1
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
2
|
Shen Q, Murakami K, Sotov V, Butler M, Ohashi PS, Reedijk M. Inhibition of Notch enhances efficacy of immune checkpoint blockade in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eado8275. [PMID: 39475614 PMCID: PMC11524187 DOI: 10.1126/sciadv.ado8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Aberrant Notch, which is a defining feature of triple-negative breast cancer (TNBC) cells, regulates intercellular communication in the tumor immune microenvironment (TIME). This includes tumor-associated macrophage (TAM) recruitment through Notch-dependent cytokine secretion, contributing to an immunosuppressive TIME. Despite the low response rate of TNBC to immune checkpoint blockade (ICB), here, we report that inhibition of Notch-driven cytokine-mediated programs reduces TAMs and induces responsiveness to sequentially delivered ICB. This is characterized by the emergence of GrB+ cytotoxic T lymphocytes (CTLs) in the primary tumor. A more impressive effect of sequential treatment is observed in the lung where TAM depletion and increased CTLs are accompanied by near-complete abolition of metastases. This is due to (i) therapeutic reduction in Notch-dependent, prometastatic circulating factors released by the primary tumor, and (ii) elevated PD ligand 1 (PD-L1) in lung metastases, rendering them profoundly sensitive to ICB. These findings highlight the potential of combination cytokine inhibition and ICB as an immunotherapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Qiang Shen
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Kiichi Murakami
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Valentin Sotov
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Marcus Butler
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Room 7205, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
| | - Michael Reedijk
- Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario M5G 2M9, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 8-411, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
3
|
Bisht A, Bhowmik S, Patel P, Gupta GD, Kurmi BD. Aptamer as a targeted approach towards treatment of breast cancer. J Drug Target 2024; 32:510-528. [PMID: 38512151 DOI: 10.1080/1061186x.2024.2333866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aptamers, a novel type of targeted ligand used in drug delivery, have quickly gained popularity due to their high target specificity and affinity. Different aptamer-mediated drug delivery systems, such as aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalised nanoparticle systems, are currently being developed for the successful treatment of cancer based on the excellent properties of aptamers. These systems can decrease potential toxicity and enhance therapeutic efficacy by targeting the drug moiety. In this review, we provide an overview of recent developments in aptamer-mediated delivery systems for cancer therapy, specifically for breast cancer, and talk about the potential applications and current issues of novel aptamer-based techniques. This study in aptamer technology for breast cancer therapy highlights key aptamers targeting well-established biomarkers such as HER2, oestrogen receptor, and progesterone receptor. Additionally, we explore the potential of aptamers in overcoming various challenges such as drug resistance and improving the delivery of therapeutic agents. This review aims to provide a deeper understanding of the present aptamer-based targeted delivery applications through in-depth analysis to increase efficacy and create new therapeutic approaches that may ultimately lead to better treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Anjali Bisht
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, Moga, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, India
| |
Collapse
|
4
|
Habiba UE, Khan N, Greene DL, Shamim S, Umer A. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease. J Mol Med (Berl) 2024; 102:537-570. [PMID: 38418620 PMCID: PMC10963471 DOI: 10.1007/s00109-024-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs' action in this disease progression. KEY MESSAGES: Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease. Mesenchymal stem cells alleviate in animal models having diabetic kidney disease. Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Umm E Habiba
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
| | - Nasar Khan
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
- Bello Bio Labs and Therapeutics (SMC) Pvt. Ltd., Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
| | - David Lawrence Greene
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
- Bello Bio Labs and Therapeutics (SMC) Pvt. Ltd., Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
| | - Sabiha Shamim
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| | - Amna Umer
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| |
Collapse
|
5
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Youssef N, Noureldein MH, Riachi ME, Haddad A, Eid AA. Macrophage polarization and signaling in diabetic kidney disease: a catalyst for disease progression. Am J Physiol Renal Physiol 2024; 326:F301-F312. [PMID: 38153850 DOI: 10.1152/ajprenal.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes affecting millions of people worldwide. Macrophages, a critical immune cell type, are central players in the development and progression of DKD. In this comprehensive review, we delve into the intricate role of macrophages in DKD, examining how they can become polarized into proinflammatory M1 or anti-inflammatory M2 phenotypes. We explore the signaling pathways involved in macrophage recruitment and polarization in the kidneys, including the key cytokines and transcription factors that promote M1 and M2 polarization. In addition, we discuss the latest clinical studies investigating macrophages in DKD and explore the potential of hypoglycemic drugs for modulating macrophage polarization. By gaining a deeper understanding of the mechanisms that regulate macrophage polarization in DKD, we may identify novel therapeutic targets for this debilitating complication of diabetes. This review provides valuable insights into the complex interplay between macrophages and DKD, shedding light on the latest developments in this important area of research. This review aims to enhance understanding of the role that macrophages play in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Natalie Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mansour E Riachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Antony Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
8
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
9
|
Juha M, Molnár A, Jakus Z, Ledó N. NETosis: an emerging therapeutic target in renal diseases. Front Immunol 2023; 14:1253667. [PMID: 37744367 PMCID: PMC10514582 DOI: 10.3389/fimmu.2023.1253667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear and granular components. The primary role of NETS is to prevent the dissemination of microbes and facilitate their elimination. However, this process is accompanied by collateral proinflammatory adverse effects when the NET release becomes uncontrollable, or clearance is impaired. Although NET-induced organ damage is conducted primarily and indirectly via immune complexes and the subsequent release of cytokines, their direct effects on cells are also remarkable. NETosis plays a critical pathogenic role in several renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic microangiopathies, anti-glomerular basement membrane disease, and diabetic nephropathy. Their substantial contribution in the course of these disorders makes them a desirable target in the therapeutic armamentarium. This article gives an in-depth review of the heterogeneous pathogenesis and physiological regulations of NETosis and its pivotal role in renal diseases. Based on the pathogenesis, the article also outlines the current therapeutic options and possible molecular targets in the treatment of NET-related renal disorders. Methods We carried out thorough literature research published in PubMed and Google Scholar, including a comprehensive review and analysis of the classification, pathomechanisms, and a broad spectrum of NET-related kidney disorders. Conclusions NETosis plays a pivotal role in certain renal diseases. It initiates and maintains inflammatory and autoimmune disorders, thus making it a desirable target for improving patient and renal outcomes. Better understanding and clinical translation of the pathogenesis are crucial aspects to treatment, for improving patient, and renal outcomes.
Collapse
Affiliation(s)
- Márk Juha
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Adél Molnár
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Nóra Ledó
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Zhang J, Zhu A, Mei M, Qu J, Huang Y, Shi Y, Xue M, Zhang J, Zhang R, Zhou B, Tan X, Zhao J, Wang Y. Repurposing CRISPR/Cas to Discover SARS-CoV-2 Detecting and Neutralizing Aptamers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300656. [PMID: 37204115 PMCID: PMC10401102 DOI: 10.1002/advs.202300656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/20/2023]
Abstract
RNA aptamers provide useful biological probes and therapeutic agents. New methodologies to screen RNA aptamers will be valuable by complementing the traditional Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Meanwhile, repurposing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated systems (Cas) has expanded their utility far beyond their native nuclease function. Here, CRISmers, a CRISPR/Cas-based novel screening system for RNA aptamers based on binding to a chosen protein of interest in a cellular context, is presented. Using CRISmers, aptamers are identified specifically targeting the receptor binding domain (RBD) of the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two aptamer leads enable sensitive detection and potent neutralization of SARS-CoV-2 Delta and Omicron variants in vitro. Intranasal administration of one aptamer, further modified with 2'-fluoro pyrimidines (2'-F), 2'-O-methyl purines (2'-O), and conjugation with both cholesterol and polyethylene glycol of 40 kDa (PEG40K), achieves effective prophylactic and therapeutic antiviral activity against live Omicron BA.2 variants in vivo. The study concludes by demonstrating the robustness, consistency, and potential broad utility of CRISmers using two newly identified aptamers but switching CRISPR, selection marker, and host species.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Airu Zhu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Miao Mei
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jing Qu
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yalan Huang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yongshi Shi
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Meiying Xue
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Jingfang Zhang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
- School of Life SciencesBeijing University of Chinese MedicineBeijing100105China
| | - Renli Zhang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Xu Tan
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yu Wang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| |
Collapse
|
12
|
Arese M, Mahmoudian M, Bussolino F. RNA aptamer-mediated gene therapy of prostate cancer: lessons from the past and future directions. Expert Opin Drug Deliv 2023; 20:1609-1621. [PMID: 38058168 DOI: 10.1080/17425247.2023.2292691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most prevalent cancers in the world, and the fifth cause of death from cancer in men. Among the non-surgical treatments for PCa, gene therapy strategies are in the early stages of development and recent clinical trials have provided new insights suggesting promising future. AREAS COVERED Recently, the creation of targeted gene delivery systems, based on specific PCa cell surface markers, has been viewed as a viable therapeutic approach. Prostate-specific membrane antigen (PSMA) is vastly expressed in nearly all prostate malignancies, and the intensity of expression increases with tumor aggressiveness, androgen independence, and metastasis. RNA aptamers are short and single-stranded oligonucleotides, which selectively bind to a specific ligand on the surface of the cells, which makes them fascinating small molecules for target delivery of therapeutics. PSMA-selective RNA aptamers represent great potential for developing targeted-gene delivery tools for PCa. EXPERT OPINION This review provides a thorough horizon for the researchers interested in developing targeted gene delivery systems for PCa via PSMA RNA aptamers. In addition, we provided general information about different prospects of RNA aptamers including discovery approaches, stability, safety, and pharmacokinetics.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Mohammad Mahmoudian
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
13
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
14
|
Peng Z, Wang X, Zhu Q, Wang H, Li B, Pang X, Han J. CMKLR1 Antagonist Alpha-NETA Protects against Diabetic Nephropathy in Mice. Kidney Blood Press Res 2023; 48:405-413. [PMID: 37231814 PMCID: PMC10308536 DOI: 10.1159/000530763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/15/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a common complication in diabetic patients. Chemerin, a novel adipokine, has been associated with renal damage in DN. The chemerin chemokine-like receptor 1 (CMKLR1) has been reported to participate in DN. In this study, we aimed to investigate the effect of a CMKLR1 antagonist, 2-(anaphthoyl)ethyltrimethylammonium iodide (α-NETA), on DN. METHODS To induce diabetes, 8-week-old male C57BL/6J mice were given a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Diabetic mice were randomly assigned to receive daily doses of 0, 5, or 10 mg/kg α-NETA for 4 weeks. RESULTS α-NETA dose-dependently induced body weight and reduced fasting blood glucose levels in STZ-induced diabetic mice. Furthermore, α-NETA significantly reduced the expressions of renal injury markers, including serum creatinine, kidney weight/body weight, urine volume, total proteins, and albumin in the urine, and increased creatinine clearance. Periodic acid-Schiff staining also indicated that α-NETA could effectively ameliorate renal injuries in DN mice. In addition, α-NETA inhibited renal inflammation and the expressions of chemerin and CMKLR1 in mice with DN. CONCLUSION In summary, our findings suggested that α-NETA has beneficial effects on the management of DN. Specifically, α-NETA effectively ameliorated renal damage and inflammation in a dose-dependent manner in mice with DN. Thus, targeting the chemerin and CMKLR1 axis with α-NETA may be a promising therapeutic strategy for the treatment of DN.
Collapse
Affiliation(s)
- Zining Peng
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xueyi Wang
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qing Zhu
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huili Wang
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bing Li
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), Zhengzhou, China
| | - Jiarui Han
- Second clinical medical College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
15
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Li L, Zhang Y, Luo Y, Meng X, Pan G, Zhang H, Li Y, Zhang B. The Molecular Basis of the Anti-Inflammatory Property of Astragaloside IV for the Treatment of Diabetes and Its Complications. Drug Des Devel Ther 2023; 17:771-790. [PMID: 36925998 PMCID: PMC10013573 DOI: 10.2147/dddt.s399423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Astragali Radix is a significant traditional Chinese medication, and has a long history of clinical application in the treatment of diabetes mellitus (DM) and its complications. AS-IV is an active saponin isolated from it. Modern pharmacological study shows that AS-IV has anti-inflammatory, anti-oxidant and immunomodulatory activities. The popular inflammatory etiology of diabetes suggests that DM is a natural immune and low-grade inflammatory disease. Pharmacological intervention of the inflammatory response may provide promising and alternative approaches for the prevention and treatment of DM and its complications. Therefore, this article focuses on the potential of AS-IV in the treatment of DM from the perspective of an anti-inflammatory molecular basis. AS-IV plays a role by regulating a variety of anti-inflammatory pathways in multiple organs, tissues and target cells throughout the body. The blockade of the NF-κB inflammatory signaling pathway may be the central link of AS-IV's anti-inflammatory effect, resulting in a reduction in the tissue structure and function damage stimulated by inflammatory factors. In addition, AS-IV can delay the onset of DM and its complications by inhibiting inflammation-related oxidative stress, fibrosis and apoptosis signals. In conclusion, AS-IV has therapeutic prospects from the perspective of reducing the inflammation of DM and its complications. An in-depth study on the anti-inflammatory mechanism of AS-IV is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuwei Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yudan Luo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xianghui Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People's Republic of China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| |
Collapse
|
17
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
19
|
Tang J, Liu F, Cooper ME, Chai Z. Renal fibrosis as a hallmark of diabetic kidney disease: Potential role of targeting transforming growth factor-beta (TGF-β) and related molecules. Expert Opin Ther Targets 2022; 26:721-738. [PMID: 36217308 DOI: 10.1080/14728222.2022.2133698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) worldwide. Currently, there is no effective treatment to completely prevent DKD progression to ESRD. Renal fibrosis and inflammation are the major pathological features of DKD, being pursued as potential therapeutic targets for DKD. AREAS COVERED Inflammation and renal fibrosis are involved in the pathogenesis of DKD. Anti-inflammatory drugs have been developed to combat DKD but without efficacy demonstrated. Thus, we have focused on the mechanisms of TGF-β-induced renal fibrosis in DKD, as well as discussing the important molecules influencing the TGF-β signaling pathway and their potential development into new pharmacotherapies, rather than targeting the ligand TGF-β and/or its receptors, such options include Smads, microRNAs, histone deacetylases, connective tissue growth factor, bone morphogenetic protein 7, hepatocyte growth factor, and cell division autoantigen 1. EXPERT OPINION TGF-β is a critical driver of renal fibrosis in DKD. Molecules that modulate TGF-β signaling rather than TGF-β itself are potentially superior targets to safely combat DKD. A comprehensive elucidation of the pathogenesis of DKD is important, which requires a better model system and access to clinical samples via collaboration between basic and clinical researchers.
Collapse
Affiliation(s)
- Jiali Tang
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fang Liu
- Department of Nephrology and Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Huang W, Chen YY, Li ZQ, He FF, Zhang C. Recent Advances in the Emerging Therapeutic Strategies for Diabetic Kidney Diseases. Int J Mol Sci 2022; 23:ijms231810882. [PMID: 36142794 PMCID: PMC9506036 DOI: 10.3390/ijms231810882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common causes of end-stage renal disease worldwide. The treatment of DKD is strongly associated with clinical outcomes in patients with diabetes mellitus. Traditional therapeutic strategies focus on the control of major risk factors, such as blood glucose, blood lipids, and blood pressure. Renin–angiotensin–aldosterone system inhibitors have been the main therapeutic measures in the past, but the emergence of sodium–glucose cotransporter 2 inhibitors, incretin mimetics, and endothelin-1 receptor antagonists has provided more options for the management of DKD. Simultaneously, with advances in research on the pathogenesis of DKD, some new therapies targeting renal inflammation, fibrosis, and oxidative stress have gradually entered clinical application. In addition, some recently discovered therapeutic targets and signaling pathways, mainly in preclinical and early clinical trial stages, are expected to provide benefits for patients with DKD in the future. This review summarizes the traditional treatments and emerging management options for DKD, demonstrating recent advances in the therapeutic strategies for DKD.
Collapse
|
21
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
22
|
Aboolian A, Urner S, Roden M, Jha JC, Jandeleit-Dahm K. Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. Handb Exp Pharmacol 2022; 274:269-307. [PMID: 35318511 DOI: 10.1007/164_2021_576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the microvascular complications of diabetes is diabetic kidney disease (DKD), often leading to end stage renal disease (ESRD) in which patients require costly dialysis or transplantation. The silent onset and irreversible progression of DKD are characterized by a steady decline of the estimated glomerular filtration rate, with or without concomitant albuminuria. The diabetic milieu allows the complex pathophysiology of DKD to enter a vicious cycle by inducing the synthesis of excessive amounts of reactive oxygen species (ROS) causing oxidative stress, inflammation, and fibrosis. As no cure is available, intensive research is required to develop novel treatments possibilities. This chapter provides an overview of the important pathomechanisms identified in diabetic kidney disease, the currently established therapies, as well as recently developed novel therapeutic strategies in DKD.
Collapse
Affiliation(s)
- Ara Aboolian
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jay Chandra Jha
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
23
|
Fu Y, Wang Y, Liu Y, Tang C, Cai J, Chen G, Dong Z. p53/sirtuin 1/NF-κB Signaling Axis in Chronic Inflammation and Maladaptive Kidney Repair After Cisplatin Nephrotoxicity. Front Immunol 2022; 13:925738. [PMID: 35874713 PMCID: PMC9301469 DOI: 10.3389/fimmu.2022.925738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic inflammation contributes to maladaptive kidney repair, but its regulation is unclear. Here, we report that sirtuin 1 (SIRT1) is downregulated after repeated low-dose cisplatin (RLDC) injury, and this downregulation leads to p65 acetylation and consequent NF-κB activation resulting in a persistent inflammatory response. RLDC induced the down-regulation of SIRT1 and activation of NF-κB, which were accompanied by chronic tubular damage, tubulointerstitial inflammation, and fibrosis in mice. Inhibition of NF-κB suppressed the production of pro-inflammatory cytokines and fibrotic phenotypes in RLDC-treated renal tubular cells. SIRT1 activation by its agonists markedly reduced the acetylation of p65 (a key component of NF-κB), resulting in the attenuation of the inflammatory and fibrotic responses. Conversely, knockdown of SIRT1 exacerbated these cellular changes. At the upstream, p53 was activated after RLDC treatment to repress SIRT1, resulting in p65 acetylation, NF-κB activation and transcription of inflammatory cytokines. In mice, SIRT1 agonists attenuated RLDC-induced chronic inflammation, tissue damage, and renal fibrosis. Together, these results unveil the p53/SIRT1/NF-κB signaling axis in maladaptive kidney repair following RLDC treatment, where p53 represses SIRT1 to increase p65 acetylation for NF-κB activation, leading to chronic renal inflammation.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Ying Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Yuxue Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Charlie Norwood Veterans Affairs (VA) Medical Center, Augusta, GA, United States
- *Correspondence: Zheng Dong,
| |
Collapse
|
24
|
Provenzano M, Maritati F, Abenavoli C, Bini C, Corradetti V, La Manna G, Comai G. Precision Nephrology in Patients with Diabetes and Chronic Kidney Disease. Int J Mol Sci 2022; 23:5719. [PMID: 35628528 PMCID: PMC9144494 DOI: 10.3390/ijms23105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes is the leading cause of kidney failure and specifically, diabetic kidney disease (DKD) occurs in up to 30% of all diabetic patients. Kidney disease attributed to diabetes is a major contributor to the global burden of the disease in terms of clinical and socio-economic impact, not only because of the risk of progression to End-Stage Kidney Disease (ESKD), but also because of the associated increase in cardiovascular (CV) risk. Despite the introduction of novel treatments that allow us to reduce the risk of future outcomes, a striking residual cardiorenal risk has been reported. This risk is explained by both the heterogeneity of DKD and the individual variability in response to nephroprotective treatments. Strategies that have been proposed to improve DKD patient care are to develop novel biomarkers that classify with greater accuracy patients with respect to their future risk (prognostic) and biomarkers that are able to predict the response to nephroprotective treatment (predictive). In this review, we summarize the principal prognostic biomarkers of type 1 and type 2 diabetes and the novel markers that help clinicians to individualize treatments and the basis of the characteristics that predict an optimal response.
Collapse
Affiliation(s)
- Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (C.A.); (C.B.); (V.C.); (G.C.)
| | | | | | | | | | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (C.A.); (C.B.); (V.C.); (G.C.)
| | | |
Collapse
|
25
|
Jung CY, Yoo TH. Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes Metab J 2022; 46:181-197. [PMID: 35385633 PMCID: PMC8987689 DOI: 10.4093/dmj.2021.0329] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Although diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease eventually requiring chronic kidney replacement therapy, the prevalence of DKD has failed to decline over the past 30 years. In order to reduce disease prevalence, extensive research has been ongoing to improve prediction of DKD onset and progression. Although the most commonly used markers of DKD are albuminuria and estimated glomerular filtration rate, their limitations have encouraged researchers to search for novel biomarkers that could improve risk stratification. Considering that DKD is a complex disease process that involves several pathophysiologic mechanisms such as hyperglycemia induced inflammation, oxidative stress, tubular damage, eventually leading to kidney damage and fibrosis, many novel biomarkers that capture one specific mechanism of the disease have been developed. Moreover, the increasing use of high-throughput omic approaches to analyze biological samples that include proteomics, metabolomics, and transcriptomics has emerged as a strong tool in biomarker discovery. This review will first describe recent advances in the understanding of the pathophysiology of DKD, and second, describe the current clinical biomarkers for DKD, as well as the current status of multiple potential novel biomarkers with respect to protein biomarkers, proteomics, metabolomics, and transcriptomics.
Collapse
Affiliation(s)
- Chan-Young Jung
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
- Corresponding author: Tae-Hyun Yoo https://orcid.org/0000-0002-9183-4507 Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea E-mail:
| |
Collapse
|
26
|
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022; 23:ijms23052736. [PMID: 35269876 PMCID: PMC8911101 DOI: 10.3390/ijms23052736] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.
Collapse
|
27
|
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13:25. [PMID: 35073973 PMCID: PMC8785577 DOI: 10.1186/s13287-021-02696-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite major advances in the treatment of diabetic nephropathy (DN) in recent years, it remains the most common cause of end-stage renal disease. An early diagnosis and therapy may slow down the DN progression. Numerous potential biomarkers are currently being researched. Circulating levels of the kidney-released exosomes and biological molecules, which reflect the DN pathology including glomerular and tubular dysfunction as well as mesangial expansion and fibrosis, have shown the potential for predicting the occurrence and progression of DN. Moreover, many experimental therapies are currently being investigated, including stem cell therapy and medications targeting inflammatory, oxidant, or pro-fibrotic pathways activated during the DN progression. The therapeutic potential of stem cells is partly depending on their secretory capacity, particularly exosomal microRNAs (Exo-miRs). In recent years, a growing line of research has shown the participation of Exo-miRs in the pathophysiological processes of DN, which may provide effective therapeutic and biomarker tools for DN treatment. METHODS A systematic literature search was performed in MEDLINE, Scopus, and Google Scholar to collect published findings regarding therapeutic stem cell-derived Exo-miRs for DN treatment as well as circulating Exo-miRs as potential DN-associated biomarkers. FINDINGS Glomerular mesangial cells and podocytes are the most important culprits in the pathogenesis of DN and, thus, can be considered valuable therapeutic targets. Preclinical investigations have shown that stem cell-derived exosomes can exert beneficial effects in DN by transferring renoprotective miRs to the injured mesangial cells and podocytes. Of note, renoprotective Exo-miR-125a secreted by adipose-derived mesenchymal stem cells can improve the injured mesangial cells, while renoprotective Exo-miRs secreted by adipose-derived stem cells (Exo-miR-486 and Exo-miR-215-5p), human urine-derived stem cells (Exo-miR-16-5p), and bone marrow-derived mesenchymal stem cells (Exo-miR-let-7a) can improve the injured podocytes. On the other hand, clinical investigations have indicated that circulating Exo-miRs isolated from urine or serum hold great potential as promising biomarkers in DN.
Collapse
Affiliation(s)
- Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
28
|
Sawaf H, Thomas G, Taliercio JJ, Nakhoul G, Vachharajani TJ, Mehdi A. Therapeutic Advances in Diabetic Nephropathy. J Clin Med 2022; 11:jcm11020378. [PMID: 35054076 PMCID: PMC8781778 DOI: 10.3390/jcm11020378] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease (ESKD) in the United States. Risk factor modification, such as tight control of blood glucose, management of hypertension and hyperlipidemia, and the use of renin–angiotensin–aldosterone system (RAAS) blockade have been proven to help delay the progression of DKD. In recent years, new therapeutics including sodium-glucose transport protein 2 (SGLT2) inhibitors, endothelin antagonists, glucagon like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRA), have provided additional treatment options for patients with DKD. This review discusses the various treatment options available to treat patients with diabetic kidney disease.
Collapse
|
29
|
Xie Z, Xiao X. Novel biomarkers and therapeutic approaches for diabetic retinopathy and nephropathy: Recent progress and future perspectives. Front Endocrinol (Lausanne) 2022; 13:1065856. [PMID: 36506068 PMCID: PMC9732104 DOI: 10.3389/fendo.2022.1065856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The global burden due to microvascular complications in patients with diabetes mellitus persists and even increases alarmingly, the intervention and management are now encountering many difficulties and challenges. This paper reviews the recent advancement and progress in novel biomarkers, artificial intelligence technology, therapeutic agents and approaches of diabetic retinopathy and nephropathy, providing more insights into the management of microvascular complications.
Collapse
|
30
|
Feng R, Patil S, Zhao X, Miao Z, Qian A. RNA Therapeutics - Research and Clinical Advancements. Front Mol Biosci 2021; 8:710738. [PMID: 34631795 PMCID: PMC8492966 DOI: 10.3389/fmolb.2021.710738] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
RNA therapeutics involve the use of coding RNA such as mRNA as well as non-coding RNAs such as small interfering RNAs (siRNA), antisense oligonucleotides (ASO) to target mRNA, aptamers, ribozymes, and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR/Cas) endonuclease to target proteins and DNA. Due to their diverse targeting ability and research in RNA modification and delivery systems, RNA-based formulations have emerged as suitable treatment options for many diseases. Therefore, in this article, we have summarized different RNA therapeutics, their targeting strategies, and clinical progress for various diseases as well as limitations; so that it might help researchers formulate new and advanced RNA therapeutics for various diseases. Additionally, U.S. Food and Drug Administration (USFDA)-approved RNA-based therapeutics have also been discussed.
Collapse
Affiliation(s)
- Rundong Feng
- Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
31
|
Chen BM, Cheng TL, Roffler SR. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS NANO 2021; 15:14022-14048. [PMID: 34469112 DOI: 10.1021/acsnano.1c05922] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polyethylene glycol (PEG) is a flexible, hydrophilic simple polymer that is physically attached to peptides, proteins, nucleic acids, liposomes, and nanoparticles to reduce renal clearance, block antibody and protein binding sites, and enhance the half-life and efficacy of therapeutic molecules. Some naïve individuals have pre-existing antibodies that can bind to PEG, and some PEG-modified compounds induce additional antibodies against PEG, which can adversely impact drug efficacy and safety. Here we provide a framework to better understand PEG immunogenicity and how antibodies against PEG affect pegylated drug and nanoparticles. Analysis of published studies reveals rules for predicting accelerated blood clearance of pegylated medicine and therapeutic liposomes. Experimental studies of anti-PEG antibody binding to different forms, sizes, and immobilization states of PEG are also provided. The widespread use of SARS-CoV-2 RNA vaccines that incorporate PEG in lipid nanoparticles make understanding possible effects of anti-PEG antibodies on pegylated medicines even more critical.
Collapse
Affiliation(s)
- Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tian-Lu Cheng
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
32
|
Identification and Engineering of Aptamers for Theranostic Application in Human Health and Disorders. Int J Mol Sci 2021; 22:ijms22189661. [PMID: 34575825 PMCID: PMC8469434 DOI: 10.3390/ijms22189661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
An aptamer is a short sequence of synthetic oligonucleotides which bind to their cognate target, specifically while maintaining similar or higher sensitivity compared to an antibody. The in-vitro selection of an aptamer, applying a conjoining approach of chemistry and molecular biology, is referred as Systematic Evolution of Ligands by Exponential enrichment (SELEX). These initial products of SELEX are further modified chemically in an attempt to make them stable in biofluid, avoiding nuclease digestion and renal clearance. While the modification is incorporated, enough care should be taken to maintain its sensitivity and specificity. These modifications and several improvisations have widened the window frame of aptamer applications that are currently not only restricted to in-vitro systems, but have also been used in molecular imaging for disease pathology and treatment. In the food industry, it has been used as sensor for detection of different diseases and fungal infections. In this review, we have discussed a brief history of its journey, along with applications where its role as a therapeutic plus diagnostic (theranostic) tool has been demonstrated. We have also highlighted the potential aptamer-mediated strategies for molecular targeting of COVID-19. Finally, the review focused on its future prospective in immunotherapy, as well as in identification of novel biomarkers in stem cells and also in single cell proteomics (scProteomics) to study intra or inter-tumor heterogeneity at the protein level. Small size, chemical synthesis, low batch variation, cost effectiveness, long shelf life and low immunogenicity provide advantages to the aptamer over the antibody. These physical and chemical properties of aptamers render them as a strong biomedical tool for theranostic purposes over the existing ones. The significance of aptamers in human health was the key finding of this review.
Collapse
|
33
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Abstract
Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease for over 20 years. Yet, over these two decades, the clinical approach to this condition has not much improved beyond the administration of glucose-lowering agents, renin-angiotensin-aldosterone system blockers for blood pressure control, and lipid-lowering agents. The proportion of diabetic patients who develop DKD and progress to end-stage renal disease has remained nearly the same. This unmet need for DKD treatment is caused by the complex pathophysiology of DKD, and the difficulty of translating treatment from bench to bed, which further adds to the growing argument that DKD is not a homogeneous disease. To better capture the full spectrum of DKD in our design of treatment regimens, we need improved diagnostic tools that can better distinguish the subgroups within the condition. For instance, DKD is typically placed in the broad category of a non-inflammatory kidney disease. However, genome-wide transcriptome analysis studies consistently indicate the inflammatory signaling pathway activation in DKD. This review will utilize human data in discussing the potential for redefining the role of inflammation in DKD. We also comment on the therapeutic potential of targeted anti-inflammatory therapy for DKD.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
- Correspondence to Ju-Young Moon, M.D. Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea Tel: +82-2-440-7064 Fax: +82-2-440-8150 E-mail:
| |
Collapse
|
35
|
von Vietinghoff S, Kurts C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell Tissue Res 2021; 385:335-344. [PMID: 34009468 PMCID: PMC8523406 DOI: 10.1007/s00441-021-03473-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Attraction, retention, and differentiation of leukocytes to and within the kidney are governed by chemokines. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1 are exemplary in this regard as they are highly expressed and further upregulated in a range of kidney diseases. CX3CL1 is chiefly produced by renal endothelium and tubular epithelium, where it promotes leukocyte attraction. Recent data suggest that in addition to established soluble mediators, cellular interactions may enhance CX3CL1 expression. The receptor CX3CR1 is essential in myeloid phagocyte homing to the kidney at homeostasis, after acute cell depletion and in inflammation. CX3CR1 and its ligand are highly regulated in human kidney diseases such as IgA nephritis, systemic lupus erythematosus, and inflammatory conditions such as transplant rejection. A mechanistic role of CX3CR1 has been established in experimental models of nephrotoxic nephritis and renal candidiasis. It is debated in fibrosis. Recent publications demonstrate a role for CX3CR1+ myeloid cells in radio-contrast-agent and sepsis-induced kidney damage. Systemically, circulating CX3CR1+ monocytes reversibly increase in individuals with renal impairment and correlate with their cardiovascular risk. In this review, we discuss role and regulatory mechanisms of the CX3CL1-CX3CR1 axis in both localized and systemic effects of renal inflammation.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- First Medical Clinic, Nephrology Section, University Clinic of the Rheinische Friedrich Wilhelms University Bonn, Venusberg Campus 1, 53127, Bonn, Germany. .,Institute for Molecular Medicine and Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms University Bonn, Biomedical Center II, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Christian Kurts
- Institute for Molecular Medicine and Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms University Bonn, Biomedical Center II, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
36
|
Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. Int J Mol Sci 2021; 22:ijms22105089. [PMID: 34064989 PMCID: PMC8151056 DOI: 10.3390/ijms22105089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
SGLT2 inhibitor-related nephroprotection is—at least partially—mediated by anti-inflammatory drug effects, as previously demonstrated in diabetic animal and human studies, as well as hyperglycemic cell culture models. We recently presented first evidence for anti-inflammatory potential of empagliflozin (Empa) under normoglycemic conditions in human proximal tubular cells (HPTC) by demonstrating Empa-mediated inhibition of IL-1β-induced MCP-1/CCL2 and ET-1 expression on the mRNA and protein level. We now add corroborating evidence on a genome-wide level by demonstrating that Empa attenuates the expression of several inflammatory response genes in IL-1β-induced (10 ng/mL) normoglycemic HPTCs. Using microarray-hybridization analysis, 19 inflammatory response genes out of >30.000 human genes presented a consistent expression pattern, that is, inhibition of IL-1β (10 ng/mL)-stimulated gene expression by Empa (500 nM), in both HK-2 and RPTEC/TERT1 cells. Pathway enrichment analysis demonstrated statistically significant clustering of annotated pathways (enrichment score 3.64). Our transcriptomic approach reveals novel genes such as CXCL8/IL8, LOX, NOV, PTX3, and SGK1 that might be causally involved in glycemia-independent nephroprotection by SGLT2i.
Collapse
|
37
|
Ecelbarger CM. Diabetic Kidney Disease Represents a Locus of Opportunity. Front Physiol 2021; 12:650503. [PMID: 33762972 PMCID: PMC7982870 DOI: 10.3389/fphys.2021.650503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carolyn Mary Ecelbarger
- Department of Medicine/Division of Endocrinology and Metabolism, Georgetown University, Washington, DC, United States
| |
Collapse
|
38
|
Pirklbauer M. Anti-inflammatory potential of Empagliflozin. Inflammopharmacology 2021; 29:573-576. [PMID: 33728540 PMCID: PMC7997819 DOI: 10.1007/s10787-021-00797-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Markus Pirklbauer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
39
|
Caponegro MD, Oh K, Madeira MM, Radin D, Sterge N, Tayyab M, Moffitt RA, Tsirka SE. A distinct microglial subset at the tumor-stroma interface of glioma. Glia 2021; 69:1767-1781. [PMID: 33704822 DOI: 10.1002/glia.23991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
The characterization of the tumor microenvironment (TME) in high grade gliomas (HGG) has generated significant interest in an effort to understand how neoplastic lesions in the central nervous system (CNS) are supported and to devise novel therapeutic targets. The TME of the CNS contains unique and specialized cells, including the resident myeloid cells, microglia. Myeloid involvement in HGG, such as glioblastoma, is associated with poor outcomes. Glioma-associated microglia and infiltrating monocytes/macrophages (GAM) accumulate within the neoplastic lesion where they facilitate tumor growth and drive immunosuppression. However, it has been difficult to differentiate whether microglia and macrophages have similar or distinct roles in pathology, and if the spatial organization of these cells informs outcomes. Here, we characterize the tumor-stroma border and identify peritumoral GAM (PGAM) as a unique subpopulation of GAM. Using data mining and analyses of samples derived from both murine and human sources we show that PGAM exhibit a pro-inflammatory and chemotactic phenotype that is associated with peripheral monocyte recruitment, and decreased overall survival. PGAM act as a unique subset of GAM at the tumor-stroma interface. We define a novel gene signature to identify these cells and suggest that PGAM constitute a cellular target of the TME.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ki Oh
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Daniel Radin
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Sterge
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Maryam Tayyab
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Richard A Moffitt
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
40
|
Pirklbauer M, Bernd M, Fuchs L, Staudinger P, Corazza U, Leierer J, Mayer G, Schramek H. Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells. Int J Mol Sci 2020; 21:ijms21218189. [PMID: 33139635 PMCID: PMC7663377 DOI: 10.3390/ijms21218189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines (n = 2, each). The functional annotation of these genes identified eight pathway clusters. Among 12 genes annotated to the highest ranked cluster (enrichment score, 3.51), monocyte chemoattractant protein-1/CC-chemokine ligand 2 (MCP-1/CCL2) and endothelin-1 (ET-1) were selected for verification at mRNA and protein levels based on their established involvement in the early pathogenesis of chronic kidney disease: IL-1β upregulated basal MCP-1/CCL2 (15- and 19-fold) and ET-1 (3- and 8-fold) mRNA expression, while Empa downregulated basal MCP-1/CCL2 (0.6- and 0.5-fold) and ET-1 (0.3- and 0.2-fold) mRNA expression as early as 1 h after stimulation and for at least 24 h in HK-2 and RPTEC/TERT1 cells, respectively. The co-administration of Empa inhibited IL-1β-mediated MCP-1/CCL2 (0.2-fold, each) and ET-1 (0.2-fold, each) mRNA expression as early as 1 h after ligand stimulation and for at least 24 h in both HPTC lines, respectively. This inhibitory effect of Empa on basal and IL-1β-mediated MCP-1/CCL2 and ET-1 mRNA expression was corroborated at the protein level. Our study presents novel evidence for the interference of SGLT2 inhibition with tubular inflammatory response mechanisms under normoglycemic conditions that might account for SGLT2i-mediated nephroprotection.
Collapse
|
41
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
42
|
Abstract
Several members of the chemokine family are involved in regulation of fibrosis. This review manuscript discusses the role of the chemokines in the pathogenesis of myocardial fibrosis. The CC chemokine CCL2 exerts fibrogenic actions through recruitment and activation of monocytes and macrophages expressing its receptor, CCR2. Other CC chemokines may also contribute to fibrotic remodeling by recruiting subsets of fibrogenic macrophages. CXC chemokines containing the ELR motif may exert pro-fibrotic actions, through recruitment of activated neutrophils and subsequent formation of neutrophil extracellular traps (NETs), or via activation of fibrogenic monocytes. CXCL12 has also been suggested to exert fibrogenic actions through effects on fibroblasts and immune cells. In contrast, the CXCR3 ligand CXCL10 was found to reduce cardiac fibrosis, inhibiting fibroblast migration. Chemokines are critical links between inflammation and fibrosis in myocardial disease and may be promising therapeutic targets for patients with heart failure accompanied by prominent inflammation and fibrosis.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
43
|
Inhibition of RNA-binding protein HuR reduces glomerulosclerosis in experimental nephritis. Clin Sci (Lond) 2020; 134:1433-1448. [PMID: 32478392 PMCID: PMC8086301 DOI: 10.1042/cs20200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Recent identification of an RNA-binding protein (HuR) that regulates mRNA turnover and translation of numerous transcripts via binding to an ARE in their 3′-UTR involved in inflammation and is abnormally elevated in varied kidney diseases offers a novel target for the treatment of renal inflammation and subsequent fibrosis. Thus, we hypothesized that treatment with a selective inhibition of HuR function with a small molecule, KH-3, would down-regulate HuR-targeted proinflammatory transcripts thereby improving glomerulosclerosis in experimental nephritis, where glomerular cellular HuR is elevated. Three experimental groups included normal and diseased rats treated with or without KH-3. Disease was induced by the monoclonal anti-Thy 1.1 antibody. KH-3 was given via daily intraperitoneal injection from day 1 after disease induction to day 5 at the dose of 50 mg/kg BW/day. At day 6, diseased animals treated with KH-3 showed significant reduction in glomerular HuR levels, proteinuria, podocyte injury determined by ameliorated podocyte loss and podocin expression, glomerular staining for periodic acid-Schiff positive extracellular matrix proteins, fibronectin and collagen IV and mRNA and protein levels of profibrotic markers, compared with untreated disease rats. KH-3 treatment also reduced disease-induced increases in renal TGFβ1 and PAI-1 transcripts. Additionally, a marked increase in renal NF-κB-p65, Nox4, and glomerular macrophage cell infiltration observed in disease control group was largely reversed by KH-3 treatment. These results strongly support our hypothesis that down-regulation of HuR function with KH-3 has therapeutic potential for reversing glomerulosclerosis by reducing abundance of pro-inflammatory transcripts and related inflammation.
Collapse
|
44
|
Nimjee SM, Sullenger BA. Therapeutic Aptamers: Evolving to Find their Clinical Niche. Curr Med Chem 2020; 27:4181-4193. [PMID: 31573879 DOI: 10.2174/0929867326666191001125101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The discovery that short oligonucleotides, termed aptamers, can fold into three-dimensional structures that allow them to selectively bind and inhibit the activity of pathogenic proteins is now over 25 years old. The invention of the SELEX methodology heralded in an era in which such nucleic acid-based ligands could be generated against a wide variety of therapeutic targets. RESULTS A large number of aptamers have now been identified by combinatorial chemistry methods in the laboratory and moreover, an increasing number have been discovered in nature. The affinities and activities of such aptamers have often been compared to that of antibodies, yet only a few of these agents have made it into clinical studies compared to a large and increasing number of therapeutic antibodies. One therapeutic aptamer targeting VEGF has made it to market, while 3 others have advanced as far as phase III clinical trials. CONCLUSION In this manuscript, we hope the reader appreciates that the success of aptamers becoming a class of drugs is less about nucleic acid biochemistry and more about target validation and overall drug chemistry.
Collapse
Affiliation(s)
- Shahid M Nimjee
- Department of Neurological Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
45
|
Identification of Key Genes of Human Advanced Diabetic Nephropathy Independent of Proteinuria by Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7283581. [PMID: 32685522 PMCID: PMC7336202 DOI: 10.1155/2020/7283581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of ESRD. Emerging evidence indicated that proteinuria may not be the determinant of renal survival in DN. The aim of the current study was to provide molecular signatures apart from proteinuria in DN by an integrative bioinformatics approach. Method Affymetrix microarray datasets from microdissected glomerular and tubulointerstitial compartments of DN, healthy controls, and proteinuric disease controls including minimal change disease and membranous nephropathy were extracted from open-access database. Differentially expressed genes (DEGs) in DN versus both healthy and proteinuric controls were identified by limma package, and further defined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Hub genes were checked by protein-protein interaction networks. Results A total of 566 glomerular and 581 tubulointerstitial DEGs were identified in DN, which were commonly differentially expressed compared to normal controls and proteinuric disease controls. The upregulated DEGs in both compartments were significantly enriched in GO biological process associated with fibrosis, inflammation, and platelet dysfunction, and largely located in extracellular space, including matrix and extracellular vesicles. Pathway analysis highlighted immune system regulation. Hub genes of the upregulated DEGs negatively correlated with estimated glomerular filtration rate (eGFR). While the downregulated DEGs and their hub genes in tubulointerstitium were enriched in pathways associated with lipid metabolism and oxidation, which positively correlated with eGFR. Conclusions Our study identified pathways including fibrosis, inflammation, lipid metabolism, and oxidative stress contributing to the progression of DN independent of proteinuria. These genes may serve as biomarkers and therapeutic targets.
Collapse
|
46
|
Kumar Kulabhusan P, Hussain B, Yüce M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020; 12:E646. [PMID: 32659966 PMCID: PMC7407196 DOI: 10.3390/pharmaceutics12070646] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Aptamers are synthetic single-stranded DNA or RNA sequences selected from combinatorial oligonucleotide libraries through the well-known in vitro selection and iteration process, SELEX. The last three decades have witnessed a sudden boom in aptamer research, owing to their unique characteristics, like high specificity and binding affinity, low immunogenicity and toxicity, and ease in synthesis with negligible batch-to-batch variation. Aptamers can specifically bind to the targets ranging from small molecules to complex structures, making them suitable for a myriad of diagnostic and therapeutic applications. In analytical scenarios, aptamers are used as molecular probes instead of antibodies. They have the potential in the detection of biomarkers, microorganisms, viral agents, environmental pollutants, or pathogens. For therapeutic purposes, aptamers can be further engineered with chemical stabilization and modification techniques, thus expanding their serum half-life and shelf life. A vast number of antagonistic aptamers or aptamer-based conjugates have been discovered so far through the in vitro selection procedure. However, the aptamers face several challenges for its successful clinical translation, and only particular aptamers have reached the marketplace so far. Aptamer research is still in a growing stage, and a deeper understanding of nucleic acid chemistry, target interaction, tissue distribution, and pharmacokinetics is required. In this review, we discussed aptamers in the current diagnostics and theranostics applications, while addressing the challenges associated with them. The report also sheds light on the implementation of aptamer conjugates for diagnostic purposes and, finally, the therapeutic aptamers under clinical investigation, challenges therein, and their future directions.
Collapse
Affiliation(s)
| | - Babar Hussain
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
47
|
Chen Y, Lee K, Ni Z, He JC. Diabetic Kidney Disease: Challenges, Advances, and Opportunities. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:215-225. [PMID: 32903946 PMCID: PMC7445658 DOI: 10.1159/000506634] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease (ESRD). Regardless of intensive treatments with hyperglycemic control, blood pressure control, and the use of renin-angiotensin system blockades, the prevalence of DKD remains high. Recent studies suggest that the spectrum of DKD has been changed and many progresses have been made to develop new treatments for DKD. Therefore, it is time to perform a systemic review on the new developments in the field of DKD. SUMMARY Although the classic clinical presentation of DKD is characterized by a slow progression from microalbuminuria to macroalbuminuria and by a hyperfiltration at the early stage and progressive decline of renal function at the late stage, recent epidemiological studies suggest that DKD patients have a variety of clinical presentations and progression rates to ESRD. Some DKD patients have a decline in renal function without albuminuria but display prominent vascular and interstitial fibrosis on renal histology. DKD patients are more susceptible to acute kidney injury, which might contribute to the interstitial fibrosis. A large portion of type 2 diabetic patients with albuminuria could have overlapping nondiabetic glomerular disease, and therefore, kidney biopsy is required for differential diagnosis for these patients. Only a small portion of DKD patients eventually progress to end-stage renal failure. However, we do not have sensitive and specific biomarkers to identify these high-risk patients. Genetic factors that have a strong association with DKD progression have not been identified yet. A combination of circulating tumor necrosis factor receptor (TNFR)1, TNFR2, and kidney injury molecular 1 provides predictive value for DKD progression. Artificial intelligence could enhance the predictive values for DKD progression by combining the clinical parameters and biological markers. Sodium-glucose co-transporter-2 inhibitors should be added to the new standard care of DKD patients. Several promising new drugs are in clinical trials. KEY MESSAGES Over last years, our understanding of DKD has been much improved and new treatments to halt the progression of DKD are coming. However, better diagnostic tools, predictive markers, and treatment options are still urgently needed to help us to better manage these patients with this detrimental disease.
Collapse
Affiliation(s)
- Ya Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
48
|
Motrapu M, Świderska MK, Mesas I, Marschner JA, Lei Y, Martinez Valenzuela L, Fu J, Lee K, Angelotti ML, Antonelli G, Romagnani P, Anders HJ, Anguiano L. Drug Testing for Residual Progression of Diabetic Kidney Disease in Mice Beyond Therapy with Metformin, Ramipril, and Empagliflozin. J Am Soc Nephrol 2020; 31:1729-1745. [PMID: 32576600 DOI: 10.1681/asn.2019070703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Progression of CKD in type 2 diabetes, despite dual inhibition of sodium-glucose transporter-2 and the renin-angiotensin system, remains a concern. Bromoindirubin-3'-oxime (BIO), previously reported to promote podocyte survival and regeneration, is a candidate additional drug to elicit renoprotective effects beyond therapy with metformin, ramipril, and empagliflozin (MRE). Evaluating a drug with standard therapeutics more closely mimics the clinical setting than evaluating the drug alone. METHODS Uninephrectomized BKS-Lepr-/- (db/db) mice treated with or without MRE served as a model of progressive CKD in type 2 diabetes. Mice on or off MRE were randomized to only 4 weeks of add-on BIO or vehicle. The primary end point was slope of GFR (ΔGFR). RESULTS Four weeks of MRE treatment alone did not affect ΔGFR, but significantly attenuated hyperglycemia, albuminuria, and glomerulosclerosis and increased podocyte filtration slit density, as assessed by STED super-resolution microscopy upon tissue clearing. BIO alone improved albuminuria, podocyte density in superficial and juxtamedullary nephrons, and podocyte filtration slit density. MRE+BIO combination therapy had additive protective effects on ΔGFR, glomerulosclerosis, podocyte density in juxtamedullary nephrons, and filtration slit density. CONCLUSIONS Add-on treatment with BIO for only 4 weeks attenuates progression of CKD beyond MRE therapy in mice with type 2 diabetes. Additional drug combinations may help to further delay ESKD in type 2 diabetes.
Collapse
Affiliation(s)
- Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Monika Katarzyna Świderska
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Irene Mesas
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian Aurelio Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Yutian Lei
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Laura Martinez Valenzuela
- Nephrology Unit, Bellvitge University Hospital, Hospitalet de Llobregat, de Llobregat, Spain.,IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, de Llobregat, Spain
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Giulia Antonelli
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Lidia Anguiano
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
49
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
50
|
Banerjee A, Singh J. Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: Current perspective and translational strategies. Bioeng Transl Med 2020; 5:e10150. [PMID: 32440558 PMCID: PMC7237149 DOI: 10.1002/btm2.10150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated type 2 diabetes mellitus (T2DM) is characterized by low-grade chronic systemic inflammation that arises primarily from the white adipose tissue. The interplay between various adipose tissue-derived chemokines drives insulin resistance in T2DM and has therefore become a subject of rigorous investigation. The adipocytokines strongly associated with glucose homeostasis include tumor necrosis factor-α, various interleukins, monocyte chemoattractant protein-1, adiponectin, and leptin, among others. Remodeling the adipose tissue inflammasome in obesity-associated T2DM is likely to treat the underlying cause of the disease and bring significant therapeutic benefit. Various strategies have been adopted or are being investigated to modulate the serum/tissue levels of pro- and anti-inflammatory adipocytokines to improve glucose homeostasis in T2DM. These include use of small molecule agonists/inhibitors, mimetics, antibodies, gene therapy, and other novel formulations. Here, we discuss adipocytokines that are strongly associated with insulin activity and therapies that are under investigation for modulation of their levels in the treatment of T2DM.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| | - Jagdish Singh
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| |
Collapse
|