1
|
Galuška D, Pácal L, Chalásová K, Divácká P, Řehořová J, Svojanovský J, Hubáček JA, Lánská V, Kaňková K. T2DM/CKD genetic risk scores and the progression of diabetic kidney disease in T2DM subjects. Gene 2024; 927:148724. [PMID: 38909968 DOI: 10.1016/j.gene.2024.148724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
This study aimed at understanding the predictive potential of genetic risk scores (GRS) for diabetic kidney disease (DKD) progression in patients with type 2 diabetes mellitus (T2DM) and Major Cardiovascular Events (MCVE) and All-Cause Mortality (ACM) as secondary outcomes. We evaluated 30 T2DM and CKD GWAS-derived single nucleotide polymorphisms (SNPs) and their association with clinical outcomes in a central European cohort (n = 400 patients). Our univariate Cox analysis revealed significant associations of age, duration of diabetes, diastolic blood pressure, total cholesterol and eGFR with progression of DKD (all P < 0.05). However, no single SNP was conclusively associated with progression to DKD, with only CERS2 and SHROOM3 approaching statistical significance. While a single SNP was associated with MCVE - WSF1 (P = 0.029), several variants were associated with ACM - specifically CANCAS1, CERS2 and C9 (all P < 0.02). Our GRS did not outperform classical clinical factors in predicting progression to DKD, MCVE or ACM. More precisely, we observed an increase only in the area under the curve (AUC) in the model combining genetic and clinical factors compared to the clinical model alone, with values of 0.582 (95 % CI 0.487-0.676) and 0.645 (95 % CI 0.556-0.735), respectively. However, this difference did not reach statistical significance (P = 0.06). This study highlights the complexity of genetic predictors and their interplay with clinical factors in DKD progression. Despite the promise of personalised medicine through genetic markers, our findings suggest that current clinical factors remain paramount in the prediction of DKD. In conclusion, our results indicate that GWAS-derived GRSs for T2DM and CKD do not offer improved predictive ability over traditional clinical factors in the studied Czech T2DM population.
Collapse
Affiliation(s)
- David Galuška
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katarína Chalásová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Divácká
- Department of Gastroenterology, University Hospital Brno-Bohunice, Brno, Czech Republic
| | - Jitka Řehořová
- Department of Gastroenterology, University Hospital Brno-Bohunice, Brno, Czech Republic
| | - Jan Svojanovský
- Department of Internal Medicine, St. Anne's University Hospital, Brno, Czech Republic
| | - Jaroslav A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; 3rd Department of Internal Medicine, 1(st) Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Věra Lánská
- Department of Data Science, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Hong H, Zhou S, Zheng J, Shi H, Chen Y, Li M. Metabolic Assessment in Non-Dialysis Patients with Chronic Kidney Disease. J Inflamm Res 2024; 17:5521-5531. [PMID: 39176038 PMCID: PMC11339343 DOI: 10.2147/jir.s461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Purpose The aim of this study was to investigate the changes of different metabolites in the body fluids of non-dialysis patients with chronic kidney disease (CKD) using a metabolomics approach. The goal was to identify early biomarkers of CKD progression through metabolic pathway analysis. Patients and Methods Plasma samples from 47 patients with stages 1-4 CKD not requiring dialysis and 30 healthy controls were analyzed by liquid chromatography-mass spectrometry (LC-MS). Using multivariate data analysis, specifically a partially orthogonal least squares discriminant analysis model (OPLS-DA), we investigated metabolic differences between different stages of CKD. The sensitivity and specificity of the analysis were evaluated using the Area Under Curve (AUC) method. Furthermore, the metabolic pathways were analyzed using the Met PA database. Results Plasma samples from CKD patients and controls were successfully differentiated using an OPLS-DA model. Initially, twenty-five compounds were identified as potential plasma metabolic markers for distinguishing CKD patients from healthy controls. Among these, six compounds (ADMA, D-Ornithine, Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid) were found to be associated with CKD progression It has been found to be associated with the progression of CKD. Changes in metabolic pathways associated with CKD progression include arginine and ornithine metabolism, tryptophan metabolism, and the pentose phosphate pathway. Conclusion By analyzing the metabolic pathways of different metabolites, we have identified the significant impact of CKD progression. The main metabolic pathways involved are Arginine and Ornithine metabolism, Tryptophan metabolism, and Pentose phosphate pathway. ADMA, D-Ornithine, L-Kynurenine, Kynurenic acid, 5-Hydroxyindoleacetic acid, and Gluconic acid could serve as potential early biomarkers for CKD progression. These findings have important implications for the early intervention and treatment of CKD, as well as for further research into the underlying mechanisms of its pathogenesis.
Collapse
Affiliation(s)
- Hao Hong
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| | - Suya Zhou
- Laboratory Nephrology, Jinshan hospital of Fudan University, Shanghai, People’s Republic of China
| | - Junyao Zheng
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| | - Haimin Shi
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| | - Yue Chen
- Laboratory Nephrology, The First People’s Hospital of Kunshan, Soochow, Suzhou, People’s Republic of China
| | - Ming Li
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, Suzhou, People’s Republic of China
| |
Collapse
|
3
|
Ziegler D, Thorand B, Strom A, Bönhof GJ, Knebel B, Schleicher E, Rathmann W, Herder C, Maalmi H, Gieger C, Heier M, Meisinger C, Roden M, Peters A, Grallert H. Association of transketolase polymorphisms with diabetic polyneuropathy in the general population: The KORA F4 study. Diabetes Metab Res Rev 2024; 40:e3834. [PMID: 38961642 DOI: 10.1002/dmrr.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
AIMS We recently reported that genetic variability in the TKT gene encoding transketolase, a key enzyme in the pentose phosphate pathway, is associated with measures of diabetic sensorimotor polyneuropathy (DSPN) in recent-onset diabetes. Here, we aimed to substantiate these findings in a population-based KORA F4 study. MATERIALS AND METHODS In this cross-sectional study, we assessed seven single nucleotide polymorphisms (SNPs) in the transketolase gene in 952 participants from the KORA F4 study with normal glucose tolerance (NGT; n = 394), prediabetes (n = 411), and type 2 diabetes (n = 147). DSPN was defined by the examination part of the Michigan Neuropathy Screening Instrument (MNSI) using the original MNSI > 2 cut-off and two alternative versions extended by touch/pressure perception (TPP) (MNSI > 3) and by TPP plus cold perception (MNSI > 4). RESULTS After adjustment for sex, age, BMI, and HbA1c, in type 2 diabetes participants, four out of seven transketolase SNPs were associated with DSPN for all three MNSI versions (all p ≤ 0.004). The odds ratios of these associations increased with extending the MNSI score, for example, OR (95% CI) for SNP rs62255988 with MNSI > 2: 1.99 (1.16-3.41), MNSI > 3: 2.27 (1.26-4.09), and MNSI > 4: 4.78 (2.22-10.26); SNP rs9284890 with MNSI > 2: 2.43 (1.42-4.16), MNSI > 3: 3.46 (1.82-6.59), and MNSI > 4: 4.75 (2.15-10.51). In contrast, no associations were found between transketolase SNPs and the three MNSI versions in the NGT and prediabetes groups. CONCLUSIONS The link of genetic variation in transketolase enzyme to diabetic polyneuropathy corroborated at the population level strengthens the concept suggesting an important role of pathways metabolising glycolytic intermediates in the evolution of diabetic polyneuropathy.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- Faculty of Medicine, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, At Heinrich Heine University, Düsseldorf, Germany
| | - Erwin Schleicher
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, Partner Tübingen, Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
| | - Haifa Maalmi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Margit Heier
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | | | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- Faculty of Medicine, Institute for Medical Information Processing, Biometry and Epidemiology (IBE), LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
4
|
Hajdú N, Rácz R, Tordai DZ, Békeffy M, Vági OE, Istenes I, Körei AE, Kempler P, Putz Z. Genetic Variants Influence the Development of Diabetic Neuropathy. Int J Mol Sci 2024; 25:6429. [PMID: 38928135 PMCID: PMC11203776 DOI: 10.3390/ijms25126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The exact mechanism by which diabetic neuropathy develops is still not fully known, despite our advances in medical knowledge. Progressing neuropathy may occur with a persistently favorable metabolic status in some patients with diabetes mellitus, while, in others, though seldom, a persistently unfavorable metabolic status is not associated with significant neuropathy. This might be significantly due to genetic differences. While recent years have brought compelling progress in the understanding of the pathogenetic background-in particular, accelerated progress is being made in understanding molecular biological mechanisms-some aspects are still not fully understood. A comparatively small amount of information is accessible on this matter; therefore, by summarizing the available data, in this review, we aim to provide a clearer picture of the current state of knowledge, identify gaps in the previous studies, and possibly suggest directions for future studies. This could help in developing more personalized approaches to the prevention and treatment of diabetic neuropathy, while also taking into account individual genetic profiles.
Collapse
|
5
|
Ziegler D, Reiners K, Strom A, Obeid R. Association between diabetes and thiamine status - A systematic review and meta-analysis. Metabolism 2023; 144:155565. [PMID: 37094704 DOI: 10.1016/j.metabol.2023.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Thiamine (vitamin B1) is an essential cofactor in glucose metabolism, but it remains unclear whether thiamine status is lower in individuals with diabetes compared to individuals with normal glucose metabolism. AIMS We conducted a systematic review and meta-analysis to study whether the circulating concentrations of various thiamine analytes differ between people with and those without diabetes. METHODS PubMed and the Cochrane Central Register of Controlled Trials were searched according to the study protocol. The standardized mean difference (SMD) and 95 % confidence intervals (CI) of thiamine markers between individuals with and without diabetes were used as effect size (random effects model). Subgroup analysis considered albuminuria as an additional variable. RESULTS Out of the 459 articles identified, 24 full-texts were eligible for the systematic review, 20 of which qualified for the data analysis and four were evaluated for coherence. Compared to controls, individuals with diabetes showed lower concentrations of thiamine (pooled estimate SMD [95 % CI]: -0.97 [-1.89, -0.06]), thiamine monophosphate (-1.16 [-1.82, -0.50]), and total thiamine compounds (-1.01 [-1.48, -0.54]). Thiamine diphosphate (-0.72 [-1.54, 0.11] and erythrocyte transketolase activity (-0.42 [-0.90, 0.05]) tended to be lower in persons with diabetes than in controls without reaching statistical significance. Subgroup analysis showed that individuals with diabetes and albuminuria had lower thiamine levels than the controls (-2.68 [-5.34, -0.02]). CONCLUSIONS Diabetes is associated with lower levels of various thiamine markers, suggesting that individuals with diabetes may have higher thiamine requirements than those without diabetes, but well-designed studies are required to confirm these findings.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | | | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, D-66421 Homburg, Saar, Germany
| |
Collapse
|
6
|
Feng F, Yang H, Yang W, Chen Y. Metabolic resuscitation therapy in critically ill patients with sepsis and septic shock: A pilot prospective randomized controlled trial. Open Med (Wars) 2023; 18:20230637. [PMID: 36865494 PMCID: PMC9971735 DOI: 10.1515/med-2023-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 02/26/2023] Open
Abstract
The main purpose of our research was to further clarify the effectiveness and potential pathophysiological principles of metabolic resuscitation therapy in critically ill patients with sepsis and septic shock. We found that metabolic resuscitation therapy is beneficial for patients with sepsis and septic shock, shortening the length of intensive care unit (ICU) stay, reducing the duration of vasopressor use, and reducing the ICU mortality rate of patients with sepsis and septic shock, but it does not reduce the hospital mortality rate.
Collapse
Affiliation(s)
- Fang Feng
- Intensive Care Unit of Lanzhou University Second Hospital, No. 82, Cuiying Gate, Chengguanqu, Lanzhou, Gansu 730000, China
| | - Huyong Yang
- Intensive Care Unit of People’s Hospital of Linxia State, Linxia, Gansu 730000, China
| | - Weiwei Yang
- Intensive Care Unit of People’s Hospital of Linxia State, Linxia, Gansu 730000, China
| | - Yu Chen
- Intensive Care Unit of Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
7
|
Patel J, Torrealba JR, Poggio ED, Bebiak J, Alpers CE, Grewenow SM, Toto RD, Eadon MT. Molecular Signatures of Diabetic Kidney Disease Hiding in a Patient with Hypertension-Related Kidney Disease: A Clinical Pathologic Molecular Correlation. Clin J Am Soc Nephrol 2022; 17:594-601. [PMID: 34911732 PMCID: PMC8993486 DOI: 10.2215/cjn.10350721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Kidney Precision Medicine Project (KPMP) seeks to establish a molecular atlas of the kidney in health and disease and improve our understanding of the molecular drivers of CKD and AKI. Herein, we describe the case of a 66-year-old woman with CKD who underwent a protocol KPMP kidney biopsy. Her clinical history included well-controlled diabetes mellitus, hypertension, and proteinuria. The patient's histopathology was consistent with modest hypertension-related kidney injury, without overt diabetic kidney disease. Transcriptomic signatures of the glomerulus, interstitium, and tubular subsegments were obtained from laser microdissected tissue. The molecular signatures that were uncovered revealed evidence of early diabetic kidney disease adaptation and ongoing active tubular injury with enriched pathways related to mesangial cell hypertrophy, glycosaminoglycan biosynthesis, and apoptosis. Molecular evidence of diabetic kidney disease was found across the nephron. Novel molecular assays can supplement and enrich the histopathologic diagnosis obtained from a kidney biopsy.
Collapse
Affiliation(s)
- Jiten Patel
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Jose R. Torrealba
- Department of Pathology, University of Texas Southwestern, Dallas, Texas
| | - Emilio D. Poggio
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jack Bebiak
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Stephanie M. Grewenow
- Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, Washington
| | - Robert D. Toto
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Michael T. Eadon
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
8
|
Valdés A, Lucio-Cazaña FJ, Castro-Puyana M, García-Pastor C, Fiehn O, Marina ML. Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu. Sci Rep 2021; 11:5058. [PMID: 33658594 PMCID: PMC7930035 DOI: 10.1038/s41598-021-84590-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Although hyperglycaemia has been determined as the most important risk factor, hypoxia also plays a relevant role in the development of this disease. In this work, a comprehensive metabolomic study of the response of HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells, to hyperglycemic, hypoxic diabetic-like milieu has been performed. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions (5.5 mM glucose/18.6% O2) at 48 h. The combination of advanced metabolomic platforms (GC-TOF MS, HILIC- and CSH-QExactive MS/MS), freely available metabolite annotation tools, novel databases and libraries, and stringent cut-off filters allowed the annotation of 733 metabolites intracellularly and 290 compounds in the extracellular medium. Advanced bioinformatics and statistical tools demonstrated that several pathways were significantly altered, including carbohydrate and pentose phosphate pathways, as well as arginine and proline metabolism. Other affected metabolites were found in purine and lipid metabolism, the protection against the osmotic stress and the prevention of the activation of the β-oxidation pathway. Overall, the effects of the combined exposure of HK-cells to high glucose and hypoxia are reasonably compatible with previous in vivo works.
Collapse
Affiliation(s)
- Alberto Valdés
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
- West Coast Metabolomics Center, UC Davis, Davis, CA, USA.
| | - Francisco J Lucio-Cazaña
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis, Davis, CA, USA
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, España.
| |
Collapse
|
9
|
Gu N, Dai W, Liu H, Ge J, Luo S, Cho E, Amos CI, Lee JE, Li X, Nan H, Yuan H, Wei Q. Genetic variants in TKT and DERA in the nicotinamide adenine dinucleotide phosphate pathway predict melanoma survival. Eur J Cancer 2020; 136:84-94. [PMID: 32659474 DOI: 10.1016/j.ejca.2020.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cutaneous melanoma (CM) is the most lethal type of skin cancers. Nicotinamide adenine dinucleotide phosphate (NADPH) plays an important role in anabolic reactions and tumorigenesis, but many genes are involved in the NADPH system. METHODS We used 10,912 single-nucleotide polymorphisms (SNPs) (2018 genotyped and 8894 imputed) in 134 NADPH-related genes from a genome-wide association study (GWAS) of 858 patients from The University of Texas MD Anderson Cancer Center (MDACC) in a single-locus analysis to predict CM survival. We then replicated the results in another GWAS data set of 409 patients from the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). RESULTS There were 95 of 858 (11.1%) and 48 of 409 (11.7%) patients who died of CM, respectively. In multivariable Cox regression analyses, we identified two independent SNPs (TKT rs9864057 G > A and deoxyribose phosphate aldolase (DERA) rs12297652 A > G) to be significantly associated with CM-specific survival [hazards ratio (HR) of 1.52, 95% confidence interval (CI) = 1.18-1.96, P = 1.06 × 10-3 and 1.51 (1.19-1.91, 5.89 × 10-4)] in the meta-analysis, respectively. Furthermore, an increasing number of risk genotypes of these two SNPs was associated with a higher risk of death in the MDACC, the NHS/HPFS, and their combined data sets (Ptrend<0.001, = 0.004 and <0.001, respectively). In the expression quantitative trait loci analysis, TKT rs9864057 G > A and DERA rs12297652 A > G were also significantly associated with higher mRNA expression levels in sun-exposed lower-leg skin (P = 0.043 and 0.006, respectively). CONCLUSIONS These results suggest that these two potentially functional SNPs may be valuable prognostic biomarkers for CM survival, but larger studies are needed to validate these findings.
Collapse
Affiliation(s)
- Ning Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wei Dai
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jie Ge
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Li
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Hongmei Nan
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA; Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Anwar A, Ahmed Azmi M, Siddiqui JA, Panhwar G, Shaikh F, Ariff M. Thiamine Level in Type I and Type II Diabetes Mellitus Patients: A Comparative Study Focusing on Hematological and Biochemical Evaluations. Cureus 2020; 12:e8027. [PMID: 32528766 PMCID: PMC7282352 DOI: 10.7759/cureus.8027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Diabetes has been found to be associated with low levels of thiamine stores in the body, as thiamine directly affects carbohydrate metabolism. Amplified renal clearance of thiamine has been found in both type I and type II diabetic patients. It has been shown that high-dose thiamine therapy may have a therapeutic effect on early-stage diabetic nephropathy. The aim of this study was to evaluate various biochemical parameters and serum thiamine levels in type I and type II diabetic patients and compare them with a healthy control group. Methods A case-control study was carried out in the diabetic out-patient multi-centers in Karachi. A total of 90 participants were selected by using a non-probability convenient sampling technique and divided into three groups, each with 30 subjects. Group A included healthy non-diabetic subjects, while group B included subjects with type I diabetes mellitus (DM), and group C included subjects with type II DM. After receiving informed consent, blood samples were collected from all the participants for hematological and biochemical evaluation. The duration of the study was eight months. Results The study results revealed that the patients with type II DM had significantly higher mean fasting blood sugar (FBS), random blood sugar (RBS), and hemoglobin A1c (HbA1c) levels than those with type I DM or the control group (p<0.001 for all). Furthermore, the patients with type I or II DM had significantly higher mean levels of triglyceride (p<0.001) and total cholesterol (0.013) while significantly lower mean levels of high-density lipoprotein (HDL) (p=0.014) than controls. The study results further revealed that the patients with type I or II DM had significantly lower serum thiamine levels than controls (14.89±4.82 and 7.35±1.90 vs. 69.56±12.75, p<0.001). Conclusion The study results revealed that FBS, RBS, HbA1c, triglyceride, and total cholesterol levels were significantly higher in both type I and type II diabetes patients compared to controls. Furthermore, HDL and serum thiamine levels were found to be significantly lower in both type I and type II diabetic patients than in controls.
Collapse
Affiliation(s)
- Adnan Anwar
- Stereotactic Radiosurgery/Radiation Oncology, Al-Tibri Medical College, Karachi, PAK
- Physiology, Al-Tibri Medical College, Karachi, PAK
| | - Muhammad Ahmed Azmi
- Physiology, Al-Tibri Medical College and Hospital, Karachi, PAK
- Physiology, Isra University, Karachi, PAK
| | - Jamil Ahmed Siddiqui
- Biochemistry, Fazaia Ruth Pfau Medical College, Karachi, PAK
- Biochemistry, Al-Tibri Medical College, Karachi, PAK
| | - Ghazala Panhwar
- Biochemistry, Al-Tibri Medical College and Hospital, Karachi, PAK
| | | | - Madiha Ariff
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
11
|
Steyn A, Crowther NJ, Norris SA, Rabionet R, Estivill X, Ramsay M. Epigenetic modification of the pentose phosphate pathway and the IGF-axis in women with gestational diabetes mellitus. Epigenomics 2019; 11:1371-1385. [PMID: 31583916 DOI: 10.2217/epi-2018-0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Gestational diabetes mellitus (GDM) has been linked with adverse long-term health outcomes for the fetus and mother. These effects may be mediated by epigenetic modifications. Materials & methods: Genome-wide RNA sequencing was performed in placental tissue and maternal blood in six GDM and six non-GDM pregnancies. Promoter region DNA methylation was examined for selected genes and correlated with gene expression to examine an epigenetic modulator mechanism. Results: Reductions of mRNA expression and increases in promoter methylation were observed for G6PD in GDM women, and for genes encoding IGF-binding proteins in GDM-exposed placenta. Conclusion: GDM involves epigenetic attenuation of G6PD, which may lead to hyperglycemia and oxidative stress, and the IGF-axis, which may modulate fetal macrosomia.
Collapse
Affiliation(s)
- Angela Steyn
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel J Crowther
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,The Department of Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Shane A Norris
- Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Raquel Rabionet
- The Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain
| | - Xavier Estivill
- The Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,The Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
12
|
Evliyaoglu O, van Helden J, Imöhl M, Weiskirchen R. Vitamin B1 interpretation: Erroneous higher levels in non-anemic populations. Nutrition 2019; 60:25-29. [DOI: 10.1016/j.nut.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/14/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
|
13
|
Moskowitz A, Andersen LW, Huang DT, Berg KM, Grossestreuer AV, Marik PE, Sherwin RL, Hou PC, Becker LB, Cocchi MN, Doshi P, Gong J, Sen A, Donnino MW. Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit Care 2018; 22:283. [PMID: 30373647 PMCID: PMC6206928 DOI: 10.1186/s13054-018-2217-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
The combination of thiamine, ascorbic acid, and hydrocortisone has recently emerged as a potential adjunctive therapy to antibiotics, infectious source control, and supportive care for patients with sepsis and septic shock. In the present manuscript, we provide a comprehensive review of the pathophysiologic basis and supporting research for each element of the thiamine, ascorbic acid, and hydrocortisone drug combination in sepsis. In addition, we describe potential areas of synergy between these therapies and discuss the strengths/weaknesses of the two studies to date which have evaluated the drug combination in patients with severe infection. Finally, we describe the current state of current clinical practice as it relates to the thiamine, ascorbic acid, and hydrocortisone combination and present an overview of the randomized, placebo-controlled, multi-center Ascorbic acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial and other planned/ongoing randomized clinical trials.
Collapse
Affiliation(s)
- Ari Moskowitz
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
| | - Lars W. Andersen
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - David T. Huang
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Katherine M. Berg
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
| | - Anne V. Grossestreuer
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
| | - Paul E. Marik
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA USA
| | - Robert L. Sherwin
- Department of Emergency Medicine, Wayne State University School of Medicine/Detroit Receiving Hospital, Detroit, MI USA
| | - Peter C. Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Lance B. Becker
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
- Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Michael N. Cocchi
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Department of Anesthesia Critical Care, Division of Critical Care, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Pratik Doshi
- Department of Emergency Medicine and Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Jonathan Gong
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New Hyde Park, NY USA
| | - Ayan Sen
- Department of Critical Care Medicine, Mayo Clinic, Phoenix, AZ USA
| | - Michael W. Donnino
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Beth Israel Deaconess Medical Center, Emergency Medicine, One Deaconess Rd, W/CC 2, Boston, MA 02215 USA
| |
Collapse
|
14
|
Pácal L, Chalásová K, Pleskačová A, Řehořová J, Tomandl J, Kaňková K. Deleterious Effect of Advanced CKD on Glyoxalase System Activity not Limited to Diabetes Aetiology. Int J Mol Sci 2018; 19:ijms19051517. [PMID: 29783710 PMCID: PMC5983829 DOI: 10.3390/ijms19051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022] Open
Abstract
Methylglyoxal production is increased in diabetes. Methylglyoxal is efficiently detoxified by enzyme glyoxalase 1 (GLO1). The aim was to study the effect of diabetic and CKD milieu on (a) GLO1 gene expression in peripheral blood mononuclear cells; (b) GLO1 protein levels in whole blood; and (c) GLO1 activity in RBCs in vivo in diabetic vs. non-diabetic subjects with normal or slightly reduced vs. considerably reduced renal function (CKD1-2 vs. CKD3-4). A total of 83 subjects were included in the study. Gene expression was measured using real-time PCR, and protein levels were quantified using Western blotting. Erythrocyte GLO1 activity was measured spectrophotometrically. GLO1 gene expression was significantly higher in subjects with CKD1-2 compared to CKD3-4. GLO1 protein level was lower in diabetics than in non-diabetics. GLO1 activity in RBCs differed between the four groups being significantly higher in diabetics with CKD1-2 vs. healthy subjects and vs. nondiabeticsfig with CKD3-4. GLO1 activity was significantly higher in diabetics compared to nondiabetics. In conclusion, both diabetes and CKD affects the glyoxalase system. It appears that CKD in advanced stages has prevailing and suppressive effects compared to hyperglycaemia. CKD decreases GLO1 gene expression and protein levels (together with diabetes) without concomitant changes of GLO1 activity.
Collapse
Affiliation(s)
- Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Katarína Chalásová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Anna Pleskačová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Jitka Řehořová
- Department of Gastroenterology, University Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic.
| | - Josef Tomandl
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| |
Collapse
|
15
|
Spallone V. Might genetics play a role in understanding and treating diabetic polyneuropathy? Diabetes Metab Res Rev 2017; 33. [PMID: 28032668 DOI: 10.1002/dmrr.2882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022]
Abstract
Despite the high prevalence and impact on quality of life, costs, and survival, there are still unresolved issues regarding diabetic polyneuropathy (DPN): the lack of definite knowledge of its pathogenesis; the limited preventive action of glycaemic control in type 2 diabetes; and the unavailability of evidence-based effective disease-modifying treatment. How can genetics provide the tools to address these gaps? Ziegler et al for the GDS Group explore the novel hypothesis that genetic variability in transketolase (TKT) might contribute to susceptibility to DPN in patients with newly diagnosed type 1 and type 2 diabetes (well characterised for DPN). Transketolase diverts excess glycolytic metabolites from the hexosamine, protein kinase C, and advanced glycation endproduct pathways to the pentose phosphate pathway, with a protective effect against hyperglycaemia-induced damage. Moreover, thiamine and its derivative benfotiamine are among the few disease-modifying agents still under consideration as DPN treatment. The authors find significant associations of single-nucleotide polymorphisms of the TKT gene with the Total Symptom Score and thermal thresholds, in particular in male participants with type 2 diabetes. Moreover, they measure plasma methylglyoxal (a glycating agent, whose availability is hindered by TKT) without however finding a relation with TKT single-nucleotide polymorphisms. The link found between TKT genetic variability and nerve function measures is considered here in the context of DPN genetic studies and of experimental and clinical findings regarding thiamine and benfotiamine. The conclusion is that available data supports the decision to maintain focus on both the search for DPN genetic biomarkers and the therapeutic attempts to target thiamine, TKT, and methylglyoxal.
Collapse
Affiliation(s)
- Vincenza Spallone
- Endocrinology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Ziegler D, Schleicher E, Strom A, Knebel B, Fleming T, Nawroth P, Häring HU, Papanas N, Szendrödi J, Müssig K, Al-Hasani H, Roden M. Association of transketolase polymorphisms with measures of polyneuropathy in patients with recently diagnosed diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 27103086 DOI: 10.1002/dmrr.2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Shunting of glycolytic intermediates into the pentose phosphate pathway has been suggested to protect from hyperglycaemia-induced microvascular damage. We hypothesized that genetic variability in the gene encoding transketolase, a key pentose phosphate pathway enzyme, contributes to early nerve dysfunction in recent-onset diabetes. METHODS In this cross-sectional study, we assessed nine single nucleotide polymorphisms (SNPs) in the transketolase gene, plasma methylglyoxal concentrations, and clinical and quantitative measures of peripheral nerve function in 165 type 1 and 373 type 2 diabetic patients with a diabetes duration up to 1 year. RESULTS The Total Symptom Score was associated with transketolase SNPs rs7648309, rs62255988, and rs7633966, while peroneal motor nerve conduction velocity (MNCV) correlated only with rs7648309 (P < 0.01). Cold thermal detection threshold (TDT) (foot) was associated with transketolase SNPs rs11130362 and rs7648309, while warm TDT (hand) correlated with rs62255988 and rs7648309 (P < 0.01). After Bonferroni correction, the correlations of transketolase SNP rs7648309 with Total Symptom Score and rs62255988 with warm TDT (hand) remained statistically significant. Among subgroups, men with type 2 diabetes showed the strongest associations. No associations were observed between each of the nine tagged transketolase SNPs and plasma methylglyoxal concentrations. CONCLUSIONS The observed associations of genetic variation in transketolase enzyme with neuropathic symptoms and reduced thermal sensation in recent-onset diabetes suggest a role of pathways metabolizing glycolytic intermediates in early diabetic neuropathy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Erwin Schleicher
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Thomas Fleming
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Julia Szendrödi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
17
|
Bartáková V, Pleskačová A, Kuricová K, Pácal L, Dvořáková V, Bělobrádková J, Tomandlová M, Tomandl J, Kaňková K. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes. Glycoconj J 2016; 33:591-8. [PMID: 27287225 DOI: 10.1007/s10719-016-9688-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
While the pathogenic role of dicarbonyl stress and accelerated formation of advanced glycation end products (AGEs) to glucose intolerance and to the development of diabetic complications is well established, little is known about these processes in gestational diabetes mellitus (GDM), a condition pathogenically quite similar to type 2 diabetes. The aims of the present study were (i) to determine plasma thiamine and erythrocyte thiamine diphosphate (TDP) and transketolase (TKT) activity in pregnant women with and without GDM, (ii) to assess relationships between thiamine metabolism parameters and selected clinical, biochemical and anthropometric characteristics and, finally, (iii) to analyse relationship between variability in the genes involved in the regulation of transmembrane thiamine transport (i.e. SLC19A2 and SLC19A3) and relevant parameters of thiamine metabolism. We found significantly lower plasma BMI adjusted thiamine in women with GDM (P = 0.002, Mann-Whitney) while levels of erythrocyte TDP (an active TKT cofactor) in mid-trimester were significantly higher in GDM compared to controls (P = 0.04, Mann-Whitney). However, mid-gestational TKT activity - reflecting pentose phosphate pathway activity - did not differ between the two groups (P > 0.05, Mann-Whitney). Furthermore, we ascertained significant associations of postpartum TKT activity with SNPs SLC19A2 rs6656822 and SLC19A3 rs7567984 (P = 0.03 and P = 0.007, resp., Kruskal-Wallis). Our findings of increased thiamine delivery to the cells without concomitant increase of TKT activity in women with GDM therefore indicate possible pathogenic role of thiamine mishandling in GDM. Further studies are needed to determine its contribution to maternal and/or neonatal morbidity.
Collapse
Affiliation(s)
- Vendula Bartáková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Anna Pleskačová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic.,Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Katarína Kuricová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Veronika Dvořáková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Jana Bělobrádková
- Diabetes Centre, Department of Internal Medicine - Gastroenterology, University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Marie Tomandlová
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Josef Tomandl
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic.
| |
Collapse
|
18
|
Urinary candidate biomarker discovery in a rat unilateral ureteral obstruction model. Sci Rep 2015; 5:9314. [PMID: 25791774 PMCID: PMC4366765 DOI: 10.1038/srep09314] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Urine has the potential to become a better source of biomarkers. Urinary proteins are affected by many factors; therefore, differentiating between the variables associated with any particular pathophysiological condition in clinical samples is challenging. To circumvent these problems, simpler systems, such as animal models, should be used to establish a direct relationship between disease progression and urine changes. In this study, a unilateral ureteral obstruction (UUO) model was used to observe tubular injury and the eventual development of renal fibrosis, as well as to identify differential urinary proteins in this process. Urine samples were collected from the residuary ureter linked to the kidney at 1 and 3 weeks after UUO. Five hundred proteins were identified and quantified by LC-MS/MS, out of which 7 and 19 significantly changed in the UUO 1- and 3-week groups, respectively, compared with the sham-operation group. Validation by western blot showed increased levels of Alpha-actinin-1 and Moesin in the UUO 1-week group, indicating that they may serve as candidate biomarkers of renal tubular injury, and significantly increased levels of Vimentin, Annexin A1 and Clusterin in the UUO 3-week group, indicating that they may serve as candidate biomarkers of interstitial fibrosis.
Collapse
|
19
|
Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014; 324:55-67. [PMID: 25058043 DOI: 10.1016/j.tox.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca(2+) levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity.
Collapse
|
20
|
Pácal L, Kuricová K, Kaňková K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J Diabetes 2014; 5:288-295. [PMID: 24936250 PMCID: PMC4058733 DOI: 10.4239/wjd.v5.i3.288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023] Open
Abstract
Growing prevalence of diabetes (type 2 as well as type 1) and its related morbidity due to vascular complications creates a large burden on medical care worldwide. Understanding the molecular pathogenesis of chronic micro-, macro- and avascular complications mediated by hyperglycemia is of crucial importance since novel therapeutic targets can be identified and tested. Thiamine (vitamin B1) is an essential cofactor of several enzymes involved in carbohydrate metabolism and published data suggest that thiamine metabolism in diabetes is deficient. This review aims to point out the physiological role of thiamine in metabolism of glucose and amino acids, to present overview of thiamine metabolism and to describe the consequences of thiamine deficiency (either clinically manifest or latent). Furthermore, we want to explain why thiamine demands are increased in diabetes and to summarise data indicating thiamine mishandling in diabetics (by review of the studies mapping the prevalence and the degree of thiamine deficiency in diabetics). Finally, we would like to summarise the evidence for the beneficial effect of thiamine supplementation in progression of hyperglycemia-related pathology and, therefore, to justify its importance in determining the harmful impact of hyperglycemia in diabetes. Based on the data presented it could be concluded that although experimental studies mostly resulted in beneficial effects, clinical studies of appropriate size and duration focusing on the effect of thiamine supplementation/therapy on hard endpoints are missing at present. Moreover, it is not currently clear which mechanisms contribute to the deficient action of thiamine in diabetes most. Experimental studies on the molecular mechanisms of thiamine deficiency in diabetes are critically needed before clear answer to diabetes community could be given.
Collapse
|
21
|
Srikrupa NN, Meenakshi S, Arokiasamy T, Murali K, Soumittra N. Leber’s Congenital Amaurosis as the Retinal Degenerative Phenotype in Thiamine Responsive Megaloblastic Anemia: A Case Report. Ophthalmic Genet 2013; 35:119-24. [DOI: 10.3109/13816810.2013.793363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Król E, Krejpcio Z, Michalak S, Wójciak RW, Bogdański P. Effects of combined dietary chromium(III) propionate complex and thiamine supplementation on insulin sensitivity, blood biochemical indices, and mineral levels in high-fructose-fed rats. Biol Trace Elem Res 2012; 150:350-9. [PMID: 23065486 PMCID: PMC3510416 DOI: 10.1007/s12011-012-9515-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/26/2012] [Indexed: 12/22/2022]
Abstract
Insulin resistance is the first step in glucose intolerance and the development of type 2 diabetes mellitus, thus effective prevention strategies should also include dietary interventions to enhance insulin sensitivity. Nutrients, such as microelement chromium(III) and thiamine, play regulatory roles in carbohydrate metabolism. The objective of this study was to evaluate the insulin-sensitizing potential of the combined supplementary chromium(III) propionate complex (CrProp) and thiamine in insulin resistance animal model (rats fed a high-fructose diet). The experiment was carried out on 40 nine-week-old male Wistar rats divided into five groups (eight animals each). Animals were fed ad libitum: the control diet (AIN-93 M) and high-fructose diets with and without a combination of two levels of CrProp (0.1 and 1 mg Cr/kg body mass/day) and two levels of thiamine (0.5 and 10 mg/kg body mass/day) for 8 weeks. At the end of the experiment rats were sacrificed to collect blood and internal organs for analyses of blood biochemical and hematologic indices as well as tissular microelement levels that were measured using appropriate methods. It was found that both supplementary CrProp and thiamine (given alone) have significant insulin-sensitizing and moderate blood-lipid-lowering properties, while the combined supplementation with these agents does not give synergistic effects in insulin-resistant rats. CrProp given separately increased kidney Cu and Cr levels, while thiamine alone increased hepatic Cu contents and decreased renal Zn and Cu contents.
Collapse
Affiliation(s)
- Ewelina Król
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, 31 Wojska Polskiego, 60-624, Poznan, Poland.
| | | | | | | | | |
Collapse
|
23
|
Luong KVQ, Nguyen LTH. The impact of thiamine treatment in the diabetes mellitus. J Clin Med Res 2012; 4:153-60. [PMID: 22719800 PMCID: PMC3376872 DOI: 10.4021/jocmr890w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2012] [Indexed: 01/19/2023] Open
Abstract
Thiamine acts as a coenzyme for transketolase (Tk) and for the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. The relationship between thiamine and diabetes mellitus (DM) has been reported in the literature. Thiamine levels and thiamine-dependent enzyme activities have been reduced in DM. Genetic studies provide opportunity to link the relationship between thiamine and DM (such as Tk, SLC19A2 gene, transcription factor Sp1, α-1-antitrypsin, and p53). Thiamine and its derivatives have been demonstrated to prevent the activation of the biochemical pathways (increased flux through the polyol pathway, formation of advanced glycation end-products, activation of protein kinase C, and increased flux through the hexosamine biosynthesis pathway) induced by hyperglycemia in DM.Thiamine definitively has a role in the diabetic endothelial vascular diseases (micro and macroangiopathy), lipid profile, retinopathy, nephropathy, cardiopathy, and neuropathy.
Collapse
|