1
|
Plant-Fox AS, Tabori U. Future perspective of targeted treatments in pediatric low-grade glioma (pLGG): the evolution of standard-of-care and challenges of a new era. Childs Nerv Syst 2024; 40:3291-3299. [PMID: 39085626 DOI: 10.1007/s00381-024-06504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
While surgery, when possible, remains the mainstay of pediatric low-grade glioma (pLGG) management, adjuvant therapy has significantly evolved over time. Radiation therapy was commonly used in the late 1990s for tumors that could not be resected or recurred. This resulted in significant late morbidity in this population and mortality related to secondary malignancies and chronic health conditions. Chemotherapy became the mainstay of adjuvant therapy but children still experienced late morbidity secondary to exposure to multiple lines of treatment over time. Targeted therapies emerged after the identification of frequent genetic alterations in the mitogen activated protein kinase (MAPK) pathway including KIAA1549-BRAF fusions and BRAF-V600 mutations and the near universal upregulation of the MAPK pathway in these tumors. Both BRAF and MEK inhibitors have shown efficacy in the treatment of pLGG and have led to prolonged stability in some cases. Multiple phase III clinical trials are now comparing targeted therapy to standard-of-care chemotherapy regimens setting the stage for targeted therapy to replace chemotherapy as the first-line treatment in some cases. Targeted therapy, however, is not without its challenges. There are clear examples of resistance and mechanisms of resistance have not been fully elucidated. There is also no clear duration for these therapies and rebound growth is a well-known phenomenon especially in BRAF-V600 mutant tumors. Targeted therapies are also fairly recent developments and long-term toxicities and functional outcomes are still being monitored. Very young and adolescent/young adult LGGs also carry molecular features that may not be addressed by inhibition of the MAPK pathway. Adjuvant therapy for pLGG has evolved from radiation for all unresectable or residual tumors to molecularly driven targeted therapies with improved quality of life, late effects, and less off-target toxicities. While there is still much to learn in regard to newer targeted therapies for pLGG, the era of targeted therapies for pediatric LGG is upon us.
Collapse
Affiliation(s)
- Ashley S Plant-Fox
- Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Uri Tabori
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Siegel BI, Duke ES, Kilburn LB, Packer RJ. Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors. Childs Nerv Syst 2024; 40:3251-3262. [PMID: 38877124 DOI: 10.1007/s00381-024-06486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA.
- Division of Neurology, Children's National Hospital, Washington, DC, USA.
- Division of Oncology, Children's National Hospital, Washington, DC, USA.
| | - Elizabeth S Duke
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
3
|
Dhillon S. Tovorafenib: First Approval. Drugs 2024; 84:985-993. [PMID: 38967715 DOI: 10.1007/s40265-024-02069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Tovorafenib (OJEMDA™) is a once-weekly oral, selective, brain-penetrant, type II RAF kinase inhibitor being developed by Day One Biopharmaceuticals, Inc., under a license from Takeda Oncology, for the treatment of paediatric low-grade glioma (pLGG) and solid tumours. Most pLGGs harbour alterations in the MAPK pathway, such as a BRAF mutation or BRAF fusion, which result in aberrant intracellular signalling. Tovorafenib is an inhibitor of mutant BRAF V600E, wild-type BRAF and wild-type CRAF kinases and BRAF fusions. In April 2024, tovorafenib received its first approval in the USA for the treatment of patients aged ≥ 6 months with relapsed or refractory pLGGs harbouring a BRAF fusion or rearrangement, or BRAF V600 mutation. It received accelerated approval for this indication based on the response rate and duration of response achieved in this population in the ongoing, pivotal, phase 2 FIREFLY-1 study. Clinical development of tovorafenib is underway in numerous countries worldwide. This article summarizes the milestones in the development of tovorafenib leading to this first approval for relapsed or refractory pLGG with an activating BRAF alteration.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
4
|
Khoury JVE, Wehbe S, Attieh F, Boutros M, Kesrouani C, Kourie HR. A critical review of RAF inhibitors in BRAF-mutated glioma treatment. Pharmacogenomics 2024; 25:343-355. [PMID: 38884947 PMCID: PMC11404696 DOI: 10.1080/14622416.2024.2355859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
BRAF gliomas have garnered significant attention in research due to the lack of effective treatments and their notable incidence, constituting 3% of all gliomas. This underlines the importance of investigating this area and the impact that targeted therapies could hold. This review discusses the development of targeted therapies for these tumors, examining the effectiveness of first-generation BRAF inhibitors such as Vemurafenib, Dabrafenib and Encorafenib, while addressing the challenges posed by paradoxical ERK activation. The advent of pan-RAF inhibitors, notably Tovorafenib, offers a promising advance, demonstrating enhanced efficacy and better penetration of the blood-brain barrier, without the issue of paradoxical activation. Nevertheless, continued research is essential to refine therapeutic strategies for BRAF-mutated gliomas, given the evolving nature of targeted therapy development.
Collapse
Affiliation(s)
| | - Sophie Wehbe
- Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Fouad Attieh
- Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Marc Boutros
- Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Carole Kesrouani
- Department of Pathology, Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Université Saint-Joseph de Beyrouth, Beyrouth, 11-5076, Lebanon
| |
Collapse
|
5
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Yaman I, Bouffet E. How will tovorafenib change our treatment of pediatric low-grade glioma? Expert Opin Emerg Drugs 2024; 29:1-3. [PMID: 38293894 DOI: 10.1080/14728214.2024.2312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Affiliation(s)
- Inci Yaman
- The Hospital for Sick Children, 55 University Avenue, Toronto, Canada
| | - Eric Bouffet
- The Hospital for Sick Children, 55 University Avenue, Toronto, Canada
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
van Tilburg CM, Kilburn LB, Perreault S, Schmidt R, Azizi AA, Cruz-Martínez O, Zápotocký M, Scheinemann K, Meeteren AYNSV, Sehested A, Opocher E, Driever PH, Avula S, Ziegler DS, Capper D, Koch A, Sahm F, Qiu J, Tsao LP, Blackman SC, Manley P, Milde T, Witt R, Jones DTW, Hargrave D, Witt O. LOGGIC/FIREFLY-2: a phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 2024; 24:147. [PMID: 38291372 PMCID: PMC10826080 DOI: 10.1186/s12885-024-11820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, Münster, Germany
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ofelia Cruz-Martínez
- Neuro-oncology Unit, Pediatric Cancer Center, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Michal Zápotocký
- Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Pediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| | | | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Pablo Hernáiz Driever
- German HIT-LOGGIC-Registry for LGG in Children and Adolescents, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DKTK Partner Site, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Sahm
- Department of Neuropathology, German Cancer Research Center (DKFZ), University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | - Li-Pen Tsao
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | | | | | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ruth Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
9
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Kilburn LB, Khuong-Quang DA, Hansford JR, Landi D, van der Lugt J, Leary SES, Driever PH, Bailey S, Perreault S, McCowage G, Waanders AJ, Ziegler DS, Witt O, Baxter PA, Kang HJ, Hassall TE, Han JW, Hargrave D, Franson AT, Yalon Oren M, Toledano H, Larouche V, Kline C, Abdelbaki MS, Jabado N, Gottardo NG, Gerber NU, Whipple NS, Segal D, Chi SN, Oren L, Tan EEK, Mueller S, Cornelio I, McLeod L, Zhao X, Walter A, Da Costa D, Manley P, Blackman SC, Packer RJ, Nysom K. The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial. Nat Med 2024; 30:207-217. [PMID: 37978284 PMCID: PMC10803270 DOI: 10.1038/s41591-023-02668-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .
Collapse
Affiliation(s)
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, Australia; South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Sarah E S Leary
- Cancer and Blood Disorders Center, Seattle Children's, Seattle, WA, USA
| | - Pablo Hernáiz Driever
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, German HIT-LOGGIC-Registry for LGG in Children and Adolescents, Berlin, Germany
| | - Simon Bailey
- Great North Children's Hospital and Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | | | - Geoffrey McCowage
- Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
| | | | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit, Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Patricia A Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Timothy E Hassall
- Children's Health Queensland Hospital and Health Service, South Brisbane, QLD, Australia
| | - Jung Woo Han
- Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Andrea T Franson
- C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center, Petach Tikva, and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valérie Larouche
- Department of Pediatrics, Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mohamed S Abdelbaki
- Division of Hematology and Oncology, Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Nada Jabado
- McGill University Health Centre (MUHC), Montreal Children's Hospital (MCH), Montreal, Quebec, Canada
| | - Nicholas G Gottardo
- Department of Pediatric and Adolescent Oncology and Hematology, Perth Children's Hospital, Perth, Australia, and Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Nicholas S Whipple
- Primary Children's Hospital and University of Utah, Salt Lake City, UT, USA
| | | | - Susan N Chi
- Pediatric Neuro-Oncology, Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Liat Oren
- Department of Hematology & Oncology, Rambam Healthcare Campus, Haifa, Israel
| | - Enrica E K Tan
- Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lisa McLeod
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | - Xin Zhao
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | | | | | | | | | - Roger J Packer
- Division of Neurology, Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA
| | - Karsten Nysom
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
12
|
Ta L, Tsai BL, Deng W, Sha J, Varuzhanyan G, Tran W, Wohlschlegel JA, Carr-Ascher JR, Witte ON. Wild-type C-Raf gene dosage and dimerization drive prostate cancer metastasis. iScience 2023; 26:108480. [PMID: 38089570 PMCID: PMC10711388 DOI: 10.1016/j.isci.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/01/2024] Open
Abstract
Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.
Collapse
Affiliation(s)
- Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Brandon L. Tsai
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, Sacramento, CA 95817, USA
- Department of Orthopedic Surgery, University of California, Davis; Sacramento, CA 95817, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Selt F, El Damaty A, Schuhmann MU, Sigaud R, Ecker J, Sievers P, Kocher D, Herold-Mende C, Oehme I, von Deimling A, Pfister SM, Sahm F, Jones DTW, Witt O, Milde T. Generation of patient-derived pediatric pilocytic astrocytoma in-vitro models using SV40 large T: evaluation of a modeling workflow. J Neurooncol 2023; 165:467-478. [PMID: 37999877 PMCID: PMC10752915 DOI: 10.1007/s11060-023-04500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE Although pediatric low-grade gliomas (pLGG) are the most common pediatric brain tumors, patient-derived cell lines reflecting pLGG biology in culture are scarce. This also applies to the most common pLGG subtype pilocytic astrocytoma (PA). Conventional cell culture approaches adapted from higher-grade tumors fail in PA due to oncogene-induced senescence (OIS) driving tumor cells into arrest. Here, we describe a PA modeling workflow using the Simian Virus large T antigen (SV40-TAg) to circumvent OIS. METHODS 18 pLGG tissue samples (17 (94%) histological and/or molecular diagnosis PA) were mechanically dissociated. Tumor cell positive-selection using A2B5 was perfomed in 8/18 (44%) cases. All primary cell suspensions were seeded in Neural Stem Cell Medium (NSM) and Astrocyte Basal Medium (ABM). Resulting short-term cultures were infected with SV40-TAg lentivirus. Detection of tumor specific alterations (BRAF-duplication and BRAF V600E-mutation) by digital droplet PCR (ddPCR) at defined time points allowed for determination of tumor cell fraction (TCF) and evaluation of the workflow. DNA-methylation profiling and gene-panel sequencing were used for molecular profiling of primary samples. RESULTS Primary cell suspensions had a mean TCF of 55% (+/- 23% (SD)). No sample in NSM (0/18) and ten samples in ABM (10/18) were successfully transduced. Three of these ten (30%) converted into long-term pLGG cell lines (TCF 100%), while TCF declined to 0% (outgrowth of microenvironmental cells) in 7/10 (70%) cultures. Young patient age was associated with successful model establishment. CONCLUSION A subset of primary PA cultures can be converted into long-term cell lines using SV40-TAg depending on sample intrinsic (patient age) and extrinsic workflow-related (e.g. type of medium, successful transduction) parameters. Careful monitoring of sample-intrinsic and extrinsic factors optimizes the process.
Collapse
Affiliation(s)
- Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Ahmed El Damaty
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Pediatric Neurosurgery Division, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin U Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Sievers
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
14
|
Rasco DW, Medina T, Corrie P, Pavlick AC, Middleton MR, Lorigan P, Hebert C, Plummer R, Larkin J, Agarwala SS, Daud AI, Qiu J, Bozon V, Kneissl M, Barry E, Olszanski AJ. Phase 1 study of the pan-RAF inhibitor tovorafenib in patients with advanced solid tumors followed by dose expansion in patients with metastatic melanoma. Cancer Chemother Pharmacol 2023; 92:15-28. [PMID: 37219686 PMCID: PMC10261210 DOI: 10.1007/s00280-023-04544-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Genomic alterations of BRAF and NRAS are oncogenic drivers in malignant melanoma and other solid tumors. Tovorafenib is an investigational, oral, selective, CNS-penetrant, small molecule, type II pan‑RAF inhibitor. This first-in-human phase 1 study explored the safety and antitumor activity of tovorafenib. METHODS This two-part study in adult patients with relapsed or refractory advanced solid tumors included a dose escalation phase and a dose expansion phase including molecularly defined cohorts of patients with melanoma. Primary objectives were to evaluate the safety of tovorafenib administered once every other day (Q2D) or once weekly (QW), and to determine the maximum-tolerated and recommended phase 2 dose (RP2D) on these schedules. Secondary objectives included evaluation of antitumor activity and tovorafenib pharmacokinetics. RESULTS Tovorafenib was administered to 149 patients (Q2D n = 110, QW n = 39). The RP2D of tovorafenib was defined as 200 mg Q2D or 600 mg QW. In the dose expansion phase, 58 (73%) of 80 patients in Q2D cohorts and 9 (47%) of 19 in the QW cohort had grade ≥ 3 adverse events. The most common of these overall were anemia (14 patients, 14%) and maculo-papular rash (8 patients, 8%). Responses were seen in 10 (15%) of 68 evaluable patients in the Q2D expansion phase, including in 8 of 16 (50%) patients with BRAF mutation-positive melanoma naïve to RAF and MEK inhibitors. In the QW dose expansion phase, there were no responses in 17 evaluable patients with NRAS mutation-positive melanoma naïve to RAF and MEK inhibitors; 9 patients (53%) had a best response of stable disease. QW dose administration was associated with minimal accumulation of tovorafenib in systemic circulation in the dose range of 400-800 mg. CONCLUSIONS The safety profile of both schedules was acceptable, with QW dosing at the RP2D of 600 mg QW preferred for future clinical studies. Antitumor activity of tovorafenib in BRAF-mutated melanoma was promising and justifies continued clinical development across multiple settings. CLINICALTRIALS GOV IDENTIFIER NCT01425008.
Collapse
Affiliation(s)
- Drew W Rasco
- South Texas Accelerated Research Therapeutics, LLC, San Antonio, TX, USA
| | | | - Pippa Corrie
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna C Pavlick
- Laura & Isaac Perlmutter Cancer Center at NYU Langone, New York, NY, USA
| | - Mark R Middleton
- Department of Oncology, NIHR Biomedical Research Centre, Oxford, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chris Hebert
- Bristol Haematology and Oncology Centre, Bristol, UK
| | - Ruth Plummer
- The Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Adil I Daud
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA
| | - Viviana Bozon
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Michelle Kneissl
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Elly Barry
- Day One Biopharmaceuticals, 2000 Sierra Point Parkway, Suite 501, Brisbane, CA, 94005, USA.
| | | |
Collapse
|
15
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Tkacik E, Li K, Gonzalez-Del Pino G, Ha BH, Vinals J, Park E, Beyett TS, Eck MJ. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. J Biol Chem 2023; 299:104634. [PMID: 36963492 PMCID: PMC10149214 DOI: 10.1016/j.jbc.2023.104634] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.
Collapse
Affiliation(s)
- Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunhua Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gonzalo Gonzalez-Del Pino
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Byung Hak Ha
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Javier Vinals
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Liu X, Dai X, Dai C, Zhu Q, Chen A, Chen Y, Chen N, Chen P, Rong R, Shi C, Xiao S, Dong J. Rare adult pilocytic astrocytoma of the septum pellucidum with novel RIN2::BRAF fusion. Virchows Arch 2023; 482:445-450. [PMID: 36520196 DOI: 10.1007/s00428-022-03477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Pilocytic astrocytoma is mostly a pediatric tumor with the majority of patients under age 20. Although tumors can occur throughout neuraxis, most tumors are in the cerebellum and optic chiasm. Pilocytic astrocytoma in unusual locations is often associated with different genetic alterations than the classic KIAA1549::BRAF fusion. We report a rare adult pilocytic astrocytoma of the septum pellucidum that presented with progressive headache. A detailed genomic evaluation found a fusion between BRAF and a novel partner RIN2, a gene overexpressed in both low-grade glioma and glioblastoma. The RIN2::BRAF transcript encodes a chimeric protein containing a dimerization domain SH2 and an intact kinase domain, consistent with a prototypic oncogenic kinase rearrangement. In addition, we discuss the potential oncogenic mechanisms of BRAF signaling and its implication in targeted therapy with kinase inhibitors.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaoxiao Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chungang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qin Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ailin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yanming Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Nan Chen
- Suzhou Sano Precision Medicine Ltd, Suzhou, China.,Department of Biological Sciences, Xi An Jiaotong-Liverpool University, Suzhou, China
| | - Ping Chen
- Suzhou Sano Precision Medicine Ltd, Suzhou, China.,Department of Biological Sciences, Xi An Jiaotong-Liverpool University, Suzhou, China
| | - Rong Rong
- Suzhou Sano Precision Medicine Ltd, Suzhou, China.,Department of Biological Sciences, Xi An Jiaotong-Liverpool University, Suzhou, China
| | - Changjun Shi
- Suzhou Sano Precision Medicine Ltd, Suzhou, China.,Department of Biological Sciences, Xi An Jiaotong-Liverpool University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Boston, USA
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
18
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
19
|
Tsai JW, Choi JJ, Ouaalam H, Murillo EA, Yeo KK, Vogelzang J, Sousa C, Woods JK, Ligon KL, Warfield SK, Bandopadhayay P, Cooney TM. Integrated response analysis of pediatric low-grade gliomas during and after targeted therapy treatment. Neurooncol Adv 2023; 5:vdac182. [PMID: 36926246 PMCID: PMC10011805 DOI: 10.1093/noajnl/vdac182] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Pediatric low-grade gliomas (pLGGs) are the most common central nervous system tumor in children, characterized by RAS/MAPK pathway driver alterations. Genomic advances have facilitated the use of molecular targeted therapies, however, their long-term impact on tumor behavior remains critically unanswered. Methods We performed an IRB-approved, retrospective chart and imaging review of pLGGs treated with off-label targeted therapy at Dana-Farber/Boston Children's from 2010 to 2020. Response analysis was performed for BRAFV600E and BRAF fusion/duplication-driven pLGG subsets. Results Fifty-five patients were identified (dabrafenib n = 15, everolimus n = 26, trametinib n = 11, and vemurafenib n = 3). Median duration of targeted therapy was 9.48 months (0.12-58.44). The 1-year, 3-year, and 5-year EFS from targeted therapy initiation were 62.1%, 38.2%, and 31.8%, respectively. Mean volumetric change for BRAFV600E mutated pLGG on BRAF inhibitors was -54.11%; median time to best volumetric response was 8.28 months with 9 of 12 (75%) objective RAPNO responses. Median time to largest volume post-treatment was 2.86 months (+13.49%); mean volume by the last follow-up was -14.02%. Mean volumetric change for BRAF fusion/duplication pLGG on trametinib was +7.34%; median time to best volumetric response was 6.71 months with 3 of 7 (43%) objective RAPNO responses. Median time to largest volume post-treatment was 2.38 months (+71.86%); mean volume by the last follow-up was +39.41%. Conclusions Our integrated analysis suggests variability in response by pLGG molecular subgroup and targeted therapy, as well as the transience of some tumor growth following targeted therapy cessation.
Collapse
Affiliation(s)
- Jessica W Tsai
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jungwhan John Choi
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hakim Ouaalam
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Efrain Aguilar Murillo
- Department of Radiology, Division of Neuroradiology and Neurointervention, Boston, Massachusetts, USA
| | - Kee Kiat Yeo
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jayne Vogelzang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Cecilia Sousa
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Tabitha M Cooney
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Lehmann R, Rayner BS, Ziegler DS. Resistance mechanisms in BRAF V600E paediatric high-grade glioma and current therapeutic approaches. Front Oncol 2022; 12:1031378. [PMID: 36582791 PMCID: PMC9792688 DOI: 10.3389/fonc.2022.1031378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Paediatric high-grade gliomas (pHGG) are aggressive central nervous system tumours with a poor prognosis. BRAFV600E mutant pHGGs can be treated with targeted BRAF inhibitors, which have shown both preclinical activity and potent clinical efficacy. Unfortunately, the development of drug resistance results in disease relapse or progression and is the primary cause of treatment failure. While there is a lot of data to explain mechanisms of resistance in other BRAFV600E tumours, comparatively little is known about the mechanisms of BRAF inhibitor resistance in BRAFV600E pHGG. Recent literature has identified aberrations in members of the RAS/RAF/ERK pathway, the PI3K/AKT/MTOR pathway and the cell cycle as major contributors to the resistance profile. A range of novel therapies have been suggested to overcome BRAF inhibitor drug resistance in BRAFV600E pHGG. This review will discuss the current literature available for BRAF inhibitor resistant BRAFV600E pHGGs and provide an overview of the currently available and proposed therapies.
Collapse
Affiliation(s)
- R Lehmann
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine & Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - B S Rayner
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine & Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - D S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine & Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| |
Collapse
|
21
|
Dual Inhibition of BRAF-MAPK and STAT3 Signaling Pathways in Resveratrol-Suppressed Anaplastic Thyroid Cancer Cells with BRAF Mutations. Int J Mol Sci 2022; 23:ijms232214385. [PMID: 36430869 PMCID: PMC9692422 DOI: 10.3390/ijms232214385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Anaplastic thyroid cancer is an extremely lethal malignancy without reliable treatment. BRAFV600E point mutation is common in ATCs, which leads to MAPK signaling activation and is regarded as a therapeutic target. Resveratrol inhibits ATC cell growth, while its impact on BRAF-MAPK signaling remains unknown. This study aims to address this issue by elucidating the statuses of BRAF-MAPK and STAT3 signaling activities in resveratrol-treated THJ-11T, THJ-16T, and THJ-21T ATC cells and Nthyori 3-1 thyroid epithelial cells. RT-PCR and Sanger sequencing revealed MKRN1-BRAF fusion mutation in THJ-16T, BRAF V600E point mutation in THJ-21T, and wild-type BRAF genes in THJ-11T and Nthyori 3-1 cells. Western blotting and immunocytochemical staining showed elevated pBRAF, pMEK, and pERK levels in THJ-16T and THJ-21T, but not in THJ-11T or Nthyori 3-1 cells. Calcein/PI, EdU, and TUNEL assays showed that compared with docetaxel and doxorubicin and MAPK-targeting dabrafenib and trametinib, resveratrol exerted more powerful inhibitory effects on mutant BRAF-harboring THJ-16T and THJ-21T cells, accompanied by reduced levels of MAPK pathway-associated proteins and pSTAT3. Trametinib- and dabrafenib-enhanced STAT3 activation was efficiently suppressed by resveratrol. In conclusion, resveratrol acts as dual BRAF-MAPK and STAT3 signaling inhibitor and a promising agent against ATCs with BRAF mutation.
Collapse
|
22
|
Dai M, Chen S, Teng X, Chen K, Cheng W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer 2022; 13:3209-3220. [PMID: 36118526 PMCID: PMC9475360 DOI: 10.7150/jca.76695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors, with a 5-year survival rate of less than 10%. At present, the comprehensive treatment based on surgery, radiotherapy and chemotherapy has encountered a bottleneck, and targeted immunotherapy turns to be the direction of future development. About 90% of PDAC patients have KRAS mutations, and KRAS has been widely used in the diagnosis, treatment, and prognosis of PDAC in recent years. With the development of liquid biopsy and gene testing, KRAS is expected to become a new biomarker to assist the stratification and prognosis of PDAC patients. An increasing number of small molecule inhibitors acting on the KRAS pathway are being developed and put into the clinic, providing more options for PDAC patients.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Shaofeng Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China.,Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, National Clinical Center for Schistosomiasis Treatment, Yueyang 414000, Hunan Province, China.,Translational Medicine Laboratory of Pancreas Disease of Hunan Normal University, Changsha 410005, China
| |
Collapse
|
23
|
Anastasaki C, Chatterjee J, Cobb O, Sanapala S, Scheaffer SM, De Andrade Costa A, Wilson AF, Kernan CM, Zafar AH, Ge X, Garbow JR, Rodriguez FJ, Gutmann DH. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun 2022; 10:120. [PMID: 35986378 PMCID: PMC9392324 DOI: 10.1186/s40478-022-01428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Amanda De Andrade Costa
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Anna F Wilson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Chloe M Kernan
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ameera H Zafar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
25
|
Riudavets M, Cascetta P, Planchard D. Targeting BRAF-mutant non-small cell lung cancer: current status and future directions. Lung Cancer 2022; 169:102-114. [DOI: 10.1016/j.lungcan.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
26
|
Ng TSC, Hu H, Kronister S, Lee C, Li R, Gerosa L, Stopka SA, Burgenske DM, Khurana I, Regan MS, Vallabhaneni S, Putta N, Scott E, Matvey D, Giobbie-Hurder A, Kohler RH, Sarkaria JN, Parangi S, Sorger PK, Agar NYR, Jacene HA, Sullivan RJ, Buchbinder E, Mikula H, Weissleder R, Miller MA. Overcoming differential tumor penetration of BRAF inhibitors using computationally guided combination therapy. SCIENCE ADVANCES 2022; 8:eabl6339. [PMID: 35486732 PMCID: PMC9054019 DOI: 10.1126/sciadv.abl6339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BRAF-targeted kinase inhibitors (KIs) are used to treat malignancies including BRAF-mutant non-small cell lung cancer, colorectal cancer, anaplastic thyroid cancer, and, most prominently, melanoma. However, KI selection criteria in patients remain unclear, as are pharmacokinetic/pharmacodynamic (PK/PD) mechanisms that may limit context-dependent efficacy and differentiate related drugs. To address this issue, we imaged mouse models of BRAF-mutant cancers, fluorescent KI tracers, and unlabeled drug to calibrate in silico spatial PK/PD models. Results indicated that drug lipophilicity, plasma clearance, faster target dissociation, and, in particular, high albumin binding could limit dabrafenib action in visceral metastases compared to other KIs. This correlated with retrospective clinical observations. Computational modeling identified a timed strategy for combining dabrafenib and encorafenib to better sustain BRAF inhibition, which showed enhanced efficacy in mice. This study thus offers principles of spatial drug action that may help guide drug development, KI selection, and combination.
Collapse
Affiliation(s)
- Thomas S. C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiyu Hu
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Stefan Kronister
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria
| | - Chanseo Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Ishaan Khurana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sreeram Vallabhaneni
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Niharika Putta
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Ella Scott
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Dylan Matvey
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rainer H. Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter K. Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Heather A. Jacene
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Hannes Mikula
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
27
|
Otth M, Wyss J, Scheinemann K. Long-Term Follow-Up of Pediatric CNS Tumor Survivors—A Selection of Relevant Long-Term Issues. CHILDREN 2022; 9:children9040447. [PMID: 35455491 PMCID: PMC9029633 DOI: 10.3390/children9040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
Introduction: Survivors of pediatric central nervous system (CNS) tumors are at high risk for late effects and long-term morbidity. The quality of survival became increasingly important, as advances in diagnostics, multimodal treatment strategies, and supportive care have led to significant increases in long-term survival. Aim: This review aims to provide a global overview of the potential late effects and long-term follow-up care of CNS tumor survivors, directed to trainees and practitioners with less targeted training in pediatric oncology. Late effects in CNS tumor survivors: A specific focus on CNS tumor survivors relies on cognitive and psychosocial late effects, as they may have an impact on education, professional career, independent living, and quality of life. Further important late effects in CNS tumor survivors include endocrine, metabolic, cardiovascular, and cerebrovascular diseases. Conclusions: Comprehensive long-term follow-up care is essential for pediatric CNS tumor survivors to improve their quality of survival and quality of life. An individualized approach, taking all potential late effects into account, and carried out by an interdisciplinary team, is recommended, and should continue into adulthood. Existing recommendations and guidelines on long-term follow-up care guide the multidisciplinary teams.
Collapse
Affiliation(s)
- Maria Otth
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau AG, 5001 Aarau, Switzerland; (J.W.); (K.S.)
- Department of Oncology, Hematology, Immunology, Stem Cell Transplantation and Somatic Gene Therapy, University Children’s Hospital Zurich—Eleonore Foundation, 8032 Zurich, Switzerland
- Correspondence:
| | - Johanna Wyss
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau AG, 5001 Aarau, Switzerland; (J.W.); (K.S.)
- Division of Oncology and Hematology, University Children’s Hospital Basel (UKBB), 4056 Basel, Switzerland
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau AG, 5001 Aarau, Switzerland; (J.W.); (K.S.)
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland
- Department of Pediatrics, McMaster University Hamilton, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
28
|
Tatli O, Dinler Doganay G. Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Molecules 2021; 26:molecules26247561. [PMID: 34946644 PMCID: PMC8703923 DOI: 10.3390/molecules26247561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of oncogenic rat sarcoma virus (RAS) protein promotes tumor growth and progression. RAS-driven cancers comprise more than 30% of all human cancers and are refractory to frontline treatment strategies. Since direct targeting of RAS has proven challenging, efforts have been centered on the exploration of inhibitors for RAS downstream effector kinases. Two major RAS downstream signaling pathways, including the Raf/MEK/Erk cascade and the phosphatidylinositol-3-kinase (PI3K) pathway, have become compelling targets for RAS-driven cancer therapy. However, the main drawback in the blockade of a single RAS effector is the multiple levels of crosstalk and compensatory mechanisms between these two pathways that contribute to drug resistance against monotherapies. A growing body of evidence reveals that the sequential or synergistic inhibition of multiple RAS effectors is a more convenient route for the efficacy of cancer therapy. Herein, we revisit the recent developments and discuss the most promising modalities targeting canonical RAS downstream effectors for the treatment of RAS-driven cancers.
Collapse
Affiliation(s)
- Ozge Tatli
- Department of Molecular Biology, Genetics-Biotechnology, Graduate School, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul 34720, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology, Genetics-Biotechnology, Graduate School, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
- Correspondence: ; Tel.: +90-2122-857-256
| |
Collapse
|
29
|
Heppner DE, Eck MJ. A structural perspective on targeting the RTK/Ras/MAP kinase pathway in cancer. Protein Sci 2021; 30:1535-1553. [PMID: 34008902 PMCID: PMC8284588 DOI: 10.1002/pro.4125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well-established role in structure-based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.
Collapse
Affiliation(s)
- David E. Heppner
- Department of ChemistryUniversity at Buffalo, State University of New YorkBuffaloNew YorkUSA
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Michael J. Eck
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
30
|
Rosenthal M, Clement PM, Campone M, Gil-Gil MJ, DeGroot J, Chinot O, Idbaih A, Gan H, Raizer J, Wen PY, Pineda E, Donnet V, Mills D, El-Hashimy M, Mason W. Buparlisib plus carboplatin or lomustine in patients with recurrent glioblastoma: a phase Ib/II, open-label, multicentre, randomised study. ESMO Open 2021; 5:S2059-7029(20)32638-7. [PMID: 32665311 PMCID: PMC7359195 DOI: 10.1136/esmoopen-2020-000672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma relapse is associated with activation of phosphatidylinositol 3-kinase (PI3K) signalling pathway. In preclinical studies, the pan-PI3K inhibitor buparlisib showed antitumour activity in glioma models. Methods This was a two-part, multicentre, phase Ib/II study in patients with recurrent glioblastoma pretreated with radiotherapy and temozolomide standard of care. Patients received buparlisib (80 mg or 100 mg once daily) plus carboplatin (area under the curve (AUC)=5 every 3 weeks), or buparlisib (60 mg once daily) plus lomustine (100 mg/m2 every 6 weeks). The primary endpoint was to determine the maximum tolerable dose (MTD) and/or recommended phase II dose of buparlisib plus carboplatin or lomustine. Results Between 28 February 2014 and 7 July 2016, 35 patients were enrolled and treated with buparlisib plus carboplatin (n=17; buparlisib (80 mg) plus carboplatin, n=3; and buparlisib (100 mg) plus carboplatin, n=14), or buparlisib (60 mg) plus lomustine (n=18). The MTD of buparlisib was determined to be 100 mg per day in combination with carboplatin at an AUC of 5 every 3 weeks. The MTD of buparlisib in combination with lomustine could not be determined as it did not satisfy the MTD criteria per the Bayesian logistic regression model. Conclusion The overall safety profile of buparlisib remained unchanged, and no new or unexpected safety findings were reported in this study. Preliminary assessment for both combinations did not demonstrate sufficient antitumour activity compared with historical data on single-agent carboplatin or lomustine. Trial registration number NCT01934361.
Collapse
Affiliation(s)
- Mark Rosenthal
- Medical Oncology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Paul M Clement
- Department of Oncology, Leuven Cancer Institute, Leuven, Belgium
| | - Mario Campone
- Institut de Cancérologie de l'Ouest, Centre René Gauducheau, Saint Herblain, Pays de la Loire, France
| | | | - John DeGroot
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Olivier Chinot
- Department of Neuro-Oncology, Assistance Publique - Hôpitaux de Marseille Office Central des Bibliothèques, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Ahmed Idbaih
- Department of Neuro-Oncology, Sorbonne Université, Paris, Île-de-France, France
| | - Hui Gan
- Oncology, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, Victoria, Australia
| | - Jeffrey Raizer
- Department of Neuro-Oncology, Northwestern Medical Faculty Foundation, Chicago, Illinois, USA
| | - Patrick Yung Wen
- Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Estela Pineda
- Medical Oncology, University of Barcelona Faculty of Medicine and Health Sciences, Barcelona, Catalunya, Spain
| | | | - David Mills
- Novartis Pharma, Basel, Basel-Stadt, Switzerland
| | - Mona El-Hashimy
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Warren Mason
- Department of Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Yen I, Shanahan F, Lee J, Hong YS, Shin SJ, Moore AR, Sudhamsu J, Chang MT, Bae I, Dela Cruz D, Hunsaker T, Klijn C, Liau NPD, Lin E, Martin SE, Modrusan Z, Piskol R, Segal E, Venkatanarayan A, Ye X, Yin J, Zhang L, Kim JS, Lim HS, Kim KP, Kim YJ, Han HS, Lee SJ, Kim ST, Jung M, Hong YH, Noh YS, Choi M, Han O, Nowicka M, Srinivasan S, Yan Y, Kim TW, Malek S. ARAF mutations confer resistance to the RAF inhibitor belvarafenib in melanoma. Nature 2021; 594:418-423. [PMID: 33953400 DOI: 10.1038/s41586-021-03515-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Although RAF monomer inhibitors (type I.5, BRAF(V600)) are clinically approved for the treatment of BRAFV600-mutant melanoma, they are ineffective in non-BRAFV600 mutant cells1-3. Belvarafenib is a potent and selective RAF dimer (type II) inhibitor that exhibits clinical activity in patients with BRAFV600E- and NRAS-mutant melanomas. Here we report the first-in-human phase I study investigating the maximum tolerated dose, and assessing the safety and preliminary efficacy of belvarafenib in BRAFV600E- and RAS-mutated advanced solid tumours (NCT02405065, NCT03118817). By generating belvarafenib-resistant NRAS-mutant melanoma cells and analysing circulating tumour DNA from patients treated with belvarafenib, we identified new recurrent mutations in ARAF within the kinase domain. ARAF mutants conferred resistance to belvarafenib in both a dimer- and a kinase activity-dependent manner. Belvarafenib induced ARAF mutant dimers, and dimers containing mutant ARAF were active in the presence of inhibitor. ARAF mutations may serve as a general resistance mechanism for RAF dimer inhibitors as the mutants exhibit reduced sensitivity to a panel of type II RAF inhibitors. The combination of RAF plus MEK inhibition may be used to delay ARAF-driven resistance and suggests a rational combination for clinical use. Together, our findings reveal specific and compensatory functions for the ARAF isoform and implicate ARAF mutations as a driver of resistance to RAF dimer inhibitors.
Collapse
Affiliation(s)
- Ivana Yen
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Intelligence Precision Healthcare Convergence, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Amanda R Moore
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Jawahar Sudhamsu
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.,Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Matthew T Chang
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Inhwan Bae
- Department of New Chemical Entity Discovery, Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea
| | - Darlene Dela Cruz
- Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Christiaan Klijn
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Eva Lin
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Scott E Martin
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Ehud Segal
- Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | - Xin Ye
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Liangxuan Zhang
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Hyeong-Seok Lim
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Hye Sook Han
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Soo Jung Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, Kyungpook National University, Daegu, South Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon-Hee Hong
- Department of Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea
| | - Young Su Noh
- Department of Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea
| | - Munjeong Choi
- Department of Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea
| | - Oakpil Han
- Department of Clinical Research and Development, Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea
| | - Malgorzata Nowicka
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Shrividhya Srinivasan
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Yibing Yan
- Department of Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Shiva Malek
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
32
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
33
|
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans 2021; 49:237-251. [PMID: 33367512 PMCID: PMC7924995 DOI: 10.1042/bst20200485] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.
Collapse
Affiliation(s)
- Frazer A. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
34
|
Rankin A, Johnson A, Roos A, Kannan G, Knipstein J, Britt N, Rosenzweig M, Haberberger J, Pavlick D, Severson E, Vergilio J, Squillace R, Erlich R, Sathyan P, Cramer S, Kram D, Ross J, Miller V, Reddy P, Alexander B, Ali SM, Ramkissoon S. Targetable BRAF and RAF1 Alterations in Advanced Pediatric Cancers. Oncologist 2021; 26:e153-e163. [PMID: 32918774 PMCID: PMC7794197 DOI: 10.1002/onco.13519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
RAF family protein kinases signal through the MAPK pathway to orchestrate cellular proliferation, survival, and transformation. Identifying BRAF alterations in pediatric cancers is critically important as therapeutic agents targeting BRAF or MEK may be incorporated into the clinical management of these patients. In this study, we performed comprehensive genomic profiling on 3,633 pediatric cancer samples and identified a cohort of 221 (6.1%) cases with known or novel alterations in BRAF or RAF1 detected in extracranial solid tumors, brain tumors, or hematological malignancies. Eighty percent (176/221) of these tumors had a known-activating short variant (98, 55.7%), fusion (72, 40.9%), or insertion/deletion (6, 3.4%). Among BRAF altered cancers, the most common tumor types were brain tumors (74.4%), solid tumors (10.8%), hematological malignancies (9.1%), sarcomas (3.4%), and extracranial embryonal tumors (2.3%). RAF1 fusions containing intact RAF1 kinase domain (encoded by exons 10-17) were identified in seven tumors, including two novel fusions TMF1-RAF1 and SOX6-RAF1. Additionally, we highlight a subset of patients with brain tumor with positive clinical response to BRAF inhibitors, demonstrating the rationale for incorporating precision medicine into pediatric oncology. IMPLICATIONS FOR PRACTICE: Precision medicine has not yet gained a strong foothold in pediatric cancers. This study describes the landscape of BRAF and RAF1 genomic alterations across a diverse spectrum of pediatric cancers, primarily brain tumors, but also encompassing melanoma, sarcoma, several types of hematologic malignancy, and others. Given the availability of multiple U.S. Food and Drug Administration-approved BRAF inhibitors, identification of these alterations may assist with treatment decision making, as described here in three cases of pediatric cancer.
Collapse
Affiliation(s)
| | | | - Alison Roos
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | - Geoffrey Kannan
- Center for Cancer and Blood Disorders, Pediatric Specialists of VirginiaFalls ChurchVirginiaUSA
| | - Jeffrey Knipstein
- Pediatric Hematology/Oncology/BMT, Medical College of WisconsinMilwaukeeWisconsinUSA
| | | | | | | | - Dean Pavlick
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | | | | | | | | | | | - Stuart Cramer
- University of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - David Kram
- Wake Forest Pediatric OncologyWinston‐SalemNorth CarolinaUSA
| | - Jeffrey Ross
- Foundation Medicine Inc.CambridgeMassachusettsUSA
- SUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Vince Miller
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | | | | | - Siraj M. Ali
- Foundation Medicine Inc.CambridgeMassachusettsUSA
| | - Shakti Ramkissoon
- Foundation Medicine Inc.MorrisvilleNorthCarolinaUSA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
35
|
Mueller T, Stucklin ASG, Postlmayr A, Metzger S, Gerber N, Kline C, Grotzer M, Nazarian J, Mueller S. Advances in Targeted Therapies for Pediatric Brain Tumors. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Purpose of Review
Over the last years, our understanding of the molecular biology of pediatric brain tumors has vastly improved. This has led to more narrowly defined subgroups of these tumors and has created new potential targets for molecularly driven therapies. This review presents an overview of the latest advances and challenges of implementing targeted therapies into the clinical management of pediatric brain tumors, with a focus on gliomas, craniopharyngiomas, and medulloblastomas.
Recent Findings
Pediatric low-grade gliomas (pLGG) show generally a low mutational burden with the mitogen-activated protein kinase (MAPK) signaling presenting a key driver for these tumors. Direct inhibition of this pathway through BRAF and/or MEK inhibitors has proven to be a clinically relevant strategy. More recently, MEK and IL-6 receptor inhibitors have started to be evaluated in the treatment for craniopharyngiomas. Aside these low-grade tumors, pediatric high-grade gliomas (pHGG) and medulloblastomas exhibit substantially greater molecular heterogeneity with various and sometimes unknown tumor driver alterations. The clinical benefit of different targeted therapy approaches to interfere with altered signaling pathways and restore epigenetic dysregulation is undergoing active clinical testing. For these multiple pathway-driven tumors, combination strategies will most likely be required to achieve clinical benefit.
Summary
The field of pediatric neuro-oncology made tremendous progress with regard to improved diagnosis setting the stage for precision medicine approaches over the last decades. The potential of targeted therapies has been clearly demonstrated for a subset of pediatric brain tumors. However, despite clear response rates, questions of sufficient blood-brain barrier penetration, optimal dosing, treatment duration as well as mechanisms of resistance and how these can be overcome with potential combination strategies need to be addressed in future investigations. Along this line, it is critical for future trials to define appropriate endpoints to assess therapy responses as well as short and long-term toxicities in the growing and developing child.
Collapse
|
36
|
Anti-tumor activities of the new oral pan-RAF inhibitor, TAK-580, used as monotherapy or in combination with novel agents in multiple myeloma. Oncotarget 2020; 11:3984-3997. [PMID: 33216827 PMCID: PMC7646837 DOI: 10.18632/oncotarget.27775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Many RAS pathway inhibitors, including pan-RAF inhibitors, have shown significant anti-tumor activities in both solid and hematological tumors. The pan-RAF inhibitor, TAK-580, is a representative of the novel RAF inhibitors that act by disrupting RAF homo- or heterodimerization. In this study, we examined the anti-tumor effects of TAK-580 used as monotherapy or in combination with bortezomib, lenalidomide, or other novel agents in multiple myeloma (MM) cells in vitro. TAK-580 monotherapy potently targeted proteins in the RAS-RAF-MEK-ERK signaling pathway and induced potent cytotoxicity and apoptosis in MM cell lines and myeloma cells from patients with newly diagnosed and relapsed and/or refractory MM, compared with a representative RAF inhibitor, dabrafenib. Normal donor peripheral blood B lymphocytes and cord blood CD34-positive cells were not affected. Importantly, TAK-580 significantly inhibited phospho-FOXO3 and induced upregulation of BimL and BimS in a dose-dependent manner, finally leading to apoptosis in MM cells. Moreover, TAK-580 enhanced bortezomib-induced cytotoxicity and apoptosis in MM cells via the FOXO3-Bim axis and the terminal unfolded protein response. Importantly, TAK-580 also enhanced lenalidomide-induced cytotoxicity and apoptosis in MM cells. Taken together, our results provide the rationale for TAK-580 monotherapy and/or treatment in combination with novel agents to improve outcomes in patients with MM.
Collapse
|
37
|
Owsley J, Stein MK, Porter J, In GK, Salem M, O'Day S, Elliott A, Poorman K, Gibney G, VanderWalde A. Prevalence of class I-III BRAF mutations among 114,662 cancer patients in a large genomic database. Exp Biol Med (Maywood) 2020; 246:31-39. [PMID: 33019809 DOI: 10.1177/1535370220959657] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT These data represent the largest aggregation of BRAF mutations within a single clinical database to our knowledge. The relative proportions of both BRAF V600 mutations and non-V600 mutations are informative in all cancers and by malignancy, and can serve as a definitive gold-standard for BRAF mutation cancer incidence by malignancy. The rate of BRAF mutation in human cancer in a real-world large database is lower than previously reported likely representing testing more broadly across tumor types. The relative percentages of Class II and Class III BRAF mutations are higher than previously reported, representing almost 35% of BRAF mutations in cancer. These findings provide support for the development of effective treatments for non-V600 BRAF mutations in cancer.
Collapse
Affiliation(s)
- Jeff Owsley
- Division of Hematology/Oncology, University of Tennessee Health Science Center, Germantown, TN 38138, USA
| | - Matthew K Stein
- Division of Hematology/Oncology, University of Tennessee Health Science Center, Germantown, TN 38138, USA
| | | | - Gino K In
- Division of Hematology/Oncology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Steven O'Day
- John Wayne Cancer Institute, Santa Monica, CA 90404, USA
| | | | | | - Geoffrey Gibney
- Division of Hematology/Oncology, Georgetown University, Washington, DC 20007, USA
| | - Ari VanderWalde
- Division of Hematology/Oncology, University of Tennessee Health Science Center, Germantown, TN 38138, USA.,West Cancer Center, Germantown, TN 38138, USA
| |
Collapse
|
38
|
Botton T, Talevich E, Mishra VK, Zhang T, Shain AH, Berquet C, Gagnon A, Judson RL, Ballotti R, Ribas A, Herlyn M, Rocchi S, Brown KM, Hayward NK, Yeh I, Bastian BC. Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses. Cell Rep 2020; 29:573-588.e7. [PMID: 31618628 DOI: 10.1016/j.celrep.2019.09.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
BRAF fusions are detected in numerous neoplasms, but their clinical management remains unresolved. We identified six melanoma lines harboring BRAF fusions representative of the clinical cases reported in the literature. Their unexpected heterogeneous responses to RAF and MEK inhibitors could be categorized upon specific features of the fusion kinases. Higher expression level correlated with resistance, and fusion partners containing a dimerization domain promoted paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway and hyperproliferation in response to first- and second-generation RAF inhibitors. By contrast, next-generation αC-IN/DFG-OUT RAF inhibitors blunted paradoxical activation across all lines and had their therapeutic efficacy further increased in vitro and in vivo by combination with MEK inhibitors, opening perspectives in the clinical management of tumors harboring BRAF fusions.
Collapse
Affiliation(s)
- Thomas Botton
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA.
| | - Eric Talevich
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Vivek Kumar Mishra
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - A Hunter Shain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Céline Berquet
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Alexander Gagnon
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Stéphane Rocchi
- U1065, Institut National de la Santé et de la Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MA 20892, USA
| | - Nicholas K Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Boris C Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
39
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
40
|
Abstract
Kinases form the major part of the druggable genome and their selective inhibition in human cancers has had reasonable clinical success. In contrast to tumorigenesis, the role of kinases in mediating immune responses is poorly understood. However, synergistic therapeutic regimens combining targeted therapy and immune therapy have been found to increase the median survival of tumor patients. In this context, we uncovered that RAF and MEK1/2 kinases, which are the integral parts of the classical MAPK cascade, have unique roles in driving DC differentiation and activation. RAF kinases are stabilized in their protein levels during DC differentiation and are obligatory for normal functioning of DCs. But, the targeting of MEK1/2 kinases with specific inhibitors did not phenocopy the effects observed with RAF inhibitors suggesting that RAF and MEK1/2 kinases may have specific and unique roles in driving immune responses, which deserves further studies to successfully administer these inhibitors in clinics.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz , Mainz, Germany
| | | |
Collapse
|
41
|
Clinical Relevance of BRAF V600E Mutation Status in Brain Tumors with a Focus on a Novel Management Algorithm. Target Oncol 2020; 15:531-540. [PMID: 32648041 PMCID: PMC7434793 DOI: 10.1007/s11523-020-00735-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The possible application of BRAF-targeted therapy in brain tumors is growing continuously. We have analyzed clinical strategies that address BRAF activation in primary brain tumors and verified current recommendations regarding screening for BRAF mutations. There is preliminary evidence for a range of positive responses in certain brain tumor types harboring the BRAF V600E mutation. National Comprehensive Cancer Network Guidelines for central nervous system cancers recommend screening for the BRAF V600E mutation in pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma. We suggest additional testing in glioblastomas WHO grade IV below the age of 30 years, especially those with epithelioid features, papillary craniopharyngiomas, and pediatric low-grade astrocytomas. BRAF-targeted therapy should be limited to the setting of a clinical trial. If the patient harboring a V600E mutation does not qualify for a trial, multimodality treatment is recommended. Dual inhibition of both RAF and MEK is expected to provide more potent and durable effects than anti-BRAF monotherapy. First-generation RAF inhibitors should be avoided. Gain-of-function mutations of EGFR and KIAA fusions may compromise BRAF-targeted therapy. BRAF alterations that result in MAPK pathway activation are common events in several types of brain tumors. BRAF V600E mutation emerges as a promising molecular target. The proposed algorithm was designed to help oncologists to provide the best therapeutic options for brain tumor patients.
Collapse
|
42
|
Abstract
RAS (KRAS, NRAS and HRAS) is the most frequently mutated gene family in cancers, and, consequently, investigators have sought an effective RAS inhibitor for more than three decades. Even 10 years ago, RAS inhibitors were so elusive that RAS was termed 'undruggable'. Now, with the success of allele-specific covalent inhibitors against the most frequently mutated version of RAS in non-small-cell lung cancer, KRASG12C, we have the opportunity to evaluate the best therapeutic strategies to treat RAS-driven cancers. Mutation-specific biochemical properties, as well as the tissue of origin, are likely to affect the effectiveness of such treatments. Currently, direct inhibition of mutant RAS through allele-specific inhibitors provides the best therapeutic approach. Therapies that target RAS-activating pathways or RAS effector pathways could be combined with these direct RAS inhibitors, immune checkpoint inhibitors or T cell-targeting approaches to treat RAS-mutant tumours. Here we review recent advances in therapies that target mutant RAS proteins and discuss the future challenges of these therapies, including combination strategies.
Collapse
|
43
|
Brummer T, McInnes C. RAF kinase dimerization: implications for drug discovery and clinical outcomes. Oncogene 2020; 39:4155-4169. [PMID: 32269299 DOI: 10.1038/s41388-020-1263-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
The RAF kinases activated by RAS GTPases regulate cell growth and division by signal transduction through the ERK cascade and mutations leading to constitutive activity are key drivers of human tumors, as are upstream activators including RAS and receptor tyrosine kinases. The development of first-generation RAF inhibitors, including vemurafenib (VEM) and dabrafenib led to initial excitement due to high response rates and profound regression of malignant melanomas carrying BRAFV600E mutations. The excitement about these unprecedented response rates, however, was tempered by tumor unresponsiveness through both intrinsic and acquired drug-resistance mechanisms. In recent years much insight into the complexity of the RAS-RAF axis has been obtained and inactivation and signal transduction mechanisms indicate that RAF dimerization is a critical step in multiple cellular contexts and plays a key role in resistance. Both homo- and hetero-dimerization of BRAF and CRAF can modulate therapeutic response and disease progression in patients treated with ATP-competitive inhibitors and are therefore highly clinically significant. Ten years after the definition of the RAF dimer interface (DIF) by crystallography, this review focuses on the implications of RAF kinase dimerization in signal transduction and for drug development, both from a classical ATP-competitive standpoint and from the perspective of new therapeutic strategies including inhibiting dimer formation. A structural perspective of the DIF, how dimerization impacts inhibitor activation and the structure-based design of next-generation RAF kinase inhibitors with unique mechanisms of action is presented. We also discuss potential fields of application for DIF inhibitors, ranging from non-V600E oncoproteins and BRAF fusions to tumors driven by aberrant receptor tyrosine kinase or RAS signaling.
Collapse
Affiliation(s)
- Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, 79104, Freiburg im Breisgau, Germany.,German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
44
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
45
|
Mitogenic and progenitor gene programmes in single pilocytic astrocytoma cells. Nat Commun 2019; 10:3731. [PMID: 31427603 PMCID: PMC6700116 DOI: 10.1038/s41467-019-11493-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/10/2019] [Indexed: 01/28/2023] Open
Abstract
Pilocytic astrocytoma (PA), the most common childhood brain tumor, is a low-grade glioma with a single driver BRAF rearrangement. Here, we perform scRNAseq in six PAs using methods that enabled detection of the rearrangement. When compared to higher-grade gliomas, a strikingly higher proportion of the PA cancer cells exhibit a differentiated, astrocyte-like phenotype. A smaller proportion of cells exhibit a progenitor-like phenotype with evidence of proliferation. These express a mitogen-activated protein kinase (MAPK) programme that was absent from higher-grade gliomas. Immune cells, especially microglia, comprise 40% of all cells in the PAs and account for differences in bulk expression profiles between tumor locations and subtypes. These data indicate that MAPK signaling is restricted to relatively undifferentiated cancer cells in PA, with implications for investigational therapies directed at this pathway. Pilocytic astrocytoma is a low-grade pediatric glioma, characterized by a single BRAF rearrangement. Here, Reitman and colleagues use single-cell RNA sequencing to reveal molecular hallmarks of the disease that might be targeted therapeutically.
Collapse
|
46
|
Fouladi M, Pfister SM. MEK and RAF inhibitors: time for a paradigm shift in the treatment of pediatric low-grade gliomas? Neuro Oncol 2019; 19:741-743. [PMID: 28379448 DOI: 10.1093/neuonc/nox039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maryam Fouladi
- Brain Tumor Center, Cancer and Blood Disorders Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stefan M Pfister
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Oncogenic BRAF Alterations and Their Role in Brain Tumors. Cancers (Basel) 2019; 11:cancers11060794. [PMID: 31181803 PMCID: PMC6627484 DOI: 10.3390/cancers11060794] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022] Open
Abstract
Alterations of the v-raf murine sarcoma viral oncogene homolog B (BRAF) have been extensively studied in several tumor entities and are known to drive cell growth in several tumor entities. Effective targeted therapies with mutation-specific small molecule inhibitors have been developed and established for metastasized malignant melanoma. The BRAF V600E mutation and KIAA1549-BRAF fusion are alterations found in several brain tumors and show a distinct prognostic impact in some entities. Besides the diagnostic significance for the classification of central nervous system tumors, these alterations present possible therapy targets that may be exploitable for oncological treatments, as it has been established for malignant melanomas. In this review the different central nervous system tumors harboring BRAF alterations are presented and the diagnostic significance, prognostic role, and therapeutic potential are discussed.
Collapse
|
48
|
Gampa G, Kim M, Mohammad AS, Parrish KE, Mladek AC, Sarkaria JN, Elmquist WF. Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. J Pharmacol Exp Ther 2019; 368:446-461. [PMID: 30622172 PMCID: PMC6374543 DOI: 10.1124/jpet.118.253708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted inhibition of RAF and MEK by molecularly targeted agents has been employed as a strategy to block aberrant mitogen-activated protein kinase (MAPK) signaling in melanoma. While the use of BRAF and MEK inhibitors, either as a single agent or in combination, improved efficacy in BRAF-mutant melanoma, initial responses are often followed by relapse due to acquired resistance. Moreover, some BRAF inhibitors are associated with paradoxical activation of the MAPK pathway, causing the development of secondary malignancies. The use of panRAF inhibitors, i.e., those that target all isoforms of RAF, may overcome paradoxical activation and resistance. The purpose of this study was to perform a quantitative assessment and evaluation of the influence of efflux mechanisms at the blood-brain barrier (BBB), in particular, Abcb1/P-glycoprotein (P-gp) and Abcg2/breast cancer resistance protein (Bcrp), on the brain distribution of three panRAF inhibitors: CCT196969 [1-(3-(tert-butyl)-1-phenyl-1H-pyrazol-5-yl)-3-(2-fluoro-4-((3-oxo-3,4-dihydropyrido[2,3-b]pyrazin-8-yl)oxy)phenyl)urea], LY3009120 1-(3,3-Dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido(2,3-d)pyrimidin-6-yl)phenyl)urea, and MLN2480 [4-pyrimidinecarboxamide, 6-amino-5-chloro-N-[(1R)-1-[5-[[[5-chloro-4-(trifluoromethyl)-2-pyridinyl]amino]carbonyl]-2-thiazolyl]ethyl]-]. In vitro studies using transfected Madin-Darby canine kidney II cells indicate that only LY3009120 and MLN2480 are substrates of Bcrp, and none of the three inhibitors are substrates of P-gp. The three panRAF inhibitors show high nonspecific binding in brain and plasma. In vivo studies in mice show that the brain distribution of CCT196969, LY3009120, and MLN2480 is limited, and is enhanced in transgenic mice lacking P-gp and Bcrp. While MLN2480 has a higher brain distribution, LY3009120 exhibits superior in vitro efficacy in patient-derived melanoma cell lines. The delivery of a drug to the site of action residing behind a functionally intact BBB, along with drug potency against the target, collectively play a critical role in determining in vivo efficacy outcomes.
Collapse
Affiliation(s)
- Gautham Gampa
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Karen E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G., M.K., A.S.M., K.E.P., W.F.E.); and Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., J.N.S.)
| |
Collapse
|
49
|
Clymer J, Bandopadhayay P. Old meet new-the path to combination treatments in pediatric low-grade gliomas. Neuro Oncol 2019; 21:143-145. [PMID: 30535093 DOI: 10.1093/neuonc/noy188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jessica Clymer
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Abd-El-Barr MM, Huang KT, Moses ZB, Iorgulescu JB, Chi JH. Recent advances in intradural spinal tumors. Neuro Oncol 2019; 20:729-742. [PMID: 29216380 DOI: 10.1093/neuonc/nox230] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intradural spinal tumors are rare tumors of the central nervous system. Due to the eloquence of the spinal cord and its tracts, the compact architecture of the cord and nerves, and the infiltrative nature of some of these tumors, surgical resection is difficult to achieve without causing neurological deficits. Likewise, chemotherapy and radiotherapy are utilized more cautiously in the treatment of intradural spinal tumors than their cranial counterparts. Targeted therapies aimed at the genetic alterations and molecular biology tailored to these tumors would be helpful but are lacking.Here, we review the major types of intradural spinal tumors, with an emphasis on genetic alterations, molecular biology, and experimental therapies for these difficult to treat neoplasms.
Collapse
Affiliation(s)
- Muhammad M Abd-El-Barr
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin T Huang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ziev B Moses
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - J Bryan Iorgulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - John H Chi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|