1
|
Joshi M, Sharma S, Onteru SK, Singh D. Comprehensive proteomic analysis of buffalo milk extracellular vesicles. Int J Biol Macromol 2024; 282:136735. [PMID: 39433188 DOI: 10.1016/j.ijbiomac.2024.136735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Extracellular vesicles are secretory vesicles involved in cell-to-cell communication via their encapsulated cargo of proteins, lipids, and nucleic acids. Bovine milk provides a rich source of extracellular vesicles (mEVs) that have been studied as therapeutics and drug delivery systems. Therefore, insight into the mEV cargo, such as its proteome, may help in understanding the molecular mechanism underlying the potential health benefits attributed to the mEVs. Hence, mEVs were isolated from healthy buffalo milk after screening the milk somatic cell count. The total proteins of mEVs were analyzed using LC-MS, and 331 proteins were found commonly present among three buffalo milk samples. These proteins were primarily derived from extracellular regions and lysosomes. The major biological roles associated with the proteins were immune response, metabolism, and cell cycle regulation. The molecular functions of the proteins were transporter activity, catalytic activity, and GTPase activity. Further, comparative analysis with the previously available bovine mEVs proteome data showed 114 proteins to be newly identified in the buffalo mEVs. The biological pathways associated with these proteins may play a major role in muscle development. These findings shed a light on the potential health benefits of buffalo mEVs as therapeutics as well as drug delivery vehicles.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sanjay Sharma
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
2
|
Fontana J, Sparkman-Yager D, Faulkner I, Cardiff R, Kiattisewee C, Walls A, Primo TG, Kinnunen PC, Garcia Martin H, Zalatan JG, Carothers JM. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling. Nat Commun 2024; 15:6341. [PMID: 39068154 PMCID: PMC11283517 DOI: 10.1038/s41467-024-50528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ian Faulkner
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Aria Walls
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tommy G Primo
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick C Kinnunen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Hector Garcia Martin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Xu WH, Chen YR, Tian HM, Chen YF, Gong JY, Yu HT, Liu GL, Xie L. Effects of dietary PUFA patterns and FADS genotype on breast milk PUFAs in Chinese lactating mothers. GENES & NUTRITION 2023; 18:16. [PMID: 37880594 PMCID: PMC10598896 DOI: 10.1186/s12263-023-00735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Breastfeeding affects the growth and development of infants, and polyunsaturated fatty acids (PUFAs) play a crucial role in this process. To explore the factors influencing the PUFA concentration in breast milk, we conducted research on two aspects: dietary fatty acid patterns and single nucleotide polymorphisms (SNPs) in maternal fatty acid desaturase genes. METHODS Three hundred seventy Chinese Han lactating mothers were recruited. A dietary semi-quantitative food frequency questionnaire (FFQ) was used to investigate the dietary intake of lactating mothers from 22 to 25 days postpartum for 1 year. Meanwhile, breast milk samples were collected from the participants and tested for the concentrations of 8 PUFAs and 10 SNP genotypes. We sought to determine the effect of dietary PUFA patterns and SNPs on breast milk PUFAs. We used SPSS 24.0 statistical software for data analysis. Statistical tests were all bilateral tests, with P < 0.05 as statistically significant. RESULTS Under the same dietary background, PUFA contents in breast milk expressed by most major allele homozygote mothers tended to be higher than that expressed by their counterparts who carried minor allele genes. Moreover, under the same gene background, PUFA contents in breast milk expressed by the mother's intake of essential PUFA pattern tended to be higher than that expressed by their counterparts who took the other two kinds of dietary. CONCLUSIONS Our study suggests that different genotypes and dietary PUFA patterns affect PUFA levels in breast milk. We recommend that lactating mothers consume enough essential fatty acids to ensure that their infants ingest sufficient PUFAs.
Collapse
Affiliation(s)
- Wen-Hui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yi-Ru Chen
- Department of Clinical Nutrition, China-Japan, Union Hospital of Jilin University, Changchun, 130032, Jilin Province, China
| | - Hui-Min Tian
- School of Nursing, Jilin University, Changchun, 130021, Jilin Province, China
| | - Yi-Fei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Jia-Yu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Hai-Tao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Guo-Liang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
4
|
Meng Z, Zhou D, Lv D, Gan Q, Liao Y, Peng Z, Zhou X, Xu S, Chi P, Wang Z, Nüssler AK, Yang X, Liu L, Deng D, Yang W. Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with Akt/mTOR/p70s6k signaling pathway. J Nanobiotechnology 2023; 21:304. [PMID: 37644475 PMCID: PMC10463453 DOI: 10.1186/s12951-023-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.
Collapse
Affiliation(s)
- Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dong Zhou
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Dan Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Quan Gan
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Penglong Chi
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhipeng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
5
|
Yu W, Nan X, Schroyen M, Wang Y, Zhou M, Tang X, Xiong B. Effect of inulin on small extracellular vesicles microRNAs in milk from dairy cows with subclinical mastitis. J Anim Sci 2023; 101:skae366. [PMID: 39656780 DOI: 10.1093/jas/skae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Milk contains microRNAs (miRNA) that are shielded by small extracellular vesicles (sEVs). Beyond variations among individuals, many factors including nutrition play a role in shaping miRNA expression profiles. This study is to explore milk-derived sEVs-miRNA variations induced by inulin supplementation in subclinical mastitis-suffering cows. Fourteen lactating cows diagnosed with subclinical mastitis were equally assigned to either an inulin or a control group. Apart from total mixed rations, cows in the inulin group were provided with 300 g/d inulin during the morning feeding, while the control group did not receive any supplement. Following 1 wk of adaptation and 5 wk of treatment, sEVs-miRNA were isolated from the milk of each cow. RNA is subjected to high-throughput sequencing and differentially expressed (DE) miRNA (P < 0.05 and ∣ log2FC∣> 1) were detected through bioinformatics analysis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine the target genes of DE miRNA. A sum of 350 miRNA was discovered, including 332 in the control group and 249 in the inulin group. Among these, 9 miRNA showed differential expression within the 2 groups, including 3 upregulated and 6 downregulated in the inulin group. The DE miRNA participates in regulating organismal systems, cellular processes, and signal transduction, which may affect inflammatory response and milk production. Overall, our study provides insight into the micromolecular-level mechanism of inulin in alleviating subclinical mastitis in dairy cows.
Collapse
Affiliation(s)
- Wanjie Yu
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Li C, Liu X, Huang Z, Zhai Y, Li H, Wu J. Lactoferrin Alleviates Lipopolysaccharide-Induced Infantile Intestinal Immune Barrier Damage by Regulating an ELAVL1-Related Signaling Pathway. Int J Mol Sci 2022; 23:13719. [PMID: 36430202 PMCID: PMC9696789 DOI: 10.3390/ijms232213719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
As the most important intestinal mucosal barrier of the main body, the innate immune barrier in intestinal tract plays especially pivotal roles in the overall health conditions of infants and young children; therefore, how to strengthen the innate immune barrier is pivotal. A variety of bioactivities of lactoferrin (LF) has been widely proved, including alleviating enteritis and inhibiting colon cancer; however, the effects of LF on intestinal immune barrier in infants and young children are still unclear, and the specific mechanism on how LF inhibits infantile enteritis by regulating immune signaling pathways is unrevealed. In the present study, we firstly performed pharmacokinetic analyses of LF in mice intestinal tissues, stomach tissues and blood, through different administration methods, to confirm the metabolic method of LF in mammals. Then we constructed in Vitro and in Vivo infantile intestinal immune barrier damage models utilizing lipopolysaccharide (LPS), and evaluated the effects of LF in alleviating LPS-induced intestinal immune barrier damage. Next, the related immune molecular mechanism on how LF exerted protective effects was investigated, through RNA-seq analyses of the mouse primary intestinal epithelial cells, and the specific genes were analyzed and screened out. Finally, the genes and their related immune pathway were validated in mRNA and protein levels; the portions of special immune cells (CD4+ T cells and CD8+ T cells) were also detected to further support our experimental results. Pharmacokinetic analyses demonstrated that the integrity of LF could reach mice stomach and intestine after oral gavage within 12 h, and the proper administration of LF should be the oral route. LF was proven to down-regulate the expression levels of inflammatory cytokines in both the primary intestinal epithelial cells and mice blood, especially LF without iron (Apo-LF), indicating LF alleviated infantile intestinal immune barrier damage induced by LPS. And through RNA-seq analyses of the mouse primary intestinal epithelial cells treated with LPS and LF, embryonic lethal abnormal vision Drosophila 1 (ELAVL1) was selected as one of the key genes, then the ELAVL1/PI3K/NF-κB pathway regulated by LF was verified to participate in the protection of infantile intestinal immune barrier damage in our study. Additionally, the ratio of blood CD4+/CD8+ T cells was significantly higher in the LF-treated mice than in the control mice, indicating that LF distinctly reinforced the overall immunity of infantile mice, further validating the strengthening bioactivity of LF on infantile intestinal immune barrier. In summary, LF was proven to alleviate LPS-induced intestinal immune barrier damage in young mice through regulating ELAVL1-related immune signaling pathways, which would expand current knowledge of the functions of bioactive proteins in foods within different research layers, as well as benefit preclinical and clinical researches in a long run.
Collapse
Affiliation(s)
- Chaonan Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihong Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yiyan Zhai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
7
|
Weimer DS, Demory Beckler M. Underlying Immune Mechanisms Involved in Cow’s Milk-Induced Hypersensitivity Reactions Manifesting as Atopic Dermatitis. Cureus 2022; 14:e27604. [PMID: 36059314 PMCID: PMC9433788 DOI: 10.7759/cureus.27604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Of the many symptoms associated with cow’s milk allergy (CMA), many populations face the burden of the appearance or worsening of atopic dermatitis (AD) when consuming milk products. Due to the prevalence and possible severity of symptoms, it is important to understand the underlying immune mechanisms involved in such reactions. Hypersensitivity reactions are exaggerated immune responses to often benign antigens, many times resulting in a cascade of pro-inflammatory processes. Of the four major types, type I and IV are of most relevance when considering atopic dermatitis worsened by cow’s milk. Considered a “true allergy,” type I (immediate) hypersensitivity reactions occur within hours after secondary exposure to an allergen and are primarily driven by antibodies and humoral immune responses. On the contrary, type IV (delayed) hypersensitivity reactions are driven by cell-mediated responses involving T-cell activation. Due to the array of symptoms induced by these complex reactions, it is imperative to diagnose early and treat appropriately. In this literature review, we aim to highlight the primary underlying immune contributors to hypersensitivity reactions, discuss AD as a manifestation of hypersensitivity reactions to cow’s milk, and consider current and future treatment options for combatting hypersensitivities manifesting as AD.
Collapse
|
8
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
9
|
Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J Funct Foods 2022; 89:104932. [PMID: 35003332 PMCID: PMC8723829 DOI: 10.1016/j.jff.2022.104932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022] Open
Abstract
Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
| | - Francesco Giansanti
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Alyexandra Arienzo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Giovanni Antonini
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| |
Collapse
|
10
|
Duale A, Singh P, Al Khodor S. Breast Milk: A Meal Worth Having. Front Nutr 2022; 8:800927. [PMID: 35155521 PMCID: PMC8826470 DOI: 10.3389/fnut.2021.800927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
A mother is gifted with breast milk, the natural source of nutrition for her infant. In addition to the wealth of macro and micro-nutrients, human milk also contains many microorganisms, few of which originate from the mother, while others are acquired from the mouth of the infant and the surroundings. Among these microbes, the most commonly residing bacteria are Staphylococci, Streptococci, Lactobacilli and Bifidobacteria. These microorganisms initiate and help the development of the milk microbiota as well as the microbiota of the gastrointestinal tract in infants, and contribute to developing immune regulatory factors such as cytokines, growth factors, lactoferrin among others. These factors play an important role in reducing the risk of developing chronic diseases like type 2 diabetes, asthma and others later in life. In this review, we will summarize the known benefits of breastfeeding and highlight the role of the breast milk microbiota and its cross-talk with the immune system in breastfed babies during the early years of life.
Collapse
Affiliation(s)
- Anoud Duale
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Ar-Rayyan, Qatar
| | - Souhaila Al Khodor
- Division of Maternal and Child Health, Department of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- *Correspondence: Souhaila Al Khodor
| |
Collapse
|
11
|
Chiavelli LUR, Galuch MB, Senes CER, Maia LC, Lopes TAM, Rufato KB, Santos OO, Visentainer JV. Validation of UHPLC-MS/MS Method and Measurement Uncertainty Evaluation for Lactose Quantification in Lactose-Free and Regular UHT Milk. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02197-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
The Protective Effects of Lactoferrin on Aflatoxin M1-Induced Compromised Intestinal Integrity. Int J Mol Sci 2021; 23:ijms23010289. [PMID: 35008712 PMCID: PMC8745159 DOI: 10.3390/ijms23010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin M1 (AFM1), the only toxin with maximum residue levels in milk, has adverse effects on the intestinal barrier, resulting in intestinal inflammatory disease. Lactoferrin (LF), one of the important bioactive proteins in milk, performs multiple biological functions, but knowledge of the protective effects of LF on the compromised intestinal barrier induced by AFM1 has not been investigated. In the present study, results using Balb/C mice and differentiated Caco-2 cells showed that LF intervention decreased AFM1-induced increased intestinal permeability, improved the protein expression of claudin-3, occludin and ZO-1, and repaired the injured intestinal barrier. The transcriptome and proteome were used to clarify the underlying mechanisms. It was found that LF reduced the intestinal barrier dysfunction caused by AFM1 and was associated with intestinal cell survival related pathways, such as cell cycle, apoptosis and MAPK signaling pathway and intestinal integrity related pathways including endocytosis, tight junction, adherens junction and gap junction. The cross-omics analysis suggested that insulin receptor (INSR), cytoplasmic FMR1 interacting protein 2 (CYFIP2), dedicator of cytokinesis 1 (DOCK1) and ribonucleotide reductase regulatory subunit M2 (RRM2) were the potential key regulators as LF repaired the compromised intestinal barrier. These findings indicated that LF may be an alternative treatment for the compromised intestinal barrier induced by AFM1.
Collapse
|
13
|
Taylor RA, McRaven MD, Carias AM, Anderson MR, Matias E, Araínga M, Allen EJ, Rogers KA, Gupta S, Kulkarni V, Lakhashe S, Lorenzo-Redondo R, Thomas Y, Strickland A, Villinger FJ, Ruprecht RM, Hope TJ. Localization of infection in neonatal rhesus macaques after oral viral challenge. PLoS Pathog 2021; 17:e1009855. [PMID: 34793582 PMCID: PMC8639050 DOI: 10.1371/journal.ppat.1009855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/02/2021] [Accepted: 11/06/2021] [Indexed: 12/24/2022] Open
Abstract
Vertical transmission of human immunodeficiency virus (HIV) can occur in utero, during delivery, and through breastfeeding. We utilized Positron Emission Tomography (PET) imaging coupled with fluorescent microscopy of 64Cu-labeled photoactivatable-GFP-HIV (PA-GFP-BaL) to determine how HIV virions distribute and localize in neonatal rhesus macaques two and four hours after oral viral challenge. Our results show that by four hours after oral viral exposure, HIV virions localize to and penetrate the rectal mucosa. We also used a dual viral challenge with a non-replicative viral vector and a replication competent SHIV-1157ipd3N4 to examine viral transduction and dissemination at 96 hours. Our data show that while SHIV-1157ipd3N4 infection can be found in the oral cavity and upper gastrointestinal (GI) tract, the small and large intestine contained the largest number of infected cells. Moreover, we found that T cells were the biggest population of infected immune cells. Thus, thanks to these novel technologies, we are able to visualize and delineate of viral distribution and infection throughout the entire neonatal GI tract during acute viral infection. Approximately 1.8 million children are currently living with human immunodeficiency virus (HIV). While mother-to-child HIV transmission can occur in utero and during delivery, it most commonly occurs through breastfeeding, creating the need to understand how the virus moves throughout the body and infects the infant once breast milk is consumed. Here, we used multiple imaging techniques and PCR to determine how HIV distributes throughout the gastrointestinal tract after oral viral exposure and in which tissues and cell types become acutely infected. We found that HIV rapidly spreads throughout and penetrates the entire gastrointestinal tract as early as four hours after exposure. We also found that the intestine contained the largest number of infected cells at 96 hours and that most cells infected were T cells. Our study shows that these imaging technologies allow for the examination of viral distribution and infection in a rhesus macaque model.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ann M. Carias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Edgar Matias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Mariluz Araínga
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Edward J. Allen
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kenneth A. Rogers
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Sandeep Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Viraj Kulkarni
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Samir Lakhashe
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Ramon Lorenzo-Redondo
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Institute for Global Health, Chicago, Illinois, United States of America
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Amanda Strickland
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Francois J. Villinger
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Ruth M. Ruprecht
- Department of Biology, New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
14
|
The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Vizzari G, Morniroli D, Ceroni F, Verduci E, Consales A, Colombo L, Cerasani J, Mosca F, Giannì ML. Human Milk, More Than Simple Nourishment. CHILDREN (BASEL, SWITZERLAND) 2021; 8:863. [PMID: 34682128 PMCID: PMC8535116 DOI: 10.3390/children8100863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
Human breast milk not only has nutritional properties but also holds a functional role. It contains various bioactive factors (lactoferrin, lysozyme, leukocytes, immunoglobulins, cytokines, hormones, human milk oligosaccharides, microbiome, microRNAs and stem cells) shown to contribute to several short- and long-term health outcomes. Some of these factors appear to be involved in the infant's neuro-cognitive development, anti-oncogenic processes, cellular communication and differentiation. Furthermore, breast milk is increasingly recognized to have dynamic characteristics and to play a fundamental role in the cross-talking mother-neonate. This narrative review aims to provide a summary and an update on these bioactive substances, exploring their functions mainly on immunomodulation, microbiome and virome development. Although the knowledge about breast milk potentiality has significantly improved, leading to discovering unexpected functions, the exact mechanisms with which breast milk exercises its bioactivity have not been completely clarified. This can represent a fertile ground for exploring and understanding the complexity behind these functional elements to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Vizzari
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Daniela Morniroli
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Federica Ceroni
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy;
- Department of Health Sciences, University of Milan, 20154 Milan, Italy
| | - Alessandra Consales
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Lorenzo Colombo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| | - Jacopo Cerasani
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| | - Maria Lorella Giannì
- Department of Clinical Sciences and Community Health, University of Milan, Via Commenda 19, 20122 Milan, Italy; (G.V.); (D.M.); (F.C.); (A.C.); (J.C.); (F.M.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico NICU, Via Commenda 12, 20122 Milan, Italy;
| |
Collapse
|
16
|
Cai J, Cui X, Wang X, You L, Ji C, Cao Y. A Novel Anti-Infective Peptide BCCY-1 With Immunomodulatory Activities. Front Immunol 2021; 12:713960. [PMID: 34367182 PMCID: PMC8339908 DOI: 10.3389/fimmu.2021.713960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance has been considered to be a global threat which underscores the need to develop novel anti-infective therapeutics. Modulation of innate immunity by synthetic peptides is an attractive strategy to overcome this circumstance. We recently reported that BCCY-1, a human β-casein-derived peptide displays regulatory activities on monocytes, thereby enhancing their actions in innate immune responses. However, the function of peptide BCCY-1 in host defense against infection remains unknown. In this study, we investigated the in vivo characteristics and effects of peptide BCCY-1 in mouse models of bacterial infection. Following intraperitoneal injection, the peptide BCCY-1 exhibited high level of cellular uptake by monocytes without obvious toxicities. Results revealed that peptide BCCY-1, but not the scrambled version, stimulated the chemokine production and monocyte recruitment in vivo. Treatment with BCCY-1 enhanced the pathogen clearance and protected mice against lethal infections. Because the anti-infective effects of BCCY-1 was abolished by in vivo depletion of monocytes/macrophages rather than lymphocytes and granulocytes, we conclude that monocytes/macrophages are key effector cells in BCCY-1-mediated anti-infective protection. Additionally, BCCY-1 lacks direct antimicrobial activity. To our knowledge, a human β-casein-derived peptide that counters infection by selective regulation of innate immunity has not been reported previously. These results suggest peptide BCCY-1 as a promising alternative approach and a valuable complement to current anti-infective strategy.
Collapse
Affiliation(s)
- Jinyang Cai
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Johnson HM, Mitchell KB. Low incidence of milk fistula with continued breastfeeding following radiologic and surgical interventions on the lactating breast. Breast Dis 2021; 40:183-189. [PMID: 33935049 DOI: 10.3233/bd-201000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Milk fistula is a potential complication of radiologic and surgical procedures on the lactating breast, though its incidence is unknown. Some postulate that larger defects and/or closer proximity to the nipple increase the risk of fistula. OBJECTIVE This study aimed to estimate the incidence of milk fistula and characterize risk factors in patients who continued breastfeeding after surgical or radiological procedures. METHODS A retrospective cohort analysis of pregnant or lactating women treated at a multidisciplinary breast clinic from July 2016 through August 2019 was performed. Demographic and clinical variables were analyzed using ANOVA and Pearson's Chi-square. RESULTS Two pregnant and 43 lactating patients underwent 71 interventions. The incidence of milk fistula within one week of intervention was 1.4%. One fistula was diagnosed six days after retroareolar abscess drainage. The fistula closed successfully with continued breastfeeding. When categorized by the caliber of the most invasive intervention (large-caliber: mass excision, n = 7; medium-caliber: percutaneous drain insertion, n = 18; small-caliber: stab incision, aspiration, core needle biopsy, n = 20), patients were similar in age, race/ethnicity, weeks postpartum, and frequency of central versus peripheral interventions. The low incidence of fistula prevented quantitative evaluation of potential risk factors. CONCLUSIONS Milk fistula is a rare occurrence following radiologic or surgical breast interventions performed during pregnancy or lactation. Indicated procedures should not be deferred, but periareolar approaches should be avoided when possible. Cessation of lactation is not mandatory for fistula closure, and continued breastfeeding should be recommended.
Collapse
Affiliation(s)
- Helen M Johnson
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Katrina B Mitchell
- Surgical Oncology, Ridley-Tree Cancer Center, Sansum Clinic, Santa Barbara, CA, USA
| |
Collapse
|
18
|
Abstract
Human milk has many advantageous anti-infective and immunologic properties, making it the ideal nutritional source to optimize the well-being of infants. There are certain infectious circumstances where breast milk feedings should be withheld or strict precautions followed, and this article addresses these rare events. Contamination and misadministration when handling human milk is also a safety concern, especially when caring for vulnerable preterm infants. This article addresses ways to decrease these occurrences to maintain the inherent anti-infectious properties of human milk and preserve the health of our neonatal population.
Collapse
Affiliation(s)
- Laura S Madore
- University of Massachusetts Medical School-Baystate, 759 Chestnut Street, Springfield, MA 01199, USA.
| | - Donna J Fisher
- University of Massachusetts Medical School-Baystate, 759 Chestnut Street, Springfield, MA 01199, USA
| |
Collapse
|
19
|
Anti-Angiogenic Property of Free Human Oligosaccharides. Biomolecules 2021; 11:biom11060775. [PMID: 34064180 PMCID: PMC8224327 DOI: 10.3390/biom11060775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis, a fundamental process in human physiology and pathology, has attracted considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date, inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be addressed. Several drug candidates have been discovered, including small molecule compounds, recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mechanism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state, extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.
Collapse
|
20
|
Moubareck CA. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations. Nutrients 2021; 13:1123. [PMID: 33805503 PMCID: PMC8067037 DOI: 10.3390/nu13041123] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human milk represents a cornerstone for growth and development of infants, with extensive array of benefits. In addition to exceptionally nutritive and bioactive components, human milk encompasses a complex community of signature bacteria that helps establish infant gut microbiota, contributes to maturation of infant immune system, and competitively interferes with pathogens. Among bioactive constituents of milk, human milk oligosaccharides (HMOs) are particularly significant. These are non-digestible carbohydrates forming the third largest solid component in human milk. Valuable effects of HMOs include shaping intestinal microbiota, imparting antimicrobial effects, developing intestinal barrier, and modulating immune response. Moreover, recent investigations suggest correlations between HMOs and milk microbiota, with complex links possibly existing with environmental factors, genetics, geographical location, and other factors. In this review, and from a physiological and health implications perspective, milk benefits for newborns and mothers are highlighted. From a microbiological perspective, a focused insight into milk microbiota, including origins, diversity, benefits, and effect of maternal diet is presented. From a metabolic perspective, biochemical, physiological, and genetic significance of HMOs, and their probable relations to milk microbiota, are addressed. Ongoing research into mechanistic processes through which the rich biological assets of milk promote development, shaping of microbiota, and immunity is tackled.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai 19282, United Arab Emirates
| |
Collapse
|
21
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|
22
|
Ahmad L. Impact of gargling on respiratory infections. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1893834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Lateef Ahmad
- Department of Pharmacy, University of Swabi, Anbar, Pakistan
| |
Collapse
|
23
|
Quitadamo PA, Comegna L, Cristalli P. Anti-Infective, Anti-Inflammatory, and Immunomodulatory Properties of Breast Milk Factors for the Protection of Infants in the Pandemic From COVID-19. Front Public Health 2021; 8:589736. [PMID: 33738273 PMCID: PMC7960784 DOI: 10.3389/fpubh.2020.589736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic since the end of 2019 spreads worldwide, counting millions of victims. The viral invasion, systemic inflammation, and consequent organ failure are the gravest features of coronavirus disease 2019 (COVID-19), and they are associated with a high mortality rate. The aim of this study is to evaluate the role of breast milk in the COVID-19 pandemic, analyzing its antiviral, anti-inflammatory, and immunoregulatory effects due to its bioactive components, so numerous and important for the protection of infants. The study tried to demonstrate that all the components of human milk are capable of performing functions on all the pathogenic events recognized and described in COVID-19 disease. Those human milk factors are well-tolerated and practically free of side effects, so breast milk should become a research topic to discover therapies even in this epidemic. In the first part, the mechanisms of protection and defense of the breast milk elements will be delineated; in the second section, it will describe the human milk effects in viral infections and it will be hypothesized how the known mechanisms could act in COVID infection.
Collapse
Affiliation(s)
- Pasqua Anna Quitadamo
- NICU “Casa Sollievo della Sofferenza” Foundation, Scientific Research and Care Institute, San Giovanni Rotondo, Italy
| | | | | |
Collapse
|
24
|
Li Q, Li M, Zhang J, Shi X, Yang M, Zheng Y, Cao X, Yue X, Ma S. Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression. Food Funct 2021; 11:3053-3065. [PMID: 32191229 DOI: 10.1039/c9fo02934f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Donkey milk is considered an ideal substitute for human milk and is considered a potential complementary dairy product for the treatment of a variety of human diseases, including cancer. The purpose of this study was to investigate the inhibitory effect of donkey colostrum (DC) and mature milk (DM) on 4T1 triple-negative breast cancer (TNBC) tumors in mice. Metabolomics analyses showed that a total of 476 possible metabolites were found in both types of milk. Among them, 34 differential metabolites were identified, including 25 up-regulated and 9 down-regulated metabolites in the DC compared with DM. Both DC and DM are rich in many known anticancer constituents. The inhibitory effects of DC and DM on 4T1 primary tumors and the relative organ weight of the liver and lungs were determined by measuring the volume of primary tumors and weighing the liver and lungs. Both DC and DM significantly reduced both the primary tumor size and relative organ weight of the liver and lungs in 4T1 mice without affecting the bodyweight of mice. When the expression of cleaved caspase-3, Bax, and MMP2 was investigated by immunohistochemistry, the results showed that DC and DM inhibited the progression of 4T1 tumors by inducing the expression of cleaved-caspase-3 and Bax, and inhibiting the expression of MMP2 and CD31. Our data suggest that DC and DM inhibit the growth and metastasis of mouse 4T1 tumors by inducing apoptosis.
Collapse
Affiliation(s)
- Qilong Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China. and College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Juan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shiliang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
25
|
Ross M, Atalla H, Karrow N, Mallard BA. The bioactivity of colostrum and milk exosomes of high, average, and low immune responder cows on human intestinal epithelial cells. J Dairy Sci 2020; 104:2499-2510. [PMID: 33358817 DOI: 10.3168/jds.2020-18405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/04/2020] [Indexed: 01/27/2023]
Abstract
Bovine milk contains bioactive components that are nutritionally and immunologically important to calves and humans. Dairy cows classified as high (H) immune responders using the patented high immune response technology have higher concentrations of immunoglobulin and specific antibodies in sera and milk compared with average (A) and low (L) responders. MicroRNA post-transcriptionally regulate expression of milk bioactive components and are enriched in extracellular vesicles known as exosomes, which protect them from degradation. The bioactivity of colostrum and milk exosomes at the human intestinal epithelial barrier remains to be explored, particularly in the context of the high immune response technology. Therefore, the purpose of this study was to evaluate the functional role of bovine milk exosomes compared with colostrum exosomes from H, A, and L responders at the intestinal interface using human colorectal adenocarcinoma epithelial (Caco-2) cells. Exosomes were isolated by successive ultracentrifugation and confirmed by western blot analysis for the presence of common exosomal proteins (CD9, CD63, and heat shock protein 70). Fluorescent labeling of exosomes using PKH67 dye confirmed their uptake by Caco-2 cells, demonstrating their potential bioavailability. The MTT assays showed that colostrum and milk exosomes maintain Caco-2 metabolic activity and are not cytotoxic to these cells. Specifically, metabolic activity after co-incubation with colostrum and milk exosomes from H responder cows was significantly greater than after co-incubation with exosomes from L responders. Caspase 3 activity, an indicator of apoptosis, was significantly lower after co-incubation of Caco-2 cells with milk exosomes compared with colostrum exosomes, suggesting that unlike colostrum exosomes, particularly those from L responders, milk exosomes do not activate the caspase 3 pathway in Caco-2 cells. This study helps us better understand the functional importance of colostrum and milk exosomes from dairy cows and emphasizes differences in functionality among exosomes from H, A, and L immune responders.
Collapse
Affiliation(s)
- Mikayla Ross
- Department of Pathobiology, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Heba Atalla
- Department of Pathobiology, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Niel Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
26
|
Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Strategic Preparations of DPP-IV Inhibitory Peptides from Val-Pro-Xaa and Ile-Pro-Xaa Peptide Mixtures. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10122-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Kim KU, Kim WH, Jeong CH, Yi DY, Min H. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer. Int J Mol Sci 2020; 21:E7327. [PMID: 33023062 PMCID: PMC7582863 DOI: 10.3390/ijms21197327] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Human breast milk (HBM) is an irreplaceable source of nutrition for early infant growth and development. Breast-fed children are known to have a low prevalence and reduced risk of various diseases, such as necrotizing enterocolitis, gastroenteritis, acute lymphocytic leukemia, and acute myeloid leukemia. In recent years, HBM has been found to contain a microbiome, extracellular vesicles or exosomes, and microRNAs, as well as nutritional components and non-nutritional proteins, including immunoregulatory proteins, hormones, and growth factors. Especially, the milk-derived exosomes exert various physiological and therapeutic function in cell proliferation, inflammation, immunomodulation, and cancer, which are mainly attributed to their cargo molecules such as proteins and microRNAs. The exosomal miRNAs are protected from enzymatic digestion and acidic conditions, and play a critical role in immune regulation and cancer. In addition, the milk-derived exosomes are developed as drug carriers for delivering small molecules and siRNA to tumor sites. In this review, we examined the various components of HBM and their therapeutic potential, in particular of exosomes and microRNAs, towards cancer.
Collapse
Affiliation(s)
- Ki-Uk Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Wan-Hoon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Chi Hwan Jeong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul 06974, Korea
- Department of Pediatrics, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| |
Collapse
|
29
|
Casein glycomacropeptide is well tolerated in healthy adults and changes neither high-sensitive C-reactive protein, gut microbiota nor faecal butyrate: a restricted randomised trial. Br J Nutr 2020; 125:1374-1385. [PMID: 32967742 DOI: 10.1017/s0007114520003736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Casein glycomacropeptide (CGMP) is a bioactive milk-derived peptide with potential anti-inflammatory effects. Animal studies suggest that CGMP may work by altering gut microbiota composition and enhancing butyrate production. Its effects on intestinal homoeostasis, microbiota and metabolites in humans are unknown. The aim of the present study was to assess both the intestinal and systemic immunomodulatory effects of orally ingested CGMP. We hypothesised that daily oral CGMP intake would reduce high-sensitive C-reactive protein (hsCRP) in healthy adults. In a single-centre limited but randomised, double-blinded, reference-controlled study, we compared the effects of a 4-week intervention of either 25 g of oral powder-based chocolate-flavoured CGMP or a reference drink. We included twenty-four healthy adults who all completed the study. CGMP had no systemic or intestinal immunomodulatory effects compared with a reference drink, with regard to either hsCRP or faecal calprotectin level, faecal microbiota composition or faecal SCFA content. CGMP ingestion did not affect satiety or body weight, and it caused no severe adverse events. The palatability of CGMP was acceptable, and adherence was high. CGMP did not induce or change gastrointestinal symptoms. In conclusion, we found no immunomodulatory effects of CGMP in healthy adults. In a minor group of healthy adults, oral ingestion of 25 g of CGMP during 4 weeks was safe, well tolerated, had acceptable palatability and was without any effects on body weight.
Collapse
|
30
|
Derdak R, Sakoui S, Pop OL, Muresan CI, Vodnar DC, Addoum B, Vulturar R, Chis A, Suharoschi R, Soukri A, El Khalfi B. Insights on Health and Food Applications of Equus asinus (Donkey) Milk Bioactive Proteins and Peptides-An Overview. Foods 2020; 9:E1302. [PMID: 32942687 PMCID: PMC7555024 DOI: 10.3390/foods9091302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its similarity with human milk and its low allergenic properties, donkey milk has long been used as an alternative for infants and patients with cow's milk protein allergy (CMPA). In addition, this milk is attracting growing interest in human nutrition because of presumed health benefits. It has antioxidant, antimicrobial, antitumoral, antiproliferative and antidiabetic activity. In addition, it stimulates the immune system, regulates the gastrointestinal flora, and prevents inflammatory diseases. Although all donkey milk components can contribute to functional and nutritional effects, it is generally accepted that the whey protein fraction plays a significant role. This review aims to highlight the active proteins and peptides of donkey milk in comparison with other types of milk, emphasizing their properties and their roles in different fields of health and food applications.
Collapse
Affiliation(s)
- Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Muresan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Romana Vulturar
- Department of Molecular Sciences, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, Cluj-Napoca, 8 Victor Babeș, 400012 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania, 1 Mihail Kogalniceanu, 400084 Cluj-Napoca, Romania
| | - Adina Chis
- Department of Molecular Sciences, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, Cluj-Napoca, 8 Victor Babeș, 400012 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania, 1 Mihail Kogalniceanu, 400084 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| |
Collapse
|
31
|
Multi-Enzymatic Cascade One-Pot Biosynthesis of 3'-Sialyllactose Using Engineered Escherichia coli. Molecules 2020; 25:molecules25163567. [PMID: 32781536 PMCID: PMC7463868 DOI: 10.3390/molecules25163567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Among the human milk oligosaccharides (HMOs), one of the most abundant oligosaccharides and has great benefits for human health is 3′-sialyllactose (3′-SL). Given its important physiological functions and the lack of cost-effective production processes, we constructed an in vitro multi-enzymatic cofactor recycling system for the biosynthesis of 3′-SL from a low-cost substrate. First, we constructed the biosynthetic pathway and increased the solubility of cytidine monophosphate kinase (CMK) with chaperones. We subsequently identified that β-galactosidase (lacZ) affects the yield of 3′-SL, and hence with the lacZ gene knocked out, a 3.3-fold increase in the production of 3′-SL was observed. Further, temperature, pH, polyphosphate concentration, and concentration of divalent metal ions for 3′-SL production were optimized. Finally, an efficient biotransformation system was established under the optimized conditions. The maximum production of 3′-SL reached 38.7 mM, and a molar yield of 97.1% from N-acetylneuraminic acid (NeuAc, sialic acid, SA) was obtained. The results demonstrate that the multi-enzymatic cascade biosynthetic pathway with cofactor regeneration holds promise as an industrial strategy for producing 3′-SL.
Collapse
|
32
|
Šnirc M, Árvay J, Král M, Jančo I, Zajác P, Harangozo Ľ, Benešová L. Content of Mineral Elements in the Traditional Oštiepok Cheese. Biol Trace Elem Res 2020; 196:639-645. [PMID: 31650448 DOI: 10.1007/s12011-019-01934-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 01/15/2023]
Abstract
Oštiepok is traditional half-fat semi-hard cheese manufactured in Slovak Republic. In this research, we have analyzed the content of macro-elements (calcium, potassium, magnesium, and sodium) and micro-elements (chromium, copper, iron, manganese, molybdenum, selenium, and zinc) in Oštiepok cheese samples collected from various parts of Slovak Republic. The analysis of Oštiepok cheese samples (n = 19) was carried out by using inductively coupled plasma optical emission spectroscopy (ICP-OES). The macro-element concentrations in the investigated samples varied quite significantly with the highest values recorded for sodium with its average concentration of 8083 mg kg-1. The second highest macro-element concentration was observed for calcium with the average concentration of 6850 mg kg-1. Average concentration of zinc was 23.2 mg kg-1; iron, 14.1 mg kg-1; and copper, 10.0 mg kg-1. The concentration of macro- and micro-elements varied from sample to sample, but we can conclude that the traditional Oštiepok cheese is a suitable source of some minerals important for human health. Based on the RDA, the exposure amounts of analyzed samples are low, and no element can be referred to as significant since none reaches 15% of the nutrient reference values, according to EC Regulation 1169/2011.
Collapse
Affiliation(s)
- Marek Šnirc
- Faculty of Biotechnology and Food Sciences, Department of Chemistry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Július Árvay
- Faculty of Biotechnology and Food Sciences, Department of Chemistry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Martin Král
- Faculty of Veterinary Hygiene and Ecology, Department of Plant Origin Foodstuffs Hygiene and Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Ivona Jančo
- Faculty of Biotechnology and Food Sciences, Department of Chemistry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Peter Zajác
- Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Ľuboš Harangozo
- Faculty of Biotechnology and Food Sciences, Department of Chemistry, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Lucia Benešová
- Faculty of Biotechnology and Food Sciences, Department of Food Hygiene and Safety, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| |
Collapse
|
33
|
Liu T, Chen P, Munir M, Liu L, Li C, Li A, Fu H. HMOs modulate immunoregulation and gut microbiota in a β-lactoglobulin-induced allergic mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
35
|
Wan L, Zhu Y, Zhang W, Mu W. α-l-Fucosidases and their applications for the production of fucosylated human milk oligosaccharides. Appl Microbiol Biotechnol 2020; 104:5619-5631. [DOI: 10.1007/s00253-020-10635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
|
36
|
Cheng L, Akkerman R, Kong C, Walvoort MTC, de Vos P. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit Rev Food Sci Nutr 2020; 61:1184-1200. [PMID: 32329623 DOI: 10.1080/10408398.2020.1754756] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human milk is the gold standard for newborn infants. Breast milk not only provides nutrients, it also contains bioactive components that guide the development of the infant's intestinal immune system, which can have a lifelong effect. The bioactive molecules in breast milk regulate microbiota development, immune maturation and gut barrier function. Human milk oligosaccharides (hMOs) are the most abundant bioactive molecules in human milk and have multiple beneficial functions such as support of growth of beneficial bacteria, anti-pathogenic effects, immune modulating effects, and stimulation of intestine barrier functions. Here we critically review the current insight into the benefits of bioactive molecules in mother milk that contribute to neonatal development and focus on current knowledge of hMO-functions on microbiota and the gastrointestinal immune barrier. hMOs produced via genetically engineered microorganisms are now applied in infant formulas to mimic the nutritional composition of breast milk as closely as possible, and their prospects and scientific challenges are discussed in depth.
Collapse
Affiliation(s)
- Lianghui Cheng
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Renate Akkerman
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Triantafillidis JK, Tzouvala M, Triantafyllidi E. Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients 2020; 12:E1048. [PMID: 32290232 PMCID: PMC7230540 DOI: 10.3390/nu12041048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Enteral nutrition seems to play a significant role in the treatment of both adults and children with active Crohn's disease, and to a lesser degree in the treatment of patients with active ulcerative colitis. The inclusion of some special factors in the enteral nutrition formulas might increase the rate of the efficacy. Actually, enteral nutrition enriched in Transforming Growth Factor-β reduced the activity index and maintained remission in patients with Crohn's disease. In addition, a number of experimental animal studies have shown that colostrum exerts a significantly positive result. Probiotics of a special type and a certain dosage could also reduce the inflammatory process in patients with active ulcerative colitis. Therefore, the addition of these factors in an enteral nutrition formula might increase its effectiveness. Although the use of these formulas is not supported by large clinical trials, it could be argued that their administration in selected cases as an exclusive diet or in combination with the drugs used in patients with inflammatory bowel disease could benefit the patient. In this review, the authors provide an update on the role of enteral nutrition, supplemented with Transforming Growth Factor-β, colostrum, and probiotics in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Maria Tzouvala
- Department of Gastroenterology “St Panteleimon” General Hospital, ZC 18454 Nicea, Greece;
| | | |
Collapse
|
38
|
Synergistic Killing of Pathogenic Escherichia coli Using Camel Lactoferrin from Different Saudi Camel Clans and Various Antibiotics. Protein J 2020; 38:479-496. [PMID: 30963371 DOI: 10.1007/s10930-019-09828-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current study aimed to analyze the synergistic killing of pathogenic Escherichia coli using camel lactoferrin from different Saudi camel clans and various antibiotics. Methods: using multiple microbiological and protein analysis techniques, the results were shown that the purified camel lactoferrins (cLfs) from different Saudi camel have strong antimicrobial potentials against two strains of E. coli. Although all cLfs were superior relative to human or bovine lactoferrins (hLf or bLf), there was no noticeable difference in the antimicrobial potentials of cLfs from different camel clans. The effects of antibiotics and cLfs were synergistic, indicating the superiority of using cLf-antibiotic combinations against E. coli growth. Since these combinations possessed distinguished synergy profiles, it is likely that they can be used to enhance the low efficacy of antibiotics, as well as to control the problems associated with bacterial resistance. Furthermore, these combinations can reduce the cost of cure of bacterial infections, especially in the developing countries. The analysis of the molecular mechanisms of lactoferrin action revealed that expression of several E. coli proteins was affected by the treatment with these antibacterial factors. Several proteins of different molecular weights interacting with cLf-biotin were found. Scanning and transmission electron microscopy analysis revealed the presence of noticeable morphological changes associated with the treatment of E. coli strains by antibiotic carbenicillin or cLf alone, and in combination. Camel lactoferrin has superior potential killing of E. coli over bovine and human lactoferrin, and this potential can be further synergistically enhanced of cLF is combined with antibiotics.
Collapse
|
39
|
Verhaeghe R, George K, Westerman M, Olbina G, McCann D, Parrow N, Pincus E, Havranek T, Fleming RE. Hepcidin Status at 2 Months in Infants Fed Breast Milk Compared with Formula. Neonatology 2020; 117:474-479. [PMID: 32818935 DOI: 10.1159/000508447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The basis for the superior absorption of iron from breast milk compared with infant formulas is unclear. The hormone hepcidin downregulates dietary iron absorption. Hepcidin production increases with increased body iron status (reflected in serum ferritin levels). We hypothesized that serum hepcidin levels are suppressed relative to iron status in infants fed breast milk compared with formula. METHODS Subjects were healthy infants presenting for routine 2-month clinic visit and strictly fed either breast milk or standard infant formula. Urinary hepcidin and ferritin levels (reflective of serum levels) were analyzed and compared across the breast milk- and formula-fed groups. The relationship between urinary hepcidin and ferritin levels within each group was analyzed by linear regression. RESULTS Twenty-four subjects were enrolled in each group. The median urinary hepcidin level in the group fed breast milk was lower than in formula (130 vs. 359 ng hepcidin/mg creatinine, p < 0.05). However, the median ferritin levels were similar (2.1 vs. 1.9 ng/mL). Within each group, urinary hepcidin correlated with urinary ferritin (r = 0.5, p < 0.05 for each group); however, the slope of the regression line was lower in the group fed breast milk compared with formula (p < 0.005). CONCLUSION Despite similar urinary ferritin levels, urinary hepcidin levels are lower at 2 months in infants fed breast milk compared with infants fed formula. Hepcidin levels correlate with iron status in each group; however, this relationship is relatively dampened in infants fed breast milk. We speculate that relatively lower infant hepcidin contributes to the superior efficiency of iron absorption from breast milk.
Collapse
Affiliation(s)
- Rebecca Verhaeghe
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA
| | - Kandie George
- Pediatrics/Neonatology, Albert Einstein University/Montefiore, Bronx, New York, USA
| | | | | | - Diane McCann
- Intrinsic LifeSciences, La Jolla, California, USA
| | - Nermi Parrow
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA
| | - Elisa Pincus
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA
| | - Tomas Havranek
- Pediatrics/Neonatology, Albert Einstein University/Montefiore, Bronx, New York, USA
| | - Robert E Fleming
- Pediatrics/Neonatology, Saint Louis University, St. Louis, Missouri, USA,
| |
Collapse
|
40
|
Beghetti I, Biagi E, Martini S, Brigidi P, Corvaglia L, Aceti A. Human Milk's Hidden Gift: Implications of the Milk Microbiome for Preterm Infants' Health. Nutrients 2019; 11:E2944. [PMID: 31817057 PMCID: PMC6950588 DOI: 10.3390/nu11122944] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022] Open
Abstract
Breastfeeding is considered the gold standard for infants' nutrition, as mother's own milk (MOM) provides nutritional and bioactive factors functional to optimal development. Early life microbiome is one of the main contributors to short and long-term infant health status, with the gut microbiota (GM) being the most studied ecosystem. Some human milk (HM) bioactive factors, such as HM prebiotic carbohydrates that select for beneficial bacteria, and the specific human milk microbiota (HMM) are emerging as early mediators in the relationship between the development of GM in early life and clinical outcomes. The beneficial role of HM becomes even more crucial for preterm infants, who are exposed to significant risks of severe infection in early life as well as to adverse short and long-term outcomes. When MOM is unavailable or insufficient, donor human milk (DHM) constitutes the optimal nutritional choice. However, little is known about the specific effect of DHM on preterm GM and its potential functional implication on HMM. The purpose of this narrative review is to summarize recent findings on HMM origin and composition and discuss the role of HMM on infant health and development, with a specific focus on preterm infants.
Collapse
Affiliation(s)
- Isadora Beghetti
- Neonatal Intensive Care Unit, AOU Bologna, Department of Medical and Surgical Sciences (DIMEC), University of Bologna. via Massarenti, 11-40138 Bologna, Italy; (I.B.); (S.M.); (L.C.)
| | - Elena Biagi
- Unit of Molecular Ecology of Health, Department of Pharmacy and Biotechnology (FABIT), University of Bologna. Via Belmeloro, 6–40126 Bologna, Italy; (E.B.); (P.B.)
| | - Silvia Martini
- Neonatal Intensive Care Unit, AOU Bologna, Department of Medical and Surgical Sciences (DIMEC), University of Bologna. via Massarenti, 11-40138 Bologna, Italy; (I.B.); (S.M.); (L.C.)
| | - Patrizia Brigidi
- Unit of Molecular Ecology of Health, Department of Pharmacy and Biotechnology (FABIT), University of Bologna. Via Belmeloro, 6–40126 Bologna, Italy; (E.B.); (P.B.)
| | - Luigi Corvaglia
- Neonatal Intensive Care Unit, AOU Bologna, Department of Medical and Surgical Sciences (DIMEC), University of Bologna. via Massarenti, 11-40138 Bologna, Italy; (I.B.); (S.M.); (L.C.)
| | - Arianna Aceti
- Neonatal Intensive Care Unit, AOU Bologna, Department of Medical and Surgical Sciences (DIMEC), University of Bologna. via Massarenti, 11-40138 Bologna, Italy; (I.B.); (S.M.); (L.C.)
| |
Collapse
|
41
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
42
|
Benmoussa A, Laugier J, Beauparlant CJ, Lambert M, Droit A, Provost P. Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. J Dairy Sci 2019; 103:16-29. [PMID: 31677838 DOI: 10.3168/jds.2019-16880] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small gene-regulatory noncoding RNA that are highly enriched in cow milk. They are encapsulated in different extracellular vesicle (EV) subsets that protect them from the extracellular milieu and the harsh conditions of the gastrointestinal tract during digestion. Here, we isolated pellets enriched in 4 different EV subsets, via differential ultracentrifugation of commercial cow milk: 12,000 × g (P12K), 35,000 × g (P35K), 70,000 × g (P70K), and 100,000 × g (P100K). Small RNA sequencing (sRNA-Seq) analyses revealed an unprecedented level of diversity in the complete miRNA repertoire and features of unfractionated cow milk and derived EV subsets. Although 5 miRNA sequences represented more than 50% of all miRNAs, milk EV exhibited heterogeneous content of miRNAs and isomeric variants (termed isomiR): P100K EV were enriched in reference miRNA sequences, and P12K and P35K EV in related isomiR. Incubation of milk EV with human cultured HeLa cells led to cellular enrichment in miRNA miR-223, which was concomitant with decreased expression of a reporter gene placed under the control of miR-223, thereby demonstrating the functionality of miR-223. These results suggest that cow milk EV may transfer their miRNAs to human cells and regulate recipient cell gene expression programming in a manner as complex as that of their miRNA transcriptome. The biological activity and relevance of the different milk EV subsets and bioactive mediators, including small noncoding RNA, in health and disease, warrants further investigation.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Jonathan Laugier
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Charles Joly Beauparlant
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Endocrinologie - Néphrologie du Centre de recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, Québec, Canada
| | - Marine Lambert
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada
| | - Arnaud Droit
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Endocrinologie - Néphrologie du Centre de recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, Québec, Canada
| | - Patrick Provost
- Centre Hospitalier Universitaire de Québec Research Center/Centre Hospitalier de l'Université Laval, Quebec G1V 4G2, Canada; Department of Microbiology, Infectious Diseases and Immunology and Faculty of Medicine, Université Laval, Quebec G1V 0A6, Canada.
| |
Collapse
|
43
|
Johnson HM, Mitchell KB. Breastfeeding and Breast Cancer: Managing Lactation in Survivors and Women with a New Diagnosis. Ann Surg Oncol 2019; 26:3032-3039. [PMID: 31342385 DOI: 10.1245/s10434-019-07596-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Supporting breastfeeding is a global health priority, yet few clinical guidelines exist to guide surgical oncologists in managing lactation during or after breast cancer treatment. METHODS The literature was reviewed to identify evidence-based strategies for managing lactation during multidisciplinary breast cancer treatment or among breast cancer survivors. RESULTS The majority of the evidence is from observational studies, with some higher levels of evidence, including systematic reviews and meta-analyses. Several significant gaps in knowledge remain. CONCLUSIONS This review serves as a comprehensive resource of evidence-based recommendations for managing lactation in breast cancer survivors and breastfeeding women with a new breast cancer diagnosis.
Collapse
Affiliation(s)
- Helen M Johnson
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Katrina B Mitchell
- Breast Surgical Oncology, Presbyterian Healthcare Services - MD Anderson Cancer Network, Albuquerque, NM, USA.
| |
Collapse
|
44
|
Soboleva SE, Sedykh SE, Alinovskaya LI, Buneva VN, Nevinsky GA. Cow Milk Lactoferrin Possesses Several Catalytic Activities. Biomolecules 2019; 9:biom9060208. [PMID: 31146486 PMCID: PMC6627417 DOI: 10.3390/biom9060208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Lactoferrin (LF) is a Fe3+-binding glycoprotein, that was first recognized in milk and then in other epithelial secretions and barrier body fluids to which many different functions have been attributed to LF including protection from iron-induced lipid peroxidation, immunomodulation, cell growth regulation, DNA and RNA binding, as well as transcriptional activation, еtс. The polyfunctional physiological role of LF is still unclear, but it has been suggested to be responsible for primary defense against microbial and viral infections. It was shown previously that human milk LF possesses several enzymatic activities: DNase, RNase, ATPase, phosphatase, and amylase. Analysis of human, cow, horse, buffalo and camel LF showed a highly conserved three-dimensional (3D) structure including only detail differences in the species. Recently, it was shown that similar to human cow LF possesses DNase and RNase activities. Using different methods here we have shown for the first time that LFs from the milk of seven cows of different breeds possess high peroxidase, protease, amylase, protease, and phosphatase activities. Protease activity of cow LFs was activated by Mg2+ and Ca2+ ions. In contrast to human LFs, ATPase activity was revealed only in three of seven cow LF preparations. The discovery that LF possesses these activities may contribute to understanding the multiple physiological functions of this extremely polyfunctional protein including its protective role against microbial and viral infections.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Ludmila I Alinovskaya
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
45
|
Gimeno-Alcañiz JV, Collado MC. Impact of human milk on the transcriptomic response of fetal intestinal epithelial cells reveals expression changes of immune-related genes. Food Funct 2019; 10:140-150. [PMID: 30499575 PMCID: PMC6350622 DOI: 10.1039/c8fo01107a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human milk, the best food for infants, is a dynamic and complex fluid that directly influences the immune system and microbiota establishment.
Human milk, the best food for infants, is a dynamic and complex fluid that directly influences the immune system and microbiota establishment. The protective role of human milk is well known although the mechanisms behind it still need to be uncovered. This study aimed to characterize the impact of human milk in the immature intestine of newborns by analyzing the global transcriptomic response of the FHs 74 int cell line (ATCC CCL-241). The expression of intestinal keratins and other genes with a well-annotated intestinal or epithelial function validated FHs 74 int derived from the fetal small intestine as a model of the intestinal epithelium of newborns. Cells exposed to skimmed human milk showed seventeen differentially expressed genes, most of them up-regulated, including four chemokine genes (CXCL1, CXCL2, CXCL3 and CXCL10) and other immune-related genes. qRT-PCR and ELISA analysis confirmed the microarray data and indicated a different pattern of expression upon milk exposure in FHs 74 int as compared to the adult tumorigenic Caco-2 cell line. The evaluation of the functional significance of these transcriptomic changes reveals that human milk exposure may contribute to the regulation of the inflammatory response in the intestine during the perinatal period, which is characterized by the immaturity of the immune system and a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- José V Gimeno-Alcañiz
- Instituto de agroquímica y tecnología de alimentos (IATA-CSIC), Department of Biotechnology, Avenida Agustín Escardino 7, 46980 Paterna, Spain.
| | | |
Collapse
|
46
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
47
|
Soboleva SE, Zakharova OD, Sedykh SE, Ivanisenko NV, Buneva VN, Nevinsky GA. DNase and RNase activities of fresh cow milk lactoferrin. J Mol Recognit 2019; 32:e2777. [DOI: 10.1002/jmr.2777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Svetlana E. Soboleva
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Ol'ga D. Zakharova
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Sergey E. Sedykh
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Nikita V. Ivanisenko
- Siberian Division of Russian Academy of SciencesInstitute of Cytology and Genetics Novosibirsk Russia
| | - Valentina N. Buneva
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Georgy A. Nevinsky
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| |
Collapse
|
48
|
Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being. Nutrients 2019; 11:nu11020306. [PMID: 30717166 PMCID: PMC6413137 DOI: 10.3390/nu11020306] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/19/2023] Open
Abstract
Human milk not only has nutritional value, but also provides a wide range of biologically active molecules, which are adapted to meet the needs of newborns and infants. Mother’s milk is a source of sialylated oligosaccharides and glycans that are attached to proteins and lipids, whose concentrations and composition are unique. Sialylated human milk glycoconjugates and oligosaccharides enrich the newborn immature immune system and are crucial for their proper development and well-being. Some of the milk sialylated oligosaccharide structures can locally exert biologically active effects in the newborn’s and infant’s gut. Sialylated molecules of human milk can be recognized and bound by sialic acid-dependent pathogens and inhibit their adhesion to the epithelial cells of newborns and infants. A small amount of intact sialylated oligosaccharides can be absorbed from the intestine and remain in the newborn’s circulation in concentrations high enough to modulate the immunological system at the cellular level and facilitate proper brain development during infancy. Conclusion: The review summarizes the current state of knowledge on sialylated human milk oligosaccharides and glycoconjugates, discusses the significance of sialylated structures of human milk in newborn protection and development, and presents the advantages of human milk over infant formula.
Collapse
|
49
|
Giromini C, Cheli F, Rebucci R, Baldi A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J Dairy Sci 2018; 102:929-942. [PMID: 30591343 DOI: 10.3168/jds.2018-15163] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.
Collapse
Affiliation(s)
- Carlotta Giromini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134.
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy 20134
| |
Collapse
|
50
|
Choi HJ, Chung TW, Choi HJ, Han JH, Choi JH, Kim CH, Ha KT. Increased α2-6 sialylation of endometrial cells contributes to the development of endometriosis. Exp Mol Med 2018; 50:1-12. [PMID: 30542051 PMCID: PMC6290765 DOI: 10.1038/s12276-018-0167-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-β1 (TGF-β1) increased adhesion of endometrial cells to the mesothelium through induction of α2-6 sialylation. The expression levels of β-galactoside α2-6 sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of TGF-βRI/SMAD2/3 signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a NeuAcα2-6Galβ1-4GlcNAc injection diminished TGF-β1-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by TGF-β1 promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks. A growth factor involved in cell differentiation and proliferation contributes to the development of endometriosis by stimulating a protein modification mechanism that increases the adhesiveness of cells lining the uterus. Endometriosis results when these cells, known as endometrial cells, start growing outside the uterus causing pelvic pain, heavy periods and, in some cases, infertility. Ki-Tae Ha at Pusan National University, Yangsan, South Korea, and colleagues found that transforming growth factor-β1 signaling promoted the addition of sialic acid sugar units onto endometrial cell surface proteins. This modification enhanced the adhesion of endometrial cells to mesothelial cells, which line other internal organs, and the formation of endometriosis lesions in mice. Preventing sialic acid binding to its mesothelial cell receptor reduced lesion formation. The findings reveal a new molecular mechanism underlying endometriosis and a potential treatment strategy.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Tae-Wook Chung
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hee-Jung Choi
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do, 16419, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea. .,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea. .,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|