1
|
李 策, 刘 炳, 王 延, 于 台, 郑 志, 王 国. [Progress in neurosurgical treatment of neurofibromatosis type 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1171-1179. [PMID: 39433489 PMCID: PMC11522532 DOI: 10.7507/1002-1892.202407058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Objective To summarize the latest developments in neurosurgical treatments for neurofibromatosis type 1 (NF1) and explore therapeutic strategies to provide comprehensive treatment guidelines for clinicians. Methods The recent domestic and international literature and clinical cases in the field of NF1 were reviewed. The main types of neurological complications associated with NF1 and their treatments were thorough summarized and the future research directions in neurosurgery was analyzed. Results NF1 frequently results in complex and diverse lesions in the central and peripheral nervous systems, particularly low-grade gliomas in the brain and spinal canal and paraspinal neurofibromas. Treatment decisions should be made by a multidisciplinary team. Symptomatic plexiform neurofibromas and tumors with malignant imaging evidence require neurosurgical intervention. The goals of surgery include reducing tumor size, alleviating pain, and improving appearance. Postoperative functional rehabilitation exercises, long-term multidisciplinary follow-up, and psychosocial interventions are crucial for improving the quality of life for patients. Advanced imaging guidance systems and artificial intelligence technologies can help increase tumor resection rates and reduce recurrence. Conclusion Neurosurgical intervention is the primary treatment for symptomatic plexiform neurofibromas and malignant peripheral nerve sheath tumors when medical treatment is ineffective and the lesions progress rapidly. Preoperative multidisciplinary assessment, intraoperative electrophysiological monitoring, and advanced surgical assistance devices significantly enhance surgical efficacy and safety. Future research should continue to explore new surgical techniques and improve postoperative management strategies to achieve more precise and personalized treatment for NF1 patients.
Collapse
Affiliation(s)
- 策 李
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 炳含 刘
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 延俊 王
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 台飞 于
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 志明 郑
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| | - 国栋 王
- 山东第一医科大学附属省立医院神经外科(济南 250021)Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan Shandong, 250021, P. R. China
| |
Collapse
|
2
|
Kotch C, de Blank P, Gutmann DH, Fisher MJ. Low-grade glioma in children with neurofibromatosis type 1: surveillance, treatment indications, management, and future directions. Childs Nerv Syst 2024; 40:3241-3250. [PMID: 38704493 DOI: 10.1007/s00381-024-06430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome characterized by the development of both central and peripheral nervous system tumors. Low-grade glioma (LGG) is the most prevalent central nervous system tumor occurring in children with NF1, arising most frequently within the optic pathway, followed by the brainstem. Historically, treatment of NF1-LGG has been limited to conventional cytotoxic chemotherapy and surgery. Despite treatment with chemotherapy, a subset of children with NF1-LGG fail initial therapy, have a continued decline in function, or recur. The recent development of several preclinical models has allowed for the identification of novel, molecularly targeted therapies. At present, exploration of these novel precision-based therapies is ongoing in the preclinical setting and through larger, collaborative clinical trials. Herein, we review the approach to surveillance and management of NF1-LGG in children and discuss upcoming novel therapies and treatment protocols.
Collapse
Affiliation(s)
- Chelsea Kotch
- Division of Oncology, Children's Hospital of Philadelphia, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Peter de Blank
- Division of Oncology, University of Cincinnati Medical Center and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David H Gutmann
- Division of Neurology, Washington University of St. Louis, St. Louis, MO, USA
| | - Michael J Fisher
- Division of Oncology, Children's Hospital of Philadelphia, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3500 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Cini NT, Pennisi M, Genc S, Spandidos DA, Falzone L, Mitsias PD, Tsatsakis A, Taghizadehghalehjoughi A. Glioma lateralization: Focus on the anatomical localization and the distribution of molecular alterations (Review). Oncol Rep 2024; 52:139. [PMID: 39155859 PMCID: PMC11358673 DOI: 10.3892/or.2024.8798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto‑occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal‑temporal‑parietal‑occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.
Collapse
Affiliation(s)
- Nilgun Tuncel Cini
- Department of Anatomy, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Sidika Genc
- Department of Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Panayiotis D. Mitsias
- Department of Neurology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
4
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Siegel A, Lockridge R, Struemph KL, Toledo-Tamula MA, Little P, Wolters PL, Dufek A, Tibery C, Baker M, Wideman BC, Martin S. Perceived transition readiness among adolescents and young adults with neurofibromatosis type 1 and plexiform neurofibromas: a cross-sectional descriptive study. J Pediatr Psychol 2024; 49:383-391. [PMID: 38366576 PMCID: PMC11175589 DOI: 10.1093/jpepsy/jsae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVES Neurofibromatosis type 1 (NF1) is a genetic cancer predisposition syndrome that can impact multiple organ systems and is associated with plexiform neurofibroma tumors, requiring care from birth through adulthood. Adolescents and young adults (AYAs) with NF1 face several barriers to transition from pediatric to adult care. This cross-sectional study aimed to assess transition readiness in this population and to evaluate relationships between specific NF1 symptoms and transition readiness. METHODS AYAs (aged 16-24) enrolled in existing studies related to NF1 were eligible. AYAs and their parents completed measures of transition readiness (Transition Readiness Assessment Questionnaire version 4 [TRAQ-4]), and AYAs also completed a transition readiness interview (UNC TRxANSITION). RESULTS Thirty-eight AYAs (mean age = 19.95 ± 2.68 years) participated in the study. Average TRAQ scores indicated that AYAs were still learning Self-Management skills (M = 3.37, SD = 1.08) and Self-Advocacy skills (M = 3.98, SD = 0.67). Older AYAs had higher TRAQ scores for Self-Management (r = 0.70, p < .001) and Self-Advocacy (r = 0.41, p = .011) than younger AYAs. Parents and AYAs had similar TRAQ scores. About one third of AYAs (37.8%, n = 14) expressed uncertainty about how NF1 might affect them in the future. The remaining AYAs mostly expressed concerns regarding tumor growth, pain, or cancer. CONCLUSIONS In this small study, preliminary findings suggest that AYAs with NF1 express confidence in many areas of transition readiness but continue to require support, particularly with Self-Management skills. Given the gaps in understanding of future health risks, AYAs with NF1 would benefit from early assessment, psychoeducation, and support for transition readiness to adult care.
Collapse
Affiliation(s)
- Atara Siegel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Robin Lockridge
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Kari L Struemph
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Mary Anne Toledo-Tamula
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Paige Little
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Cecilia Tibery
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Melissa Baker
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Brigitte C Wideman
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
6
|
Di Pietro S, Reali L, Tona E, Belfiore G, Praticò AD, Ruggieri M, David E, Foti PV, Santonocito OG, Basile A, Palmucci S. Magnetic Resonance Imaging of Central Nervous System Manifestations of Type 1 Neurofibromatosis: Pictorial Review and Retrospective Study of Their Frequency in a Cohort of Patients. J Clin Med 2024; 13:3311. [PMID: 38893021 PMCID: PMC11172829 DOI: 10.3390/jcm13113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Background: type 1 neurofibromatosis (NF1) is the most common neurocutaneous disorder, and it is an inherited condition that causes a tumour predisposition. Central nervous system (CNS) manifestations are a significant cause of morbidity and mortality in NF1. We provide a pictorial review of neuroradiological features of NF1, with emphasis on magnetic resonance imaging (MRI), and we assess the frequency of those features on a cohort of NF1 patients. Methods: we retrospectively evaluated all patients with a diagnosis of NF1 who underwent MRI of the spine and brain in our centre over a period of almost 5 years. A total of 74 patients were enrolled, 28 males and 46 females, with a mean age of 21 ± 12.67 years. The frequency of CNS manifestations encountered in our cohort of NF1 patients was assessed and compared with the data found in other studies published in the literature. Results: many of our findings were in line with the literature, and possible interpretations for those that turned out to be different were suggested in the discussion. Conclusion: imaging plays a central role in the diagnosis and management of NF1, and the knowledge of CNS manifestations could be critical for its early detection and identification, such as for treatment planning and prognostic implications.
Collapse
Affiliation(s)
- Stefano Di Pietro
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Linda Reali
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Emanuela Tona
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Giuseppe Belfiore
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | | | - Martino Ruggieri
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. “Policlinico”, P.O. “G. Rodolico”, via S. Sofia, 78, 95125 Catania, Italy
| | - Emanuele David
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Pietro Valerio Foti
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Orazio Giuseppe Santonocito
- UOSD “IPTRA”, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Antonio Basile
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| | - Stefano Palmucci
- UOSD “IPTRA”, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Tritto V, Bettinaglio P, Mangano E, Cesaretti C, Marasca F, Castronovo C, Bordoni R, Battaglia C, Saletti V, Ranzani V, Bodega B, Eoli M, Natacci F, Riva P. Genetic/epigenetic effects in NF1 microdeletion syndrome: beyond the haploinsufficiency, looking at the contribution of not deleted genes. Hum Genet 2024; 143:775-795. [PMID: 38874808 PMCID: PMC11186880 DOI: 10.1007/s00439-024-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.
Collapse
Affiliation(s)
- Viviana Tritto
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
| | - Paola Bettinaglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Marasca
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Chiara Castronovo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate (Milan), Italy
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valeria Ranzani
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare (INGM) "Romeo ed Enrica Invernizzi", Milan, Italy
- Department of Biosciences (DBS), University of Milan, Milan, Italy
| | - Marica Eoli
- Molecular Neuroncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.
| | - Paola Riva
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Milan, Italy.
| |
Collapse
|
8
|
Lalvani S, Brown RM. Neurofibromatosis Type 1: Optimizing Management with a Multidisciplinary Approach. J Multidiscip Healthc 2024; 17:1803-1817. [PMID: 38680880 PMCID: PMC11055545 DOI: 10.2147/jmdh.s362791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Neurofibromatosis Type I (NF1) is a complex genetic condition that affects multiple organ systems and presents a unique set of challenges for clinicians in its management. NF1 is a tumor predisposition syndrome that primarily affect the peripheral and central nervous systems via the impact of haploinsufficiency upon neural crest lineage cells including Schwann cells, melanocytes, fibroblasts, etc. NF1 can further lead to pathology of the skin, bones, visual system, and cardiovascular system, all of which can drastically reduce a patient's quality of life (QOL). This review provides a comprehensive examination of the many specialties required for the care of patients with Neurofibromatosis Type 1 (NF1). We delve into the pathogenesis and clinical presentation of NF1, highlighting its diverse manifestations and the challenges they pose in management. The review underscores the importance of a multidisciplinary approach to NF1, emphasizing how such an approach can significantly improve patient outcomes and overall QOL. Central to this approach is the role of the NF expert, who guides a multidisciplinary team (MDT) comprising healthcare professionals from many areas of expertise. The MDT collaboratively addresses the multifaceted needs of NF1 patients, ensuring comprehensive and personalized care. This review highlights the need for further investigation to optimize the workflow for NF1 patients in an MDT setting, and to improve implementation and efficacy.
Collapse
Affiliation(s)
- Shaan Lalvani
- Department of Neurology, The Mount Sinai Hospital, New York, NY, USA
| | - Rebecca M Brown
- Department of Neurology, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
9
|
Brown RB. Dysregulated phosphate metabolism in autism spectrum disorder: associations and insights for future research. Expert Rev Mol Med 2023; 25:e20. [PMID: 37309057 PMCID: PMC10407224 DOI: 10.1017/erm.2023.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Studies of autism spectrum disorder (ASD) related to exposure to toxic levels of dietary phosphate are lacking. Phosphate toxicity from dysregulated phosphate metabolism can negatively impact almost every major organ system of the body, including the central nervous system. The present paper used a grounded theory-literature review method to synthesise associations of dysregulated phosphate metabolism with the aetiology of ASD. Cell signalling in autism has been linked to an altered balance between phosphoinositide kinases, which phosphorylate proteins, and the counteracting effect of phosphatases in neuronal membranes. Glial cell overgrowth in the developing ASD brain can lead to disturbances in neuro-circuitry, neuroinflammation and immune responses which are potentially related to excessive inorganic phosphate. The rise in ASD prevalence has been suggested to originate in changes to the gut microbiome from increasing consumption of additives in processed food, including phosphate additives. Ketogenic diets and dietary patterns that eliminate casein also reduce phosphate intake, which may account for many of the suggested benefits of these diets in children with ASD. Dysregulated phosphate metabolism is causatively linked to comorbid conditions associated with ASD such as cancer, tuberous sclerosis, mitochondrial dysfunction, diabetes, epilepsy, obesity, chronic kidney disease, tauopathy, cardiovascular disease and bone mineral disorders. Associations and proposals presented in this paper offer novel insights and directions for future research linking the aetiology of ASD with dysregulated phosphate metabolism and phosphate toxicity from excessive dietary phosphorus intake.
Collapse
Affiliation(s)
- Ronald B. Brown
- University of Waterloo, School of Public Health Sciences, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
10
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
11
|
Dougherty J, Harvey K, Liou A, Labella K, Moran D, Brosius S, De Raedt T. Identification of therapeutic sensitivities in a spheroid drug combination screen of Neurofibromatosis Type I associated High Grade Gliomas. PLoS One 2023; 18:e0277305. [PMID: 36730269 PMCID: PMC9894422 DOI: 10.1371/journal.pone.0277305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/22/2022] [Indexed: 02/03/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) patients develop an array of benign and malignant tumors, of which Malignant Peripheral Nerve Sheath Tumors (MPNST) and High Grade Gliomas (HGG) have a dismal prognosis. About 15-20% of individuals with NF1 develop brain tumors and one third of these occur outside of the optic pathway. These non-optic pathway gliomas are more likely to progress to malignancy, especially in adults. Despite their low frequency, high grade gliomas have a disproportional effect on the morbidity of NF1 patients. In vitro drug combination screens have not been performed on NF1-associated HGG, hindering our ability to develop informed clinical trials. Here we present the first in vitro drug combination screen (21 compounds alone or in combination with MEK or PI3K inhibitors) on the only human NF1 patient derived HGG cell line available and on three mouse glioma cell lines derived from the NF1-P53 genetically engineered mouse model, which sporadically develop HGG. These mouse glioma cell lines were never exposed to serum, grow as spheres and express markers that are consistent with an Oligodendrocyte Precursor Cell (OPC) lineage origin. Importantly, even though the true cell of origin for HGG remains elusive, they are thought to arise from the OPC lineage. We evaluated drug sensitivities of the three murine glioma cell lines in a 3D spheroid growth assay, which more accurately reflects drug sensitivities in vivo. Excitingly, we identified six compounds targeting HDACs, BRD4, CHEK1, BMI-1, CDK1/2/5/9, and the proteasome that potently induced cell death in our NF1-associated HGG. Moreover, several of these inhibitors work synergistically with either MEK or PI3K inhibitors. This study forms the basis for further pre-clinical evaluation of promising targets, with an eventual hope to translate these to the clinic.
Collapse
Affiliation(s)
- Jacquelyn Dougherty
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kyra Harvey
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela Liou
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Labella
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Deborah Moran
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stephanie Brosius
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department or Neurology, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Thomas De Raedt
- Department of Pediatrics, Children’s Hospital Philadelphia, Philadelphia, Pennsylvania, United States of America
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mustafov D, Karteris E, Braoudaki M. Deciphering the Role of microRNA Mediated Regulation of Coronin 1C in Glioblastoma Development and Metastasis. Noncoding RNA 2023; 9:4. [PMID: 36649032 PMCID: PMC9844418 DOI: 10.3390/ncrna9010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogenic and malignant brain tumour with a median survival of 15 months. The initial identification of primary glioblastomas is often challenging. Coronin 1C (CORO1C) is a key player in actin rearrangement and cofilin dynamics, as well as enhancing the processes of neurite overgrowth and migration of brain tumour cells. Different bioinformatic databases were accessed to measure CORO1C expression at the mRNA and protein level in normal and malignant brains. CORO1C expression was observed in brain regions which have retained high synaptic plasticity and myelination properties. CORO1C was also expressed mainly within the hippocampus formation, including the Cornu Ammonis (CA) fields: CA1-CA4. Higher expression was also noticed in paediatric GBM in comparison to their adult counterparts. Pediatric cell populations were observed to have an increased log2 expression of CORO1C. Furthermore, 62 miRNAs were found to target the CORO1C gene. Of these, hsa-miR-34a-5p, hsa-miR-512-3p, hsa-miR-136-5p, hsa-miR-206, hsa-miR-128-3p, and hsa-miR-21-5p have shown to act as tumour suppressors or oncomiRs in different neoplasms, including GBM. The elevated expression of CORO1C in high grade metastatic brain malignancies, including GBM, suggests that this protein could have a clinical utility as a biomarker linked to an unfavorable outcome.
Collapse
Affiliation(s)
- Denis Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
13
|
Functional restoration of mouse Nf1 nonsense alleles in differentiated cultured neurons. J Hum Genet 2022; 67:661-668. [PMID: 35945271 DOI: 10.1038/s10038-022-01072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1), one of the most common autosomal dominant genetic disorders, is caused by mutations in the NF1 gene. NF1 patients have a wide variety of manifestations with a subset at high risk for the development of tumors in the central nervous system (CNS). Nonsense mutations that result in the synthesis of truncated NF1 protein (neurofibromin) are strongly associated with CNS tumors. Therapeutic nonsense suppression with small molecule drugs is a potentially powerful approach to restore the expression of genes harboring nonsense mutations. Ataluren is one such drug that has been shown to restore full-length functional protein in several models of nonsense mutation diseases, as well as in patients with nonsense mutation Duchenne muscular dystrophy. To test ataluren's potential applicability to NF1 nonsense mutations associated with CNS tumors, we generated a homozygous Nf1R683X/R683X-3X-FLAG mouse embryonic stem (mES) cell line which recapitulates an NF1 patient nonsense mutation (c.2041 C > T; p.Arg681X). We differentiated Nf1R683X/R683X-3X-FLAG mES cells into cortical neurons in vitro, treated the cells with ataluren, and demonstrated that ataluren can promote readthrough of the nonsense mutation at codon 683 of Nf1 mRNA in neural cells. The resulting full-length protein is able to reduce the cellular level of hyperactive phosphorylated ERK (pERK), a RAS effector normally suppressed by the NF1 protein.
Collapse
|
14
|
Sanchez LD, Bui A, Klesse LJ. Targeted Therapies for the Neurofibromatoses. Cancers (Basel) 2021; 13:cancers13236032. [PMID: 34885143 PMCID: PMC8657309 DOI: 10.3390/cancers13236032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past several years, management of the tumors associated with the neurofibromatoses has been recognized to often require approaches that are distinct from their spontaneous counterparts. Focus has shifted to therapy aimed at minimizing symptoms given the risks of persistent, multiple tumors and new tumor growth. In this review, we will highlight the translation of preclinical data to therapeutic trials for patients with neurofibromatosis, particularly neurofibromatosis type 1 and neurofibromatosis type 2. Successful inhibition of MEK for patients with neurofibromatosis type 1 and progressive optic pathway gliomas or plexiform neurofibromas has been a significant advancement in patient care. Similar success for the malignant NF1 tumors, such as high-grade gliomas and malignant peripheral nerve sheath tumors, has not yet been achieved; nor has significant progress been made for patients with either neurofibromatosis type 2 or schwannomatosis, although efforts are ongoing.
Collapse
Affiliation(s)
- Lauren D. Sanchez
- Department of Pediatrics, Division of Neurology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Ashley Bui
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
- Correspondence:
| |
Collapse
|
15
|
Amaravathi A, Oblinger JL, Welling DB, Kinghorn AD, Chang LS. Neurofibromatosis: Molecular Pathogenesis and Natural Compounds as Potential Treatments. Front Oncol 2021; 11:698192. [PMID: 34604034 PMCID: PMC8485038 DOI: 10.3389/fonc.2021.698192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The neurofibromatosis syndromes, including NF1, NF2, and schwannomatosis, are tumor suppressor syndromes characterized by multiple nervous system tumors, particularly Schwann cell neoplasms. NF-related tumors are mainly treated by surgery, and some of them have been treated by but are refractory to conventional chemotherapy. Recent advances in molecular genetics and genomics alongside the development of multiple animal models have provided a better understanding of NF tumor biology and facilitated target identification and therapeutic evaluation. Many targeted therapies have been evaluated in preclinical models and patients with limited success. One major advance is the FDA approval of the MEK inhibitor selumetinib for the treatment of NF1-associated plexiform neurofibroma. Due to their anti-neoplastic, antioxidant, and anti-inflammatory properties, selected natural compounds could be useful as a primary therapy or as an adjuvant therapy prior to or following surgery and/or radiation for patients with tumor predisposition syndromes, as patients often take them as dietary supplements and for health enhancement purposes. Here we review the natural compounds that have been evaluated in NF models. Some have demonstrated potent anti-tumor effects and may become viable treatments in the future.
Collapse
Affiliation(s)
- Anusha Amaravathi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - D Bradley Welling
- Department of Otolaryngology Head & Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, and Massachusetts General Hospital, Boston, MA, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
16
|
Pacot L, Vidaud D, Sabbagh A, Laurendeau I, Briand-Suleau A, Coustier A, Maillard T, Barbance C, Morice-Picard F, Sigaudy S, Glazunova OO, Damaj L, Layet V, Quelin C, Gilbert-Dussardier B, Audic F, Dollfus H, Guerrot AM, Lespinasse J, Julia S, Vantyghem MC, Drouard M, Lackmy M, Leheup B, Alembik Y, Lemaire A, Nitschké P, Petit F, Dieux Coeslier A, Mutez E, Taieb A, Fradin M, Capri Y, Nasser H, Ruaud L, Dauriat B, Bourthoumieu S, Geneviève D, Audebert-Bellanger S, Nizon M, Stoeva R, Hickman G, Nicolas G, Mazereeuw-Hautier J, Jannic A, Ferkal S, Parfait B, Vidaud M, Wolkenstein P, Pasmant E. Severe Phenotype in Patients with Large Deletions of NF1. Cancers (Basel) 2021; 13:2963. [PMID: 34199217 PMCID: PMC8231977 DOI: 10.3390/cancers13122963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Complete deletion of the NF1 gene is identified in 5-10% of patients with neurofibromatosis type 1 (NF1). Several studies have previously described particularly severe forms of the disease in NF1 patients with deletion of the NF1 locus, but comprehensive descriptions of large cohorts are still missing to fully characterize this contiguous gene syndrome. NF1-deleted patients were enrolled and phenotypically characterized with a standardized questionnaire between 2005 and 2020 from a large French NF1 cohort. Statistical analyses for main NF1-associated symptoms were performed versus an NF1 reference population. A deletion of the NF1 gene was detected in 4% (139/3479) of molecularly confirmed NF1 index cases. The median age of the group at clinical investigations was 21 years old. A comprehensive clinical assessment showed that 93% (116/126) of NF1-deleted patients fulfilled the NIH criteria for NF1. More than half had café-au-lait spots, skinfold freckling, Lisch nodules, neurofibromas, neurological abnormalities, and cognitive impairment or learning disabilities. Comparison with previously described "classic" NF1 cohorts showed a significantly higher proportion of symptomatic spinal neurofibromas, dysmorphism, learning disabilities, malignancies, and skeletal and cardiovascular abnormalities in the NF1-deleted group. We described the largest NF1-deleted cohort to date and clarified the more severe phenotype observed in these patients.
Collapse
Affiliation(s)
- Laurence Pacot
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Audrey Sabbagh
- UMR 261, Laboratoire MERIT, IRD, Faculté de Pharmacie de Paris, Université de Paris, F-75006 Paris, France;
| | - Ingrid Laurendeau
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Audrey Briand-Suleau
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Audrey Coustier
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
| | - Théodora Maillard
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
| | - Cécile Barbance
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
| | - Fanny Morice-Picard
- Inserm U1211, Service de Génétique Médicale, CHU de Bordeaux, F-33000 Bordeaux, France;
| | - Sabine Sigaudy
- Department of Medical Genetics, Children’s Hospital La Timone, Assistance Publique des Hôpitaux de Marseille, F-13000 Marseille, France;
| | - Olga O. Glazunova
- Centre de Référence des Anomalies du Développement et Syndromes Malformatifs (UF 2970), CHU Timone, Assistance Publique des Hôpitaux de Marseille, F-13000 Marseille, France;
| | - Lena Damaj
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Rennes Hospital, F-35000 Rennes, France;
| | - Valérie Layet
- Consultations de Génétique, Groupe Hospitalier du Havre, F-76600 Le Havre, France;
| | - Chloé Quelin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, F-35000 Rennes, France; (C.Q.); (M.F.)
| | | | - Frédérique Audic
- Service de Neurologie Pédiatrique, CHU Timone Enfants, F-13000 Marseille, France;
| | - Hélène Dollfus
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France;
- Medical Genetics Laboratory, INSERM U1112, Institute of Medical Genetics of Alsace, Strasbourg Medical School, University of Strasbourg, F-67000 Strasbourg, France
| | | | - James Lespinasse
- Service de Génétique Clinique, CH de Chambéry, F-73000 Chambéry, France;
| | - Sophie Julia
- Service de Génétique Médicale, CHU de Toulouse, Hôpital Purpan, F-31000 Toulouse, France;
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology, Metabolism and Nutrition Department, Inserm 1190, Lille University Hospital EGID, F-59000 Lille, France;
| | - Magali Drouard
- Dermatology Department, CHU Lille, University of Lille, F-59000 Lille, France;
| | - Marilyn Lackmy
- Unité de Génétique Clinique, Centre de Compétences Maladies Rares Anomalies du Développement, CHRU de Pointe à Pitre, F-97110 Guadeloupe, France;
| | - Bruno Leheup
- Service de Génétique Médicale, Hôpitaux de Brabois, CHRU de Nancy, F-54500 Vandoeuvre-lès-Nancy, France;
| | - Yves Alembik
- Department of Medical Genetics, Strasbourg-Hautepierre Hospital, F-67000 Strasbourg, France; (Y.A.); (A.L.)
| | - Alexia Lemaire
- Department of Medical Genetics, Strasbourg-Hautepierre Hospital, F-67000 Strasbourg, France; (Y.A.); (A.L.)
| | - Patrick Nitschké
- Bioinformatics Platform, Imagine Institute, INSERM UMR 1163, Université de Paris, F-75015 Paris, France;
| | - Florence Petit
- CHU Lille, Clinique de Génétique, Centre de Référence Anomalies du Développement, F-59000 Lille, France; (F.P.); (A.D.C.)
| | - Anne Dieux Coeslier
- CHU Lille, Clinique de Génétique, Centre de Référence Anomalies du Développement, F-59000 Lille, France; (F.P.); (A.D.C.)
| | - Eugénie Mutez
- Lille University, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France;
| | - Alain Taieb
- Department of Dermatology and Pediatric Dermatology, Bordeaux University Hospital, F-33000 Bordeaux, France;
| | - Mélanie Fradin
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Hôpital Sud, F-35000 Rennes, France; (C.Q.); (M.F.)
| | - Yline Capri
- Département de Génétique, APHP Nord, Hôpital Robert Debré, F-75019 Paris, France; (Y.C.); (H.N.); (L.R.)
| | - Hala Nasser
- Département de Génétique, APHP Nord, Hôpital Robert Debré, F-75019 Paris, France; (Y.C.); (H.N.); (L.R.)
| | - Lyse Ruaud
- Département de Génétique, APHP Nord, Hôpital Robert Debré, F-75019 Paris, France; (Y.C.); (H.N.); (L.R.)
- UMR 1141, NEURODIDEROT, INSERM, Université de Paris, F-75019 Paris, France
| | - Benjamin Dauriat
- Department of Cytogenetics and Clinical Genetics, Limoges University Hospital, F-87000 Limoges, France;
| | - Sylvie Bourthoumieu
- Service de Cytogénétique et Génétique Médicale, CHU Limoges, F-87000 Limoges, France;
| | - David Geneviève
- Department of Genetics, Arnaud de Villeneuve University Hospital, F-34000 Montpellier, France;
| | - Séverine Audebert-Bellanger
- Département de Génétique Médicale et Biologie de la Reproduction, CHU Brest, Hôpital Morvan, F-29200 Brest, France;
| | - Mathilde Nizon
- Genetic Medical Department, CHU Nantes, F-44000 Nantes, France;
| | - Radka Stoeva
- Service de Cytogénétique, Centre Hospitalier Universitaire du Mans, F-72000 Le Mans, France;
| | - Geoffroy Hickman
- Department of Dermatology, Reference Center for Rare Skin Diseases MAGEC, Saint Louis Hospital AP-HP, F-75010 Paris, France;
| | - Gaël Nicolas
- Department of Genetics, FHU G4 Génomique, Normandie University, UNIROUEN, CHU Rouen, Inserm U1245, F-76000 Rouen, France;
| | - Juliette Mazereeuw-Hautier
- Département de Dermatologie, Centre de Référence des Maladies Rares de la Peau, CHU de Toulouse, F-31000 Toulouse, France;
| | - Arnaud Jannic
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, F-94000 Créteil, France; (A.J.); (S.F.); (P.W.)
| | - Salah Ferkal
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, F-94000 Créteil, France; (A.J.); (S.F.); (P.W.)
- INSERM, Centre d’Investigation Clinique 1430, F-94000 Créteil, France
| | - Béatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| | | | - Pierre Wolkenstein
- Département de Dermatologie, AP-HP and UPEC, Hôpital Henri-Mondor, F-94000 Créteil, France; (A.J.); (S.F.); (P.W.)
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, F-75014 Paris, France; (L.P.); (D.V.); (A.B.-S.); (A.C.); (T.M.); (C.B.); (B.P.); (M.V.)
- Inserm U1016—CNRS UMR8104, Institut Cochin, Université de Paris, CARPEM, F-75014 Paris, France;
| |
Collapse
|
17
|
Russo C, Russo C, Cascone D, Mazio F, Santoro C, Covelli EM, Cinalli G. Non-Oncological Neuroradiological Manifestations in NF1 and Their Clinical Implications. Cancers (Basel) 2021; 13:cancers13081831. [PMID: 33921292 PMCID: PMC8070534 DOI: 10.3390/cancers13081831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Central nervous system involvement (CNS) is a common finding in Neurofibromatosis type 1 (NF1). Beside tumor-related manifestations, NF1 is also characterized by a wide spectrum of CNS alterations with variable impacts on functioning and life quality. Here, we propose an overview of non-oncological neuroradiological findings in NF1, with an insight on pathophysiological and embryological clues for a better understanding of the development of these specific alterations. Abstract Neurofibromatosis type 1 (NF1), the most frequent phakomatosis and one of the most common inherited tumor predisposition syndromes, is characterized by several manifestations that pervasively involve central and peripheral nervous system structures. The disorder is due to mutations in the NF1 gene, which encodes for the ubiquitous tumor suppressor protein neurofibromin; neurofibromin is highly expressed in neural crest derived tissues, where it plays a crucial role in regulating cell proliferation, differentiation, and structural organization. This review article aims to provide an overview on NF1 non-neoplastic manifestations of neuroradiological interest, involving both the central nervous system and spine. We also briefly review the most recent MRI functional findings in NF1.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-333-7050711
| | - Carmela Russo
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Daniele Cascone
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Federica Mazio
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Claudia Santoro
- Neurofibromatosis Referral Center, Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental and Physical Health, and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Eugenio Maria Covelli
- Pediatric Neuroradiology Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (C.R.); (D.C.); (F.M.); (E.M.C.)
| | - Giuseppe Cinalli
- Pediatric Neurosurgery Unit, Department of Pediatric Neurosciences, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy;
| |
Collapse
|
18
|
Galvin R, Watson AL, Largaespada DA, Ratner N, Osum S, Moertel CL. Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Curr Oncol Rep 2021; 23:45. [PMID: 33721151 DOI: 10.1007/s11912-021-01032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions. RECENT FINDINGS MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models. Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.
Collapse
Affiliation(s)
- Robert Galvin
- Divisions of Pediatric Hematology & Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN, USA
| | | | - David A Largaespada
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nancy Ratner
- Cincinnati Children's Hospital Division of Exp. Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sara Osum
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L Moertel
- Division of Pediatric Hematology & Oncology, University of Minnesota, Minneapolis, MN, USA.
- Pediatric Hematology MMC 484 Mayo, 8484B (Campus Delivery Code), 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Jean-Quartier C, Jeanquartier F, Ridvan A, Kargl M, Mirza T, Stangl T, Markaĉ R, Jurada M, Holzinger A. Mutation-based clustering and classification analysis reveals distinctive age groups and age-related biomarkers for glioma. BMC Med Inform Decis Mak 2021; 21:77. [PMID: 33639927 PMCID: PMC7913451 DOI: 10.1186/s12911-021-01420-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Malignant brain tumor diseases exhibit differences within molecular features depending on the patient's age. METHODS In this work, we use gene mutation data from public resources to explore age specifics about glioma. We use both an explainable clustering as well as classification approach to find and interpret age-based differences in brain tumor diseases. We estimate age clusters and correlate age specific biomarkers. RESULTS Age group classification shows known age specifics but also points out several genes which, so far, have not been associated with glioma classification. CONCLUSIONS We highlight mutated genes to be characteristic for certain age groups and suggest novel age-based biomarkers and targets.
Collapse
Affiliation(s)
- Claire Jean-Quartier
- Human-Centered AI Lab (Holzinger Group), Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria
| | - Fleur Jeanquartier
- Human-Centered AI Lab (Holzinger Group), Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Aydin Ridvan
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Matthias Kargl
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Tica Mirza
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Tobias Stangl
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Robi Markaĉ
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Mauro Jurada
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Andreas Holzinger
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| |
Collapse
|