1
|
Tang J, Fan X, Milne RI, Yang H, Tao W, Zhang X, Guo M, Li J, Mao K. Across two phylogeographic breaks: Quaternary evolutionary history of a mountain aspen ( Populus rotundifolia) in the Hengduan Mountains. PLANT DIVERSITY 2024; 46:321-332. [PMID: 38798733 PMCID: PMC11119543 DOI: 10.1016/j.pld.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Biogeographical barriers to gene flow are central to plant phylogeography. In East Asia, plant distribution is greatly influenced by two phylogeographic breaks, the Mekong-Salween Divide and Tanaka-Kaiyong Line, however, few studies have investigated how these barriers affect the genetic diversity of species that are distributed across both. Here we used 14 microsatellite loci and four chloroplast DNA fragments to examine genetic diversity and distribution patterns of 49 populations of Populus rotundifolia, a species that spans both the Mekong-Salween Divide and the Tanaka-Kaiyong Line in southwestern China. Demographic and migration hypotheses were tested using coalescent-based approaches. Limited historical gene flow was observed between the western and eastern groups of P. rotundifolia, but substantial flow occurred across both the Mekong-Salween Divide and Tanaka-Kaiyong Line, manifesting in clear admixture and high genetic diversity in the central group. Wind-borne pollen and seeds may have facilitated the dispersal of P. rotundifolia following prevalent northwest winds in the spring. We also found that the Hengduan Mountains, where multiple genetic barriers were detected, acted on the whole as a barrier between the western and eastern groups of P. rotundifolia. Ecological niche modeling suggested that P. rotundifolia has undergone range expansion since the last glacial maximum, and demographic reconstruction indicated an earlier population expansion around 600 Ka. The phylogeographic pattern of P. rotundifolia reflects the interplay of biological traits, wind patterns, barriers, niche differentiation, and Quaternary climate history. This study emphasizes the need for multiple lines of evidence in understanding the Quaternary evolution of plants in topographically complex areas.
Collapse
Affiliation(s)
- Jieshi Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiaoyan Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wenjing Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinran Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Mengyun Guo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, PR China
- School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| |
Collapse
|
2
|
Zhu H, Tan Y. The Origin of Evergreen Broad-Leaved Forests in East Asia from the Evidence of Floristic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:1106. [PMID: 38674515 PMCID: PMC11054231 DOI: 10.3390/plants13081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Arguments about the origin and evolution of the evergreen broad-leaved forests in East Asia exist generally, and are even contradictory in some cases. The origin and evolution of the flora of East Asia, especially in the evolutionary process, the formation time of the Asian monsoon, the implications of phylogenetic and biogeographic studies on some important taxa, and the implications of palaeobotanical evidence are debatable. Most research from different disciplines suggests that the monsoon in the Miocene was key to the diversification of East Asian flora and its evergreen broad-leaved forests. The common view is that the evergreen broad-leaved forests of East Asia are closely related to the monsoon's intensity and developments, which were caused by the uplift of Himalaya-Tibet during or after the mid-Miocene. Analysis of the floristic elements show that the present subtropical evergreen broad-leaved forests in East Asia could have an early or ancient tropical origin and a tropical Asian affinity, but that their species are dominated by endemic Chinese or East Asian ones, many of which have tropical Asian affinity or are tropical sister species. The time of Himalayan uplift and the intensity of the monsoon climate are believed to be key to the formation of the evergreen broad-leaved forests in East Asia. Combined with existing paleobotanical findings, the uplift of the Himalayas and the formation of the monsoon climate, as well as floristic elements of the subtropical evergreen broad-leaved forests, we believe that they evolved from an Asian tropical rainforest after the mid-Miocene in the southeastern region of East Asia, while the ancient subtropical evergreen broad-leaved forests in the southwestern region continuously evolved into the present subtropical ones.
Collapse
Affiliation(s)
- Hua Zhu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Mengla 666303, China;
| | | |
Collapse
|
3
|
Gao K, He Z, Xiong J, Chen Q, Lai B, Liu F, Chen P, Chen M, Luo W, Huang J, Ding W, Wang H, Pu Y, Zheng L, Jiao Y, Zhang M, Tang Z, Yue Q, Yang D, Yan T. Population structure and adaptability analysis of Schizothorax o'connori based on whole-genome resequencing. BMC Genomics 2024; 25:145. [PMID: 38321406 PMCID: PMC10845765 DOI: 10.1186/s12864-024-09975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.
Collapse
Affiliation(s)
- Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fei Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenjie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junjie Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haochen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingsong Yue
- Huadian Tibet Hydropower Development Co.,Ltd, Dagu Hydropower Station, Sangri, 856200, Shannan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Sun N, Ma XY, Shi GH, Yang XH, Li W, Feng CG, Mi D, Li GG, Lu JQ. Chromosome-level genome provides insight into the evolution and conservation of the threatened goral (Naemorhedus goral). BMC Genomics 2024; 25:92. [PMID: 38254015 PMCID: PMC10804785 DOI: 10.1186/s12864-024-09987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Gorals Naemorhedus resemble both goats and antelopes, which prompts much debate about the intragenus species delimitation and phylogenetic status of the genus Naemorhedus within the subfamily Caprinae. Their evolution is believed to be linked to the uplift of the Qinghai-Tibet Plateau (QTP). To better understand its phylogenetics, the genetic information is worth being resolved. RESULTS Based on a sample from the eastern margin of QTP, we constructed the first reference genome for Himalayan goral Naemorhedus goral, using PacBio long-read sequencing and Hi-C technology. The 2.59 Gb assembled genome had a contig N50 of 3.70 Mb and scaffold N50 of 106.66 Mb, which anchored onto 28 pseudo chromosomes. A total of 20,145 protein-coding genes were predicted in the assembled genome, of which 99.93% were functionally annotated. Phylogenetically, the goral was closely related to muskox on the mitochondrial genome level and nested into the takin-muskox clade on the genome tree, rather than other so-called goat-antelopes. The cladogenetic event among muskox, takin and goral occurred sequentially during the late Miocene (~ 11 - 5 Mya), when the QTP experienced a third dramatic uplift with consequent profound changes in climate and environment. Several chromosome fusions and translocations were observed between goral and takin/muskox. The expanded gene families in the goral genome were mainly related to the metabolism of drugs and diseases, so as the positive selected genes. The Ne of goral continued to decrease since ~ 1 Mya during the Pleistocene with active glaciations. CONCLUSION The high-quality goral genome provides insights into the evolution and valuable information for the conservation of this threatened group.
Collapse
Affiliation(s)
- Nan Sun
- School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Xiao-Ying Ma
- College of Life Sciences, Academy of Plateau Science and Sustainability, Qinghai Normal University, 810008, Xining, Qinghai, China
| | - Guang-Hong Shi
- Qinghai Makehe Forestry Bureau, Golog Tibetan Autonomous Prefecture 814300, Qinghai, China
| | - Xiao-Hong Yang
- Xi'an Haorui Genomics Technology Co., LTD, 710116, Xi'an, Shaanxi, China
| | - Wei Li
- Xi'an Haorui Genomics Technology Co., LTD, 710116, Xi'an, Shaanxi, China
| | - Chen-Guang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, 710129, Xi'an, Shaanxi, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., LTD, 710116, Xi'an, Shaanxi, China.
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China.
| | - Guo-Gang Li
- College of Life Sciences, Academy of Plateau Science and Sustainability, Qinghai Normal University, 810008, Xining, Qinghai, China.
| | - Ji-Qi Lu
- School of Life Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Liu L, Galbrun E, Tang H, Kaakinen A, Zhang Z, Zhang Z, Žliobaitė I. The emergence of modern zoogeographic regions in Asia examined through climate-dental trait association patterns. Nat Commun 2023; 14:8194. [PMID: 38081824 PMCID: PMC10713550 DOI: 10.1038/s41467-023-43807-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The complex and contrasted distribution of terrestrial biota in Asia has been linked to active tectonics and dramatic climatic changes during the Neogene. However, the timings of the emergence of these distributional patterns and the underlying climatic and tectonic mechanisms remain disputed. Here, we apply a computational data analysis technique, called redescription mining, to track these spatiotemporal phenomena by studying the associations between the prevailing herbivore dental traits of mammalian communities and climatic conditions during the Neogene. Our results indicate that the modern latitudinal zoogeographic division emerged after the Middle Miocene climatic transition, and that the modern monsoonal zoogeographic pattern emerged during the late Late Miocene. Furthermore, the presence of a montane forest biodiversity hotspot in the Hengduan Mountains alongside Alpine fauna on the Tibetan Plateau suggests that the modern distribution patterns may have already existed since the Pliocene.
Collapse
Affiliation(s)
- Liping Liu
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland.
- Department of Palaeobiology, The Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden.
| | - Esther Galbrun
- School of Computing, University of Eastern Finland, Technopolis, Microkatu 1, Kuopio, FI-70210, Finland.
| | - Hui Tang
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland
- Climate System Research Unit, Finnish Meteorological Institute, P.O. Box 503, Helsinki, FI-00101, Finland
- Department of Geosciences, University of Oslo, P.O. Box 1022, Oslo, NO-0315, Norway
| | - Anu Kaakinen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland
| | - Zhongshi Zhang
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, 388 Lumo Road, 430074, Wuhan, China
| | - Zijian Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19, Beitucheng Western Road, Chaoyang District, 100029, Beijing, China
| | - Indrė Žliobaitė
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland
- Department of Computer Science, University of Helsinki, P.O. Box 68, University of Helsinki, FI-00014, Finland
| |
Collapse
|
6
|
Liu Y, Lai YJ, Ye JF, Hu HH, Peng DX, Lu LM, Sun H, Chen ZD. The Sino-Himalayan flora evolved from lowland biomes dominated by tropical floristic elements. BMC Biol 2023; 21:239. [PMID: 37904140 PMCID: PMC10617089 DOI: 10.1186/s12915-023-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The Sino-Himalayan flora harbors highly diverse high-elevation biotas, but our understanding of its evolutionary history in temporal and spatial dimensions is limited. In this study, we integrated a dated phylogenetic tree with comprehensive species distribution data to investigate changes over time and space in floristic elements, including the tropical, Tethys, northern temperate, and East Asian floristic elements, across the entire Sino-Himalaya and its three floristic regions: the Yunnan Plateau, Hengduan Mountains, and East Himalaya regions. RESULTS Our results revealed that the Sino-Himalayan flora developed from lowland biomes and was predominantly characterized by tropical floristic elements before the collision between the Indian subcontinent and Eurasia during the Early Cenozoic. Subsequently, from the Late Eocene onwards, the uplifts of the Himalaya and Hengduan Mountains transformed the Sino-Himalayan region into a wet and cold plateau, on which harsh and diverse ecological conditions forced the rapid evolution of local angiosperms, giving birth to characteristic taxa adapted to the high altitudes and cold habitat. The percentage of temperate floristic elements increased and exceeded that of tropical floristic elements by the Late Miocene. CONCLUSIONS The Sino-Himalayan flora underwent four significant formation periods and experienced a considerable increase in endemic genera and species in the Miocene, which remain crucial to the present-day patterns of plant diversity. Our findings support the view that the Sino-Himalayan flora is relatively young but has ancient origins. The three major shifts in the divergence of genera and species during the four formation periods were primarily influenced by the uplifts of the Himalaya and Hengduan Mountains and the onset and intensification of the Asian monsoon system. Additionally, the temporal patterns of floristic elements differed among the three floristic regions of the Sino-Himalaya, indicating that the uplift of the Himalaya and surrounding areas was asynchronous. Compared to the Yunnan Plateau region, the East Himalaya and Hengduan Mountains experienced more recent and drastic uplifts, resulting in highly intricate topography with diverse habitats that promoted the rapid radiation of endemic genera and species in these regions.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Jun Lai
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jian-Fei Ye
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hai-Hua Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan-Xiao Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Li-Min Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hang Sun
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhi-Duan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
7
|
Schmidt J, Opgenoorth L, Mao K, Baniya CB, Hofmann S. Molecular phylogeny of mega-diverse Carabus attests late Miocene evolution of alpine environments in the Himalayan-Tibetan Orogen. Sci Rep 2023; 13:13272. [PMID: 37582802 PMCID: PMC10427656 DOI: 10.1038/s41598-023-38999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
The timing, sequence, and scale of uplift of the Himalayan-Tibetan Orogen (HTO) are controversially debated. Many geoscientific studies assume paleoelevations close to present-day elevations and the existence of alpine environments across the HTO already in the late Paleogene, contradicting fossil data. Using molecular genetic data of ground beetles, we aim to reconstruct the paleoenvironmental history of the HTO, focusing on its southern margin (Himalayas, South Tibet). Based on a comprehensive sampling of extratropical Carabus, and ~ 10,000 bp of mitochondrial and nuclear DNA we applied Bayesian and Maximum likelihood methods to infer the phylogenetic relationships. We show that Carabus arrived in the HTO at the Oligocene-Miocene boundary. During the early Miocene, five lineages diversified in different parts of the HTO, initially in its southern center and on its eastern margin. Evolution of alpine taxa occurred during the late Miocene. There were apparently no habitats for Carabus before the late Oligocene. Until the Late Oligocene elevations must have been low throughout the HTO. Temperate forests emerged in South Tibet in the late Oligocene at the earliest. Alpine environments developed in the HTO from the late Miocene and, in large scale, during the Pliocene-Quaternary. Findings are consistent with fossil records but contrast with uplift models recovered from stable isotope paleoaltimetry.
Collapse
Affiliation(s)
- Joachim Schmidt
- General and Systematic Zoology, Institute of Biosciences, University of Rostock, 18055, Rostock, Germany.
| | - Lars Opgenoorth
- Plant Ecology and Geobotany, Faculty of Biology, Philipps-University Marburg, 35043, Marburg, Germany.
| | - Kangshan Mao
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chitra B Baniya
- Central Department of Botany, Tribhuvan University, 44600, Kirtipur, Nepal
| | - Sylvia Hofmann
- Department Conservation Biology, UFZ-Helmholtz-Centre for Environmental Research GmbH, 04318, Leipzig, Germany.
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, 53113, Bonn, Germany.
| |
Collapse
|
8
|
Wang D, Sun Y, Lei W, Zhu H, Wang J, Bi H, Feng S, Liu J, Ru D. Backcrossing to different parents produced two distinct hybrid species. Heredity (Edinb) 2023; 131:145-155. [PMID: 37264213 PMCID: PMC10382510 DOI: 10.1038/s41437-023-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Repeated homoploid hybrid speciation (HHS) events with the same parental species have rarely been reported. In this study, we used population transcriptome data to test paraphyly and HHS events in the conifer Picea brachytyla. Our analyses revealed non-sister relationships for two lineages of P. brachytyla, with the southern lineage being placed within the re-circumscribed P. likiangensis species complex (PLSC) and P. brachytyla sensu stricto (s.s.) consisted solely of the northern lineage, forming a distinct clade that is paratactic to both the PLSC and P. wilsonii. Our phylogenetic and coalescent analyses suggested that P. brachytyla s.s. arose from HHS between the ancestor of the PLSC before its diversification and P. wilsonii through an intermediate hybrid lineage at an early stage and backcrossing to the ancestral PLSC. Additionally, P. purpurea shares the same parents and an extinct lineage with P. brachytyla s.s. but backcrossing to the other parent, P. wilsonii at a later stage. We reveal the first case that backcrossing to different parents of the same extinct hybrid lineage produced two different hybrid species. Our results highlight the existence of more reticulate evolution during species diversification in the spruce genus and more complex homoploid hybrid events than previously identified.
Collapse
Affiliation(s)
- Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Weixiao Lei
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhu
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ji Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Hao Bi
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai, China
| | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Xu T, Wang R, La Q, Yonezawa T, Huang X, Sun K, Song Z, Wang Y, Bartish IV, Zhang W, Cheng S. Climate heterogeneity shapes phylogeographic pattern of Hippophae gyantsensis (Elaeagnaceae) in the east Himalaya-Hengduan Mountains. Ecol Evol 2023; 13:e10182. [PMID: 37304372 PMCID: PMC10251425 DOI: 10.1002/ece3.10182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The interaction of recent orographic uplift and climate heterogeneity acted as a key role in the East Himalaya-Hengduan Mountains (EHHM) has been reported in many studies. However, how exactly the interaction promotes clade diversification remains poorly understood. In this study, we both used the chloroplast trnT-trnF region and 11 nuclear microsatellite loci to investigate the phylogeographic structure and population dynamics of Hippophae gyantsensis and estimate what role geological barriers or ecological factors play in the spatial genetic structure. The results showed that this species had a strong east-west phylogeographic structure, with several mixed populations identified from microsatellite data in central location. The intraspecies divergence time was estimated to be about 3.59 Ma, corresponding well with the recent uplift of the Tibetan Plateau. Between the two lineages, there was significant climatic differentiation without geographic barriers. High consistency between lineage divergence, climatic heterogeneity, and Qingzang Movement demonstrated that climatic heterogeneity but not geographic isolation drives the divergence of H. gyantsensis, and the recent regional uplift of the QTP, as the Himalayas, creates heterogeneous climates by affecting the flow of the Indian monsoon. The east group of H. gyantsensis experienced population expansion c. 0.12 Ma, closely associated with the last interglacial interval. Subsequently, a genetic admixture event between east and west groups happened at 26.90 ka, a period corresponding to the warm inter-glaciation again. These findings highlight the importance of the Quaternary climatic fluctuations in the recent evolutionary history of H. gyantsensis. Our study will improve the understanding of the history and mechanisms of biodiversity accumulation in the EHHM region.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Ruixue Wang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Qiong La
- Department of BiologyTibet UniversityLhasaChina
| | - Takahiro Yonezawa
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Xinyi Huang
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Kun Sun
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Zhiping Song
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Yuguo Wang
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Igor V. Bartish
- Institute of Botany of the Czech Academy of SciencesPruhoniceCzech Republic
| | - Wenju Zhang
- Institute of Biodiversity Science, School of Life SciencesFudan UniversityShanghaiChina
| | - Shanmei Cheng
- Laboratory of Subtropical BiodiversityJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
10
|
Jin CS, Xu D, Li M, Hu P, Jiang Z, Liu J, Miao Y, Wu F, Liang W, Zhang Q, Su B, Liu Q, Zhang R, Sun J. Tectonic and orbital forcing of the South Asian monsoon in central Tibet during the late Oligocene. Proc Natl Acad Sci U S A 2023; 120:e2214558120. [PMID: 37011203 PMCID: PMC10104490 DOI: 10.1073/pnas.2214558120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/28/2022] [Indexed: 04/05/2023] Open
Abstract
The modern pattern of the Asian monsoon is thought to have formed around the Oligocene/Miocene transition and is generally attributed to Himalaya-Tibetan Plateau (H-TP) uplift. However, the timing of the ancient Asian monsoon over the TP and its response to astronomical forcing and TP uplift remains poorly known because of the paucity of well-dated high-resolution geological records from the TP interior. Here, we present a precession-scale cyclostratigraphic sedimentary section of 27.32 to 23.24 million years ago (Ma) during the late Oligocene epoch from the Nima Basin to show that the South Asian monsoon (SAM) had already advanced to the central TP (32°N) at least by 27.3 Ma, which is indicated by cyclic arid-humid fluctuations based on environmental magnetism proxies. A shift of lithology and astronomically orbital periods and amplified amplitude of proxy measurements as well as a hydroclimate transition around 25.8 Ma suggest that the SAM intensified at ~25.8 Ma and that the TP reached a paleoelevation threshold for enhancing the coupling between the uplifted plateau and the SAM. Orbital short eccentricity-paced precipitation variability is argued to be mainly driven by orbital eccentricity-modulated low-latitude summer insolation rather than glacial-interglacial Antarctic ice sheet fluctuations. The monsoon data from the TP interior provide key evidence to link the greatly enhanced tropical SAM at 25.8 Ma with TP uplift rather than global climate change and suggest that SAM's northward expansion to the boreal subtropics was dominated by a combination of tectonic and astronomical forcing at multiple timescales in the late Oligocene epoch.
Collapse
Affiliation(s)
- Chun-Sheng Jin
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| | - Deke Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| | - Mingsong Li
- School of Earth and Space Sciences,Peking University, Beijing 100871, China
| | - Pengxiang Hu
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | - Zhaoxia Jiang
- College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Jianxing Liu
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yunfa Miao
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuli Wu
- Key Laboratory of Continental Collision and Plateau uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wentian Liang
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
| | - Qiang Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Bai Su
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qingsong Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ran Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jimin Sun
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
11
|
Wei HH, Wu GL, Ding L, Fan LG, Li L, Meng QR. Revisiting the mechanisms of mid-Tertiary uplift of the NE Tibetan Plateau. Natl Sci Rev 2023; 10:nwad008. [PMID: 36960219 PMCID: PMC10029854 DOI: 10.1093/nsr/nwad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Contrasting views exist on timing and mechanisms of Tertiary crustal uplift in the NE Tibetan Plateau based on different approaches, with many models attributing surface uplift to crustal shortening. We carry out a comprehensive investigation of mid-Tertiary stratigraphy, sedimentology, and volcanism in the West Qinling, Hoh Xil and Qaidam basin, and the results challenge previous views. It was held that the discordance between Oligocene and Miocene strata is an angular unconformity in the West Qinling, but our field observations show that it is actually a disconformity, indicative of vertical crustal uplifting rather than crustal shortening at the Oligocene to Miocene transition. Widespread occurrence of synsedimentary normal faults in mid-Tertiary successions implicates supracrustal stretching. Miocene potassic-ultrapassic and mafic-ultramafic volcanics in the Hoh Xil and West Qinling suggest a crucial role of deep thermomechanical processes in generating crust- and mantle-sourced magmatism. Also noticeable are the continuity of mid-Tertiary successions and absence of volcanics in the Qaidam basin. Based on a holistic assessment of stratigraphic-sedimentary processes, volcanic petrogenesis, and spatial variations of lithospheric thicknesses, we speculate that small-sale mantle convection might have been operating beneath northeast Tibet in the mid-Tertiary. It is assumed that northward asthenospheric flow was impeded by thicker cratonic lithosphere of the Qaidam and Alxa blocks, thereby leading to edge convection. The edge-driven convection could bring about surface uplift, induce supracrustal stretching, and trigger vigorous volcanism in the Hoh Xil and West Qinling in the mid-Tertiary period. This mechanism satisfactorily explains many key geologic phenomena that are hardly reconciled by previous models.
Collapse
Affiliation(s)
| | - Guo-Li Wu
- Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
| | - Lin Ding
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Long-Gang Fan
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lin Li
- Department of Geosciences, University of Arizona, Tucson, AZ 85716, USA
| | - Qing-Ren Meng
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li X, Ruhsam M, Wang Y, Zhang HY, Fan XY, Zhang L, Wang J, Mao KS. Wind-dispersed seeds blur phylogeographic breaks: The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin. PLANT DIVERSITY 2023; 45:156-168. [PMID: 37069930 PMCID: PMC10105135 DOI: 10.1016/j.pld.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/19/2023]
Abstract
The strength of phylogeographic breaks can vary among species in the same area despite being subject to the same geological and climate history due to differences in biological traits. Several important phylogeographic breaks exist around the Sichuan Basin in Southwest China but few studies have focused on wind-dispersed plants. Here, we investigated the phylogeographic patterns and the evolutionary history of Populus lasiocarpa, a wind-pollinated and wind-dispersed tree species with a circum-Sichuan Basin distribution in southwest China. We sequenced and analyzed three plastid DNA fragments (ptDNA) and eight nuclear microsatellites (nSSRs) of 265 individuals of P. lasiocarpa from 21 populations spanning the entire distribution range. Distribution patterns based on nSSR data revealed that there are three genetic groups in P. lasiocarpa. This is consistent with the three phylogeographic breaks (Sichuan Basin, the Kaiyong Line and the 105°E line), where the Sichuan basin acts as the main barrier to gene flow between western and eastern groups. However, the distribution pattern based on ptDNA haplotypes poorly matched the phylogeographic breaks, and wind-dispersed seeds may be one of the main contributing factors. Species distribution modelling suggested a larger potential distribution in the last glacial maximum with a severe bottleneck during the last interglacial. A DIYABC model also suggested a population contraction and expansion for both western and eastern lineages. These results indicate that biological traits are likely to affect the evolutionary history of plants, and that nuclear molecular markers, which experience higher levels of gene flow, might be better indicators of phylogeographic breaks.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hong-Ying Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xiao-Yan Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Kang-Shan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
13
|
Wang R, Wu B, Jian J, Tang Y, Zhang T, Song Z, Zhang W, Qiong L. How to survive in the world's third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1051587. [PMID: 36589082 PMCID: PMC9797102 DOI: 10.3389/fpls.2022.1051587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Hippophae tibetana (Tibetan sea-buckthorn) is one of the highest distributed woody plants in the world (3,000-5,200 meters a.s.l.). It is characterized by adaptation to extreme environment and important economic values. Here, we combined PacBio Hifi platform and Hi-C technology to assemble a 1,452.75 Mb genome encoding 33,367 genes with a Contig N50 of 74.31 Mb, and inferred its sexual chromosome. Two Hippophae-specific whole-genome duplication events (18.7-21.2 million years ago, Ma; 28.6-32.4 Ma) and long terminal repeats retroelements (LTR-RTs) amplifications were detected. Comparing with related species at lower altitude, Ziziphus jujuba (<1, 700 meters a.s.l.), H. tibetana had some significantly rapid evolving genes involved in adaptation to high altitude habitats. However, comparing with Hippophae rhamnoides (<3, 700 meters a.s.l.), no rapid evolving genes were found except microtubule and microtubule-based process genes, H. tibetana has a larger genome, with extra 2, 503 genes (7.5%) and extra 680.46 Mb transposable elements (TEs) (46.84%). These results suggest that the changes in the copy number and regulatory pattern of genes play a more important role for H. tibetana adapting to more extreme and variable environments at higher altitude by more TEs and more genes increasing genome variability and expression plasticity. This suggestion was supported by two findings: nitrogen-fixing genes of H. tibetana having more copies, and intact TEs being significantly closer genes than fragmentary TEs. This study provided new insights into the evolution of alpine plants.
Collapse
Affiliation(s)
- Ruoqiu Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Yiwei Tang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ticao Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - La Qiong
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| |
Collapse
|
14
|
Miao Y, Fang X, Sun J, Xiao W, Yang Y, Wang X, Farnsworth A, Huang K, Ren Y, Wu F, Qiao Q, Zhang W, Meng Q, Yan X, Zheng Z, Song C, Utescher T. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau. Science 2022; 378:1074-1079. [DOI: 10.1126/science.abo2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The uplift of the Tibet Plateau (TP) during the Miocene is crucial to understanding the evolution of Asian monsoon regimes and alpine biodiversity. However, the northern Tibet Plateau (NTP) remains poorly investigated. We use pollen records of montane conifers (
Tsuga
,
Podocarpus
,
Abies
, and
Picea
) as a new paleoaltimetry to construct two parallel midrange paleoelevation sequences in the NTP at 1332 ± 189 m and 433 ± 189 m, respectively, during the Middle Miocene [~15 million years ago (Ma)]. Both midranges increased rapidly to 3685 ± 87 m in the Late Miocene (~11 Ma) in the east, and to 3589 ± 62 m at ~7 Ma in the west. Our estimated rises in the east and west parts of the NTP during 15 to 7 Ma, together with data from other TP regions, indicate that during the Late Miocene the entire plateau may have reached a high elevation close to that of today, with consequent impacts on atmospheric precipitation and alpine biodiversity.
Collapse
Affiliation(s)
- Yunfa Miao
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Fang
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jimin Sun
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenjiao Xiao
- National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yongheng Yang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuelian Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Chinese Academy of Sciences, Urumqi 830011, China
| | - Alex Farnsworth
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol BS8 1SS, UK
| | - Kangyou Huang
- Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China
| | - Yulong Ren
- Key Laboratory of Arid Climate Change and Disaster Reduction of CMA and of Gansu Province, Institute of Arid Meteorology, Lanzhou 730000, China
| | - Fuli Wu
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingqing Qiao
- National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Weilin Zhang
- State Key Laboratory of Tibetan Plateau Earth System Science, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingquan Meng
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Yan
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, China
| | - Zhuo Zheng
- Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai 519082, China
| | - Chunhui Song
- School of Earth Sciences and Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou 730000, China
| | - Torsten Utescher
- Senckenberg Research Institute, Frankfurt am Main, Steinmann Institute, Bonn University, 53115 Bonn, Germany
| |
Collapse
|
15
|
Zhou Z. The Rising of Paleontology in China: A Century-Long Road. BIOLOGY 2022; 11:1104. [PMID: 35892960 PMCID: PMC9332504 DOI: 10.3390/biology11081104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the history of paleontology in China from 1920 to 2020 is divided into three major stages, i.e., 1920-1949, 1949-1978, and 1979-2020. As one of the first scientific disciplines to have earned international fame in China, the development of Chinese paleontology benefitted from international collaborations and China's rich resources. Since 1978, China's socio-economic development and its open-door policy to the outside world have also played a key role in the growth of Chinese paleontology. In the 21st century, thanks to constant funding from the government and the rise of the younger generation of paleontologists, Chinese paleontology is expected to make even more contributions to the integration of paleontology with both biological and geological research projects by taking advantage of new technologies and China's rich paleontological resources.
Collapse
Affiliation(s)
- Zhonghe Zhou
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Dajie, Beijing 100044, China
| |
Collapse
|
16
|
Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet. Nat Commun 2022; 13:3787. [PMID: 35778378 PMCID: PMC9249787 DOI: 10.1038/s41467-022-31512-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Spinescence is an important functional trait possessed by many plant species for physical defence against mammalian herbivores. The development of spinescence must have been closely associated with both biotic and abiotic factors in the geological past, but knowledge of spinescence evolution suffers from a dearth of fossil records, with most studies focusing on spatial patterns and spinescence-herbivore interactions in modern ecosystems. Numerous well-preserved Eocene (~39 Ma) plant fossils exhibiting seven different spine morphologies discovered recently in the central Tibetan Plateau, combined with molecular phylogenetic character reconstruction, point not only to the presence of a diversity of spiny plants in Eocene central Tibet but a rapid diversification of spiny plants in Eurasia around that time. These spiny plants occupied an open woodland landscape, indicated by numerous megafossils and grass phytoliths found in the same deposits, as well as numerical climate and vegetation modelling. Our study shows that regional aridification and expansion of herbivorous mammals may have driven the diversification of functional spinescence in central Tibetan woodlands, ~24 million years earlier than similar transformations in Africa. Spines are an important physical defense for many plant species. Here, the authors describe seven different spine morphologies from the Eocene of central Tibet associated with regional aridification and expansion of herbivorous mammals.
Collapse
|
17
|
Tian F, Liu S, Zhou B, Tang Y, Zhang Y, Zhang C, Zhao K. Chromosome-level genome of Tibetan naked carp ( Gymnocypris przewalskii) provides insights into Tibetan highland adaptation. DNA Res 2022; 29:6647840. [PMID: 35861387 PMCID: PMC9326183 DOI: 10.1093/dnares/dsac025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Gymnocypris przewalskii, a cyprinid fish endemic to the Qinghai-Tibetan Plateau, has evolved unique morphological, physiological and genetic characteristics to adapt to the highland environment. Herein, we assembled a high-quality G. przewalskii tetraploid genome with a size of 2.03 Gb and scaffold N50 of 44.93 Mb, which was anchored onto 46 chromosomes. The comparative analysis suggested that gene families related to highland adaptation were significantly expanded in G. przewalskii. According to the G. przewalskii genome, we evaluated the phylogenetic relationship of 13 schizothoracine fishes, and inferred that the demographic history of G. przewalskii was strongly associated with geographic and eco-environmental alterations. We noticed that G. przewalskii experienced whole-genome duplication, and genes preserved post duplication were functionally associated with adaptation to high salinity and alkalinity. In conclusion, a chromosome-scale G. przewalskii genome provides an important genomic resource for teleost fish, and will particularly promote our understanding of the molecular evolution and speciation of fish in the highland environment.
Collapse
Affiliation(s)
- Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
| | - Bingzheng Zhou
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Yongtao Tang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- Henan Normal University , Xinxiang, China
| | - Yu Zhang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Cunfang Zhang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University , Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
| |
Collapse
|
18
|
Wu S, Wang Y, Wang Z, Shrestha N, Liu J. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. THE NEW PHYTOLOGIST 2022; 234:392-404. [PMID: 35020198 DOI: 10.1111/nph.17956] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The Qinghai-Tibet Plateau (QTP) sensu lato (sl), comprising the platform, the Himalaya and the Hengduan Mountains, is characterized by a large number of endemic plant species. This evolutionary cradle may have arisen from explosive species diversification because of geographic isolation. However, gene flow has been widely detected during the speciation processes of all groups examined, suggesting that natural selection may have also played an important role during species divergence in this region. In addition, natural hybrids have been recovered in almost all species-rich genera. This suggests that numerous species in this region are still 'on the speciation pathway to complete reproductive isolation (RI)'. Such hybrids could directly develop into new species through hybrid polyploidization and homoploid hybrid speciation (HHS). HHS may take place more easily than previously thought through alternate inheritance of alleles of parents at multiple RI loci. Therefore, isolation, selection and hybridization could together have promoted species diversification of numerous plant genera on the QTP sl. We emphasize the need for identification and functional analysis of alleles of major genes for speciation, and especially encourage investigations of parallel adaptive divergence causing RI across different lineages within similar but specific habitats in this region.
Collapse
Affiliation(s)
- Shengdan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yi Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zefu Wang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
19
|
Tseng ZJ, Wang X, Li Q, Xie G. Qurliqnoria (Mammalia: Bovidae) fossils from Qaidam Basin, Tibetan Plateau and deep-time endemism of the Tibetan antelope lineage. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The Tibetan antelope (Pantholops hodgsonii) is an endemic bovid of the Tibetan Plateau, which was, until recently, considered an endangered species. Researchers have long speculated on the evolutionary origin of Pantholops, suggesting a connection to the rare fossil bovid Qurliqnoria. However, the lack of adequate fossil samples has prevented the testing of this deep-time endemism hypothesis for eight decades. Here, we report new fossils of Qurliqnoria cheni from the northern Tibetan Plateau, substantially increasing the amount of morphological data that can be brought to bear on the question of Tibetan antelope evolution. Phylogenetic analysis supports a Pantholops–Qurliqnoria clade and suggests that this lineage has been endemic to the Plateau for 11 Myr. Recent morphological and molecular studies that support the outgroup position of Pantholops relative to caprins (goats and relatives) and the fossil record of stem bovids from Europe together suggest that the Qurliqnoria–Pantholops lineage is likely to have dispersed to the Tibetan Plateau 15–11 Mya. Furthermore, the harsh environmental conditions to which Pantholops has adapted are likely to extend back to the time of its evolutionary origin. These findings provide an important new context for conservation management and research into the near-threatened Tibetan antelope, as the longest-living endemic member of the Tibetan Plateau fauna.
Collapse
Affiliation(s)
- Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, California, USA
- Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, California, USA
| | - Xiaoming Wang
- Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, California, USA
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijng 100044, China
| | - Qiang Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijng 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangpu Xie
- Natural Science Department, Gansu Provincial Museum, No. 3 Xijingxi Road, Lanzhou 730050, Gansu, China
| |
Collapse
|
20
|
Li J, Cai J, Qin HH, Price M, Zhang Z, Yu Y, Xie DF, He XJ, Zhou SD, Gao XF. Phylogeny, Age, and Evolution of Tribe Lilieae (Liliaceae) Based on Whole Plastid Genomes. FRONTIERS IN PLANT SCIENCE 2022; 12:699226. [PMID: 35178055 PMCID: PMC8845482 DOI: 10.3389/fpls.2021.699226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Tribe Lilieae, encompassing Lilium, Notholirion, Cardiocrinum, and Fritillaria, includes economically important crops with a horticultural and medicinal value. It is considered to be a core lineage of Liliaceae, but phylogenetic relationships within it, and the timing of the origin of individual clades, remain incompletely resolved. To address these issues, we reconstructed the evolutionary history of the tribe. We sequenced 45 Liliaceae plastomes and combined them with publicly available data (for a total of 139 plastomes) to explore the systematics, origin, divergence, and evolution of Lilieae. Our taxon sampling covers all ten sections of Lilium, all Cardiocrinum species, three Notholirion species, and major phylogenetic clades of Fritillaria. Our phylogenetic analysis confirms the monophyly of major sections/subgenera of Lilium and Fritillaria with strong support. We dated the origin of Lilieae to the Eocene, with genera and species radiations inferred to have occurred in the Miocene. The reconstruction of the ancestral area implies that Lilieae may have originated from the Qinghai-Tibet Plateau (QTP): the Himalayas and Hengduan Mountains and uplifting of the QTP likely promoted divergence within the tribe. Ancestral-state reconstructions of the bulb component number (including bulblets and scales) show a strong correlation with the genus-level phylogenetic diversity in Lilieae. They also predict that the most recent common ancestor of Lilieae had bulbs with numerous bulblets. Based on these observations, we predicted that climatic oscillations associated with the QTP uplift played an important role in the evolution of the Lilieae bulb. Our findings provide a well-supported picture of evolutionary relationships and a useful framework for understanding the pathway of bulb evolution within Lilieae, contributing to a better understanding of the evolutionary history of lilies.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhen Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
21
|
Agarwal I, Bauer AM, Gamble T, Giri VB, Jablonski D, Khandekar A, Mohapatra PP, Masroor R, Mishra A, Ramakrishnan U. The evolutionary history of an accidental model organism, the leopard gecko Eublepharis macularius (Squamata: Eublepharidae). Mol Phylogenet Evol 2022; 168:107414. [PMID: 35032646 DOI: 10.1016/j.ympev.2022.107414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
The leopard gecko, Eublepharis macularius, is a widely used model organism in laboratory and experimental studies. The high phenotypic diversity in the pet trade, the fact that the provenance of different breeding lines is unknown, and that distinct Eublepharis species are known to hybridize, implies that the continued use of E. macularius as a model requires clarity on the origin of the lineages in the pet trade. We combine multi-locus sequence data and the first range-wide sampling of the genus Eublepharis to reconstruct the evolutionary history of the Eublepharidae and Eublepharis, with an updated time-tree for the Eublepharidae. Our sampling includes five of the six recognized species and additional nominal taxa of uncertain status comprising 43 samples from 34 localities plus 48 pet-trade samples. The Eublepharidae began diversifying in the Cretaceous. Eublepharis split from its sister genera in Africa in the Palaeocene-Eocene, and began diversifying in the Oligocene-Miocene, with late Miocene-Pliocene cladogenesis giving rise to extant species. The current species diversity within this group is moderately underestimated. Our species delimitation suggests 10 species with four potentially unnamed divergent lineages in Iran, India and Pakistan. All 30 individuals of E. macularius that we sampled from the pet trade, which include diverse morphotypes, come from a few shallow E. macularius clades, confirming that lab and pet trade strains are part of a single taxon. One of the wild-caught haplotypes of E. macularius, from near Karachi, Pakistan, is identical to (10) pet-trade samples and all other captive populations are closely related to wild-caught animals from central/southern Pakistan (0.1-0.5 % minimum pairwise uncorrected ND2 sequence divergence).
Collapse
Affiliation(s)
- Ishan Agarwal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India; Thackeray Wildlife Foundation, Vaibhav Chambers, Bandra, Mumbai, 400051, India; Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania, 19085, USA.
| | - Aaron M Bauer
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania, 19085, USA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53233, USA; Milwaukee Public Museum, 800 W. Wells St., Milwaukee, WI 53233, USA; Bell Museum of Natural History, University of Minnesota, 2088 Larpenteur Ave. W., St. Paul, MN, 55113, USA
| | - Varad B Giri
- NIDUS, A1903, Shubh Kalyan, Nanded City, Pune, 411041, India
| | - Daniel Jablonski
- Department of Zoology, Ilkovičova 6, Mlynská dolina, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Akshay Khandekar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India; Thackeray Wildlife Foundation, Vaibhav Chambers, Bandra, Mumbai, 400051, India
| | - Pratyush P Mohapatra
- Zoological Survey of India, Central Zone Regional Centre, Jabalpur, Madhya Pradesh, 482002, India
| | - Rafaqat Masroor
- Pakistan Museum of Natural History, Garden Avenue, Shakarparian, Islamabad-44000, Pakistan
| | - Anurag Mishra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| |
Collapse
|
22
|
Miao J, Farhat P, Wang W, Ruhsam M, Milne R, Yang H, Tso S, Li J, Xu J, Opgenoorth L, Miehe G, Mao K. Evolutionary history of two rare endemic conifer species from the eastern Qinghai-Tibet Plateau. ANNALS OF BOTANY 2021; 128:903-918. [PMID: 34472580 PMCID: PMC8577208 DOI: 10.1093/aob/mcab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Understanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai-Tibet Plateau (QTP). METHODS The genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species. KEY RESULTS Analyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter. CONCLUSIONS This study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions.
Collapse
Affiliation(s)
- Jibin Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Perla Farhat
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Wentao Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Heng Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Sonam Tso
- College of Science, Tibet University, Lhasa 850000, PR China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingjing Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lars Opgenoorth
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Georg Miehe
- Faculty of Biology and Geology, University of Marburg, 35032 Marburg, Germany
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, PR China
- College of Science, Tibet University, Lhasa 850000, PR China
| |
Collapse
|
23
|
Yao H, Zhang Y, Wang Z, Liu G, Ran Q, Zhang Z, Guo K, Yang A, Wang N, Wang P. Inter-glacial isolation caused divergence of cold-adapted species: the case of the snow partridge. Curr Zool 2021; 68:489-498. [PMID: 36090147 PMCID: PMC9450178 DOI: 10.1093/cz/zoab075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Deciphering the role of climatic oscillations in species divergence helps us understand the mechanisms that shape global biodiversity. The cold-adapted species may have expanded their distribution with the development of glaciers during glacial period. With the retreat of glaciers, these species were discontinuously distributed in the high-altitude mountains and isolated by geographical barriers. However, the study that focuses on the speciation process of cold-adapted species is scant. To fill this gap, we combined population genetic data and ecological niche models (ENMs) to explore divergence process of snow partridge (Lerwa lerwa). Lerwa lerwa is a cold-adapted bird that is distributed from 4,000 to 5,500 m. We found 2 genetic populations within L. lerwa, and they diverged from each other at about 0.40–0.44 million years ago (inter-glacial period after Zhongliangan glaciation). The ENMs suggested that L. lerwa expanded to the low elevations of the Himalayas and Hengduan mountains during glacial period, whereas it contracted to the high elevations, southern of Himalayas, and Hengduan mountains during inter-glacial periods. Effective population size trajectory also suggested that L. lerwa expanded its population size during the glacial period. Consistent with our expectation, the results support that inter-glacial isolation contributed to the divergence of cold-adapted L. lerwa on Qinghai-Tibetan Plateau. This study deepens our understanding of how climatic oscillations have driven divergence process of cold-adapted Phasianidae species distributed on mountains.
Collapse
Affiliation(s)
- Hongyan Yao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanan Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Zhen Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Hangzhou Xi’ao Environmental Science Technique Company Limited, Zhejiang 310011, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Ran
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Yancheng Wetland and World Natural Heritage Conservation and Management Center, Jiangsu 224000, China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Keji Guo
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha 410014, China
| | - Ailin Yang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Nan Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Pengcheng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Jackson SM, Li Q, Wan T, Li XY, Yu FH, Gao G, He LK, Helgen KM, Jiang XL. Across the great divide: revision of the genus Eupetaurus (Sciuridae: Pteromyini), the woolly flying squirrels of the Himalayan region, with the description of two new species. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The woolly flying squirrel, Eupetaurus cinereus, is among the rarest and least studied mammals in the world. For much of the 20th century it was thought to be extinct, until it was rediscovered in 1994 in northern Pakistan. This study outlines the first taxonomic and biogeographical review of the genus Eupetaurus, which until now has contained only a single species. Careful review of museum specimens and published records of Eupetaurus demonstrates that the genus occurs in three widely disjunct areas situated on the western (northern Pakistan and north-western India), north-central (south-central Tibet, northern Sikkim and western Bhutan) and south-eastern margins (north-western Yunnan, China) of the Himalayas. Taxonomic differentiation between these apparently allopatric populations of Eupetaurus was assessed with an integrative approach involving both morphological examinations and molecular phylogenetic analyses. Phylogenetic reconstruction was implemented using sequences of three mitochondrial [cytochrome b (Cytb), mitochondrially encoded 12S and 16S ribosomal RNA (12S, 16S)] and one nuclear [interphotoreceptor retinoid-binding protein (IRBP)] gene fragment. Morphological assessments involved qualitative examinations of features preserved on museum skins and skulls, supplemented with principal components analysis of craniometric data. Based on genetic and morphological comparisons, we suggest that the three widely disjunct populations of Eupetaurus are each sufficiently differentiated genetically and morphologically to be recognized as distinct species, two of which are described here as new.
Collapse
Affiliation(s)
- Stephen M Jackson
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, 1447 Forest Road,Orange, NSW 2800, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Quan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Tao Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| | - Xue-You Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fa-Hong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Ge Gao
- Baoshan Management Bureau of Gaoligongshan National Nature Reserve, Baoshan, Yunnan 678000, China
| | - Li-Kun He
- Gongshan Management Bureau of Gaoligongshan National Nature Reserve, Gongshan, Yunnan 673500, China
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
25
|
Wang X, Liang D, Jin W, Tang M, Liu S, Zhang P. Out of Tibet: Genomic Perspectives on the Evolutionary History of Extant Pikas. Mol Biol Evol 2021; 37:1577-1592. [PMID: 32027372 DOI: 10.1093/molbev/msaa026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pikas are widely distributed in the Northern Hemisphere and are highly adapted to cold and alpine environments. They are one of the most complex and problematic groups in mammalian systematics, and the origin and evolutionary history of extant pikas remain controversial. In this study, we sequenced the whole coding sequences of 105 pika samples (29 named species and 1 putative new species) and obtained DNA data for more than 10,000 genes. Our phylogenomic analyses recognized four subgenera of extant pikas: Alienauroa, Conothoa, Ochotona, and Pika. The interrelationships between the four subgenera were strongly resolved as (Conothoa, (Alienauroa, (Ochotona, Pika))), with the mountain group Conothoa being the sister group of all other pikas. Our divergence time and phylogeographic analyses indicated that the last common ancestor of extant pikas first occurred on in the middle Miocene, ∼14 Ma. The emergence of opportunities related to the climate, food supply, and spreading paths in concert promoted the dispersal of pikas from the Qinghai-Tibetan Plateau (QTP) to other parts of Eurasia and North America. We found that the genes that were positively selected in the early evolution of pikas were most concentrated in functional categories related to cold tolerance. These results suggest that the QTP may have served as a training ground for cold tolerance in early pikas, which gives pikas a great advantage when the climate continued to cool after the middle Miocene. Our study highlights the importance of the QTP as a center of origin for many cold-adapted animals.
Collapse
Affiliation(s)
- XiaoYun Wang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Jin
- Sichuan Academy of Forestry, Chengdu, China
| | | | | | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu FX, Shi G, Spicer TEV, Zhou Z. Why 'the uplift of the Tibetan Plateau' is a myth. Natl Sci Rev 2021; 8:nwaa091. [PMID: 34691550 PMCID: PMC8288424 DOI: 10.1093/nsr/nwaa091] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
The often-used phrase 'the uplift of the Tibetan Plateau' implies a flat-surfaced Tibet rose as a coherent entity, and that uplift was driven entirely by the collision and northward movement of India. Here, we argue that these are misconceptions derived in large part from simplistic geodynamic and climate modeling, as well as proxy misinterpretation. The growth of Tibet was a complex process involving mostly Mesozoic collisions of several Gondwanan terranes with Asia, thickening the crust and generating complex relief before the arrival of India. In this review, Earth system modeling, paleoaltimetry proxies and fossil finds contribute to a new synthetic view of the topographic evolution of Tibet. A notable feature overlooked in previous models of plateau formation was the persistence through much of the Cenozoic of a wide east-west orientated deep central valley, and the formation of a plateau occurred only in the late Neogene through compression and internal sedimentation.
Collapse
Affiliation(s)
- Robert A Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Tao Su
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | | | - Fei-Xiang Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Teresa E V Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Zhekun Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|
27
|
Lai YJ, Han Y, Schuiteman A, Chase MW, Xu SZ, Li JW, Wu JY, Yang BY, Jin XH. Diversification in Qinghai-Tibet Plateau: Orchidinae (Orchidaceae) clades exhibiting pre-adaptations play critical role. Mol Phylogenet Evol 2020; 157:107062. [PMID: 33387648 DOI: 10.1016/j.ympev.2020.107062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
We explore the origins of the extraordinary plant diversity in the Qinghai-Tibetan Plateau (QTP) using Orchidinae (Orchidaceae) as a model. Our results indicate that six major clades in Orchidinae exhibited substantial variation in the temporal and spatial sequence of diversification. Our time-calibrated phylogenetic model suggests that the species-richness of Orchidinae arose through a combination of in situ diversification, colonisation, and local recruitment. There are multiple origins of species-richness of Orchidinae in the QTP, and pre-adaptations in clades from North Temperate and alpine regions were crucial for in situ diversification. The geographic analysis identified 29 dispersals from Asia, Africa and Europe into the QTP and 15 dispersals out. Most endemic species of Orchidinae evolved within the past six million years.
Collapse
Affiliation(s)
- Yang-Jun Lai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China
| | - Yu Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China
| | - Andre Schuiteman
- Identification and Naming Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102, Australia
| | - Song-Zhi Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China
| | - Jian-Wu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan 666303, China.
| | - Jian-Yong Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), China
| | - Bo-Yun Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Xiao-Hua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China.
| |
Collapse
|
28
|
Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 2020; 369:578-581. [PMID: 32732426 DOI: 10.1126/science.abb4484] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Understanding how alpine biotas formed in response to historical environmental change may improve our ability to predict and mitigate the threats to alpine species posed by global warming. In the world's richest temperate alpine flora, that of the Tibet-Himalaya-Hengduan region, phylogenetic reconstructions of biome and geographic range evolution show that extant lineages emerged by the early Oligocene and diversified first in the Hengduan Mountains. By the early to middle Miocene, accelerated diversification and colonization of adjacent regions were likely driven jointly by mountain building and intensification of the Asian monsoon. The alpine flora of the Hengduan Mountains has continuously existed far longer than any other alpine flora on Earth and illustrates how modern biotas have been shaped by past geological and climatic events.
Collapse
Affiliation(s)
- Wen-Na Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Richard H Ree
- Negaunee Integrative Research Center, Field Museum, Chicago, IL 60605, USA.
| | - Robert A Spicer
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.,School of Environment, Earth, and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Yao-Wu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China. .,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
29
|
He J, Lin S, Li J, Yu J, Jiang H. Evolutionary history of zoogeographical regions surrounding the Tibetan Plateau. Commun Biol 2020; 3:415. [PMID: 32737418 PMCID: PMC7395132 DOI: 10.1038/s42003-020-01154-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022] Open
Abstract
The Tibetan Plateau (TP) and surrounding regions have one of the most complex biotas on Earth. However, the evolutionary history of these regions in deep time is poorly understood. Here, we quantify the temporal changes in beta dissimilarities among zoogeographical regions during the Cenozoic using 4,966 extant terrestrial vertebrates and 1,278 extinct mammal genera. We identify ten present-day zoogeographical regions and find that they underwent a striking change over time. Specifically, the fauna on the TP was close to the Oriental realm in deep time but became more similar to the Palearctic realms more recently. The present-day zoogeographical regions generally emerged during the Miocene/Pliocene boundary (ca. 5 Ma). These results indicate that geological events such as the Indo-Asian Collision, the TP uplift, and the aridification of the Asian interior underpinned the evolutionary history of the zoogeographical regions surrounding the TP over different time periods.
Collapse
Affiliation(s)
- Jiekun He
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Siliang Lin
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Jiatang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Jiehua Yu
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Haisheng Jiang
- Spatial Ecology Lab, School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
30
|
Rong G, Zhang Y, Ma Y, Chen S, Wang Y. The Clinical and Molecular Characterization of Gastric Cancer Patients in Qinghai-Tibetan Plateau. Front Oncol 2020; 10:1033. [PMID: 32695679 PMCID: PMC7339979 DOI: 10.3389/fonc.2020.01033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer was the fifth most common malignancy and the third deadliest cancer (738,000 deaths in 2018) in the world. The analysis of its molecular characteristics has been complicated by histological and intratumor heterogeneity. Furthermore, the previous studies indicate that the incidence of gastric cancer shows wide geographical variation. As the largest and highest region in China, Qinghai-Tibetan Plateau (QTP) is one of the important global biodiversity hotspots. Here, to better understand the mechanism of gastric cancer and offer the targeted therapeutic strategies specially designed for patients in QTP, we collect tumor and blood samples from 30 primary gastric adenocarcinoma cancer patients at Qinghai Provincial People's Hospital. We discuss the clinical and molecular characteristics for these patients that have been ascribed to the unique features in this place, including high altitude (the average height above sea level is around 4,000 m), multi-ethnic groups, and the specific ways of life or habits (such as eating too much beef and mutton, have alcohol and cigarette problem, et al.). By comparing with the western gastric cancer patients collected from TCGA data portal, some unique characteristics for patients in QTP are suggested. They include high incidence in younger people, most of tumor are located in body, most of SNP are detected in chromosome 7, and the very different molecular atlas in minor ethnic groups and Han Chinese. These characteristics will provide the unprecedented opportunity to increase the efficacy for diagnosis and prognosis of gastric cancer in QTP. Furthermore, to suggest the targeted therapeutics specially designed for these 30 patients, an adapted kernel-based learning model and a compilation of pharmacogenomics data of 462 patient-derived tumor cells (PDCs) that illustrate the diverse genetic and molecular backgrounds of cancer patients, were introduced. In conclusion, our study offers a big opportunity to better understand the mechanism of gastric cancer in QTP and guide the optimal patient-tailored therapy for them.
Collapse
Affiliation(s)
- Guanghong Rong
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, China
| | - Yongxia Zhang
- Department of Gynecology, Qinghai Provincial People's Hospital, Xining, China
| | - Yingcai Ma
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| | - Yongcui Wang
- Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
31
|
Yu H, Miao S, Xie G, Guo X, Chen Z, Favre A. Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Ding L, Liao J, Liu N. The uplift of the Qinghai-Tibet Plateau and glacial oscillations triggered the diversification of Tetraogallus (Galliformes, Phasianidae). Ecol Evol 2020; 10:1722-1736. [PMID: 32076546 PMCID: PMC7029067 DOI: 10.1002/ece3.6008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP) plays an important role in avian diversification. To reveal the relationship between the QTP uplift and avian diversification since the Late Cenozoic, here, we analyzed the phylogenetic relationship and biogeographical pattern of the genus Tetraogallus (Galliformes, Phasianidae) and the probable factors of speciation in the period of the QTP uplift inferred from concatenated data of four nuclear and five mitochondrial genes using the method of the Bayesian inference. Phylogenetic analysis indicated that T. himalayensis had a close relationship with T. altaicus and conflicted with the previous taxonomy of dark-bellied and white-bellied groups. The molecular clock showed that the speciation of Tetraogallus was profoundly affected by the uplift of the QTP and glacial oscillations. Biogeographic analysis suggested that the extant snowcocks originated from the QTP, and the QTP uplift and glacial oscillations triggered the diversification of Tetraogallus ancestor. Specifically, the uplift of the mountain provided a prerequisite for the colonization of snowcocks Tetraogallus as a result of the collision between the Indian and the Arab plates and the Eurasian plate, in which ecological isolation (the glacial and interglacial periods alternate) and geographical barrier had accelerated the Tetraogallus diversification process. Interestingly, we discovered hybrids between T. tibetanus and T. himalayensis for the first time and suggested that T. tibetanus and T. himalayensis hybridized after a second contact during the glacial period. Here, we proposed that the hybrid offspring was the ancestor of the T. altaicus. In conclusion, the uplift of QTP and glacial oscillations triggered the snowcocks colonization, and then, isolation and introgression hybridization promoted diversification.
Collapse
Affiliation(s)
- Li Ding
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jicheng Liao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Naifa Liu
- School of Life SciencesLanzhou UniversityLanzhouChina
| |
Collapse
|
33
|
Hofmann S, Baniya CB, Litvinchuk SN, Miehe G, Li J, Schmidt J. Phylogeny of spiny frogs Nanorana (Anura: Dicroglossidae) supports a Tibetan origin of a Himalayan species group. Ecol Evol 2019; 9:14498-14511. [PMID: 31938536 PMCID: PMC6953589 DOI: 10.1002/ece3.5909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
Recent advances in the understanding of the evolution of the Asian continent challenge the long-held belief of a faunal immigration into the Himalaya. Spiny frogs of the genus Nanorana are a characteristic faunal group of the Himalaya-Tibet orogen (HTO). We examine the phylogeny of these frogs to explore alternative biogeographic scenarios for their origin in the Greater Himalaya, namely, immigration, South Tibetan origin, strict vicariance. We sequenced 150 Nanorana samples from 62 localities for three mitochondrial (1,524 bp) and three nuclear markers (2,043 bp) and complemented the data with sequence data available from GenBank. We reconstructed a gene tree, phylogenetic networks, and ancestral areas. Based on the nuDNA, we also generated a time-calibrated species tree. The results revealed two major clades (Nanorana and Quasipaa), which originated in the Lower Miocene from eastern China and subsequently spread into the HTO (Nanorana). Five well-supported subclades are found within Nanorana: from the East, Central, and Northwest Himalaya, the Tibetan Plateau, and the southeastern Plateau margin. The latter subclade represents the most basal group (subgenus Chaparana), the Plateau group (Nanorana) represents the sister clade to all species of the Greater Himalaya (Paa). We found no evidence for an east-west range expansion of Paa along the Himalaya, nor clear support for a strict vicariance model. Diversification in each of the three Himalayan subclades has probably occurred in distinct areas. Specimens from the NW Himalaya are placed basally relative to the highly diverse Central Himalayan group, while the lineage from the Tibetan Plateau is placed within a more terminal clade. Our data indicate a Tibetan origin of Himalayan Nanorana and support a previous hypothesis, which implies that a significant part of the Himalayan biodiversity results from primary diversification of the species groups in South Tibet before this part of the HTO was uplifted to its recent heights.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Department of Conservation BiologyUFZ – Helmholtz Centre for Environmental ResearchLeipzigGermany
| | | | | | - Georg Miehe
- Faculty of GeographyPhilipps University MarburgMarburgGermany
| | - Jia‐Tang Li
- Department of HerpetologyChengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Joachim Schmidt
- Institute of Biosciences, General and Systematic ZoologyUniversity of RostockRostockGermany
| |
Collapse
|
34
|
Qian ZH, Li Y, Li MW, He YX, Li JX, Ye XF. Molecular Phylogeography Analysis Reveals Population Dynamics and Genetic Divergence of a Widespread Tree Pterocarya stenoptera in China. Front Genet 2019; 10:1089. [PMID: 31737056 PMCID: PMC6838215 DOI: 10.3389/fgene.2019.01089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/09/2019] [Indexed: 01/19/2023] Open
Abstract
The geological events, past climatic fluctuations, and river systems played key roles in the spatial distribution, population dynamics, and genetic differentiation of species. In this work, we selected Pterocarya stenoptera, a widespread tree species in China, to test the roles of these factors. Four noncoding spacers, eight microsatellite (simple sequence repeat) markers, and species distribution modeling were used to examine the phylogeographical pattern of P. stenoptera. Based on chloroplast DNA data, populations of P. stenoptera were clearly clustered into three groups. The divergence time of these groups fell into the stage of the Qinghai–Tibet Movement, 1.7–2.6 Ma. For simple sequence repeat data, only one western marginal population YNYB could be separated from other populations, whereas other populations were mixed together. Our results indicated that the environmental heterogeneity resulting from the Qinghai–Tibet movement might be response for this genetic divergence. The climatic fluctuations in the Pleistocene did not cause the substantial range shift of P. stenoptera, while the fluctuations affected its population size. Moreover, we also confirmed the river systems did not act as channels or barrier of dispersal for P. stenoptera.
Collapse
Affiliation(s)
- Zhi-Hao Qian
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Ming-Wan Li
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yan-Xia He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jia-Xin Li
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Fan Ye
- Innovation Platform of Molecular Biology, College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
35
|
Ding L, Liao J. Phylogeography of the Tibetan hamster Cricetulus kamensis in response to uplift and environmental change in the Qinghai-Tibet Plateau. Ecol Evol 2019; 9:7291-7306. [PMID: 31380051 PMCID: PMC6662396 DOI: 10.1002/ece3.5301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
AIM The evolutionary process of an organism provides valuable data toward an understanding of the Earth evolution history. To investigate the relationship between the uplift of the Qinghai-Tibet Plateau (QTP) and mammalian evolution since the late Cenozoic, the geographic distribution of genetic variations in the Tibetan hamster Cricetulus kamensis was investigated using phylogeographical methods. In particular, population divergence, demographic history, genetic variation, and the prediction of species distribution area were investigated. LOCATION The Qinghai-Tibet Plateau. METHODS A total of 53 specimens, representing 13 geographic populations, were collected from the QTP. The phylogeographical pattern and demographic history of C. kamensis were analyzed, and the probable factors in the QTP uplift and the Quaternary glacial periods were inferred from one nuclear and four mitochondrial genes. Furthermore, the species distribution model (SDM) was used to predict changes in potentially suitable habitats since the last Interglacial. RESULTS Phylogenetic analysis demonstrated that two major genetic differentiations of the C. kamensis population occurred during the Early Pleistocene that were influenced by the Qing-Zang tectonic movement from the Middle Pliocene to the Early Pleistocene. Genetic distance between two major clades indicated low genetic divergence. Demographic history analysis showed that the C. kamensis population was affected by the Quaternary glacial period. SDM analysis indicated that C. kamensis was endemic to the QTP and the suitable habitat was affected by climate change, especially during the Last Glacial Maximum (LGM). MAIN CONCLUSION Our results indicated that the QTP uplift led to the population divergence of C. kamensis, and vicariance well accounted for the geographic distribution of genetic variation in C. kamensis as a result of genetic divergence and lack of gene flow. The genetic distance shows that C. alticola may be a subspecies of C. kamensis. Demographic history analysis suggests that the QTP was affected by the last glacial period. SDM analysis supports that almost the entire QTP is covered by a huge ice sheet during the LGM.
Collapse
Affiliation(s)
- Li Ding
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jicheng Liao
- School of Life SciencesLanzhou UniversityLanzhouChina
| |
Collapse
|
36
|
Muellner-Riehl AN. Mountains as Evolutionary Arenas: Patterns, Emerging Approaches, Paradigm Shifts, and Their Implications for Plant Phylogeographic Research in the Tibeto-Himalayan Region. FRONTIERS IN PLANT SCIENCE 2019; 10:195. [PMID: 30936883 PMCID: PMC6431670 DOI: 10.3389/fpls.2019.00195] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/05/2019] [Indexed: 05/05/2023]
Abstract
Recently, the "mountain-geobiodiversity hypothesis" (MGH) was proposed as a key concept for explaining the high levels of biodiversity found in mountain systems of the Tibeto-Himalayan region (THR), which comprises the Qinghai-Tibetan Plateau, the Himalayas, and the biodiversity hotspot known as the "Mountains of Southwest China" (Hengduan Mountains region). In addition to the MGH, which covers the entire life span of a mountain system, a complementary concept, the so-called "flickering connectivity system" (FCS), was recently proposed for the period of the Quaternary. The FCS focuses on connectivity dynamics in alpine ecosystems caused by the drastic climatic changes during the past ca. 2.6 million years, emphasizing that range fragmentation and allopatric speciation are not the sole factors for accelerated evolution of species richness and endemism in mountains. I here provide a review of the current state of knowledge concerning geological uplift, Quaternary glaciation, and the main phylogeographic patterns ("contraction/recolonization," "platform refugia/local expansion," and "microrefugia") of seed plant species in the THR. In addition, I make specific suggestions as to which factors future avenues of phylogeographic research should take into account based on the fundamentals presented by the MGH and FCS, and associated complementary paradigm shifts.
Collapse
Affiliation(s)
- Alexandra N. Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Ru D, Sun Y, Wang D, Chen Y, Wang T, Hu Q, Abbott RJ, Liu J. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process. Mol Ecol 2018; 27:4875-4887. [PMID: 30357974 DOI: 10.1111/mec.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
An increasing number of species are thought to have originated by homoploid hybrid speciation (HHS), but in only a handful of cases are details of the process known. A previous study indicated that Picea purpurea, a conifer in the Qinghai-Tibet Plateau (QTP), originated through HHS from P. likiangensis and P. wilsonii. To investigate this origin in more detail, we analysed transcriptome data for 114 individuals collected from 34 populations of the three Picea species from their core distributions in the QTP. Phylogenetic, principal component and admixture analyses of nuclear SNPs showed the species to be delimited genetically and that P. purpurea was admixed with approximately 60% of its ancestry derived from P. wilsonii and 40% from P. likiangensis. Coalescent simulations revealed the best-fitting model of origin involved formation of an intermediate hybrid lineage between P. likiangensis and P. wilsonii approximately 6 million years ago (mya), which backcrossed to P. wilsonii to form P. purpurea approximately one mya. The intermediate hybrid lineage no longer exists and is referred to as a "ghost" lineage. Our study emphasizes the power of population genomic analysis combined with coalescent analysis for reconstructing the stages involved in the origin of a homoploid hybrid species over an extended period. In contrast to other studies, we show that these stages can in some instances span a relatively long period of evolutionary time.
Collapse
Affiliation(s)
- Dafu Ru
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yongshuai Sun
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, PR China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yang Chen
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Tianjing Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quanjun Hu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | | | - Jianquan Liu
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| |
Collapse
|
38
|
Wang P, Yao H, Gilbert KJ, Lu Q, Hao Y, Zhang Z, Wang N. Glaciation-based isolation contributed to speciation in a Palearctic alpine biodiversity hotspot: Evidence from endemic species. Mol Phylogenet Evol 2018; 129:315-324. [PMID: 30218774 DOI: 10.1016/j.ympev.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/31/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
Organisms are unevenly distributed on earth and the evolutionary drivers of that have puzzled ecologists and evolutionary biologists for over a century. Even though many studies have focused on the mechanisms of unevenly distributed fauna and flora, there remains much to learn about the evolutionary drivers behind biodiversity hotspots. In the Tibetan Plateau and Hengduan Mountains, a biodiversity hotspot in the Palearctic realm, alpine uplift cannot be the driver for recent speciation (<two million years ago), researchers broadly refer to climatic oscillations driven biodiversity, however, the specific individual roles of glaciation and inter-glaciation periods in promoting biodiversity is unclear. The current study focuses on investigating whether recent speciation between two close-related avian species (White eared pheasant, Crossoptilon crossoptilon and Tibetan eared pheasant, C. harmani) was driven by glaciation-based isolation or by dispersal during inter-glaciation. To answer this question, we combined Sanger sequencing and next-generation sequencing technology to estimate population structure, phylogeny, divergence time, demographic history and potential historical distributions for C. crossoptilon and C. harmani, which are endemic to China. We found that the divergence time between these two species and within C. crossoptilon are both during glaciation periods. During glaciation periods, both C. harmani and C. crossoptilon experienced isolated distributions and extreme bottlenecks. The results of this study suggest that glaciation-based isolation contributed to recent speciation in the Tibetan Plateau and Hengduan Mountains, and sheds light on our understanding of the evolutionary mechanisms that contributed to the formation of Palearctic alpine biodiversity hotspots and unevenly distributed species richness pattern.
Collapse
Affiliation(s)
- Pengcheng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Hongyan Yao
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, PR China
| | - Kadeem J Gilbert
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Qi Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yu Hao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Nan Wang
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
39
|
Su T, Spicer RA, Li SH, Xu H, Huang J, Sherlock S, Huang YJ, Li SF, Wang L, Jia LB, Deng WYD, Liu J, Deng CL, Zhang ST, Valdes PJ, Zhou ZK. Uplift, climate and biotic changes at the Eocene–Oligocene transition in south-eastern Tibet. Natl Sci Rev 2018; 6:495-504. [PMID: 34691898 PMCID: PMC8291530 DOI: 10.1093/nsr/nwy062] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/31/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022] Open
Abstract
The uplift history of south-eastern Tibet is crucial to understanding processes driving the tectonic evolution of the Tibetan Plateau and surrounding areas. Underpinning existing palaeoaltimetric studies has been regional mapping based in large part on biostratigraphy that assumes a Neogene modernization of the highly diverse, but threatened, Asian biota. Here, with new radiometric dating and newly collected plant-fossil archives, we quantify the surface height of part of the south-eastern margin of Tibet in the latest Eocene (∼34 Ma) to be ∼3 km and rising, possibly attaining its present elevation (3.9 km) in the early Oligocene. We also find that the Eocene–Oligocene transition in south-eastern Tibet witnessed leaf-size diminution and a floral composition change from sub-tropical/warm temperate to cool temperate, likely reflective of both uplift and secular climate change, and that, by the latest Eocene, floral modernization on Tibet had already taken place, implying modernization was deeply rooted in the Palaeogene.
Collapse
Affiliation(s)
- Tao Su
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Robert A Spicer
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- School of Environment, Earth and Ecosystem Sciences, The Open University, MK7 6AA, UK
| | - Shi-Hu Li
- Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - He Xu
- Institute of Geology and Paleontology, Linyi University, Linyi 276000, China
| | - Jian Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Sarah Sherlock
- School of Environment, Earth and Ecosystem Sciences, The Open University, MK7 6AA, UK
| | - Yong-Jiang Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Shu-Feng Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Li Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Lin-Bo Jia
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Wei-Yu-Dong Deng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Cheng-Long Deng
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shi-Tao Zhang
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Paul J Valdes
- School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol, BS8 1TH, UK
| | - Zhe-Kun Zhou
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
40
|
Khan G, Zhang F, Gao Q, Fu P, Zhang Y, Chen S. Spiroides shrubs on Qinghai-Tibetan Plateau: Multilocus phylogeography and palaeodistributional reconstruction of Spiraea alpina and S. Mongolica (Rosaceae). Mol Phylogenet Evol 2018; 123:137-148. [PMID: 29462675 DOI: 10.1016/j.ympev.2018.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification. Using a multilocus approach, here we assessed the influence of Qinghai-Tibetan Plateau (QTP) uplift and fluctuating regional climate on genetic diversity of two sister spiroides shrubs, Spiraea alpina and S. mongolica. Combined with palaeodistributional reconstruction modelling, we investigated the current and past-predicted distribution of these species under different climatic episodes. The study demonstrated that continuous pulses of retreat and expansion during last glacial-interglacial episodes, combined with the uplifting of QTP shaped the current distribution of these species. All the populations showed high level of genetic diversity based on both cpDNA and SSR markers. The average gene diversity within populations based on cpDNA markers was 0.383 ± 0.052 for S. alpina and 0.477 ± 0.048 for S. mongolica. The observed and expected heterozygosities based on SSR for both Spiraea alpina and S. mongolicawere HE(0.72-0.90)/HO(0.35-0.78) and HE(0.77-0.92)/HO(0.47-0.77) respectively. Palaeodistributional reconstruction indicated species' preferences at southeastern edge of the plateau during last glacial maximum, at higher altitude areas of QTP and range expansion to central plateau during the interglacial episodes. Assignment tests in STRUCTURE, discriminant analysis of principal coordinates and Immigrants analysis in GENECLASS based on nuclear SSR markers did not support the hypothesis of gene flow between both the species. However, maximum likelihood approach based on cpDNA showed sharing of haplotypes between both species.
Collapse
Affiliation(s)
- Gulzar Khan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, China.
| | - Qingbo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Pengcheng Fu
- School of Life Sciences, Luoyang Normal University, Luoyang 471022, China.
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
41
|
Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci Rep 2017; 7:878. [PMID: 28408764 PMCID: PMC5429824 DOI: 10.1038/s41598-017-00928-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/17/2017] [Indexed: 11/08/2022] Open
Abstract
Understanding the Tibetan Plateau’s palaeogeography and palaeoenvironment is critical for reconstructing Asia’s climatic history; however, aspects of the plateau’s uplift history remain unclear. Here, we report a fossil biota that sheds new light on these issues. It comprises a fossil climbing perch (Anabantidae) and a diverse subtropical fossil flora from the Chattian (late Oligocene) of central Tibet. The fish, Eoanabas thibetana gen. et sp. nov., is inferred to be closely related to extant climbing perches from tropical lowlands in south Asia and sub-Saharan Africa. It has osteological correlates of a labyrinth organ, which in extant climbing perches gives them the ability to breathe air to survive warm, oxygen-poor stagnant waters or overland excursion under moist condition. This indicates that Eoanabas likewise lived in a warm and humid environment as suggested by the co-existing plant assemblage including palms and golden rain trees among others. As a palaeoaltimeter, this fossil biota suggests an elevation of ca. 1,000 m. These inferences conflict with conclusions of a high and dry Tibet claimed by some recent and influential palaeoaltimetry studies. Our discovery prompts critical re-evaluation of prevailing uplift models of the plateau and their temporal relationships with the Cenozoic climatic changes.
Collapse
|
42
|
Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc Natl Acad Sci U S A 2017; 114:E3444-E3451. [PMID: 28373546 DOI: 10.1073/pnas.1616063114] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai-Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.
Collapse
|
43
|
Gao QB, Li Y, Gengji ZM, Gornall RJ, Wang JL, Liu HR, Jia LK, Chen SL. Population Genetic Differentiation and Taxonomy of Three Closely Related Species of Saxifraga (Saxifragaceae) from Southern Tibet and the Hengduan Mountains. FRONTIERS IN PLANT SCIENCE 2017; 8:1325. [PMID: 28804492 PMCID: PMC5532446 DOI: 10.3389/fpls.2017.01325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/14/2017] [Indexed: 05/12/2023]
Abstract
The effects of rapid, recent uplift of the Hengduan Mountains on evolution and diversification of young floristic lineages still remain unclear. Here, we investigate diversification of three closely related Saxifraga species with a distribution restricted to the Hengduan Mountains (HM) and southern Tibet, and comment on their taxonomy based on molecular evidence. Three chloroplast DNA fragments (rbcL, trnL-F, trnS-G) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to study genetic structure across 104 individuals from 12 populations of Saxifraga umbellulata, S. pasumensis, and S. banmaensis. Chloroplast DNA (cpDNA) phylogenies revealed two well supported clades, corresponding to S. umbellulata and S. pasumensis plus S. banmaensis. Topology of the ITS phylogeny was largely congruent with that generated from cpDNA haplotypes, but with minor conflicts which might be caused by incomplete lineage sorting. Analyses of molecular variance of both cpDNA and ITS datasets revealed that most variation was held between S. pasumensis s.l. (with S. banmaensis) and S. umbellulata (92.31% for cpDNA; 69.78% for ITS), suggesting a high degree of genetic divergence between them. Molecular clock analysis based on ITS dataset suggested that the divergence between S. pasumensis s.l. and S. umbellulata can be dated to 8.50 Ma, probably a result of vicariant allopatric diversification associated with the uplift events of the HM. Vicariance associated with HM uplifts may also have been responsible for infraspecific differentiation in S. pasumensis. In contrast, infraspecific differentiation in S. umbellulata was most likely triggered by Quaternary glaciations. The much lower levels of gene diversity within populations of S. pasumensis compared with S. umbellulata could have resulted from both range contractions and human collection on account of its putative medicinal properties. Combining evidence from morphology, geographical distributions and molecular phylogenetic data, we recommend that S. banmaensis should be treated as a synonym of S. pasumensis which in turn, and based on the same sources of evidence, should be treated as a separate species rather than as a variety of S. umbellulata.
Collapse
Affiliation(s)
- Qing-Bo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Yan Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhuo-Ma Gengji
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Richard J. Gornall
- Department of Genetics, University of LeicesterLeicester, United Kingdom
| | - Jiu-Li Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hai-Rui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Liu-Kun Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
- *Correspondence: Shi-Long Chen
| |
Collapse
|