1
|
Chitoran E, Rotaru V, Stefan DC, Gullo G, Simion L. Blocking Tumoral Angiogenesis VEGF/VEGFR Pathway: Bevacizumab-20 Years of Therapeutic Success and Controversy. Cancers (Basel) 2025; 17:1126. [PMID: 40227654 DOI: 10.3390/cancers17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
The "angiogenesis switch"-defined as the active process by which solid tumors develop their own circulation-plays an important role in both tumoral growth and propagation. As the malignant tumor grows and reaches a critical size, the metabolic needs as a function of an ever-increasing distance to the nearest emergent blood vessel, can no longer be covered by the microenvironment of the peritumoral tissue. Although a relatively discrete process, the "angiogenic switch" acts as a limiting stage of tumoral development present from the avascular hyperplasia phase to the vascularized neoplastic phase, providing support for tumor expansion and metastasis. Over time, research has focused on blocking the angiogenetic pathways (such as VEGF/VEGFR signaling axis) leading to the development of targeted therapeutic agents such as Bevacizumab. Objectives: We conducted a review of the molecular principles of tumoral angiogenesis and we tried to follow the history of Bevacizumab from its first approval for human usage 20 years ago to current days, focusing on the impact this agent had in solid tumor therapy. A comprehensive review of clinical trials pertaining to Bevacizumab (from the era of the preclinic trials leading to approval for human usage, to the more recent randomized trial focusing on combination targeted therapy) further details the role of this drug. We aimed to establish if this ancient drug continues to have a place in modern oncology. Conclusions: Bevacizumab, one of the first drugs targeting tumoral microenvironment, remains one of the most important oncologic agents blocking the VEGF/VEGFR angiogenic pathway. otherwise, history of 20 years marked by numerous controversies (ranging from methodological errors of clinical trials to withdrawal of approval for human usage in breast cancer patients, from discussions about severe side effects to resistance to therapy and limited efficacity), Bevacizumab continues to provide an optimal therapeutic option for many solid tumors that previously had little to no means of treatment, improving otherwise bleak outcomes. Even in the era of personalized precision oncology, Bevacizumab continues to be a key element in many therapeutic regimens both as monotherapy and in combination with newer targeted agents.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Daniela-Cristina Stefan
- Medicine School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Laurentiu Simion
- Medicine School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| |
Collapse
|
2
|
Sargunas PR, Ariail E, Lima E Silva R, Patil A, Zhang M, Shen J, Lopes BS, Oh Y, McCue AC, Ramasubramanian R, Stephenson AC, Popel AS, Campochiaro PA, Spangler JB. Bispecific receptor decoy proteins block ocular neovascularization via simultaneous blockade of vascular endothelial growth factor A and C. Mol Ther 2025:S1525-0016(25)00201-1. [PMID: 40143548 DOI: 10.1016/j.ymthe.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Several debilitating eye diseases that lead to vision loss are driven by ocular neovascularization, which entails abnormal blood vessel growth in the eye. Neovascularization is often induced by the upregulation of vascular endothelial growth factor (VEGF) ligands, which activate angiogenesis through engagement of VEGF receptor (VEGFR) proteins on endothelial cells. Therapeutic interventions that block ocular neovascularization by targeting VEGF ligands, particularly VEGF-A, have revolutionized eye disease treatment. However, a significant population of patients are either non-responders or develop resistance, which can be driven by the upregulation of other VEGF family ligands such as VEGF-C. Here, we engineered two bispecific receptor decoy fusion proteins that incorporate domains of VEGFR-1 and VEGFR-2 for more effective and comprehensive inhibition of VEGF ligands. We demonstrated that our engineered proteins bind all VEGF ligands and can sequester two ligands simultaneously. We further showed that these molecules block VEGF activity to potently inhibit proliferation, migration, and survival of human endothelial cells. Moreover, these receptor decoy proteins significantly reduced ocular neovascularization in two mouse models at doses wherein the current standard-of-care anti-VEGF therapy is ineffective. Collectively, our engineered receptor decoy proteins present a new architecture for VEGF pathway inhibition, offering a promising treatment paradigm for ocular diseases.
Collapse
Affiliation(s)
- Paul R Sargunas
- Department of Chemical and Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Emily Ariail
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Raquel Lima E Silva
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Akash Patil
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mingliang Zhang
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jikui Shen
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Beatriz Silva Lopes
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21231, USA
| | - Yuseong Oh
- Department of Chemical and Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Amelia C McCue
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | - A Carson Stephenson
- Department of Chemical and Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Peter A Campochiaro
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jamie B Spangler
- Department of Chemical and Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
3
|
Uba AI. Computer-Aided Design of VEGFR-2 Inhibitors as Anticancer Agents: A Review. J Mol Recognit 2025; 38:e3104. [PMID: 39389566 DOI: 10.1002/jmr.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| |
Collapse
|
4
|
Yang Z, Suda G, Sho T, Maehara O, Ohara M, Yoda T, Fu Q, Sasaki T, Kohya R, Yoshida S, Hosoda S, Kitagataya T, Kawagishi N, Nakai M, Natsuizaka M, Ogawa K, Ohnishi S, Yamamoto Y, Baba M, Yamada R, Kobayashi T, Chen M, Sakamoto N. Association of proteinuria with improved prognosis in unresectable hepatocellular carcinoma treated with atezolizumab and bevacizumab, and the predictive role of serum vascular endothelial growth factor D levels: A multicenter retrospective study. Hepatol Res 2024. [PMID: 39584803 DOI: 10.1111/hepr.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
AIM Atezolizumab/bevacizumab is a first-line therapy for unresectable hepatocellular carcinoma (HCC). Among several adverse events, grade ≥2 proteinuria is considered a significant adverse event that may cause bevacizumab interruption. Studies have shown that proteinuria might predict improved prognosis, although data are scarce and the association remains controversial, and the mechanisms and predictive factors remain unclear. We aimed to clarify these. METHODS In this multicenter retrospective study, we screened patients with HCC treated with atezolizumab/bevacizumab. The prognostic impact of grade ≥2 proteinuria was examined in patients with proper clinical data and preserved serum for growth factor analysis. For biomarker analysis predicting proteinuria, baseline serum vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D levels were analyzed. RESULTS This study included 75 patients, and 32 (42.7%) experienced grade ≥2 proteinuria. No significant differences were observed between those with or without proteinuria, except for aspartate transaminase and alanine transaminase levels. Time-dependent Cox proportional hazards analysis revealed that grade ≥2 proteinuria was significantly associated with better prognosis (hazard ratio 0.221; 95% confidence interval 0.082-0.592; p = 0.003). In biomarker analysis, low baseline serum VEGF-C and VEGF-D levels were significantly associated with proteinuria, and multivariate analysis demonstrated that baseline serum VEGF-D level was significantly associated with grade ≥2 proteinuria (hazard ratio 0.101; 95% confidence interval 0.029-0.357; p < 0.001). CONCLUSIONS Grade ≥2 proteinuria in patients with unresectable HCC treated with atezolizumab/bevacizumab indicates a better prognosis, and baseline serum VEGF-D levels can help predict its occurrence. These findings can help in managing adverse events and prognosis in advanced HCC treated with atezolizumab/bevacizumab.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Maehara
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Yoda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Risako Kohya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sonoe Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shunichi Hosoda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshiya Yamamoto
- Department of Gastroenterology and Hepatology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Masaru Baba
- Center for Gastroenterology and Hepatology, Japan Community Healthcare Organization Hokkaido Hospital, Sapporo, Japan
| | | | - Tomoe Kobayashi
- Department of Gastroenterology and Hepatology, Tomakomai City Hospital, Tomakomai, Hokkaido, Japan
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Munoz JM, Pileggi GF, Nucci MP, Alves ADH, Pedrini F, do Valle NME, Mamani JB, de Oliveira FA, Lopes AT, Carreño MNP, Gamarra LF. In Silico Approach to Model Heat Distribution of Magnetic Hyperthermia in the Tumoral and Healthy Vascular Network Using Tumor-on-a-Chip to Evaluate Effective Therapy. Pharmaceutics 2024; 16:1156. [PMID: 39339193 PMCID: PMC11434665 DOI: 10.3390/pharmaceutics16091156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer in adults, characterized by its complex vascular network that contributes to resistance to conventional therapies. Thermal therapies, such as magnetic hyperthermia (MHT), emerge as promising alternatives, using heat to selectively target tumor cells while minimizing damage to healthy tissues. The organ-on-a-chip can replicate this complex vascular network of GBM, allowing for detailed investigations of heat dissipation in MHT, while computational simulations refine treatment parameters. In this in silico study, tumor-on-a-chip models were used to optimize MHT therapy by comparing heat dissipation in normal and abnormal vascular networks, considering geometries, flow rates, and concentrations of magnetic nanoparticles (MNPs). In the high vascular complexity model, the maximum velocity was 19 times lower than in the normal vasculature model and 4 times lower than in the low-complexity tumor model, highlighting the influence of vascular complexity on velocity and temperature distribution. The MHT simulation showed greater heat intensity in the central region, with a flow rate of 1 µL/min and 0.5 mg/mL of MNPs being the best conditions to achieve the therapeutic temperature. The complex vasculature model had the lowest heat dissipation, reaching 44.15 °C, compared to 42.01 °C in the low-complexity model and 37.80 °C in the normal model. These results show that greater vascular complexity improves heat retention, making it essential to consider this heterogeneity to optimize MHT treatment. Therefore, for an efficient MHT process, it is necessary to simulate ideal blood flow and MNP conditions to ensure heat retention at the tumor site, considering its irregular vascularization and heat dissipation for effective destruction.
Collapse
Affiliation(s)
- Juan Matheus Munoz
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Giovana Fontanella Pileggi
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Mariana Penteado Nucci
- LIM44—Hospital das Clínicas da Faculdade Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil;
| | - Arielly da Hora Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Flavia Pedrini
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Nicole Mastandrea Ennes do Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Javier Bustamante Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Fernando Anselmo de Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| | - Alexandre Tavares Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil; (A.T.L.); (M.N.P.C.)
| | - Marcelo Nelson Páez Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil; (A.T.L.); (M.N.P.C.)
| | - Lionel Fernel Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (J.M.M.); (G.F.P.); (A.d.H.A.); (F.P.); (N.M.E.d.V.); (J.B.M.); (F.A.d.O.)
| |
Collapse
|
6
|
Li J, Zhang Y, Liang C, Yan X, Hui X, Liu Q. Advancing precision medicine in gliomas through single-cell sequencing: unveiling the complex tumor microenvironment. Front Cell Dev Biol 2024; 12:1396836. [PMID: 39156969 PMCID: PMC11327033 DOI: 10.3389/fcell.2024.1396836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Glioblastoma (GBM) displays an infiltrative growth characteristic that recruits neighboring normal cells to facilitate tumor growth, maintenance, and invasion into the brain. While the blood-brain barrier serves as a critical natural defense mechanism for the central nervous system, GBM disrupts this barrier, resulting in the infiltration of macrophages from the peripheral bone marrow and the activation of resident microglia. Recent advancements in single-cell transcriptomics and spatial transcriptomics have refined the categorization of cells within the tumor microenvironment for precise identification. The intricate interactions and influences on cell growth within the tumor microenvironment under multi-omics conditions are succinctly outlined. The factors and mechanisms involving microglia, macrophages, endothelial cells, and T cells that impact the growth of GBM are individually examined. The collaborative mechanisms of tumor cell-immune cell interactions within the tumor microenvironment synergistically promote the growth, infiltration, and metastasis of gliomas, while also influencing the immune status and therapeutic response of the tumor microenvironment. As immunotherapy continues to progress, targeting the cells within the inter-tumor microenvironment emerges as a promising novel therapeutic approach for GBM. By comprehensively understanding and intervening in the intricate cellular interactions within the tumor microenvironment, novel therapeutic modalities may be developed to enhance treatment outcomes for patients with GBM.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Yang Zhang
- Graduate School of Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Cong Liang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xianlei Yan
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Liu
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
7
|
Chitoran E, Rotaru V, Ionescu SO, Gelal A, Capsa CM, Bohiltea RE, Mitroiu MN, Serban D, Gullo G, Stefan DC, Simion L. Bevacizumab-Based Therapies in Malignant Tumors-Real-World Data on Effectiveness, Safety, and Cost. Cancers (Basel) 2024; 16:2590. [PMID: 39061228 PMCID: PMC11274419 DOI: 10.3390/cancers16142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Overall, it is estimated that more than 3,500,000 patients have received Bevacizumab as part of systemic oncologic treatment. Bevacizumab and its biosimilars are currently marketed in over 130 countries. Given the wide usage of Bevacizumab in current oncological practice, it is very important to compare the "real-world" results to those obtained in controlled clinical trials. This study aims to describe the clinical experience of using Bevacizumab in a large cohort of cancer patients in "non-controlled real-world" conditions with regard to effectiveness, safety, and cost of therapy. METHODS For this purpose, we conducted an open, observational, retrospective study involving all patients treated for solid malignant tumors in the Bucharest Institute of Oncology with "Prof. Dr. Al. Trestioreanu" with Bevacizumab-based systemic therapy, between 2017 and 2021. RESULTS The study consisted of 657 treatment episodes in 625 patients (F/B = 1.62/1, with a median age of 57.6 years) which were treated for malignant tumors (majority colorectal, non-small cell lung, ovarian, and breast cancer). First-line treatment was administered in 229 patients, and the rest received Bevacizumab as second or subsequent lines of treatment. The overall response rate to Bevacizumab-based therapies was around 60-65% across all indication except for subsequent treatment lines in colorectal and ovarian cancers, where lower values were recorded (27.1%, and 31.5% respectively). Median PFS for the entire cohort was 8.2 months (95% CI 6.8-9.6), and the median OS was 13.2 months (95% CI 11.5-14.9). Usual bevacizumab-related toxicities were observed, including bleeding, hypertension, wound-healing complications, gastrointestinal perforation, other types of fistulas, septic complications, and thromboembolic events. Although the clinical benefits are undeniable, the addition of Bevacizumab to standard chemotherapy increased the overall treatment cost by 213%. CONCLUSIONS Bevacizumab remains a high-cost therapy, but it can add to clinical benefits (like overall survival, progression-free survival, and response rate) when used in conjunction with standard chemotherapy. Similar results as those presented in various controlled trials are observable even on unselected cohorts of patients in the uncontrolled conditions of "real-world" oncological practice. Off-label usage is encountered in clinical practice, and this aspect should be monitored given the potential adverse effects of the therapy.
Collapse
Affiliation(s)
- Elena Chitoran
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana-Octavia Ionescu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Aisa Gelal
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Cristina-Mirela Capsa
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Radiology Department, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Roxana-Elena Bohiltea
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Madalina-Nicoleta Mitroiu
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Obstetrics and Gynecology Department, “Filantropia” Clinical Hospital, 011132 Bucharest, Romania
| | - Dragos Serban
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Department 4, Bucharest University Emergency Hospital, 050098 Bucharest, Romania
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Daniela-Cristina Stefan
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laurentiu Simion
- Medicine School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
8
|
Leitch IM, Gerometta M, Eichenbaum D, Finger RP, Steinle NC, Baldwin ME. Vascular Endothelial Growth Factor C and D Signaling Pathways as Potential Targets for the Treatment of Neovascular Age-Related Macular Degeneration: A Narrative Review. Ophthalmol Ther 2024; 13:1857-1875. [PMID: 38824253 PMCID: PMC11178757 DOI: 10.1007/s40123-024-00973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024] Open
Abstract
The development of treatments targeting the vascular endothelial growth factor (VEGF) signaling pathways have traditionally been firstly investigated in oncology and then advanced into retinal disease indications. Members of the VEGF family of endogenous ligands and their respective receptors play a central role in vasculogenesis and angiogenesis during both development and physiological homeostasis. They can also play a pathogenic role in cancer and retinal diseases. Therapeutic approaches have mostly focused on targeting VEGF-A signaling; however, research has shown that VEGF-C and VEGF-D signaling pathways are also important to the disease pathogenesis of tumors and retinal diseases. This review highlights the important therapeutic advances and the remaining unmet need for improved therapies targeting additional mechanisms beyond VEGF-A. Additionally, it provides an overview of alternative VEGF-C and VEGF-D signaling involvement in both health and disease, highlighting their key contributions in the multifactorial pathophysiology of retinal disease including neovascular age-related macular degeneration (nAMD). Strategies for targeting VEGF-C/-D signaling pathways will also be reviewed, with an emphasis on agents currently being developed for the treatment of nAMD.
Collapse
Affiliation(s)
- Ian M Leitch
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia.
| | - Michael Gerometta
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia
| | - David Eichenbaum
- Retina Vitreous Associates of Florida, St. Petersburg, FL, 33711, USA
| | - Robert P Finger
- Department of Ophthalmology, Medical Faculty Mannheim, University of Heidelberg, 69117, Heidelberg, Germany
| | | | - Megan E Baldwin
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia
| |
Collapse
|
9
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
10
|
Mohajerani F, Tehrankhah ZM, Rahmani S, Afsordeh N, Shafiee S, Pourgholami MH, Soltani BM, Sadeghizadeh M. CLEC19A overexpression inhibits tumor cell proliferation/migration and promotes apoptosis concomitant suppression of PI3K/AKT/NF-κB signaling pathway in glioblastoma multiforme. BMC Cancer 2024; 24:19. [PMID: 38167030 PMCID: PMC10763001 DOI: 10.1186/s12885-023-11755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND GBM is the most frequent malignant primary brain tumor in humans. The CLEC19A is a member of the C-type lectin family, which has a high expression in brain tissue. Herein, we sought to carry out an in-depth analysis to pinpoint the role of CLEC19A expression in GBM. METHODS To determine the localization of CLEC19A, this protein was detected using Western blot, Immunocytochemistry/Immunofluorescence, and confocal microscopy imaging. CLEC19A expression in glioma cells and tissues was evaluated by qRT-PCR. Cell viability, proliferation, migration, and apoptosis were examined through MTT assay, CFSE assay, colony formation, wound healing assay, transwell test, and flow cytometry respectively after CLEC19A overexpression. The effect of CLEC19A overexpression on the PI3K/AKT/NF-κB signaling pathway was investigated using Western blot. An in vivo experiment substantiated the in vitro results using the glioblastoma rat models. RESULTS Our in-silico analysis using TCGA data and measuring CLEC19A expression level by qRT-PCR determined significantly lower expression of CLEC19A in human glioma tissues compared to healthy brain tissues. By employment of ICC/IF, confocal microscopy imaging, and Western blot we could show that CLEC19A is plausibly a secreted protein. Results obtained from several in vitro readouts showed that CLEC19A overexpression in U87 and C6 glioma cell lines is associated with the inhibition of cell proliferation, viability, and migration. Further, qRT-PCR and Western blot analysis showed CLEC19A overexpression could reduce the expression levels of PI3K, VEGFα, MMP2, and NF-κB and increase PTEN, TIMP3, RECK, and PDCD4 expression levels in glioma cell lines. Furthermore, flow cytometry results revealed that CLEC19A overexpression was associated with significant cell cycle arrest and promotion of apoptosis in glioma cell lines. Interestingly, using a glioma rat model we could substantiate that CLEC19A overexpression suppresses glioma tumor growth. CONCLUSIONS To our knowledge, this is the first report providing in-silico, molecular, cellular, and in vivo evidences on the role of CLEC19A as a putative tumor suppressor gene in GBM. These results enhance our understanding of the role of CLEC19A in glioma and warrant further exploration of CLEC19A as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Fatemeh Mohajerani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran
| | - Zahra Moazezi Tehrankhah
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran
| | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Nastaran Afsordeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Shafiee
- Department of Neurosurgery, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Bahram M Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Tehran, Iran.
| |
Collapse
|
11
|
Senrung A, Tripathi T, Aggarwal N, Janjua D, Chhokar A, Yadav J, Chaudhary A, Thakur K, Singh T, Bharti AC. Anti-angiogenic Potential of Trans-chalcone in an In Vivo Chick Chorioallantoic Membrane Model: An ATP Antagonist to VEGFR with Predicted Blood-brain Barrier Permeability. Cardiovasc Hematol Agents Med Chem 2024; 22:187-211. [PMID: 37936455 DOI: 10.2174/0118715257250417231019102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored. METHODS We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane. RESULTS Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of > 0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity < -6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski's rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression. CONCLUSION The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
12
|
Seidkhani E, Moradi F, Rustamzadeh A, Simorgh S, Shirvalilou S, Mehdizadeh M, Dehghani H, Akbarnejad Z, Motevalian M, Gorgich EAC. Intranasal delivery of sunitinib: A new therapeutic approach for targeting angiogenesis of glioblastoma. Toxicol Appl Pharmacol 2023; 481:116754. [PMID: 37956929 DOI: 10.1016/j.taap.2023.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most vascular among solid tumors, and despite the use of multimodal therapies, the survival of these patients is poor. In order to target angiogenesis in GBM as a promising strategy, an antiangiogenic drug is required. This study was designed to evaluate the effects of sunitinib, a multityrosine kinase inhibitor with tumor proliferation and angiogenesis inhibitory properties, on GBM-bearing rats. Given the ineffective drug delivery to the brain due to the presence of the blood-brain barrier (BBB), intra-nasal (IN) drug delivery has recently been considered as a non-invasive method to bypass BBB. Therefore, in the current study, IN was used as an ideal method for the delivery of sunitinib to the brain, and the effects of this method were also compared to the OR administration of the sunitinib. GBM was induced in the brain of male Wistar rats, and they were randomly divided into 4 groups; IN-STB (sunitinib intranasal delivery), IN-sham (placebo intranasal delivery), OR-STB (sunitinib oral delivery) and OR-sham (placebo oral delivery). After the end of the treatment period, an MRI of animals' brains showed a reduction in tumor growth in the treatment groups. Immunohistochemistry revealed that sunitinib inhibits angiogenesis in GBM in both OR and IN delivery methods. Analysis of liver tissue and enzymes showed that IN delivery of sunitinib had less hepatotoxicity than the OR method. Overall, it was found that IN sunitinib delivery could be used as a potential non-hepatotoxic alternative for the treatment of GBM.
Collapse
Affiliation(s)
- Elham Seidkhani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani
- Department of Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Senrung A, Tripathi T, Yadav J, Janjua D, Chaudhary A, Chhokar A, Aggarwal N, Joshi U, Goswami N, Bharti AC. In vivo antiangiogenic effect of nimbolide, trans-chalcone and piperine for use against glioblastoma. BMC Cancer 2023; 23:1173. [PMID: 38036978 PMCID: PMC10691152 DOI: 10.1186/s12885-023-11625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Angiogenesis is an important hallmark of Glioblastoma (GBM) marked by elevated vascular endothelial growth factor-A (VEGF-A) and its receptor 2 (VEGFR-2). As previously reported nimbolide (NBL), trans-chalcone (TC) and piperine (PPR) possess promising antiangiogenic activity in several cancers however, their comparative efficacy and mechanism of antiangiogenic activity in GBM against VEGFR-2 has not been elucidated. METHODS 2D and 3D spheroids cultures of U87 (Uppsala 87 Malignant Glioma) were used for evaluation of non-cytotxoic dose for anti-angiogenic activity. The antiangiogenic effect was investigated by the GBM U87 cell line bearing chick CAM model. Excised U87 xenografts were histologically examined for blood vascular density by histochemistry. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to detect the presence of avian and human VEGF-A and VEGFR-2 mRNA transcripts. RESULTS Using 2D and 3D spheroid models, the non-cytotoxic dose of NBL, TC and PPR was ≤ 11 µM. We found NBL, TC and PPR inhibit U87-induced neoangiogenesis in a dose-dependent manner in the CAM stand-alone model as well as in CAM U87 xenograft model. The results also indicate that these natural compounds inhibit the expression of notable angiogenic factors, VEGF-A and VEGFR-2. A positive correlation was found between blood vascular density and VEGF-A as well as VEGFR-2 transcripts. CONCLUSION Taken together, NBL, TC and PPR can suppress U87-induced neoangiogenesis via a reduction in VEGF-A and its receptor VEGFR-2 transcript expression at noncytotoxic concentrations. These phytochemicals showed their utility as adjuvants to GBM therapy, with Piperine demonstrating superior effectiveness among them all.
Collapse
Affiliation(s)
- Anna Senrung
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Daulat Ram College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, Delhi, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India
| | - Nidhi Goswami
- Neuropharmacology and Drug Delivery Laboratory, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), Delhi, 110007, India.
| |
Collapse
|
14
|
Munquad S, Das AB. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping. BioData Min 2023; 16:32. [PMID: 37968655 PMCID: PMC10652591 DOI: 10.1186/s13040-023-00349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The classification of glioma subtypes is essential for precision therapy. Due to the heterogeneity of gliomas, the subtype-specific molecular pattern can be captured by integrating and analyzing high-throughput omics data from different genomic layers. The development of a deep-learning framework enables the integration of multi-omics data to classify the glioma subtypes to support the clinical diagnosis. RESULTS Transcriptome and methylome data of glioma patients were preprocessed, and differentially expressed features from both datasets were identified. Subsequently, a Cox regression analysis determined genes and CpGs associated with survival. Gene set enrichment analysis was carried out to examine the biological significance of the features. Further, we identified CpG and gene pairs by mapping them in the promoter region of corresponding genes. The methylation and gene expression levels of these CpGs and genes were embedded in a lower-dimensional space with an autoencoder. Next, ANN and CNN were used to classify subtypes using the latent features from embedding space. CNN performs better than ANN for subtyping lower-grade gliomas (LGG) and glioblastoma multiforme (GBM). The subtyping accuracy of CNN was 98.03% (± 0.06) and 94.07% (± 0.01) in LGG and GBM, respectively. The precision of the models was 97.67% in LGG and 90.40% in GBM. The model sensitivity was 96.96% in LGG and 91.18% in GBM. Additionally, we observed the superior performance of CNN with external datasets. The genes and CpGs pairs used to develop the model showed better performance than the random CpGs-gene pairs, preprocessed data, and single omics data. CONCLUSIONS The current study showed that a novel feature selection and data integration strategy led to the development of DeepAutoGlioma, an effective framework for diagnosing glioma subtypes.
Collapse
Affiliation(s)
- Sana Munquad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
15
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Xu Q, Huang K, Meng X, Weng Y, Zhang L, Bu L, Zheng X, Cai J, Zhan R, Chen Q. Safety and Efficacy of Anlotinib Hydrochloride Plus Temozolomide in Patients with Recurrent Glioblastoma. Clin Cancer Res 2023; 29:3859-3866. [PMID: 37477938 DOI: 10.1158/1078-0432.ccr-23-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a highly vascularized tumor with few treatment options after disease recurrence. Here, we report the efficacy and safety of anlotinib hydrochloride plus temozolomide in patients with recurrent GBM. PATIENTS AND METHODS Patients with first definite postsurgical progression of histologically confirmed GBM preceded by standard radiotherapy and temozolomide chemotherapy were eligible for inclusion. All patients received temozolomide (150-200 mg/m2, orally, every day (QD) d1-5/4 wk) and anlotinib (10 mg, orally, QD, d1-14/3 wk) until disease progression or unacceptable toxicity. The primary endpoint was investigator-assessed 6-month progression-free survival (PFS) rate by the Response Assessment in Neuro-Oncology (RANO) criteria. RESULTS Twenty-one patients were enrolled between May 2020 and July 2021, with a median age of 55 (range 27-68) years old. According to the Response Assessment in Neuro-Oncology (RANO) criteria, tumor response occurred in 17 patients, of which 9 patients had a complete response, and the objective response rate was 81.0% [95% confidence interval (CI), 62.6-99.3]. The disease control rate was 95.2% (95% CI, 76.2-99.9), with three additional patients achieving a stable disease without tumor progression. The median PFS was 7.3 months (95% CI, 4.9-9.7), and the 6-month PFS rate was 61.9% (95% CI, 39.3-84.6). The median overall survival was 16.9 months (95% CI, 7.8-26.0). The most common adverse events were leukocytopenia (66.7%), thrombocytopenia (38.1%), and hypertriglyceridemia (38.1%). Five patients had nine grade 3 adverse events, with a 23.8% incidence rate. Two patients discontinued therapy due to ischemic stroke (grade 3) and wound dehiscence (grade 1), respectively. No grade 4 or treatment-related deaths occurred in this study. CONCLUSIONS Anlotinib combined with temozolomide is efficacious and tolerated in patients with recurrent GBM.
Collapse
Affiliation(s)
- Qingsheng Xu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaiyuan Huang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Luyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linghao Bu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiujue Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qun Chen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
D'Alessio A. Role of Endothelial Cell Metabolism in Normal and Tumor Vasculature. Cancers (Basel) 2023; 15:cancers15071921. [PMID: 37046582 PMCID: PMC10093580 DOI: 10.3390/cancers15071921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Endothelial cells (ECs) form a simple squamous epithelium, the endothelium, which lines the lumen of all blood vessels and the heart [...].
Collapse
Affiliation(s)
- Alessio D'Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
18
|
Simion L, Rotaru V, Cirimbei C, Stefan DC, Gherghe M, Ionescu S, Tanase BC, Luca DC, Gales LN, Chitoran E. Analysis of Efficacy-To-Safety Ratio of Angiogenesis-Inhibitors Based Therapies in Ovarian Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:diagnostics13061040. [PMID: 36980348 PMCID: PMC10046967 DOI: 10.3390/diagnostics13061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Among new anti-angiogenesis agents being developed and ever-changing guidelines indications, the question of the benefits/safety ratio remains unclear. (2) Methods: We performed a systematic review combined with a meta-analysis of 23 randomized controlled trials (12,081 patients), evaluating overall survival (OS), progression free survival (PFS) and toxicity (grade ≥ 3 toxic effects, type, and number of all adverse effects. (3) Results: The analysis showed improvement of pooled-PFS (HR, 0.71; 95% CI, 0.64-0.78; I2 = 77%; p < 0.00001) in first-line (HR, 0.85; 95% CI, 0.78-0.93; p = 0.0003) or recurrent cancer (HR, 0.62; 95% CI, 0.56-0.70; p < 0.00001) and regardless of the type of anti-angiogenesis drug used (Vascular endothelial growth factor (VEGF) inhibitors, VEGF-receptors (VEGF-R) inhibitors or angiopoietin inhibitors). Improved OS was also observed (HR, 0.95; 95% CI, 0.90-0.99; p = 0.03). OS benefits were only observed in recurrent neoplasms, both platinum-sensitive and platinum-resistant neoplasms. Grade ≥ 3 adverse effects were increased across all trials. Anti-angiogenetic therapy increased the risk of hypertension, infection, thromboembolic/hemorrhagic events, and gastro-intestinal perforations but not the risk of wound-related issues, anemia or posterior leukoencephalopathy syndrome. (4) Conclusions: Although angiogenesis inhibitors improve PFS, there are little-to-no OS benefits. Given the high risk of severe adverse reactions, a careful selection of patients is required for obtaining the best results possible.
Collapse
Affiliation(s)
- Laurentiu Simion
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Vlad Rotaru
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Ciprian Cirimbei
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Daniela-Cristina Stefan
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mirela Gherghe
- Nuclear Medicine Department, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Sinziana Ionescu
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Bogdan Cosmin Tanase
- Thoracic Surgery Department, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Dan Cristian Luca
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Laurentia Nicoleta Gales
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Medical Oncology Department, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| | - Elena Chitoran
- Department of Surgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology "Prof. Dr. Al. Trestioreanu", 022328 Bucharest, Romania
| |
Collapse
|
19
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
20
|
Chen S, Pan TY, Wu X, Li T, Wei Y, He HL, Zhou XM, Wang Q, Zhu JP. Uses of Vascular Endothelial Growth Factor C as a Lung Adenocarcinoma Prognostic Biomarker. World J Oncol 2023; 14:51-59. [PMID: 36896001 PMCID: PMC9990733 DOI: 10.14740/wjon1520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 03/01/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer and a leading cause of death worldwide. Vascular endothelial growth factor C (VEGF-C) has been identified as a prognosis prediction marker for LUAD. However, VEGF-C protein expression does not appear to significantly relate to LUAD patient survival in several studies. Methods We carried out a bioinformatic analysis to review the effect of VEGF-C mRNA expression on LUAD patient outcomes. GEPIA, UALCAN, TCGAportal, OncoLnc, LCE, GeneMANIA, Metascape, ImmuCellAI, and GSCA online databases were utilized. The expression levels of VEGF-C mRNA between normal tissue and LUAD tissue, overall survival (OS) analysis, function analysis, tumor microenvironment and drug sensitivity were conducted in the current study. Results We found that the expression level of VEGF-C mRNA was significantly lower in LUAD than normal tissue. Low expression of VEGF-C mRNA was also associated with better OS. VEGF-C expression was correlated with both NF1 and TP53 mutation status. No relationship was observed between VEGF-C and Tr1 or CD4 T-cell infiltrate scores. Additionally, VEGF-C was associated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance. The sensitivity of 5-fluorouracil was positively correlated with VEGF-C, and the sensitivity of TGX221 was negatively correlated with VEGF-C. The activity of BI-2536 and BRD-A94377914 was positively correlated with VEGF-C. Conclusion Novel LUAD prognostic biomarkers such as VEGF-C mRNA may aid diagnosis and treatment, and may help identify optimal LUAD populations for therapeutic treatments.
Collapse
Affiliation(s)
- Shi Chen
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.,These authors contributed equally to this article
| | - Ting Yu Pan
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.,These authors contributed equally to this article
| | - Xiao Wu
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Tian Li
- Department of Respiratory Medicine of the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Wei
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Hai Lang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xian Mei Zhou
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qian Wang
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ji Ping Zhu
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
Mark J, Fisher DT, Kim M, Emmons T, Khan ANMN, Alqassim E, Singel K, Mistarz A, Lugade A, Zhan H, Yu H, Segal B, Lele S, Frederick P, Kozbor D, Skitzki J, Odunsi K. Carboplatin enhances lymphocyte-endothelial interactions to promote CD8 + T cell trafficking into the ovarian tumor microenvironment. Gynecol Oncol 2023; 168:92-99. [PMID: 36410228 PMCID: PMC11236086 DOI: 10.1016/j.ygyno.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Standard chemotherapy agents, including carboplatin, have known immunogenic properties. We sought to determine how carboplatin may influence lymphocyte trafficking to tumor sites. METHODS Murine models of ovarian cancer were utilized to examine lymphocyte trafficking with common clinically used agents including carboplatin, anti-PD-1 antibody, or anti-VEGFR-2 antibody. Adhesion interactions of lymphocytes with tumor vasculature were measured using intravital microscopy, lymphocyte homing with immunohistochemistry, and treatment groups followed for overall survival. RESULTS Carboplatin chemotherapy profoundly alters the tumor microenvironment to promote lymphocyte adhesive interactions with tumor vasculature and resultant improvement in lymphocyte trafficking. The measured results seen with carboplatin in the tumor microenvironment were superior to anti-PD-1 treatment or anti-VEGFR-2 which may have contributed to increased overall survival in carboplatin treated groups. CONCLUSIONS These novel findings suggest a role for chemotherapeutic agents to broadly influence anti-tumor immune responses beyond the induction of immunogenic tumor cell death.
Collapse
Affiliation(s)
- Jaron Mark
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Dan T Fisher
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Minhyung Kim
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Tiffany Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - A N M Nazmul Khan
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Emad Alqassim
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Kelly Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Anna Mistarz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Amit Lugade
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Haiying Zhan
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Brahm Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Peter Frederick
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph Skitzki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; University of Chicago Comprehensive Cancer Center, 5841 S. Maryland Avenue, Chicago, IL 60637, United States.
| |
Collapse
|
22
|
Mori K. Determinants of the Pathological Features of Renal Adverse Effects Due to Vascular Endothelial Growth Factor Signaling Inhibition. Intern Med 2022; 61:3469-3471. [PMID: 35569974 PMCID: PMC9790789 DOI: 10.2169/internalmedicine.0044-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kiyoshi Mori
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Japan
- Department of Nephrology and Kidney Research, Shizuoka General Hospital, Japan
| |
Collapse
|
23
|
Roslan A, Sulaiman N, Mohd Ghani KA, Nurdin A. Cancer-Associated Membrane Protein as Targeted Therapy for Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102218. [PMID: 36297654 PMCID: PMC9607037 DOI: 10.3390/pharmaceutics14102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) recurrence is one of the primary clinical problems encountered by patients following chemotherapy. However, the mechanisms underlying their resistance to chemotherapy remain unclear. Alteration in the pattern of membrane proteins (MPs) is thought to be associated with this recurrence outcome, often leading to cell dysfunction. Since MPs are found throughout the cell membrane, they have become the focus of attention for cancer diagnosis and treatment. Identifying specific and sensitive biomarkers for BC, therefore, requires a major collaborative effort. This review describes studies on membrane proteins as potential biomarkers to facilitate personalised medicine. It aims to introduce and discuss the types and significant functions of membrane proteins as potential biomarkers for future medicine. Other types of biomarkers such as DNA-, RNA- or metabolite-based biomarkers are not included in this review, but the focus is mainly on cell membrane surface protein-based biomarkers.
Collapse
Affiliation(s)
- Adlina Roslan
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurshahira Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khairul Asri Mohd Ghani
- Department of Urology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Armania Nurdin
- Laboratory of UPM-MAKNA Cancer Research (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8609-2971
| |
Collapse
|
24
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Upregulation of Atypical Cadherin FAT1 Promotes an Immunosuppressive Tumor Microenvironment via TGF-β. Front Immunol 2022; 13:813888. [PMID: 35720420 PMCID: PMC9205206 DOI: 10.3389/fimmu.2022.813888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-β cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-β1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-β1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-β1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-β1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-β1/2 secretion. Reduced TGF-β1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-β1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-β1/2.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Ding Y, Oliveira-Ferrer L, Vettorazzi E, Legler K, Milde-Langosch K, Woelber L, Jaeger A, Prieske K, Mueller V, Schmalfeldt B, Kuerti S. VEGF-C serum level is associated with response to bevacizumab maintenance therapy in primary ovarian cancer patients. PLoS One 2022; 17:e0269680. [PMID: 35687576 PMCID: PMC9187059 DOI: 10.1371/journal.pone.0269680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Objective At present, maintenance therapy with the antiangiogenic agent bevacizumab or with PARP-inhibitors represent two options for BRCA-wildtype ovarian cancer patients, after platinum-based first line chemotherapy. The identification of molecular markers to predict patient response to different maintenance therapies remains a major challenge. In the present study we analyzed the predictive potential of vascular endothelial growth factor C (VEGF-C) to identify ovarian cancer patients that might benefit from an antiangiogenic therapy. Methods 101 patients with primary epithelial ovarian cancer were analyzed for serum levels of VEGF-A,–C and CA-125 by ELISA. Serum levels were compared between patients with low pT-stage (pT1a-pT2c n = 11), healthy individuals (n = 27) and patients with higher pT-stage (> = pT3 n = 90). Adjusted ROC curves and an adjusted logistic regression model were carried out to evaluate the potential impact of VEGF-A and -C, as well as CA-125 serum level concentration on bevacizumab-therapy response, under consideration of covariates such as FIGO, pM, pN and residual tumor after surgery. Results A patient which has in comparison twice the VEGF-C concentration in serum, has a significant increased chance of response to bevacizumab by a factor of 2.79. Further, only VEGF-C serum levels were significantly higher in the group of patients with lower pT-stage compared to healthy individuals, whereas VEGF-A or CA-125 serum levels could not discriminate between healthy individuals and patients with ovarian cancer at low pT-stages. Conclusion VEGF-C serum level might serve as as a biomarker to evaluate treatment response under bevacizumab.
Collapse
Affiliation(s)
- Yi Ding
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen Legler
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Linn Woelber
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Jaeger
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Prieske
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Mueller
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sascha Kuerti
- Department of Gynaecology and Gynaecologic Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Lim YC, Jensen KE, Aguilar-Morante D, Vardouli L, Vitting-Seerup K, Gimple RC, Wu Q, Pedersen H, Elbaek KJ, Gromova I, Ihnatko R, Kristensen BW, Petersen JK, Skjoth-Rasmussen J, Flavahan W, Rich JN, Hamerlik P. Non-metabolic functions of phosphofructokinase-1 orchestrate tumor cellular invasion and genome maintenance under bevacizumab therapy. Neuro Oncol 2022; 25:248-260. [PMID: 35608632 PMCID: PMC9925708 DOI: 10.1093/neuonc/noac135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resistance is universal. METHODS We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic targeting. RESULTS We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy of bevacizumab in preclinical GBM models in vivo. CONCLUSION PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic paradigm.
Collapse
Affiliation(s)
| | | | | | | | - Kristoffer Vitting-Seerup
- Danish Cancer Society, Denmark,Department of Health Technology, Danish Technical University, Denmark
| | - Ryan C Gimple
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Robert Ihnatko
- Institute of Pathology, University Medical Center, Goettingen University, Germany
| | | | - Jeanette K Petersen
- Department of Pathology, Odense University Hospital, Denmark,Department of Clinical Research, University of Southern Denmark, Denmark
| | | | - William Flavahan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy N Rich
- Corresponding Author: Jeremy Rich, MD, MHS, MBA, UPMC Cancer Pavilion, 5150 Centre Avenue, 5th Floor Pittsburgh, PA 15232; Tel: 4126233364 ()
| | - Petra Hamerlik
- Corresponding Author: Petra Hamerlik, MSc, PhD, Brain Tumor Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Tel: 35257413 ()
| |
Collapse
|
28
|
Su Y, Luo B, Lu Y, Wang D, Yan J, Zheng J, Xiao J, Wang Y, Xue Z, Yin J, Chen P, Li L, Zhao Q. Anlotinib Induces a T Cell-Inflamed Tumor Microenvironment by Facilitating Vessel Normalization and Enhances the Efficacy of PD-1 Checkpoint Blockade in Neuroblastoma. Clin Cancer Res 2022; 28:793-809. [PMID: 34844980 PMCID: PMC9377760 DOI: 10.1158/1078-0432.ccr-21-2241] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Anlotinib has achieved good results in clinical trials of a variety of cancers. However, the effects of anlotinib on the tumor microenvironment (TME) and systemic immunity have not been reported. There is an urgent need to identify the underlying mechanism to reveal new opportunities for its application in neuroblastoma (NB) and other cancers. Understanding the mechanism will hopefully achieve the goal of using the same method to treat different cancers. EXPERIMENTAL DESIGN This study used bioinformatics, NB syngeneic mouse models, flow cytometry, RNA-seq, and immunofluorescence staining to explore the mechanisms of anlotinib on the TME, and further explored anlotinib-containing combination treatment strategies. RESULTS We proved that anlotinib facilitates tumor vessel normalization at least partially through CD4+ T cells, reprograms the immunosuppressive TME into an immunostimulatory TME, significantly inhibits tumor growth, and effectively prevents systemic immunosuppression. Moreover, the combination of anlotinib with a PD-1 checkpoint inhibitor counteracts the immunosuppression caused by the upregulation of PD-L1 after monotherapy, extends the period of vascular normalization, and finally induces NB regression. CONCLUSIONS To our knowledge, this study is the first to dynamically evaluate the effect of a multitarget antiangiogenic tyrosine kinase inhibitor on the TME. These findings have very important clinical value in guiding the testing of related drugs in NB and other cancers. Based on these findings, we are conducting a phase II clinical study (NCT04842526) on the efficacy and safety of anlotinib, irinotecan, and temozolomide in the treatment of refractory or relapsed NB, and hopefully we will observe patient benefit.
Collapse
Affiliation(s)
- Yudong Su
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Pediatric Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Bingying Luo
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yao Lu
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Daowei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Pediatric Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Yan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Pediatric Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jian Zheng
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Jun Xiao
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yangyang Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Pediatric Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Jie Yin
- Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Peng Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Long Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Pediatric Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, China.,Corresponding Authors: Qiang Zhao, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China. Phone: 86-22-2334-0123; E-mail: ; and Long Li, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China. Phone: 86-22-2334-0123; E-mail:
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Pediatric Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,Corresponding Authors: Qiang Zhao, Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, China. Phone: 86-22-2334-0123; E-mail: ; and Long Li, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China. Phone: 86-22-2334-0123; E-mail:
| |
Collapse
|
29
|
Prasad CB, Singh D, Pandey LK, Pradhan S, Singh S, Narayan G. VEGFa/VEGFR2 autocrine and paracrine signaling promotes cervical carcinogenesis via β-catenin and snail. Int J Biochem Cell Biol 2022; 142:106122. [PMID: 34826615 DOI: 10.1016/j.biocel.2021.106122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
VEGF secretion into the tumor microenvironment by cancer cells regulates several oncogenic signaling pathways and cancer-regulated angiogenesis. VEGFR receptors are exclusively present on endothelial cells to maintain their biological homeostasis. The acquisition of unique VEGFR2 receptor and VEGFa in cervical cancer (CC) cells reflects VEGFa/VEGFR2 autocrine machinery. Given the critical role of VEGFR2 in endothelial cell proliferation, migration, and angiogenesis, we explored its function in CC epithelial-mesenchymal transition (EMT) and stemness. Here we report that VEGFR2 regulates cancer-induced angiogenesis and EMT-linked stemness in CC cells via AKT/GSK3β/β-catenin and Snail pathway. Receptor tyrosine kinase inhibitor (RTKi) of VEGFR, Pazopanib (PAZ), shows potential anti-VEGFR2 activity and inhibits VEGFa induced metastatic events such as migration, invasion, and anoikis resistance in CC cells. Similarly, PAZ also attenuates cancer-regulated angiogenesis by inhibiting VE-cadherin internalization in endothelial cells followed by inhibition of endothelial cell migration. Selective depletion of VEGFR2 ligand VEGFa in CC cells also attenuates EMT, metastatic events, and inhibition of cancer-induced angiogenesis. In addition, blocking of VEGFR2 signaling in CC cells via PAZ or shRNA alters the formation of cervical tumorspheres (TS) and their successive generation. Collectively, inhibition of functional VEGFa/VEGFR2 autocrine and paracrine axis ceases the cancer-promoting events in cervical cancer cells. Based on the finding in this study, this oncogenic pathways could be used as a potential therapeutic target in a clinical setting with conventional radio-chemotherapy to achieve synergistic killing of CC cells.
Collapse
Affiliation(s)
- Chandra Bhushan Prasad
- Cancer Genetics Lab, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Deepika Singh
- Cancer Genetics Lab, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Laxmi Kant Pandey
- Department of Obstetrics and Gynecology, Institute of Medical sciences, Banaras Hindu University, Varanasi 221005, India
| | - Satyajit Pradhan
- Department of Radiotherapy and Radiation Medicine, Institute of Medical sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Lab, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
30
|
Guan S, Jian L, He Y, Su Y, Zhou L. Bioinformatic identification of differentially expressed genes regulated by DNA-methylation in glioblastoma. Eur J Neurosci 2021; 55:1278-1290. [PMID: 34963193 DOI: 10.1111/ejn.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
DNA methylation-driven differentially expressed genes (DEGs) play potentially important roles in glioblastoma (GBM). In the present study, we applied bioinformatic analyses to identify key methylation-regulated DEGs (MeDEGs) in glioblastoma and elucidate their functions. Gene expression and methylation profile data from glioblastoma samples along with clinical information were obtained from GEO and TCGA databases. A total of 65 genes were identified as MeDEGs from the aforementioned data. Subsequently, gene ontology and kyoto encyclopedia of genes and genomes enrichment analyses of these MeDEGs exhibited that MeDEGs were mostly enriched in several tumor-related terms such as "activation of cysteine-type endopeptidase activity involved in apoptotic process" and "phospholipid scrambling". Kaplan-Meier survival analysis demonstrated significant correlation of CASP1, CFH, and TTLL7 hyper-methylation with patient prognosis. Finally, CASP1 protein could indirectly interact with CFH protein, but interaction of TTLL7 protein with CASP1 or CFH protein was not evident. Based on gene set enrichment analysis, hyper-methylation of CASP1, CFH, and TTLL7 were found enriched in tumor-related KEGG terms, such as "RNA degradation", "apyruvate metabolism", and "nitrogen metabolism". Methylation levels of CASP1, CFH, and TTLL7 were addressed to negatively correlate with their mRNA levels in GBM cell lines. In sum, the present identification of MeDEGs associated with overall survival put forth potential molecular targets for translation towards improved diagnosis and treatment of GBM and specifically, methylation levels of CASP1, CFH, and TTLL7 genes could serve as key prognostic biomarkers in GBM.
Collapse
Affiliation(s)
- Sizhong Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Linge Jian
- West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Ye He
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yanna Su
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Liping Zhou
- Post Graduation Training Department, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
31
|
Yadav K, Lim J, Choo J, Ow SGW, Wong A, Lee M, Chan CW, Hartman M, Lim SE, Ngoi N, Tang SW, Ang Y, Chan G, Chong WQ, Tan HL, Tan SH, Goh BC, Lee SC. Immunohistochemistry study of tumor vascular normalization and anti-angiogenic effects of sunitinib versus bevacizumab prior to dose-dense doxorubicin/cyclophosphamide chemotherapy in HER2-negative breast cancer. Breast Cancer Res Treat 2021; 192:131-142. [PMID: 34928481 PMCID: PMC8841320 DOI: 10.1007/s10549-021-06470-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Purpose Tumor angiogenesis controlled predominantly by vascular endothelial growth factor and its receptor (VEGF-VEGFR) interaction plays a key role in the growth and propagation of cancer cells. However, the newly formed network of blood vessels is disorganized and leaky. Pre-treatment with anti-angiogenic agents can “normalize” the tumor vasculature allowing effective intra-tumoral delivery of standard chemotherapy. Immunohistochemistry (IHC) analysis was applied to investigate and compare the vascular normalization and anti-angiogenic effects of two commonly used anti-angiogenic agents, Sunitinib and Bevacizumab, administered prior to chemotherapy in HER2-negative breast cancer patients. Methods This prospective clinical trial enrolled 38 patients into a sunitinib cohort and 24 into a bevacizumab cohort. All received 4 cycles of doxorubicin/cyclophosphamide chemotherapy and pre-treatment with either sunitinib or bevacizumab. Tumor biopsies were obtained at baseline, after cycle 1 (C1) and cycle 4 (C4) of chemotherapy. IHC was performed to assess the tumor vascular normalization index (VNI), lymphatic vessel density (LVD), Ki67 proliferation index and expression of tumor VEGFR2. Results In comparison to Bevacizumab, Sunitinib led to a significant increase in VNI post-C1 and C4 (p < 0.001 and 0.001) along with decrease in LVD post-C1 (p = 0.017). Both drugs when combined with chemotherapy resulted in significant decline in tumor proliferation after C1 and C4 (baseline vs post-C4 Ki67 index p = 0.006 for Sunitinib vs p = 0.021 for Bevacizumab). Bevacizumab resulted in a significant decrease in VEGFR2 expression post-C1 (p = 0.004). Conclusion Sunitinib, in comparison to Bevacizumab showed a greater effect on tumor vessel modulation and lymphangiogenesis suggesting that its administration prior to chemotherapy might result in improved drug delivery. Trial registry ClinicalTrials.gov: NCT02790580 (first posted June 6, 2016).
Collapse
Affiliation(s)
- Kritika Yadav
- Department of Pathology, Dr. D Y Patil Medical College, Navi Mumbai, India
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Joline Lim
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Joan Choo
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Samuel Guan Wei Ow
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Andrea Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Matilda Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siau Wei Tang
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Yvonne Ang
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Gloria Chan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Wan Qin Chong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Hon Lyn Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Sing Huang Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute, National University of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
32
|
Synthetic anti-angiogenic genomic therapeutics for treatment of neovascular age-related macular degeneration. Asian J Pharm Sci 2021; 16:623-632. [PMID: 34849167 PMCID: PMC8609386 DOI: 10.1016/j.ajps.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
In light of the intriguing potential of anti-angiogenic approach in suppressing choroidal neovascularization, we attempted to elaborate synthetic gene delivery systems encapsulating anti-angiogenic plasmid DNA as alternatives of clinical antibody-based therapeutics. Herein, block copolymer of cyclic Arg-Gly-Asp-poly(ethylene glycol)-poly(lysine-thiol) [RGD-PEG-PLys(thiol)] with multifunctional components was tailored in manufacture of core-shell DNA delivery nanoparticulates. Note that the polycationic PLys segments were electrostatically complexed with anionic plasmid DNA into nanoscaled core, and the tethered biocompatible PEG segments presented as the spatial shell (minimizing non-specific reactions in biological milieu). Furthermore, the aforementioned self-assembly was introduced with redox-responsive disulfide crosslinking due to the thiol coupling. Hence, reversible stabilities, namely stable in extracellular milieu but susceptible to disassemble for liberation of the DNA payloads in intracellular reducing microenvironment, were verified to facilitate transcellular gene transportation. In addition, RGD was installed onto the surface of the proposed self-assemblies with aim of targeted accumulation and internalization into angiogenic endothelial cells given that RGD receptors were specifically overexpressed on their cytomembrane surface. The proposed anti-angiogenic DNA therapeutics were validated to exert efficient expression of anti-angiogenic proteins in endothelial cells and elicit potent inhibition of ocular neovasculature post intravitreous administration. Hence, the present study approved the potential of gene therapy in treatment of choroidal neovascularization. In light of sustainable gene expression properties of DNA therapeutics, our proposed synthetic gene delivery system inspired prosperous potentials in long-term treatment of choroidal neovascularization, which should be emphasized to develop further towards clinical translations.
Collapse
|
33
|
Momeny M, Shamsaiegahkani S, Kashani B, Hamzehlou S, Esmaeili F, Yousefi H, Irani S, Mousavi SA, Ghaffari SH. Cediranib, a pan-inhibitor of vascular endothelial growth factor receptors, inhibits proliferation and enhances therapeutic sensitivity in glioblastoma cells. Life Sci 2021; 287:120100. [PMID: 34715143 DOI: 10.1016/j.lfs.2021.120100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
AIMS Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches. Here, we evaluated the anti-tumor activity of cediranib, a pan inhibitor of the VEGF receptors, on GB cells. MATERIALS AND METHODS Anti-proliferative effects of cediranib were determined using MTT, crystal-violet staining, clonogenic and anoikis resistance assays. Apoptosis induction was assessed by Annexin V/PI staining and Western blot analysis and aggressive abilities of GB cells were investigated using cell migration/invasion assays and zymography. Small-interfering RNA (siRNA)-mediated Knockdown was used to study resistance mechanisms. The anti-proliferative and apoptotic effects of cediranib in combination with radiotherapy, temozolomide, bevacizumab were also evaluated using MTT, Annexin V/PI staining and Western blot analysis for cleaved PARP-1. KEY FINDINGS Cediranib reduced GB cell proliferation, induced apoptotic cell death and inhibited the aggressive abilities of GB cells. Cediranib synergistically increased the anti-proliferative and apoptotic effects of radiotherapy and bevacizumab and augmented the sensitivity of GB cells to temozolomide chemotherapy. In addition, knockdown of MET and AKT potentiated cediranib sensitivity in cediranib-resistant GB cells. SIGNIFICANCE These findings suggest that cediranib, alone or in combination with other therapeutics, is a promising strategy for the treatment of GB and provide a rationale for further investigation of the therapeutic potential of cediranib for the treatment of this fatal malignancy.
Collapse
Affiliation(s)
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Centre, New Orleans, USA
| | - Shiva Irani
- Department of Biology Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Glioma stem cell-derived exosomal miR-944 reduces glioma growth and angiogenesis by inhibiting AKT/ERK signaling. Aging (Albany NY) 2021; 13:19243-19259. [PMID: 34233294 PMCID: PMC8386563 DOI: 10.18632/aging.203243] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
In this study, we investigated the regulatory role of exosomal microRNA-944 (miR-944) derived from glioma stem cells (GSCs) in glioma progression and angiogenesis. Bioinformatics analysis showed that miR-944 levels were significantly lower in high-grade gliomas (HGGs) than low-grade gliomas in the Chinese Glioma Genome Atlas and The Cancer Genome Atlas datasets. The overall survival rates were significantly shorter for glioma patients expressing low miR-944 levels than high miR-944 levels. GSC-derived exosomal miR-944 significantly decreased in vitro proliferation, migration, and tube formation by human umbilical vein endothelial cells (HUVECs). Targetscan and dual luciferase reporter assays demonstrated that miR-944 directly targets the 3’UTR of VEGFC. In vivo mouse studies demonstrated that injection of agomiR-944 directly into tumors 3 weeks after xenografting glioma cells significantly reduced tumor growth and angiogenesis. GSC-derived exosomal miR-944 significantly reduced VEGFC levels and suppressed activation of AKT/ERK signaling pathways in HUVECs and xenograft glioma cell tumors. These findings demonstrate that GSC-derived exosomal miR-944 inhibits glioma growth, progression, and angiogenesis by suppressing VEGFC expression and inhibiting the AKT/ERK signaling pathway.
Collapse
|
35
|
Xing H, Yang X, Xu Y, Tang K, Tian Z, Chen Z, Zhang Y, Xue Z, Rao Q, Wang M, Wang J. Anti-tumor effects of vascular endothelial growth factor/vascular endothelial growth factor receptor binding domain-modified chimeric antigen receptor T cells. Cytotherapy 2021; 23:810-819. [PMID: 34244079 DOI: 10.1016/j.jcyt.2021.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AIMS The vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy. METHODS Here the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus. RESULTS After co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model. CONCLUSIONS The authors' results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.
Collapse
Affiliation(s)
- Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhaoqi Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhenya Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
36
|
Erten F, Yenice E, Orhan C, Er B, Demirel Öner P, Defo Deeh PB, Şahin K. Genistein suppresses the inflammation and GSK-3 pathway in an animal model of spontaneous ovarian cancer. Turk J Med Sci 2021; 51:1465-1471. [PMID: 33550763 PMCID: PMC8283468 DOI: 10.3906/sag-2007-254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background/aim Numerous studies show that cancer risk is reduced by consumption of soy-based foods containing genistein, but its effects on the glycogen synthase kinase-3 pathway (GSK-3) in ovarian cancer is unknown. Therefore, we tested the properties of genistein on inflammatory biomarkers and GSK-3 signaling pathways in the ovaries of old laying hens with ovarian cancer. Materials and methods A total of 300 laying hens were distributed into three groups as follows: group 1, animals fed a standard diet (comprising 22.39 mg of genistein/kg of diet); groups 2 and 3, animals fed a standard diet reconstituted with supplementation of 400 mg or 800 mg of genistein/kg of diet, respectively. Results Genistein modulated the inflammatory biomarkers by decreasing serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared with control (p < 0.001). Moreover, it upregulated insulin receptor substrate-1 (p-IRS-1) and protein kinase B (p-AKT), but downregulated GSK-3α and β after treatment. It acts in a dose-dependent manner. Conclusion Genistein exhibited an anticancer effect by reducing proinflammatory biomarkers levels and inhibiting GSK-3 expression in the ovaries of old laying hens. It is a potential candidate in the chemoprevention and/or treatment of ovarian cancer.
Collapse
Affiliation(s)
- Füsun Erten
- Division of Biology, Faculty of Science, Fırat University, Elazığ, Turkey
| | - Engin Yenice
- Department of Animal Nutrition, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Beşir Er
- Division of Biology, Faculty of Science, Fırat University, Elazığ, Turkey
| | - Pınar Demirel Öner
- Department of Microbiology, Education and Research Hospital, Elazığ, Turkey
| | | | - Kazım Şahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
37
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
38
|
The Hippo-TAZ axis mediates vascular endothelial growth factor C in glioblastoma-derived exosomes to promote angiogenesis. Cancer Lett 2021; 513:1-13. [PMID: 34010715 DOI: 10.1016/j.canlet.2021.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is one of the most highly vascularized human cancers. The role of exosomes in cancer angiogenesis has attracted recent interest. However, proangiogenic biomolecules transported by exosomes to facilitate angiogenesis in GBM have not yet been identified. Here, we found a specific 120-kDa isoform of vascular endothelial growth factor (VEGF) in GBM-derived exosomes and confirmed it as VEGF-C. By binding to VEGF receptor 2 (VEGFR2), VEGF-C from GBM-derived exosomes showed a strong stimulatory effect on tafazzin (TAZ) expression in endothelial cells by inhibiting the Hippo signaling pathway, which eventually stimulates endothelial cell viability, migration, and tubulation. In human glioma samples, the expression of VEGF-C in tumor cells positively correlated with TAZ expression in endothelial cells. We further demonstrated that an inhibitor of exosomal release had a cooperative inhibitory effect with bevacizumab on GBM xenograft subcutaneous tumor growth and angiogenesis. Taken together, our findings revealed a novel VEGF-C isoform in GBM-derived exosomes with a role in angiogenesis and highlighted the importance of recognizing its unique signaling pathway when considering drug treatment strategies for GBM.
Collapse
|
39
|
Lin H, Yang Y, Hou C, Zheng J, Lv G, Mao R, Xu P, Chen S, Zhou Y, Wang P, Zhou D. Identification of COL6A1 as the Key Gene Associated with Antivascular Endothelial Growth Factor Therapy in Glioblastoma Multiforme. Genet Test Mol Biomarkers 2021; 25:334-345. [PMID: 33970702 DOI: 10.1089/gtmb.2020.0279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Vascular endothelial growth factors (VEGFs) are important for glioblastoma multiforme (GBM) growth and development. However, the effects of VEGF-targeting drugs in primary GBM remain poorly understood. Aim: We aimed to explore the key genes correlated with VEGF expression and prognosis and elucidate their potential implications in GBM anti-VEGF therapy. Materials and Methods: RNA-seq data with the corresponding clinicopathological information was retrieved from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas. Weighted gene coexpression network analyses was performed on differentially expressed genes to construct coexpression modules and investigate their correlation with VEGFs. Functional enrichment analyses were performed based on the coexpressed genes from the most promising modules. CytoHubba and Kaplan-Meier analyses were implemented to identify the key genes in the modules of interest. The oncomine database, quantitative reverse transcription PCR, and the Human Protein Atlas were used to investigate the expression characteristics of the identified key genes. Results: Four modules (cyan, green, purple, and tan) correlated significantly with VEGF expression. Enrichment analyses suggested that extracellular matrix-receptor interaction, growth factor binding, and the PI3K-Akt pathways were involved in VEGF expression. Four hub genes (COL6A1, SNRPG, COL3A1, and AHI1) associated with VEGF were identified. Among them, COL6A1 was regarded as the key gene associated with anti-VEGF therapy. Further, COL6A1 was upregulated in GBM compared to that in normal brain tissues. COL6A1 overexpression was associated with a poor prognosis. Conclusion: COL6A1 was identified as the key gene associated with anti-VEGF therapy and may provide novel insight into GBM targeted therapy.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongxian Hou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiantao Zheng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Rui Mao
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Peihong Xu
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shanwei Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yujun Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
40
|
Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073765. [PMID: 33916438 PMCID: PMC8038573 DOI: 10.3390/ijms22073765] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.
Collapse
|
41
|
Holst CB, Pedersen H, Obara EAA, Vitting-Seerup K, Jensen KE, Skjøth-Rasmussen J, Lund EL, Poulsen HS, Johansen JS, Hamerlik P. Perspective: targeting VEGF-A and YKL-40 in glioblastoma - matter matters. Cell Cycle 2021; 20:702-715. [PMID: 33779510 PMCID: PMC8078714 DOI: 10.1080/15384101.2021.1901037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are heterogeneous highly vascular brain tumors exploiting the unique microenvironment in the brain to resist treatment and anti-tumor responses. Anti-angiogenic agents, immunotherapy, and targeted therapy have been studied extensively in GBM patients over a number of decades with minimal success. Despite maximal efforts, prognosis remains dismal with an overall survival of approximately 15 months. Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) antibody, underwent accelerated approval by the U.S. Food and Drug Administration in 2009 for the treatment of recurrent GBM based on promising preclinical and early clinical studies. Unfortunately, subsequent clinical trials did not find overall survival benefit. Pursuing pleiotropic targets and leaning toward multitarget strategies may be a key to more effective therapeutic intervention in GBM, but preclinical evaluation requires careful consideration of model choices. In this study, we discuss bevacizumab resistance, dual targeting of pro-angiogenic modulators VEGF and YKL-40 in the context of brain tumor microenvironment, and how model choice impacts study conclusions and its translational significance.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Medicine, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark.,Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pedersen
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Kamilla Ellermann Jensen
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Medicine, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
42
|
Abstract
The notion of the brain as an immune-privileged organ has been challenged by the discovery of functional lymphatic vessels in the meninges of the dorsal and basal skull. A study published in Nature in 2020 shows that meningeal lymphatics play an important role in the sensing of brain tumor antigens.
Collapse
Affiliation(s)
- Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
43
|
Resistance to Molecularly Targeted Therapies in Melanoma. Cancers (Basel) 2021; 13:cancers13051115. [PMID: 33807778 PMCID: PMC7961479 DOI: 10.3390/cancers13051115] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is the most aggressive type of skin cancer with invasive growth patterns. In 2021, 106,110 patients are projected to be diagnosed with melanoma, out of which 7180 are expected to die. Traditional methods like surgery, radiation therapy, and chemotherapy are not effective in the treatment of metastatic and advanced melanoma. Recent approaches to treat melanoma have focused on biomarkers that play significant roles in cell growth, proliferation, migration, and survival. Several FDA-approved molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) have been developed against genetic biomarkers whose overexpression is implicated in tumorigenesis. The use of targeted therapies as an alternative or supplement to immunotherapy has revolutionized the management of metastatic melanoma. Although this treatment strategy is more efficacious and less toxic in comparison to traditional therapies, targeted therapies are less effective after prolonged treatment due to acquired resistance caused by mutations and activation of alternative mechanisms in melanoma tumors. Recent studies focus on understanding the mechanisms of acquired resistance to these current therapies. Further research is needed for the development of better approaches to improve prognosis in melanoma patients. In this article, various melanoma biomarkers including BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K are described, and their potential mechanisms for drug resistance are discussed.
Collapse
|
44
|
Nakano Y, Kumagai J, Nagahama K, Fujisawa H. A case of ramucirumab-induced renal failure with nephrotic-range proteinuria and its pathological findings. BMJ Case Rep 2021; 14:e239603. [PMID: 33653851 PMCID: PMC7929848 DOI: 10.1136/bcr-2020-239603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 11/03/2022] Open
Abstract
Ramucirumab-induced renal dysfunction is rarely reported. The pathology of ramucirumab-associated nephropathy in past reports primarily shows thrombotic microangiopathy (TMA) lesions but podocytopathy is not yet known. We report a case of kidney injury induced by ramucirumab in a 71-year-old man with cecal cancer. He was referred to our department for increasing serum creatinine (Cr) levels from 1.08 mg/dL to 2.56 mg/dL after changing anticancer drugs from bevacizumab to ramucirumab. He showed nephrotic-range proteinuria (12.1 g/gCr). A renal biopsy revealed endothelial cell injuries, such as TMA and podocytopathy with epithelial cell hyperplasia, which looked like a crescent. After discontinuing ramucirumab, his renal function and proteinuria improved, as seen by his Cr levels and proteinuria which decreased to 1.74 mg/dL and 1.21 g/gCr, respectively, in 3 months. Unlike previous reports, we found that ramucirumab caused podocyte injuries.
Collapse
Affiliation(s)
- Yuta Nakano
- Nephrology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Jiro Kumagai
- Pathology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | | | - Hajime Fujisawa
- Nephrology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| |
Collapse
|
45
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|
46
|
Abstract
The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions. Here, we focus on the therapeutic roles of lymphatic vessels in diseases and summarize the promising therapeutic targets for modulating lymphangiogenesis or lymphatic function in preclinical or clinical settings. We also discuss considerations for drug delivery or targeting of lymphatic vessels for treatment of lymphatic-related diseases. The lymphatic vasculature is rapidly emerging as a critical system for targeted modulation of its function and as a vehicle for innovative drug delivery.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
47
|
Dono A, Ramesh AV, Wang E, Shah M, Tandon N, Ballester LY, Esquenazi Y. The role of RB1 alteration and 4q12 amplification in IDH-WT glioblastoma. Neurooncol Adv 2021; 3:vdab050. [PMID: 34131647 PMCID: PMC8193911 DOI: 10.1093/noajnl/vdab050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Recent studies have identified that glioblastoma IDH-wildtype (GBM IDH-WT) might be comprised of molecular subgroups with distinct prognoses. Therefore, we investigated the correlation between genetic alterations and survival in 282 GBM IDH-WT patients, to identify subgroups with distinct outcomes. METHODS We reviewed characteristics of GBM IDH-WT (2009-2019) patients analyzed by next-generation sequencing interrogating 205 genes and 26 rearrangements. Progression-free survival (PFS) and overall survival (OS) were evaluated with the log-rank test and Cox regression models. We validated our results utilizing data from cBioPortal (MSK-IMPACT dataset). RESULTS Multivariable analysis of GBM IDH-WT revealed that treatment with chemoradiation and RB1-mutant status correlated with improved PFS (hazard ratio [HR] 0.25, P < .001 and HR 0.47, P = .002) and OS (HR 0.24, P < .001 and HR 0.49, P = .016). In addition, younger age (<55 years) was associated with improved OS. Karnofsky performance status less than 80 (HR 1.44, P = .024) and KDR amplification (HR 2.51, P = .008) were predictors of worse OS. KDR-amplified patients harbored coexisting PDGFRA and KIT amplification (P < .001) and TP53 mutations (P = .04). RB1-mutant patients had less frequent CDKN2A/B and EGFR alterations (P < .001). Conversely, RB1-mutant patients had more frequent TP53 (P < .001) and SETD2 (P = .006) mutations. Analysis of the MSK-IMPACT dataset (n = 551) validated the association between RB1 mutations and improved PFS (11.0 vs 8.7 months, P = .009) and OS (34.7 vs 21.7 months, P = .016). CONCLUSIONS RB1-mutant GBM IDH-WT is a molecular subgroup with improved PFS and OS. Meanwhile, 4q12 amplification (KDR/PDGFRA/KIT) denoted patients with worse OS. Identifying subgroups of GBM IDH-WT with distinct survival is important for optimal clinical trial design, incorporation of targeted therapies, and personalized neuro-oncological care.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | - Mauli Shah
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Memorial Hermann Hospital-TMC, Houston, Texas, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Memorial Hermann Hospital-TMC, Houston, Texas, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Memorial Hermann Hospital-TMC, Houston, Texas, USA
| |
Collapse
|
48
|
New Avenues in Radiotherapy of Glioblastoma: from Bench to Bedside. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Nørøxe DS, Yde CW, Østrup O, Michaelsen SR, Schmidt AY, Kinalis S, Torp MH, Skjøth‐Rasmussen J, Brennum J, Hamerlik P, Poulsen HS, Nielsen FC, Lassen U. Genomic profiling of newly diagnosed glioblastoma patients and its potential for clinical utility - a prospective, translational study. Mol Oncol 2020; 14:2727-2743. [PMID: 32885540 PMCID: PMC7607169 DOI: 10.1002/1878-0261.12790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is an incurable brain tumor for which new treatment strategies are urgently needed. Next-generation sequencing of GBM has most often been performed retrospectively and on archival tissue from both diagnostic and relapse surgeries with limited knowledge of clinical information, including treatment given. We sought to investigate the genomic composition prospectively in treatment-naïve patients, searched for possible targetable aberrations, and investigated for prognostic and/or predictive factors. A total of 108 newly diagnosed GBM patients were included. Clinical information, progression-free survival, and overall survival (OS) were noted. Tissues were analyzed by whole-exome sequencing, single nucleotide polymorphism (SNP) and transcriptome arrays, and RNA sequencing; assessed for mutations, fusions, tumor mutational burden (TMB), and chromosomal instability (CI); and classified into GBM subgroups. Each genomic report was discussed at a multidisciplinary tumor board meeting to evaluate for matching trials. From 111 consecutive patients, 97.3% accepted inclusion in this study. Eighty-six (77%) were treated with radiation therapy/temozolomide (TMZ) and adjuvant TMZ. One NTRK2 and three FGFR3-TACC3 fusions were identified. Copy number alterations in GRB2 and SMYD4 were significantly correlated with worse median OS together with known clinical variables like age, performance status, steroid dose, and O6-methyl-guanine-DNA-methyl-transferase status. Patients with CI-median or TMB-high had significantly worse median OS compared to CI-low/high or TMB-low/median. In conclusion, performing genomic profiling at diagnosis enables evaluation of genomic-driven therapy at the first progression. Furthermore, TMB-high or CI-median patients had worse median OS, which can support the possibility of offering experimental treatment already at the first line for this group.
Collapse
Affiliation(s)
- Dorte S. Nørøxe
- Department of Radiation BiologyRigshospitaletCopenhagenDenmark
- Department of OncologyRigshospitaletCopenhagenDenmark
| | | | - Olga Østrup
- Center for Genomic MedicineRigshospitaletCopenhagenDenmark
| | - Signe R. Michaelsen
- Department of Radiation BiologyRigshospitaletCopenhagenDenmark
- Biotech, Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Ane Y. Schmidt
- Center for Genomic MedicineRigshospitaletCopenhagenDenmark
| | - Savvas Kinalis
- Center for Genomic MedicineRigshospitaletCopenhagenDenmark
| | | | | | | | | | - Hans S. Poulsen
- Department of Radiation BiologyRigshospitaletCopenhagenDenmark
- Department of OncologyRigshospitaletCopenhagenDenmark
| | | | - Ulrik Lassen
- Department of OncologyRigshospitaletCopenhagenDenmark
| |
Collapse
|
50
|
Bhavya B, Easwer HV, Vilanilam GC, Anand CR, Sreelakshmi K, Urulangodi M, Rajalakshmi P, Neena I, Padmakrishnan CJ, Menon GR, Krishnakumar K, Deepti AN, Gopala S. MutT Homolog1 has multifaceted role in glioma and is under the apparent orchestration by Hypoxia Inducible factor1 alpha. Life Sci 2020; 264:118673. [PMID: 33130078 DOI: 10.1016/j.lfs.2020.118673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
AIMS The study focused on the expression and role of a recent potential cancer therapeutic target protein, MutT Homolog1 (MTH1). MTH1 gets activated in an increased reactive oxygen species (ROS) environment and removes the oxidized nucleotides from the cell. The study aimed to check the role of MTH1 in DNA damage and apoptosis, migration and angiogenesis and also to examine its regulation in glioma. MAIN METHODS The experiments were carried out in human glioma tissue samples and brain tissues of epilepsy patients (non-tumor control). We used two human glioblastomas cell lines, U87MG and U251MG cells. In order to study the role of MTH1 in glioma and to analyze the relation of MTH1 with Hif1α, we have used MTH1 siRNA and Hif1α siRNA respectively. KEY FINDINGS We found an increased expression of MTH1 in glioma tissues compared to the non-tumor brain tissues. Correlation analysis revealed that those samples showing reduced expression of MTH1 also had high levels of DNA damage and apoptotic markers, while diminished expression of angiogenesis regulators and levels of migration. MTH1 knockdown in vitro by siRNA in tumor cell lines corroborates the above observation. This justifies the emergence of MTH1 inhibitors as potential first-in-class drugs. Mechanistically, our observations suggest that Hif1α may modulate MTH1 expression. SIGNIFICANCE We found elevated MTH1 expression in glioma irrespective of their grades, while its inhibition affects multiple tumor progression pathways, and that targeting Hif1α could simulate the same.
Collapse
Affiliation(s)
- Bharathan Bhavya
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - H V Easwer
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - G C Vilanilam
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - C R Anand
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Sreelakshmi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - P Rajalakshmi
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Issac Neena
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - C J Padmakrishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Girish R Menon
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - K Krishnakumar
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - A N Deepti
- Department of Pathology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|