regions, recruited from multiple canonical brain systems. Though ubiquitous, highly synergistic subsystems are invisible when considering pairwise functional connectivity, suggesting that higher-order dependencies form a kind of shadow structure that has been unrecognized by established network-based analyses. We assert that higher-order interactions in the brain represent an under-explored space that, accessible with tools of multivariate information theory, may offer novel scientific insights.
Collapse
Affiliation(s)
- Thomas F Varley
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
| | - Maria Pope
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Joshua Faskowitz
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Olaf Sporns
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
32
|
Zilio F, Lavazza A. Consciousness in a Rotor? Science and Ethics of Potentially Conscious Human Cerebral Organoids. AJOB Neurosci 2023; 14:178-196. [PMID: 36794285 DOI: 10.1080/21507740.2023.2173329] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Human cerebral organoids are three-dimensional biological cultures grown in the laboratory to mimic as closely as possible the cellular composition, structure, and function of the corresponding organ, the brain. For now, cerebral organoids lack blood vessels and other characteristics of the human brain, but are also capable of having coordinated electrical activity. They have been usefully employed for the study of several diseases and the development of the nervous system in unprecedented ways. Research on human cerebral organoids is proceeding at a very fast pace and their complexity is bound to improve. This raises the question of whether cerebral organoids will also be able to develop the unique feature of the human brain, consciousness. If this is the case, some ethical issues would arise. In this article, we discuss the necessary neural correlates and constraints for the emergence of consciousness according to some of the most debated neuroscientific theories. Based on this, we consider what the moral status of a potentially conscious brain organoid might be, in light of ethical and ontological arguments. We conclude by proposing a precautionary principle and some leads for further investigation. In particular, we consider the outcomes of some very recent experiments as entities of a potential new kind.
Collapse
|
33
|
Orłowski P, Bola M. Sensory modality defines the relation between EEG Lempel-Ziv diversity and meaningfulness of a stimulus. Sci Rep 2023; 13:3453. [PMID: 36859725 PMCID: PMC9977735 DOI: 10.1038/s41598-023-30639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Diversity of brain activity is a robust neural correlate of global states of consciousness. It has been proposed that diversity measures specifically reflect the temporal variability of conscious experience. Previous studies supported this hypothesis by showing that perception of meaningful visual stimuli causes richer, more-variable experiences than perception of meaningless stimuli, and this is reflected in greater brain signal diversity. To investigate whether this relation is consistent across sensory modalities, to participants we presented three versions of naturalistic visual and auditory stimuli (videos and audiobooks) that varied in the amount of meaning (original, scrambled, and noise), while recording electroencephalographic signals. We report three main findings. First, greater meaningfulness of visual stimuli was related to higher Lempel-Ziv diversity of EEG signals, but the opposite effect was found in the auditory modality. Second, visual perception was related to generally higher EEG diversity than auditory perception. Third, perception of meaningful visual stimuli and auditory stimuli respectively resulted in higher and lower EEG diversity in comparison to the resting state. In conclusion, the signal diversity of continuous brain signals depends on the stimulated sensory modality, therefore it is not a generic index of the variability of conscious experience.
Collapse
Affiliation(s)
- Paweł Orłowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Michał Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
34
|
Lehnertz K. Ordinal methods for a characterization of evolving functional brain networks. CHAOS (WOODBURY, N.Y.) 2023; 33:022101. [PMID: 36859225 DOI: 10.1063/5.0136181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Ordinal time series analysis is based on the idea to map time series to ordinal patterns, i.e., order relations between the values of a time series and not the values themselves, as introduced in 2002 by C. Bandt and B. Pompe. Despite a resulting loss of information, this approach captures meaningful information about the temporal structure of the underlying system dynamics as well as about properties of interactions between coupled systems. This-together with its conceptual simplicity and robustness against measurement noise-makes ordinal time series analysis well suited to improve characterization of the still poorly understood spatiotemporal dynamics of the human brain. This minireview briefly summarizes the state-of-the-art of uni- and bivariate ordinal time-series-analysis techniques together with applications in the neurosciences. It will highlight current limitations to stimulate further developments, which would be necessary to advance characterization of evolving functional brain networks.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; and Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| |
Collapse
|
35
|
Huntley J, Bor D, Deng F, Mancuso M, Mediano PAM, Naci L, Owen AM, Rocchi L, Sternin A, Howard R. Assessing awareness in severe Alzheimer's disease. Front Hum Neurosci 2023; 16:1035195. [PMID: 36819296 PMCID: PMC9930987 DOI: 10.3389/fnhum.2022.1035195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/30/2022] [Indexed: 02/04/2023] Open
Abstract
There is an urgent need to understand the nature of awareness in people with severe Alzheimer's disease (AD) to ensure effective person-centered care. Objective biomarkers of awareness validated in other clinical groups (e.g., anesthesia, minimally conscious states) offer an opportunity to investigate awareness in people with severe AD. In this article we demonstrate the feasibility of using Transcranial magnetic stimulation (TMS) combined with EEG, event related potentials (ERPs) and fMRI to assess awareness in severe AD. TMS-EEG was performed in six healthy older controls and three people with severe AD. The perturbational complexity index (PCIST) was calculated as a measure of capacity for conscious awareness. People with severe AD demonstrated a PCIST around or below the threshold for consciousness, suggesting reduced capacity for consciousness. ERPs were recorded during a visual perception paradigm. In response to viewing faces, two patients with severe AD provisionally demonstrated similar visual awareness negativity to healthy controls. Using a validated fMRI movie-viewing task, independent component analysis in two healthy controls and one patient with severe AD revealed activation in auditory, visual and fronto-parietal networks. Activation patterns in fronto-parietal networks did not significantly correlate between the patient and controls, suggesting potential differences in conscious awareness and engagement with the movie. Although methodological issues remain, these results demonstrate the feasibility of using objective measures of awareness in severe AD. We raise a number of challenges and research questions that should be addressed using these biomarkers of awareness in future studies to improve understanding and care for people with severe AD.
Collapse
Affiliation(s)
- Jonathan Huntley
- Division of Psychiatry, University College London, London, United Kingdom
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Feng Deng
- School of Psychology, Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
| | - Marco Mancuso
- Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lorina Naci
- School of Psychology, Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
| | - Adrian M. Owen
- Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorenzo Rocchi
- Institute of Neurology, University College London, London, United Kingdom
| | - Avital Sternin
- Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Robert Howard
- Division of Psychiatry, University College London, London, United Kingdom
| |
Collapse
|
36
|
Aamodt A, Sevenius Nilsen A, Markhus R, Kusztor A, HasanzadehMoghadam F, Kauppi N, Thürer B, Storm JF, Juel BE. EEG Lempel-Ziv complexity varies with sleep stage, but does not seem to track dream experience. Front Hum Neurosci 2023; 16:987714. [PMID: 36704096 PMCID: PMC9871639 DOI: 10.3389/fnhum.2022.987714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
In a recent electroencephalography (EEG) sleep study inspired by complexity theories of consciousness, we found that multi-channel signal diversity progressively decreased from wakefulness to slow wave sleep, but failed to find any significant difference between dreaming and non-dreaming awakenings within the same sleep stage (NREM2). However, we did find that multi-channel Lempel-Ziv complexity (LZC) measured over the posterior cortex increased with more perceptual ratings of NREM2 dream experience along a thought-perceptual axis. In this follow-up study, we re-tested our previous findings, using a slightly different approach. Partial sleep-deprivation was followed by evening sleep experiments, with repeated awakenings and immediate dream reports. Participants reported whether they had been dreaming, and were asked to rate how diverse, vivid, perceptual, and thought-like the contents of their dreams were. High density (64 channel) EEG was recorded throughout the experiment, and mean single-channel LZC was calculated for each 30 s sleep epoch. LZC progressively decreased with depth of non-REM sleep. Surprisingly, estimated marginal mean LZC was slightly higher for NREM1 than for wakefulness, but the difference did not remain significant after adjusting for multiple comparisons. We found no significant difference in LZC between dream and non-dream awakenings, nor any significant relationship between LZC and subjective ratings of dream experience, within the same sleep stage (NREM2). The failure to reproduce our own previous finding of a positive correlation between posterior LZC and more perceptual dream experiences, or to find any other correlation between brain signal complexity and subjective experience within NREM2 sleep, raises the question of whether EEG LZC is really a reliable correlate of richness of experience as such, within the same sleep stage.
Collapse
Affiliation(s)
- Arnfinn Aamodt
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - André Sevenius Nilsen
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rune Markhus
- National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Anikó Kusztor
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Fatemeh HasanzadehMoghadam
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils Kauppi
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Benjamin Thürer
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johan Frederik Storm
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Erik Juel
- Brain Signalling Lab, Division of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Frohlich J, Chiang JN, Mediano PAM, Nespeca M, Saravanapandian V, Toker D, Dell'Italia J, Hipp JF, Jeste SS, Chu CJ, Bird LM, Monti MM. Neural complexity is a common denominator of human consciousness across diverse regimes of cortical dynamics. Commun Biol 2022; 5:1374. [PMID: 36522453 PMCID: PMC9755290 DOI: 10.1038/s42003-022-04331-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
What is the common denominator of consciousness across divergent regimes of cortical dynamics? Does consciousness show itself in decibels or in bits? To address these questions, we introduce a testbed for evaluating electroencephalogram (EEG) biomarkers of consciousness using dissociations between neural oscillations and consciousness caused by rare genetic disorders. Children with Angelman syndrome (AS) exhibit sleep-like neural dynamics during wakefulness. Conversely, children with duplication 15q11.2-13.1 syndrome (Dup15q) exhibit wake-like neural dynamics during non-rapid eye movement (NREM) sleep. To identify highly generalizable biomarkers of consciousness, we trained regularized logistic regression classifiers on EEG data from wakefulness and NREM sleep in children with AS using both entropy measures of neural complexity and spectral (i.e., neural oscillatory) EEG features. For each set of features, we then validated these classifiers using EEG from neurotypical (NT) children and abnormal EEGs from children with Dup15q. Our results show that the classification performance of entropy-based EEG biomarkers of conscious state is not upper-bounded by that of spectral EEG features, which are outperformed by entropy features. Entropy-based biomarkers of consciousness may thus be highly adaptable and should be investigated further in situations where spectral EEG features have shown limited success, such as detecting covert consciousness or anesthesia awareness.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA.
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark Nespeca
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
- Department of Neurology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Vidya Saravanapandian
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Daniel Toker
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA
| | - John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Shafali S Jeste
- Center for Autism Research and Treatment, University of California Los Angeles, Semel Institute for Neuroscience, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Genetics/Dysmorphology, Rady Children's Hospital - San Diego, San Diego, CA, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 90095, Pritzker Hall, Los Angeles, CA, USA
- Deptment of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
38
|
Sevenius Nilsen A, Juel BE, Thürer B, Aamodt A, Storm JF. Are we really unconscious in "unconscious" states? Common assumptions revisited. Front Hum Neurosci 2022; 16:987051. [PMID: 36277049 PMCID: PMC9581328 DOI: 10.3389/fnhum.2022.987051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
In the field of consciousness science, there is a tradition to categorize certain states such as slow-wave non-REM sleep and deep general anesthesia as "unconscious". While this categorization seems reasonable at first glance, careful investigations have revealed that it is not so simple. Given that (1) behavioral signs of (un-)consciousness can be unreliable, (2) subjective reports of (un-)consciousness can be unreliable, and, (3) states presumed to be unconscious are not always devoid of reported experience, there are reasons to reexamine our traditional assumptions about "states of unconsciousness". While these issues are not novel, and may be partly semantic, they have implications both for scientific progress and clinical practice. We suggest that focusing on approaches that provide a more pragmatic and nuanced characterization of different experimental conditions may promote clarity in the field going forward, and help us build stronger foundations for future studies.
Collapse
Affiliation(s)
- Andre Sevenius Nilsen
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| | - Bjørn E. Juel
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
- School of Medicine and Public Health, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin-Madison, Madison, WI, United States
| | - Benjamin Thürer
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| | - Arnfinn Aamodt
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| | - Johan F. Storm
- Department of Physiology, Institute of Basic Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Koculak M, Wierzchoń M. How much consciousness is there in complexity? Front Psychol 2022; 13:983315. [PMID: 36204731 PMCID: PMC9530911 DOI: 10.3389/fpsyg.2022.983315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The notion of complexity currently receives significant attention in neuroscience, mainly through the popularity of the Integrated Information Theory (IIT). It has proven successful in research centred on discriminating states of consciousness, while little theoretical and experimental effort was directed toward studying the content. In this paper, we argue that exploring the relationship between complexity and conscious content is necessary to understand the importance of information-theoretic measures for consciousness research properly. We outline how content could be experimentally operationalised and how rudimental testable hypotheses can be formulated without requiring IIT formalisms. This approach would not only allow for a better understanding of aspects of consciousness captured by complexity but could also facilitate comparison efforts for theories of consciousness.
Collapse
Affiliation(s)
- Marcin Koculak
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Kraków, Poland
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Kraków, Poland
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
40
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Walter N, Hinterberger T. Determining states of consciousness in the electroencephalogram based on spectral, complexity, and criticality features. Neurosci Conscious 2022; 2022:niac008. [PMID: 35903410 PMCID: PMC9319002 DOI: 10.1093/nc/niac008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
This study was based on the contemporary proposal that distinct states of consciousness are quantifiable by neural complexity and critical dynamics. To test this hypothesis, it was aimed at comparing the electrophysiological correlates of three meditation conditions using nonlinear techniques from the complexity and criticality framework as well as power spectral density. Thirty participants highly proficient in meditation were measured with 64-channel electroencephalography (EEG) during one session consisting of a task-free baseline resting (eyes closed and eyes open), a reading condition, and three meditation conditions (thoughtless emptiness, presence monitoring, and focused attention). The data were analyzed applying analytical tools from criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), complexity measures (multiscale entropy, Higuchi's fractal dimension), and power spectral density. Task conditions were contrasted, and effect sizes were compared. Partial least square regression and receiver operating characteristics analysis were applied to determine the discrimination accuracy of each measure. Compared to resting with eyes closed, the meditation categories emptiness and focused attention showed higher values of entropy and fractal dimension. Long-range temporal correlations were declined in all meditation conditions. The critical exponent yielded the lowest values for focused attention and reading. The highest discrimination accuracy was found for the gamma band (0.83-0.98), the global power spectral density (0.78-0.96), and the sample entropy (0.86-0.90). Electrophysiological correlates of distinct meditation states were identified and the relationship between nonlinear complexity, critical brain dynamics, and spectral features was determined. The meditation states could be discriminated with nonlinear measures and quantified by the degree of neuronal complexity, long-range temporal correlations, and power law distributions in neuronal avalanches.
Collapse
Affiliation(s)
- Nike Walter
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| | - Thilo Hinterberger
- Department of Psychosomatic Medicine, Section of
Applied Consciousness Sciences, University Hospital of Regensburg,
Franz-Josef-Strauß Allee 11, Regensburg 93059, Germany
| |
Collapse
|
42
|
Mediano PAM, Rosas FE, Bor D, Seth AK, Barrett AB. The strength of weak integrated information theory. Trends Cogn Sci 2022; 26:646-655. [PMID: 35659757 DOI: 10.1016/j.tics.2022.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The integrated information theory of consciousness (IIT) is divisive: while some believe it provides an unprecedentedly powerful approach to address the 'hard problem', others dismiss it on grounds that it is untestable. We argue that the appeal and applicability of IIT can be greatly widened if we distinguish two flavours of the theory: strong IIT, which identifies consciousness with specific properties associated with maxima of integrated information; and weak IIT, which tests pragmatic hypotheses relating aspects of consciousness to broader measures of information dynamics. We review challenges for strong IIT, explain how existing empirical findings are well explained by weak IIT without needing to commit to the entirety of strong IIT, and discuss the outlook for both flavours of IIT.
Collapse
Affiliation(s)
- Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Queen Mary University of London, London, UK.
| | - Fernando E Rosas
- Centre for Psychedelic Research, Imperial College London, London, UK; Data Science Institute, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Queen Mary University of London, London, UK
| | - Anil K Seth
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton, UK; CIFAR Program on Brain, Mind, and Consciousness, Toronto, Canada
| | - Adam B Barrett
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton, UK; The Data Intensive Science Centre, Department of Informatics, University of Sussex, Brighton, UK.
| |
Collapse
|
43
|
Arena A, Juel BE, Comolatti R, Thon S, Storm JF. Capacity for consciousness under ketamine anaesthesia is selectively associated with activity in posteromedial cortex in rats. Neurosci Conscious 2022; 2022:niac004. [PMID: 35261778 PMCID: PMC8896332 DOI: 10.1093/nc/niac004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
It remains unclear how specific cortical regions contribute to the brain's overall capacity for consciousness. Clarifying this could help distinguish between theories of consciousness. Here, we investigate the association between markers of regionally specific (de)activation and the brain's overall capacity for consciousness. We recorded electroencephalographic responses to cortical electrical stimulation in six rats and computed Perturbational Complexity Index state-transition (PCIST), which has been extensively validated as an index of the capacity for consciousness in humans. We also estimated the balance between activation and inhibition of specific cortical areas with the ratio between high and low frequency power from spontaneous electroencephalographic activity at each electrode. We repeated these measurements during wakefulness, and during two levels of ketamine anaesthesia: with the minimal dose needed to induce behavioural unresponsiveness and twice this dose. We found that PCIST was only slightly reduced from wakefulness to light ketamine anaesthesia, but dropped significantly with deeper anaesthesia. The high-dose effect was selectively associated with reduced high frequency/low frequency ratio in the posteromedial cortex, which strongly correlated with PCIST. Conversely, behavioural unresponsiveness induced by light ketamine anaesthesia was associated with similar spectral changes in frontal, but not posterior cortical regions. Thus, activity in the posteromedial cortex correlates with the capacity for consciousness, as assessed by PCIST, during different depths of ketamine anaesthesia, in rats, independently of behaviour. These results are discussed in relation to different theories of consciousness.
Collapse
Affiliation(s)
- A Arena
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - B E Juel
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
- Center for Sleep and Consciousness, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - R Comolatti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - S Thon
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - J F Storm
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
44
|
Wiese W, Friston KJ. AI ethics in computational psychiatry: From the neuroscience of consciousness to the ethics of consciousness. Behav Brain Res 2022; 420:113704. [PMID: 34871706 PMCID: PMC9125160 DOI: 10.1016/j.bbr.2021.113704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Methods used in artificial intelligence (AI) overlap with methods used in computational psychiatry (CP). Hence, considerations from AI ethics are also relevant to ethical discussions of CP. Ethical issues include, among others, fairness and data ownership and protection. Apart from this, morally relevant issues also include potential transformative effects of applications of AI-for instance, with respect to how we conceive of autonomy and privacy. Similarly, successful applications of CP may have transformative effects on how we categorise and classify mental disorders and mental health. Since many mental disorders go along with disturbed conscious experiences, it is desirable that successful applications of CP improve our understanding of disorders involving disruptions in conscious experience. Here, we discuss prospects and pitfalls of transformative effects that CP may have on our understanding of mental disorders. In particular, we examine the concern that even successful applications of CP may fail to take all aspects of disordered conscious experiences into account.
Collapse
Affiliation(s)
- Wanja Wiese
- Institute of Philosophy II, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3AR, UK
| |
Collapse
|