1
|
Vergères G, Bochud M, Jotterand Chaparro C, Moretti D, Pestoni G, Probst-Hensch N, Rezzi S, Rohrmann S, Brück WM. The future backbone of nutritional science: integrating public health priorities with system-oriented precision nutrition. Br J Nutr 2024; 132:651-666. [PMID: 39320518 PMCID: PMC11531940 DOI: 10.1017/s0007114524001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 09/26/2024]
Abstract
Adopting policies that promote health for the entire biosphere (One Health) requires human societies to transition towards a more sustainable food supply as well as to deepen the understanding of the metabolic and health effects of evolving food habits. At the same time, life sciences are experiencing rapid and groundbreaking technological developments, in particular in laboratory analytics and biocomputing, placing nutrition research in an unprecedented position to produce knowledge that can be translated into practice in line with One Health policies. In this dynamic context, nutrition research needs to be strategically organised to respond to these societal expectations. One key element of this strategy is to integrate precision nutrition into epidemiological research. This position article therefore reviews the recent developments in nutrition research and proposes how they could be integrated into cohort studies, with a focus on the Swiss research landscape specifically.
Collapse
Affiliation(s)
| | - Murielle Bochud
- Unisanté, University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Corinne Jotterand Chaparro
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Diego Moretti
- Nutrition Group, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Zurich, Switzerland
| | - Giulia Pestoni
- Nutrition Group, Swiss Distance University of Applied Sciences (FFHS)/University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Zurich, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Epalinges, Switzerland
| | - Sabine Rohrmann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zürich, Switzerland
| | - Wolfram M. Brück
- Institute for Life Sciences, University of Applied Sciences Western Switzerland Valais-Wallis, Sion, Switzerland
| |
Collapse
|
2
|
Herrera-Martínez AD, Navas Romo A, León-Idougourram S, Muñoz-Jiménez C, Rodríguez-Alonso R, Manzano García G, Camacho-Cardenosa M, Casado-Diaz A, Gálvez-Moreno MÁ, Molina Puertas MJ, Jurado Roger A. Systemic Inflammation in Oncologic Patients Undergoing Systemic Treatment and Receiving Whey Protein-Based Nutritional Support. Int J Mol Sci 2024; 25:5821. [PMID: 38892006 PMCID: PMC11171732 DOI: 10.3390/ijms25115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
There is increasing evidence about the role of inflammation in sarcopenia and tumor progression; thus, its modulation would represent a valuable strategy for improving clinical outcomes in patients with cancer. Several studies have reported that whey protein has significant anti-inflammatory and antioxidant characteristics in humans. We aimed to evaluate the effects of whey protein-based oral nutritional support on circulating cytokines in patients with solid tumors undergoing systemic treatment. Forty-six patients with solid tumors of different origin and undergoing systemic treatment were evaluated. Nutritional support with two daily whey protein-based oral supplements was administered. Circulating levels of IL-6, IL-8, IL-10, MCP-1 and IP-10 were determined. Nutritional evaluation included anthropometric, instrumental and biochemical parameters. Over 63% of the evaluated patients underwent surgery, 56.5% required chemotherapy and almost 50% received combined treatment. Patients with resected primary tumor presented with lower baseline IL-6 (p < 0.05) and IP-10 (p < 0.001); after three months of nutritional support, they presented with lower IL-8 (p < 0.05) and tended to present lower IL-6 and IP-10 (p = 0.053 and 0.067, respectively). Significant positive correlations between circulating cytokines, C-reactive protein and ferritin were observed; similarly, negative correlations with anthropometric and biochemical nutritional parameters were noticed (p < 0.05). We did not observe significant changes in circulating cytokine levels (IL-6, IL-8, IL-10, MCP-1 and IP-10) in patients with cancer undergoing systemic treatment after three months of nutritional support with whey protein-based oral supplements. According to a univariate analysis in our cohort, circulating IL-8 was associated with mortality in these patients, additionally, MCP-1 and IP-10 tended to correlate; but an age- and sex-adjusted multivariate analysis revealed that only baseline MCP-1 was significantly associated with mortality (OR 1.03 (95% CI: 1.00-1.05)). In conclusion, surgery of the primary solid tumor and combination treatment allow significant reduction in circulating cytokine levels, which remained stable while patients received nutritional support with whey protein-based oral supplements over three months. The role of MCP-1 as an independent factor for mortality in these patients should be further evaluated.
Collapse
Affiliation(s)
- Aura D. Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Ana Navas Romo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Clinical Immunology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Soraya León-Idougourram
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Concepción Muñoz-Jiménez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Rosa Rodríguez-Alonso
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Medical Oncology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Gregorio Manzano García
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Marta Camacho-Cardenosa
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
| | - Antonio Casado-Diaz
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08003 Madrid, Spain
| | - María Ángeles Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - María José Molina Puertas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - Aurora Jurado Roger
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004 Córdoba, Spain (S.L.-I.); (C.M.-J.); (M.C.-C.); (M.J.M.P.)
- Clinical Immunology Service, Reina Sofia University Hospital, 14004 Córdoba, Spain
| |
Collapse
|
3
|
Tagliamonte S, Puhlmann ML, De Filippis F, Guerville M, Ercolini D, Vitaglione P. Relationships between diet and gut microbiome in an Italian and Dutch cohort: does the dietary protein to fiber ratio play a role? Eur J Nutr 2024; 63:741-750. [PMID: 38151533 PMCID: PMC10948488 DOI: 10.1007/s00394-023-03308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE To investigate the relationships between the habitual diet, the protein to fiber ratio (P/F), and the gut microbiome in one Italian and one Dutch cohort of healthy subjects consuming an omnivore diet. METHODS The Italian cohort included 19 males (M_IT, BMI 25.2 ± 0.72 kg/m2, age 25.4 ± 0.96 years) and 20 females (F_IT, BMI 23.9 ± 0.81 kg/m2, age 23.8 ± 0.54 years); the Dutch cohort included 30 females (F_NL, BMI: 23.9 ± 0.81 kg/m2, age: 23.8 ± 0.54 years). Individual diets were recorded through Food Frequency Questionnaires and analyzed to assess the nutrient composition. Gut microbiome was assessed in fecal samples. RESULTS M_IT consumed higher levels of proteins than F_NL and F_IT, whereas dietary fiber intake did not differ among groups. Data showed that consumption of plant protein to animal protein (PP/AP) and PP to total proteins ratio can determine a differentiation of F_NL more than the absolute amount of dietary fiber. Conversely, the protein to fiber (P/F) and AP to total proteins better characterized M_IT. M_IT harbored the highest abundance of proteolytic microorganisms and the lowest microbial gene richness. Conversely, F_NL had more fiber-degrading microorganisms like Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, Roseburia sp., Coprococcus eutactus and Parabacteroides along with the highest number of genes encoding carbohydrate-active enzymes and gene richness. It was predicted that by each unit decrease in the P/F a 3% increase in gene richness occurred. CONCLUSION Study findings suggested that dietary P/F, rather than the absolute amount of dietary fiber, could contribute to the shaping of the microbiome towards a more proteolytic or fiber-degrading gut ecosystem. CLINICALTRIALS gov Identifier NCT04205045-01-10-2018, retrospectively registered. Dutch Trial Register NTR7531-05-10-2018.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, Italy
| | - Marie-Luise Puhlmann
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, Italy
- Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy
| | - Mathilde Guerville
- Nutrition Department, Lactalis Research and Development, 35240, Retiers, France
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, Italy
- Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, Italy.
- Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy.
| |
Collapse
|
4
|
Turkia J, Schwab U, Hautamäki V. Inferring personal intake recommendations of phosphorous and potassium for end-stage renal failure patients by simulating with Bayesian hierarchical multivariate model. PLoS One 2024; 19:e0291153. [PMID: 38319948 PMCID: PMC10846746 DOI: 10.1371/journal.pone.0291153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Most end-stage renal disease (ESRD) patients face a risk of malnutrition, partly due to dietary restrictions on phosphorous and, in some cases, potassium intake. These restrictions aim to regulate plasma phosphate and potassium concentrations and prevent the adverse effects of hyperphosphatemia or hyperkalemia. However, individual responses to nutrition are known to vary, highlighting the need for personalized recommendations rather than relying solely on general guidelines. In this study, our objective was to develop a Bayesian hierarchical multivariate model that estimates the individual effects of nutrients on plasma concentrations and to present a recommendation algorithm that utilizes this model to infer personalized dietary intakes capable of achieving normal ranges for all considered concentrations. Considering the limited research on the reactions of ESRD patients, we collected dietary intake data and corresponding laboratory analyses from a cohort of 37 patients. The collected data were used to estimate the common hierarchical model, from which personalized models of the patients' diets and individual reactions were extracted. The application of our recommendation algorithm revealed substantial variations in phosphorus and potassium intakes recommended for each patient. These personalized recommendations deviate from the general guidelines, suggesting that a notably richer diet may be proposed for certain patients to mitigate the risk of malnutrition. Furthermore, all the participants underwent either hospital, home, or peritoneal dialysis treatments. We explored the impact of treatment type on nutritional reactions by incorporating it as a nested level in the hierarchical model. Remarkably, this incorporation improved the fit of the nutritional effect model by a notable reduction in the normalized root mean square error (NRMSE) from 0.078 to 0.003. These findings highlight the potential for personalized dietary modifications to optimize nutritional status, enhance patient outcomes, and mitigate the risk of malnutrition in the ESRD population.
Collapse
Affiliation(s)
- Jari Turkia
- School of Computing, University of Eastern Finland, Joensuu, Finland
- CGI Suomi Oy, Joensuu, Finland
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Wellbeing Services County of North Savo, Kuopio University Hospital, Kuopio, Finland
| | - Ville Hautamäki
- School of Computing, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
5
|
Guizar-Heredia R, Noriega LG, Rivera AL, Resendis-Antonio O, Guevara-Cruz M, Torres N, Tovar AR. A New Approach to Personalized Nutrition: Postprandial Glycemic Response and its Relationship to Gut Microbiota. Arch Med Res 2023; 54:176-188. [PMID: 36990891 DOI: 10.1016/j.arcmed.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
A prolonged and elevated postprandial glucose response (PPGR) is now considered a main factor contributing for the development of metabolic syndrome and type 2 diabetes, which could be prevented by dietary interventions. However, dietary recommendations to prevent alterations in PPGR have not always been successful. New evidence has supported that PPGR is not only dependent of dietary factors like the content of carbohydrates, or the glycemic index of the foods, but is also dependent on genetics, body composition, gut microbiota, among others. In recent years, continuous glucose monitoring has made it possible to establish predictions on the effect of different dietary foods on PPGRs through machine learning methods, which use algorithms that integrate genetic, biochemical, physiological and gut microbiota variables for identifying associations between them and clinical variables with aim of personalize dietary recommendations. This has allowed to improve the concept of personalized nutrition, since it is now possible to recommend through these predictions specific dietary foods to prevent elevated PPGRs that are highly variable among individuals. Additional components that can enrich the predictive algorithms are findings of nutrigenomics, nutrigenetics and metabolomics. Thus, this review aims to summarize the evidence of the components that integrate personalized nutrition focused on the prevention of PPGRs, and to show the future of personalized nutrition by laying the groundwork for the development of individualized dietary management and its impact on the improvement of metabolic diseases.
Collapse
|
6
|
Kosić M, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Tušek AJ. Analysis of Hepatic Lipid Metabolism Model: Simulation and Non-Stationary Global Sensitivity Analysis. Nutrients 2022; 14:nu14234992. [PMID: 36501022 PMCID: PMC9740596 DOI: 10.3390/nu14234992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Lipid metabolism is a complex process and it is extremely helpful to simulate its performance with different models that explain all the biological processes that comprise it, which then enables its better understanding as well as understanding the kinetics of the process itself. Typically, kinetic parameters are obtained from a number of sources under specific experimental conditions, and they are a source of uncertainty. Sensitivity analysis is a useful technique for controlling the uncertainty of model parameters. It evaluates a model's dependence on its input variables. In this work, hepatic lipid metabolism was mathematically simulated and analyzed. Simulations of the model were performed using different initial plasma glucose (GB) and plasma triacylglyceride (TAG) concentrations according to proposed menus for different meals (breakfast, lunch, snack and dinner). A non-stationary Fourier amplitude sensitivity test (FAST) was applied to analyze the effect of 78 kinetic parameters on 24 metabolite concentrations and 45 reaction rates of the biological part of the hepatic lipid metabolism model at five time points (tf = 10, 50, 100, 250 and 500 min). This study examined the total influence of input parameter uncertainty on the variance of metabolic model predictions. The majority of the propagated uncertainty is due to the interactions of numerous factors rather than being linear from one parameter to one result. Obtained results showed differences in the model control regarding the different initial concentrations and also the changes in the model control over time. The aforementioned knowledge enables dietitians and physicians, working with patients who need to regulate fat metabolism due to illness and/or excessive body mass, to better understand the problem.
Collapse
|
7
|
Dolci A, Vanhaecke T, Qiu J, Ceccato R, Arboretti R, Salmaso L. Personalized prediction of optimal water intake in adult population by blended use of machine learning and clinical data. Sci Rep 2022; 12:19692. [PMID: 36385111 PMCID: PMC9669042 DOI: 10.1038/s41598-022-21869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence suggests that sustained concentrated urine contributes to chronic metabolic and kidney diseases. Recent results indicate that a daily urinary concentration of 500 mOsm/kg reflects optimal hydration. This study aims at providing personalized advice for daily water intake considering personal intrinsic (age, sex, height, weight) and extrinsic (food and fluid intakes) characteristics to achieve a target urine osmolality (UOsm) of 500 mOsm/kg using machine learning and optimization algorithms. Data from clinical trials on hydration (four randomized and three non-randomized trials) were analyzed. Several machine learning methods were tested to predict UOsm. The predictive performance of the developed algorithm was evaluated against current dietary guidelines. Features linked to urine production and fluid consumption were listed among the most important features with relative importance values ranging from 0.10 to 0.95. XGBoost appeared the most performing approach (Mean Absolute Error (MAE) = 124.99) to predict UOsm. The developed algorithm exhibited the highest overall correct classification rate (85.5%) versus that of dietary guidelines (77.8%). This machine learning application provides personalized advice for daily water intake to achieve optimal hydration and may be considered as a primary prevention tool to counteract the increased incidence of chronic metabolic and kidney diseases.
Collapse
Affiliation(s)
- Alberto Dolci
- grid.433367.60000 0001 2308 1825Health, Hydration and Nutrition Science Department, Danone Research, Route Départementale 128, 91767 Palaiseau, France
| | - Tiphaine Vanhaecke
- grid.433367.60000 0001 2308 1825Health, Hydration and Nutrition Science Department, Danone Research, Route Départementale 128, 91767 Palaiseau, France
| | - Jiqiong Qiu
- grid.433367.60000 0001 2308 1825Health, Hydration and Nutrition Science Department, Danone Research, Route Départementale 128, 91767 Palaiseau, France
| | - Riccardo Ceccato
- grid.5608.b0000 0004 1757 3470Department of Management and Engineering, University of Padova, Vicenza, Italy
| | - Rosa Arboretti
- grid.5608.b0000 0004 1757 3470Department of Civil, Environmental and Architectural Engineering, University of Padova, Padua, Italy
| | - Luigi Salmaso
- grid.5608.b0000 0004 1757 3470Department of Management and Engineering, University of Padova, Vicenza, Italy
| |
Collapse
|
8
|
Renna M, D’Imperio M, Maggi S, Serio F. Soilless biofortification, bioaccessibility, and bioavailability: Signposts on the path to personalized nutrition. Front Nutr 2022; 9:966018. [PMID: 36267903 PMCID: PMC9576840 DOI: 10.3389/fnut.2022.966018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Propelled by an ever-growing awareness about the importance of following dietary recommendations meeting specific biological requirements linked to a person health status, interest in personalized nutrition is on the rise. Soilless biofortification of vegetables has opened the door to the potential for adapting vegetable production to specific dietary requirements. The evolution of vegetables biofortification toward tailored food is examined focusing on some specific categories of people in a context of personalized nutrition instead to simple describe developments in vegetables biofortification with reference to the single element or compound not adequately present in the daily diet. The concepts of bioavailability and bioaccessibility as a useful support tool for the precision biofortification were detailed. Key prospects for challenges ahead aiming to combine product quality and sustainable are also highlighted. Hydroponically cultivation of vegetables with low potassium content may be effective to obtain tailored leafy and fruit vegetable products for people with impaired kidney function. Simultaneous biofortification of calcium, silicon, and boron in the same vegetable to obtain vegetable products useful for bone health deserve further attention. The right dosage of the lithium in the nutrient solution appears essential to obtain tailored vegetables able to positively influence mental health in groups of people susceptible to mental illness. Modulate nitrogen fertilization may reduce or enhance nitrate in vegetables to obtain tailored products, respectively, for children and athletes. Future research are needed to produce nickel-free vegetable products for individuals sensitized to nickel. The multidisciplinary approach toward tailored foods is a winning one and must increasingly include a synergy between agronomic, biological, and medical skills.
Collapse
Affiliation(s)
- Massimiliano Renna
- Department of Soil and Food Science, University of Bari Aldo Moro, Bari, Italy
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Massimiliano D’Imperio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Stefania Maggi
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
| | - Francesco Serio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
9
|
Shyam S, Lee KX, Tan ASW, Khoo TA, Harikrishnan S, Lalani SA, Ramadas A. Effect of Personalized Nutrition on Dietary, Physical Activity, and Health Outcomes: A Systematic Review of Randomized Trials. Nutrients 2022; 14:4104. [PMID: 36235756 PMCID: PMC9570623 DOI: 10.3390/nu14194104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Personalized nutrition is an approach that tailors nutrition advice to individuals based on an individual's genetic information. Despite interest among scholars, the impact of this approach on lifestyle habits and health has not been adequately explored. Hence, a systematic review of randomized trials reporting on the effects of personalized nutrition on dietary, physical activity, and health outcomes was conducted. A systematic search of seven electronic databases and a manual search resulted in identifying nine relevant trials. Cochrane's Risk of Bias was used to determine the trials' methodological quality. Although the trials were of moderate to high quality, the findings did not show consistent benefits of personalized nutrition in improving dietary, behavioral, or health outcomes. There was also a lack of evidence from regions other than North America and Europe or among individuals with diseases, affecting the generalizability of the results. Furthermore, the complex relationship between genes, interventions, and outcomes may also have contributed to the scarcity of positive findings. We have suggested several areas for improvement for future trials regarding personalized nutrition.
Collapse
Affiliation(s)
- Sangeetha Shyam
- Centre for Translational Research, IMU Institute for Research and Development (IRDI), International Medical University (IMU), Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, 43201 Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Sant Joan University Hospital in Reus, 43204 Reus, Spain
- Consorcio CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ke Xin Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Angeline Shu Wei Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Tien An Khoo
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | | | - Shehzeen Alnoor Lalani
- Dalhousie Medicine DMNS, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4R2, Canada
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
10
|
de Hoogh IM, van der Kamp JW, Wopereis S. The potential of personalized nutrition for improving wholegrain consumption. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
de Hoogh IM, Reinders MJ, Doets EL, Hoevenaars FPM, Top JL. Design issues in personalized nutrition advice systems (Preprint). J Med Internet Res 2022; 25:e37667. [PMID: 36989039 PMCID: PMC10131983 DOI: 10.2196/37667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
The current health status of the general public can substantially benefit from a healthy diet. Using a personalized approach to initiate healthy dietary behavior seems to be a promising strategy, as individuals differ in terms of health status, subsequent dietary needs, and their desired behavior change support. However, providing personalized advice to a wide audience over a long period is very labor-intensive. This bottleneck can possibly be overcome by digitalizing the process of creating and providing personalized advice. An increasing number of personalized advice systems for different purposes is becoming available in the market, ranging from systems providing advice about just a single parameter to very complex systems that include many variables characterizing each individual situation. Scientific background is often lacking in these systems. In designing a personalized nutrition advice system, many design questions need to be answered, ranging from the required input parameters and accurate measurement methods (sense), type of modeling techniques to be used (reason), and modality in which the personalized advice is provided (act). We have addressed these topics in this viewpoint paper, and we have demonstrated the feasibility of setting up an infrastructure for providing personalized dietary advice based on the experience of 2 practical applications in a real-life setting.
Collapse
Affiliation(s)
- Iris M de Hoogh
- Research Group Microbiology & Systems Biology, Netherlands Organization for Applied Scientific Research, Leiden, Netherlands
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Machiel J Reinders
- Wageningen Economic Research, Wageningen University & Research, Den Haag, Netherlands
| | - Esmée L Doets
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Femke P M Hoevenaars
- Research Group Microbiology & Systems Biology, Netherlands Organization for Applied Scientific Research, Leiden, Netherlands
| | - Jan L Top
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
12
|
Taylor JC, Allman-Farinelli M, Chen J, Gauglitz JM, Hamideh D, Jankowska MM, Johnson AJ, Rangan A, Spruijt-Metz D, Yang JA, Hekler E. Perspective: A Framework for Addressing Dynamic Food Consumption Processes. Adv Nutr 2022; 13:992-1008. [PMID: 34999744 PMCID: PMC9340970 DOI: 10.1093/advances/nmab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
The study of food consumption, diet, and related concepts is motivated by diverse goals, including understanding why food consumption impacts our health, and why we eat the foods we do. These varied motivations can make it challenging to define and measure consumption, as it can be specified across nearly infinite dimensions-from micronutrients to carbon footprint to food preparation. This challenge is amplified by the dynamic nature of food consumption processes, with the underlying phenomena of interest often based on the nature of repeated interactions with food occurring over time. This complexity underscores a need to not only improve how we measure food consumption but is also a call to support theoreticians in better specifying what, how, and why food consumption occurs as part of processes, as a prerequisite step to rigorous measurement. The purpose of this Perspective article is to offer a framework, the consumption process framework, as a tool that researchers in a theoretician role can use to support these more robust definitions of consumption processes. In doing so, the framework invites theoreticians to be a bridge between practitioners who wish to measure various aspects of food consumption and methodologists who can develop measurement protocols and technologies that can support measurement when consumption processes are clearly defined. In the paper we justify the need for such a framework, introduce the consumption process framework, illustrate the framework via a use case, and discuss existing technologies that enable the use of this framework and, by extension, more rigorous study of consumption. This consumption process framework demonstrates how theoreticians could fundamentally shift how food consumption is defined and measured towards more rigorous study of what, how, and why food is eaten as part of dynamic processes and a deeper understanding of linkages between behavior, food, and health.
Collapse
Affiliation(s)
| | | | - Juliana Chen
- Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Julia M Gauglitz
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
| | - Dina Hamideh
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
| | - Marta M Jankowska
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Abigail J Johnson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Anna Rangan
- Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Donna Spruijt-Metz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
| | - Jiue-An Yang
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Eric Hekler
- The Design Lab, University of California, San Diego, San Diego, CA, USA,Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
13
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
van den Brink W, Bloem R, Ananth A, Kanagasabapathi T, Amelink A, Bouwman J, Gelinck G, van Veen S, Boorsma A, Wopereis S. Digital Resilience Biomarkers for Personalized Health Maintenance and Disease Prevention. Front Digit Health 2021; 2:614670. [PMID: 34713076 PMCID: PMC8521930 DOI: 10.3389/fdgth.2020.614670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Health maintenance and disease prevention strategies become increasingly prioritized with increasing health and economic burden of chronic, lifestyle-related diseases. A key element in these strategies is the empowerment of individuals to control their health. Self-measurement plays an essential role in achieving such empowerment. Digital measurements have the advantage of being measured non-invasively, passively, continuously, and in a real-world context. An important question is whether such measurement can sensitively measure subtle disbalances in the progression toward disease, as well as the subtle effects of, for example, nutritional improvement. The concept of resilience biomarkers, defined as the dynamic evaluation of the biological response to an external challenge, has been identified as a viable strategy to measure these subtle effects. In this review, we explore the potential of integrating this concept with digital physiological measurements to come to digital resilience biomarkers. Additionally, we discuss the potential of wearable, non-invasive, and continuous measurement of molecular biomarkers. These types of innovative measurements may, in the future, also serve as a digital resilience biomarker to provide even more insight into the personal biological dynamics of an individual. Altogether, digital resilience biomarkers are envisioned to allow for the measurement of subtle effects of health maintenance and disease prevention strategies in a real-world context and thereby give personalized feedback to improve health.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robbert Bloem
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Adithya Ananth
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Thiru Kanagasabapathi
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Arjen Amelink
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Gerwin Gelinck
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Sjaak van Veen
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Andre Boorsma
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
15
|
Kirsch-Volders M, Fenech M. Inflammatory cytokine storms severity may be fueled by interactions of micronuclei and RNA viruses such as COVID-19 virus SARS-CoV-2. A hypothesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108395. [PMID: 34893160 PMCID: PMC8479308 DOI: 10.1016/j.mrrev.2021.108395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
In this review we bring together evidence that (i) RNA viruses are a cause of chromosomal instability and micronuclei (MN), (ii) those individuals with high levels of lymphocyte MN have a weakened immune response and are more susceptible to RNA virus infection and (iii) both RNA virus infection and MN formation can induce inflammatory cytokine production. Based on these observations we propose a hypothesis that those who harbor elevated frequencies of MN within their cells are more prone to RNA virus infection and are more likely, through combined effects of leakage of self-DNA from MN and RNA from viruses, to escalate pro-inflammatory cytokine production via the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) and the Senescence Associated Secretory Phenotype (SASP) mechanisms to an extent that is unresolvable and therefore confers high risk of causing tissue damage by an excessive and overtly toxic immune response. The corollaries from this hypothesis are (i) those with abnormally high MN frequency are more prone to infection by RNA viruses; (ii) the extent of cytokine production and pro-inflammatory response to infection by RNA viruses is enhanced and possibly exceeds threshold levels that may be unresolvable in those with elevated MN levels in affected organs; (iii) reduction of MN frequency by improving nutrition and life-style factors increases resistance to RNA virus infection and moderates inflammatory cytokine production to a level that is immunologically efficacious and survivable.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia; Clinical and Health Sciences, University of South Australia, SA, 5000, Australia; Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
van der Haar S, Hoevenaars FPM, van den Brink WJ, van den Broek T, Timmer M, Boorsma A, Doets EL. Exploring the Potential of Personalized Dietary Advice for Health Improvement in Motivated Individuals With Premetabolic Syndrome: Pretest-Posttest Study. JMIR Form Res 2021; 5:e25043. [PMID: 34185002 PMCID: PMC8277310 DOI: 10.2196/25043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dietary quality plays an essential role in the prevention and management of metabolic syndrome (MetS). Objective The aim of this pilot study is to organize personalized dietary advice in a real-life setting and to explore the effects on dietary intake, metabolic health, and perceived health. Methods We followed a one-group pretest-posttest design and included 37 individuals at risk of MetS, who indicated motivation to change dietary behavior. For a period of 16 weeks, participants received personalized advice (t=0 and t=8) and feedback (t=0, t=4, t=8, t=12 and t=16) on dietary quality and metabolic health (ie, waist circumference, BMI, blood pressure, lipid profile, fasting glucose levels, and C-peptide). Personalized advice was generated in a two-stage process. In stage 1, an automated algorithm generated advice per food group, integrating data on individual dietary quality (Dutch Healthy Diet Index; total score 8-80) and metabolic health parameters. Stage 2 included a telephone consultation with a trained dietitian to define a personal dietary behavior change strategy and to discuss individual preferences. Dietary quality and metabolic health markers were assessed at t=0, t=8, and t=16. Self-perceived health was evaluated on 7-point Likert scales at t=0 and t=16. Results At the end of the study period, dietary quality was significantly improved compared with the baseline (Dutch Healthy Diet Index +4.3; P<.001). In addition, lipid profile (triglycerides, P=.02; total cholesterol, P=.01; high-density lipoprotein, P<.001; and low-density lipoprotein, P<.001), BMI (P<.001), waist circumference (P=.01), and C-peptide (P=.01) were all significantly improved, whereas plasma glucose increased by 0.23 nmol/L (P=.04). In line with these results, self-perceived health scores were higher at t=16 weeks than at baseline (+0.67; P=.005). Conclusions This exploratory study showed that personalized dietary advice resulted in positive effects on dietary behavior, metabolic health, and self-perceived health in motivated pre-MetS adults. The study was performed in a do-it-yourself setting, highlighting the potential of at-home health improvement through dietary changes. Trial Registration ClinicalTrials.gov NCT04595669; https://clinicaltrials.gov/ct2/show/NCT04595669
Collapse
Affiliation(s)
- Sandra van der Haar
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Femke P M Hoevenaars
- Microbiology & Systems Biology Department, TNO, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Willem J van den Brink
- Microbiology & Systems Biology Department, TNO, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Tim van den Broek
- Microbiology & Systems Biology Department, TNO, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Mariëlle Timmer
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - André Boorsma
- Microbiology & Systems Biology Department, TNO, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | - Esmée L Doets
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
17
|
Turkia J, Mehtätalo L, Schwab U, Hautamäki V. Mixed-effect Bayesian network reveals personal effects of nutrition. Sci Rep 2021; 11:12016. [PMID: 34103576 PMCID: PMC8187367 DOI: 10.1038/s41598-021-91437-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Nutrition experts know by their experience that people can react very differently to the same nutrition. If we could systematically quantify these differences, it would enable more personal dietary understanding and guidance. This work proposes a mixed-effect Bayesian network as a method for modeling the multivariate system of nutrition effects. Estimation of this network reveals a system of both population-wide and personal correlations between nutrients and their biological responses. Fully Bayesian estimation in the method allows managing the uncertainty in parameters and incorporating the existing nutritional knowledge into the model. The method is evaluated by modeling data from a dietary intervention study, called Sysdimet, which contains personal observations from food records and the corresponding fasting concentrations of blood cholesterol, glucose, and insulin. The model's usefulness in nutritional guidance is evaluated by predicting personally if a given diet increases or decreases future levels of concentrations. The proposed method is shown to be comparable with the well-performing Extreme Gradient Boosting (XGBoost) decision tree method in classifying the directions of concentration increases and decreases. In addition to classification, we can also predict the precise concentration level and use the biologically interpretable model parameters to understand what personal effects contribute to the concentration. We found considerable personal differences in the contributing nutrients, and while these nutritional effects are previously known at a population level, recognizing their personal differences would result in more accurate estimates and more effective nutritional guidance.
Collapse
Affiliation(s)
- Jari Turkia
- School of Computing, University of Eastern Finland, 80101, Joensuu, Finland.
- CGI Suomi Oy, Joensuu, Finland.
| | - Lauri Mehtätalo
- School of Computing, University of Eastern Finland, 80101, Joensuu, Finland
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment Unit, Yliopistokatu 6, 80101, Joensuu, Finland
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Ville Hautamäki
- School of Computing, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
18
|
de Hoogh IM, Winters BL, Nieman KM, Bijlsma S, Krone T, van den Broek TJ, Anderson BD, Caspers MPM, Anthony JC, Wopereis S. A Novel Personalized Systems Nutrition Program Improves Dietary Patterns, Lifestyle Behaviors and Health-Related Outcomes: Results from the Habit Study. Nutrients 2021; 13:1763. [PMID: 34067248 PMCID: PMC8224682 DOI: 10.3390/nu13061763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Personalized nutrition may be more effective in changing lifestyle behaviors compared to population-based guidelines. This single-arm exploratory study evaluated the impact of a 10-week personalized systems nutrition (PSN) program on lifestyle behavior and health outcomes. Healthy men and women (n = 82) completed the trial. Individuals were grouped into seven diet types, for which phenotypic, genotypic and behavioral data were used to generate personalized recommendations. Behavior change guidance was also provided. The intervention reduced the intake of calories (-256.2 kcal; p < 0.0001), carbohydrates (-22.1 g; p < 0.0039), sugar (-13.0 g; p < 0.0001), total fat (-17.3 g; p < 0.0001), saturated fat (-5.9 g; p = 0.0003) and PUFA (-2.5 g; p = 0.0065). Additionally, BMI (-0.6 kg/m2; p < 0.0001), body fat (-1.2%; p = 0.0192) and hip circumference (-5.8 cm; p < 0.0001) were decreased after the intervention. In the subgroup with the lowest phenotypic flexibility, a measure of the body's ability to adapt to environmental stressors, LDL (-0.44 mmol/L; p = 0.002) and total cholesterol (-0.49 mmol/L; p < 0.0001) were reduced after the intervention. This study shows that a PSN program in a workforce improves lifestyle habits and reduces body weight, BMI and other health-related outcomes. Health improvement was most pronounced in the compromised phenotypic flexibility subgroup, which indicates that a PSN program may be effective in targeting behavior change in health-compromised target groups.
Collapse
Affiliation(s)
- Iris M. de Hoogh
- TNO, Netherlands Organization for Applied Scientific Research, 3704 HE Zeist, The Netherlands; (I.M.d.H.); (S.B.); (T.K.); (T.J.v.d.B.); (M.P.M.C.)
| | | | | | - Sabina Bijlsma
- TNO, Netherlands Organization for Applied Scientific Research, 3704 HE Zeist, The Netherlands; (I.M.d.H.); (S.B.); (T.K.); (T.J.v.d.B.); (M.P.M.C.)
| | - Tanja Krone
- TNO, Netherlands Organization for Applied Scientific Research, 3704 HE Zeist, The Netherlands; (I.M.d.H.); (S.B.); (T.K.); (T.J.v.d.B.); (M.P.M.C.)
| | - Tim J. van den Broek
- TNO, Netherlands Organization for Applied Scientific Research, 3704 HE Zeist, The Netherlands; (I.M.d.H.); (S.B.); (T.K.); (T.J.v.d.B.); (M.P.M.C.)
| | | | - Martien P. M. Caspers
- TNO, Netherlands Organization for Applied Scientific Research, 3704 HE Zeist, The Netherlands; (I.M.d.H.); (S.B.); (T.K.); (T.J.v.d.B.); (M.P.M.C.)
| | - Joshua C. Anthony
- Habit, Oakland, CA 94607, USA;
- Campbell Soup Company, Camden, NJ 08103, USA
| | - Suzan Wopereis
- TNO, Netherlands Organization for Applied Scientific Research, 3704 HE Zeist, The Netherlands; (I.M.d.H.); (S.B.); (T.K.); (T.J.v.d.B.); (M.P.M.C.)
| |
Collapse
|
19
|
Tippairote T, Peana M, Chirumbolo S, Bjørklund G. Individual risk management strategy for SARS-CoV-2 infection: A step toward personalized healthcare. Int Immunopharmacol 2021; 96:107629. [PMID: 33862554 PMCID: PMC8015431 DOI: 10.1016/j.intimp.2021.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 12/05/2022]
Abstract
Lethal or critical COVID-19 occurs most in infected hosts with certain risk factors such as advanced age or pre-existing disease. Host metabolic status significantly affects the clinical presentations of SARS-CoV-2 infection. Individual risk management is thus crucial for preventing severe COVID-19. Such susceptibility is individual, depending on a multitude of factors. Personalized risk assessment requires the inclusive analysis of big health data to stratify individual risk and derive a customized action plan. Personalized medicine requires shifting from the virology aspect per se to the whole individual's consideration, including dietary pattern, nutritional status, supporting lifestyle, co-existing diseases, and environmental factors. In this short communication, we discuss the individual management strategy for SARS-CoV2 infection as a step towards future personalized healthcare.
Collapse
Affiliation(s)
- Torsak Tippairote
- Nutritional and Environmental Medicine Department, Healing Passion Medical Center, Bangkok, Thailand
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
20
|
Tagliamonte S, Laiola M, Ferracane R, Vitale M, Gallo MA, Meslier V, Pons N, Ercolini D, Vitaglione P. Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation. Eur J Nutr 2021; 60:3703-3716. [PMID: 33763720 PMCID: PMC8437855 DOI: 10.1007/s00394-021-02538-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Purpose To investigate whether a Mediterranean diet (MD) affected the plasma concentrations of endocannabinoids (ECs), N-acylethanolamines (NAEs) and their specific ratios in subjects with lifestyle risk factors for metabolic diseases. To identify the relationship between circulating levels of these compounds and gut microbiome, insulin resistance and systemic inflammation. Methods A parallel 8-week randomised controlled trial was performed involving 82 overweight and obese subjects aged (mean ± SEM) 43 ± 1.4 years with a BMI of 31.1 ± 0.5 kg/m2, habitual Western diet (CT) and sedentary lifestyle. Subjects were randomised to consume an MD tailored to their habitual energy and macronutrient intake (n = 43) or to maintain their habitual diet (n = 39). Endocannabinoids and endocannabinoid-like molecules, metabolic and inflammatory markers and gut microbiome were monitored over the study period. Results The MD intervention lowered plasma arachidonoylethanolamide (AEA, p = 0.02), increased plasma oleoylethanolamide/palmitoylethanolamide (OEA/PEA, p = 0.009) and OEA/AEA (p = 0.006) and increased faecal Akkermansia muciniphila (p = 0.026) independent of body weight changes. OEA/PEA positively correlated with abundance of key microbial players in diet–gut–health interplay and MD adherence. Following an MD, individuals with low-plasma OEA/PEA at baseline decreased homeostatic model assessment of insulin resistance index (p = 0.01), while individuals with high-plasma OEA/PEA decreased serum high-sensitive C-reactive protein (p = 0.02). Conclusions We demonstrated that a switch from a CT to an isocaloric MD affects the endocannabinoid system and increases A. muciniphila abundance in the gut independently of body weight changes. Endocannabinoid tone and microbiome functionality at baseline drives an individualised response to an MD in ameliorating insulin sensitivity and inflammation. Clinical Trial Registry number and website NCT03071718; www.clinicaltrials.gov Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02538-8.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy
| | - Manolo Laiola
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | | | - Victoria Meslier
- Université Paris-Saclay, INRAE (Institut National de Recherche Pour L'agriculture, l'alimentation Et L'environnement), MGP (Metagenopolis), 78350, Jouy en Josas, France
| | - Nicolas Pons
- Université Paris-Saclay, INRAE (Institut National de Recherche Pour L'agriculture, l'alimentation Et L'environnement), MGP (Metagenopolis), 78350, Jouy en Josas, France
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy.,Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy.
| |
Collapse
|
21
|
Naureen Z, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Zulian A, Romanelli R, Bertelli M. Genetic test for the prescription of diets in support of physical activity. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020011. [PMID: 33170161 PMCID: PMC8023120 DOI: 10.23750/abm.v91i13-s.10584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 01/03/2023]
Abstract
Owing to the fields of nutrigenetics and nutrigenomics today we can think of devising approaches to optimize health, delay onset of diseases and reduce its severity according to our genetic blue print. However this requires a deep understanding of nutritional impact on expression of genes that may result in a specific phenotype. The extensive research and observational studies during last two decades reporting interactions between genes, diet and physical activity suggest a cross talk between various genetic and environmental factors and lifestyle interventions. Although considerable efforts have been made in unraveling the mechanisms of gene-diet interactions the scientific evidences behind developing commercial genetic tests for providing personalized nutrition recommendations are still scarce. In this scenario the current mini-review aims to provide useful insights into salient feature of nutrition based genetic research and its commercial application and the ethical issue and concerns related to its outcome.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | - Barbara Aquilanti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Valeria Velluti
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Giuseppina Matera
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Lucilla Gagliardi
- UOC Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
22
|
Wickramasinghe K, Mathers JC, Wopereis S, Marsman DS, Griffiths JC. From lifespan to healthspan: the role of nutrition in healthy ageing. J Nutr Sci 2020; 9:e33. [PMID: 33101660 PMCID: PMC7550962 DOI: 10.1017/jns.2020.26] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Across the globe, there has been a marked increase in longevity, but significant inequalities remain. These are exacerbated by inadequate access to proper nutrition and health care services and to reliable information to make the decisions related to nutrition and health care. Many in economically developing as well as developed societies are plagued with the double-burden of energy excess and undernutrition. This has resulted in mental and physical deterioration, increased non-communicable disease rates, lost productivity, increased medical costs and reduced quality of life. While adequate nutrition is fundamental to good health at all stages of the life course, the impact of diet on prolonging good quality of life during ageing remains unclear. For progress to continue, there is need for new and/or innovative approaches to promoting health as individuals age, as well as qualitative and quantitative biomarkers and other accepted tools that can measure improvements in physiological integrity throughout life. A framework for progress has been proposed by the World Health Organization in their Global Strategy and Action Plan on Ageing and Health. Here, we focused on the impact of nutrition within this framework, which takes a broad, person-centred emphasis on healthy ageing, stressing the need to better understand each individual's intrinsic capacity, their functional abilities at various life stages, and the impact of their mental, and physical health, as well as the environments they inhabit.
Collapse
Affiliation(s)
- Kremlin Wickramasinghe
- WHO European Office for Prevention and Control of Noncommunicable Diseases (NCD Office), Moscow, Russian Federation
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Suzan Wopereis
- Research Group Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, NL-3704 HE, The Netherlands
| | | | - James C. Griffiths
- International and Scientific Affairs, Council for Responsible Nutrition-International, Washington, DC20036, USA
| |
Collapse
|
23
|
Ellis A, Rozga M, Braakhuis A, Monnard CR, Robinson K, Sinley R, Wanner A, Vargas AJ. Effect of Incorporating Genetic Testing Results into Nutrition Counseling and Care on Health Outcomes: An Evidence Analysis Center Systematic Review-Part II. J Acad Nutr Diet 2020; 121:582-605.e17. [PMID: 32624396 DOI: 10.1016/j.jand.2020.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 02/06/2023]
Abstract
In recent years, literature examining implementation of nutritional genomics into clinical practice has increased, including publication of several randomized controlled trials (RCTs). This systematic review addressed the following question: In children and adults, what is the effect of incorporating results of genetic testing into nutrition counseling and care compared with an alternative intervention or control group, on nutrition-related health outcomes? A literature search of MEDLINE, Embase, PsycINFO, CINAHL, and other databases was conducted for peer-reviewed RCTs published from January 2008 until December 2018. An international workgroup consisting of registered dietitian nutritionists, systematic review methodologists, and evidence analysts screened and reviewed articles, summarized data, conducted meta-analyses, and graded conclusion statements. The second in a two-part series, this article specifically summarizes evidence from RCTs that examined health outcomes (ie, quality of life, disease incidence and prevention of disease progression, or mortality), intermediate health outcomes (ie, anthropometric measures, body composition, or relevant laboratory measures routinely collected in practice), and adverse events as reported by study authors. Analysis of 11 articles from nine RCTs resulted in 16 graded conclusion statements. Among participants with nonalcoholic fatty liver disease, a diet tailored to genotype resulted in a greater reduction of percent body fat compared with a customary diet for nonalcoholic fatty liver disease. However, meta-analyses for the outcomes of total cholesterol, low-density lipoprotein cholesterol, body mass index, and weight yielded null results. Heterogeneity between studies and low certainty of evidence precluded development of strong conclusions about the incorporation of genetic information into nutrition practice. Although there are still relatively few well-designed RCTs to inform integration of genetic information into the Nutrition Care Process, the field of nutritional genomics is evolving rapidly, and gaps in the literature identified by this systematic review can inform future studies.
Collapse
|
24
|
Rozga M, Latulippe ME, Steiber A. Advancements in Personalized Nutrition Technologies: Guiding Principles for Registered Dietitian Nutritionists. J Acad Nutr Diet 2020; 120:1074-1085. [PMID: 32299678 DOI: 10.1016/j.jand.2020.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 01/12/2023]
Abstract
Individualized nutrition counseling and care is a cornerstone of practice for registered dietitian nutritionists (RDNs). The term personalized nutrition (PN) refers to "individual-specific information founded in evidence-based science to promote dietary behavior change that may result in measurable health benefits." PN technologies, which include the "omics" approaches, may offer the potential to improve specificity of nutrition care through assessment of molecular-level data, such as genes or the microbiome, in order to determine the course for nutrition intervention. These technologies are evolving rapidly, and for many RDNs, it is unclear whether, when, or how these technologies should be incorporated into the nutrition care process. In order to provide guidance in these developing PN fields, International Life Sciences Institute North America convened a multidisciplinary panel to develop guiding principles for PN approaches. The objective of this article is to inform RDN practice decisions related to the implementation of PN technologies by examining the alignment of proposed PN guiding principles with the Code of Ethics for the Nutrition and Dietetics Profession, as well as Scope and Standards of Practice. Guiding principles are described as they apply to each stage of the nutrition care process and include identifying potential beneficiaries, communicating effects transparently, and protecting individual privacy. Guiding principles for PN augment standard guidance for RDNs to pose relevant questions, raise potential concerns, and guide evaluation of supporting evidence for specific PN technologies. RDNs have a responsibility to think critically about the application of PN technologies, including appropriateness and potential effectiveness, for the individual served.
Collapse
|
25
|
Noerman S, Kolehmainen M, Hanhineva K. Profiling of Endogenous and Gut Microbial Metabolites to Indicate Metabotype-Specific Dietary Responses: A Systematic Review. Adv Nutr 2020; 11:1237-1254. [PMID: 32271864 PMCID: PMC7490160 DOI: 10.1093/advances/nmaa031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Upon dietary exposure, the endogenous metabolism responds to the diet-derived nutrients and bioactive compounds, such as phytochemicals. However, the responses vary remarkably due to the interplay with other dietary components, lifestyle exposures, and intrinsic factors, which lead to differences in endogenous regulatory metabolism. These physiological processes are evidenced as a signature profile composed of various metabolites constituting metabolic phenotypes, or metabotypes. The metabolic profiling of biological samples following dietary intake hence would provide information about diet-that is, as the intake biomarkers and the ongoing physiological reactions triggered by this intake-thereby enable evaluation of the metabolic basis required to distinguish the different metabotypes. The capacity of nontargeted metabolomics to also encompass the unprecedented metabolite species has enabled the profiling of multiple metabolites and the corresponding metabotypes with a single analysis, decoding the complex interplay between diet, other relevant factors, and health. In this systematic review, we screened 345 articles published in English in January 2007-July 2018, which applied the metabolomics approach to profile the changes of endogenous metabolites in the blood related to dietary interventions, either derived by metabolism of gut microbiota or the human host. We excluded all the compounds that were directly derived from diet, and also the dietary interventions focusing on supplementation with individual compounds. After the removal of less relevant studies and assessment of eligibility, 49 articles were included in this review. First, we mention the contribution of individual factors, either modifiable or nonmodifiable factors, in shaping metabolic profile. Then, how different aspects of the diet would affect the metabolic profiles are disentangled. Next, the classes of endogenous metabolites altered following included dietary interventions are listed. We also discuss the current challenges in the field, along with future research opportunities.
Collapse
Affiliation(s)
- Stefania Noerman
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Address correspondence to SN (e-mail: )
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Address correspondence to KH ()
| |
Collapse
|
26
|
Zeisel SH. Precision (Personalized) Nutrition: Understanding Metabolic Heterogeneity. Annu Rev Food Sci Technol 2020; 11:71-92. [DOI: 10.1146/annurev-food-032519-051736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
People differ in their requirements for and responses to nutrients and bioactive molecules in the diet. Many inputs contribute to metabolic heterogeneity (including variations in genetics, epigenetics, microbiome, lifestyle, diet intake, and environmental exposure). Precision nutrition is not about developing unique prescriptions for individual people but rather about stratifying people into different subgroups of the population on the basis of biomarkers of the above-listed sources of metabolic variation and then using this stratification to better estimate the different subgroups’ dietary requirements, thereby enabling better dietary recommendations and interventions. The hope is that we will be able to subcategorize people into ever-smaller groups that can be targeted in terms of recommendations, but we will never achieve this at the individual level, thus, the choice of precision nutrition rather than personalized nutrition to designate this new field. This review focuses mainly on genetically related sources of metabolic heterogeneity and identifies challenges that need to be overcome to achieve a full understanding of the complex interactions between the many sources of metabolic heterogeneity that make people differ from one another in their requirements for and responses to foods. It also discusses the commercial applications of precision nutrition.
Collapse
Affiliation(s)
- Steven H. Zeisel
- Nutrition Research Institute, Department of Nutrition, University of North Carolina, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
27
|
Joffe L, Ladas EJ. Nutrition during childhood cancer treatment: current understanding and a path for future research. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:465-475. [PMID: 32061318 DOI: 10.1016/s2352-4642(19)30407-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Proper nutritional status during cancer therapy has been recognised as being integral to a variety of health outcome measures, including overall survival, treatment tolerance, and quality of life. The prevalence of malnutrition, defined by WHO as either undernutrition or overnutrition, among children and adolescents with cancer is reported to be as high as 75%. Yet, over the past two decades there have been limited advances in elucidating the underlying pathophysiological drivers of malnutrition in this population. This effect has resulted in a paucity of research aimed at improving nutritional assessment and intervention among this group. This Review presents an in-depth discussion of the role of nutritional status in paediatric cancer care, as well as evolving avenues of investigation that might propel personalised nutrition into a viable reality. Thus, nutritional science might facilitate individualised intervention strategies, and thereby help to optimise clinical outcomes for patients and survivors of childhood cancer.
Collapse
Affiliation(s)
- Lenat Joffe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - Elena J Ladas
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Abstract
Thanks to advances in modern medicine over the past century, the world’s population has experienced a marked increase in longevity. However, disparities exist that lead to groups with both shorter lifespan and significantly diminished health, especially in the aged. Unequal access to proper nutrition, healthcare services, and information to make informed health and nutrition decisions all contribute to these concerns. This in turn has hastened the ageing process in some and adversely affected others’ ability to age healthfully. Many in developing as well as developed societies are plagued with the dichotomy of simultaneous calorie excess and nutrient inadequacy. This has resulted in mental and physical deterioration, increased non-communicable disease rates, lost productivity and quality of life, and increased medical costs. While adequate nutrition is fundamental to good health, it remains unclear what impact various dietary interventions may have on improving healthspan and quality of life with age. With a rapidly ageing global population, there is an urgent need for innovative approaches to health promotion as individual’s age. Successful research, education, and interventions should include the development of both qualitative and quantitative biomarkers and other tools which can measure improvements in physiological integrity throughout life. Data-driven health policy shifts should be aimed at reducing the socio-economic inequalities that lead to premature ageing. A framework for progress has been proposed and published by the World Health Organization in its Global Strategy and Action Plan on Ageing and Health. This symposium focused on the impact of nutrition on this framework, stressing the need to better understand an individual’s balance of intrinsic capacity and functional abilities at various life stages, and the impact this balance has on their mental and physical health in the environments they inhabit.
Collapse
|
29
|
Adams SH, Anthony JC, Carvajal R, Chae L, Khoo CSH, Latulippe ME, Matusheski NV, McClung HL, Rozga M, Schmid CH, Wopereis S, Yan W. Perspective: Guiding Principles for the Implementation of Personalized Nutrition Approaches That Benefit Health and Function. Adv Nutr 2020; 11:25-34. [PMID: 31504115 PMCID: PMC7442375 DOI: 10.1093/advances/nmz086] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
Personalized nutrition (PN) approaches have been shown to help drive behavior change and positively influence health outcomes. This has led to an increase in the development of commercially available PN programs, which utilize various forms of individual-level information to provide services and products for consumers. The lack of a well-accepted definition of PN or an established set of guiding principles for the implementation of PN creates barriers for establishing credibility and efficacy. To address these points, the North American Branch of the International Life Sciences Institute convened a multidisciplinary panel. In this article, a definition for PN is proposed: "Personalized nutrition uses individual-specific information, founded in evidence-based science, to promote dietary behavior change that may result in measurable health benefits." In addition, 10 guiding principles for PN approaches are proposed: 1) define potential users and beneficiaries; 2) use validated diagnostic methods and measures; 3) maintain data quality and relevance; 4) derive data-driven recommendations from validated models and algorithms; 5) design PN studies around validated individual health or function needs and outcomes; 6) provide rigorous scientific evidence for an effect on health or function; 7) deliver user-friendly tools; 8) for healthy individuals, align with population-based recommendations; 9) communicate transparently about potential effects; and 10) protect individual data privacy and act responsibly. These principles are intended to establish a basis for responsible approaches to the evidence-based research and practice of PN and serve as an invitation for further public dialog. Several challenges were identified for PN to continue gaining acceptance, including defining the health-disease continuum, identification of biomarkers, changing regulatory landscapes, accessibility, and measuring success. Although PN approaches hold promise for public health in the future, further research is needed on the accuracy of dietary intake measurement, utilization and standardization of systems approaches, and application and communication of evidence.
Collapse
Affiliation(s)
- Sean H Adams
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Lee Chae
- Brightseed, San Francisco, CA, USA
| | - Chor San H Khoo
- International Life Sciences Institute North America, Washington, DC, USA
| | - Marie E Latulippe
- International Life Sciences Institute North America, Washington, DC, USA,Address correspondence to MEL (e-mail: )
| | | | - Holly L McClung
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Mary Rozga
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | | | - Suzan Wopereis
- Research Group Microbiology & Systems Biology, TNO, Zeist, Netherlands
| | | |
Collapse
|
30
|
Lammers LA, Achterbergh R, Mathôt RAA, Romijn JA. The effects of fasting on drug metabolism. Expert Opin Drug Metab Toxicol 2019; 16:79-85. [PMID: 31851534 DOI: 10.1080/17425255.2020.1706728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: There is considerable variability in the rates and extent of drug metabolism between patients due to physiological, genetic, pharmacologic, environmental and nutritional factors such as fasting. This variability in drug metabolism may result in treatment failure or, conversely, in increased side effects or toxicity. Preclinical studies have shown that fasting alters drug metabolism by modulating the activity of drug metabolizing enzymes involved. However, until recently little was known about the effects of fasting on drug metabolism in humans.Areas covered: This review describes the effects of fasting on drug metabolism based on both preclinical studies and studies performed in humans.Expert opinion: A better understanding of the effects of fasting may improve the efficacy and safety of pharmacotherapy for individual patients. Fasting contributes to variability in human drug metabolism by differentially affecting drug metabolizing enzymes. Although the effects of fasting on drug metabolism appear to be small (between 10-20%), fasting may be relevant for drugs with a small therapeutic range and/or in combination with other factors that contribute to variability in drug metabolism such as physiological, genetic or pharmacological factors. Therefore, additional research on this topic is warranted.
Collapse
Affiliation(s)
- Laureen A Lammers
- Department of Hospital Pharmacy, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roos Achterbergh
- Department of Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes A Romijn
- Department of Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Bush CL, Blumberg JB, El-Sohemy A, Minich DM, Ordovás JM, Reed DG, Behm VAY. Toward the Definition of Personalized Nutrition: A Proposal by The American Nutrition Association. J Am Coll Nutr 2019; 39:5-15. [PMID: 31855126 DOI: 10.1080/07315724.2019.1685332] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Personalized nutrition holds tremendous potential to improve human health. Despite exponential growth, the field has yet to be clearly delineated and a consensus definition of the term "personalized nutrition" (PN) has not been developed. Defining and delineating the field will foster standardization and scalability in research, data, training, products, services, and clinical practice; and assist in driving favorable policy. Building on the seminal work of pioneering thought leaders across disciplines, we propose that personalized nutrition be defined as: a field that leverages human individuality to drive nutrition strategies that prevent, manage, and treat disease and optimize health, and be delineated by three synergistic elements: PN science and data, PN professional education and training, and PN guidance and therapeutics. Herein we describe the application of PN in these areas and discuss challenges and solutions that the field faces as it evolves. This and future work will contribute to the continued refinement and growth of the field of PN.Teaching pointsPN approaches can be most effective when there is consensus regarding its definition and applications.PN can be delineated into three main areas of application: PN science and data, PN education and training, PN guidance and therapeutics.PN science and data foster understanding about the impact of genetic, phenotypic, biochemical and nutritional inputs on an individual's health.PN education and training equip a variety of healthcare professionals to apply PN strategies in many healthcare settings.PN professionals have greater ability to tailor interventions via PN guidance and therapeutics.Favorable policy allows PN to be more fully integrated into the healthcare system.
Collapse
Affiliation(s)
- Corinne L Bush
- Nutrition Science, American Nutrition Association, Hinsdale, Illinois, USA
| | - Jeffrey B Blumberg
- Nutrition Science, American Nutrition Association, Hinsdale, Illinois, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| | - Ahmed El-Sohemy
- American Nutrition Association, Scientific Advisory Council, Hinsdale, Illinois, USA.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deanna M Minich
- American Nutrition Association, Scientific Advisory Council, Hinsdale, Illinois, USA.,Human Nutrition and Functional Medicine, University of Western States, Portland, Oregon, USA
| | - Jóse M Ordovás
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA.,American Nutrition Association, Scientific Advisory Council, Hinsdale, Illinois, USA.,Centro Nacional Investigaciones Cardiovasculares, Madrid, Spain.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Dana G Reed
- Nutrition Science, American Nutrition Association, Hinsdale, Illinois, USA
| | - Victoria A Yunez Behm
- Nutrition Science, American Nutrition Association, Hinsdale, Illinois, USA.,Nutrition and Integrative Health, Maryland University of Integrative Health, Laurel, Maryland, USA
| |
Collapse
|
32
|
Abrahams M, Frewer L, Bryant E, Stewart-Knox B. Personalised Nutrition Technologies and Innovations: A Cross-National Survey of Registered Dietitians. Public Health Genomics 2019; 22:119-131. [DOI: 10.1159/000502915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/25/2019] [Indexed: 11/19/2022] Open
|
33
|
Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:131-156. [PMID: 31543064 DOI: 10.1080/10937404.2019.1661588] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - João Paulo Bianchi Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Christian Hoffmann
- Departmento de Alimentos e Nutrição Experimental Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
34
|
van den Brink W, van Bilsen J, Salic K, Hoevenaars FPM, Verschuren L, Kleemann R, Bouwman J, Ronnett GV, van Ommen B, Wopereis S. Current and Future Nutritional Strategies to Modulate Inflammatory Dynamics in Metabolic Disorders. Front Nutr 2019; 6:129. [PMID: 31508422 PMCID: PMC6718105 DOI: 10.3389/fnut.2019.00129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity, type 2 diabetes, and other metabolic disorders have a large impact on global health, especially in Western countries. An important hallmark of metabolic disorders is chronic low-grade inflammation. A key player in chronic low-grade inflammation is dysmetabolism, which is defined as the inability to keep homeostasis resulting in loss of lipid control, oxidative stress, inflammation, and insulin resistance. Although often not yet detectable in the circulation, chronic low-grade inflammation can be present in one or multiple organs. The response to a metabolic challenge containing lipids may magnify dysfunctionalities at the tissue level, causing an overflow of inflammatory markers into the circulation and hence allow detection of early low-grade inflammation. Here, we summarize the evidence of successful application of metabolic challenge tests in type 2 diabetes, metabolic syndrome, obesity, and unhealthy aging. We also review how metabolic challenge tests have been successfully applied to evaluate nutritional intervention effects, including an "anti-inflammatory" mixture, dark chocolate, whole grain wheat and overfeeding. Additionally, we elaborate on future strategies to (re)gain inflammatory flexibility. Through epigenetic and metabolic regulation, the inflammatory response may be trained by regular mild and metabolic triggers, which can be understood from the perspective of trained immunity, hormesis and pro-resolution. New strategies to optimize dynamics of inflammation may become available.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Jolanda van Bilsen
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Kanita Salic
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Femke P. M. Hoevenaars
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | | | - Ben van Ommen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
35
|
Beneficial effect of personalized lifestyle advice compared to generic advice on wellbeing among Dutch seniors - An explorative study. Physiol Behav 2019; 210:112642. [PMID: 31394106 DOI: 10.1016/j.physbeh.2019.112642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
Abstract
The aim of this explorative study is to evaluate whether personalized compared to generic lifestyle advice improves wellbeing in a senior population. We conducted a nine-week single-blind randomized controlled trial including 59 participants (age 67.7 ± 4.8 years) from Wageningen and its surrounding areas in the Netherlands. Three times during the intervention period, participants received either personalized advice (PA), or generic advice (GA) to improve lifestyle behavior. Personalization was based on metabolic health measures and dietary intake resulting in an advice that highlighted food groups and physical activity types for which behavior change was most urgent. Before and after the intervention period self-perceived health was evaluated as parameter of wellbeing using a self-perceived health score (single-item) and two questionnaires (Vita-16 and Short Form-12). Additionally, anthropometry and physical functioning (short physical performance battery, SPPB) were assessed. Overall scores for self-perceived health did not change over time in any group. Resilience and motivation (Vita-16) slightly improved only in the PA group, whilst mental health (SF-12) and energy (Vita-16) showed slight improvement only in the GA group. SPPB scores improved over time in both the PA and GA group. PA participants also showed a reduction in body fat percentage and hip circumference, whereas these parameters increased in the GA group Our findings suggest that although no clear effects on wellbeing were found, still, at least on the short term, personalized advice may evoke health benefits in a population of seniors as compared to generic advice.
Collapse
|
36
|
Noland D, Raj S. Academy of Nutrition and Dietetics: Revised 2019 Standards of Practice and Standards of Professional Performance for Registered Dietitian Nutritionists (Competent, Proficient, and Expert) in Nutrition in Integrative and Functional Medicine. J Acad Nutr Diet 2019; 119:1019-1036.e47. [DOI: 10.1016/j.jand.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 02/07/2023]
|
37
|
|
38
|
González-Peña D, Brennan L. Recent Advances in the Application of Metabolomics for Nutrition and Health. Annu Rev Food Sci Technol 2019; 10:479-519. [DOI: 10.1146/annurev-food-032818-121715] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolomics is the study of small molecules called metabolites in biological samples. Application of metabolomics to nutrition research has expanded in recent years, with emerging literature supporting multiple applications. Key examples include applications of metabolomics in the identification and development of objective biomarkers of dietary intake, in developing personalized nutrition strategies, and in large-scale epidemiology studies to understand the link between diet and health. In this review, we provide an overview of the current applications and identify key challenges that need to be addressed for the further development of the field. Successful development of metabolomics for nutrition research has the potential to improve dietary assessment, help deliver personalized nutrition, and enhance our understanding of the link between diet and health.
Collapse
Affiliation(s)
- Diana González-Peña
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin 4, Ireland;,
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin 4, Ireland;,
| |
Collapse
|
39
|
A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management. Nutrients 2019; 11:nu11030617. [PMID: 30875721 PMCID: PMC6471589 DOI: 10.3390/nu11030617] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 01/06/2023] Open
Abstract
Various studies showed that a "one size fits all" dietary recommendation for weight management is questionable. For this reason, the focus increasingly falls on personalised nutrition. Although there is no precise and uniform definition of personalised nutrition, the inclusion of genetic variants for personalised dietary recommendations is more and more favoured, whereas scientific evidence for gene-based dietary recommendations is rather limited. The purpose of this article is to provide a science-based viewpoint on gene-based personalised nutrition and weight management. Most of the studies showed no clinical evidence for gene-based personalised nutrition. The Food4Me study, e.g., investigated four different groups of personalised dietary recommendations based on dietary guidelines, and physiological, clinical, or genetic parameters, and resulted in no difference in weight loss between the levels of personalisation. Furthermore, genetic direct-to-consumer (DTC) tests are widely spread by companies. Scientific organisations clearly point out that, to date, genetic DTC tests are without scientific evidence. To date, gene-based personalised nutrition is not yet applicable for the treatment of obesity. Nevertheless, personalised dietary recommendations on the genetic landscape of a person are an innovative and promising approach for the prevention and treatment of obesity. In the future, human intervention studies are necessary to prove the clinical evidence of gene-based dietary recommendations.
Collapse
|
40
|
D'Auria E, Abrahams M, Zuccotti GV, Venter C. Personalized Nutrition Approach in Food Allergy: Is It Prime Time Yet? Nutrients 2019; 11:E359. [PMID: 30744105 PMCID: PMC6412250 DOI: 10.3390/nu11020359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of food allergy appears to be steadily increasing in infants and young children. One of the major challenges of modern clinical nutrition is the implementation of individualized nutritional recommendations. The management of food allergy (FA) has seen major changes in recent years. While strict allergen avoidance is still the key treatment principle, it is increasingly clear that the avoidance diet should be tailored according to the patient FA phenotype. Furthermore, new insights into the gut microbiome and immune system explain the rising interest in tolerance induction and immunomodulation by microbiota-targeted dietary intervention. This review article focuses on the nutritional management of IgE mediated food allergy, mainly focusing on different aspects of the avoidance diet. A personalized approach to managing the food allergic individual is becoming more feasible as we are learning more about diagnostic modalities and allergic phenotypes. However, some unmet needs should be addressed to fully attain this goal.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Children's Hospital V. Buzzi, University of Milan, Milan 20154, Italy.
| | - Mariette Abrahams
- Faculty of Social Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Children's Hospital V. Buzzi, University of Milan, Milan 20154, Italy.
| | - Carina Venter
- Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Bechthold A, Boeing H, Tetens I, Schwingshackl L, Nöthlings U. Perspective: Food-Based Dietary Guidelines in Europe-Scientific Concepts, Current Status, and Perspectives. Adv Nutr 2018; 9:544-560. [PMID: 30107475 PMCID: PMC6140433 DOI: 10.1093/advances/nmy033] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023] Open
Abstract
Food-based dietary guidelines (FBDGs) are important tools for nutrition policies and public health. FBDGs provide guidelines on healthy food consumption and are based on scientific evidence. In the past, disease prevention and nutrient recommendations dominated the process of establishing FBDGs. However, scientific advances and social developments such as changing lifestyles, interest in personalized health, and concerns about sustainability require a reorientation of the creation of FBDGs to include a wider range of aspects of dietary behavior. The present review evaluates current European FBDGs with regard to the concepts and aspects used in their derivation, and summarizes the major aspects currently discussed to be considered in future establishment or updates of FBDGs. We identified English information on official European FBDGs through an Internet search (FAO, PubMed, Google) and analyzed the aspects used for their derivation. Furthermore, we searched literature databases (PubMed, Google Scholar) for conceptional considerations dealing with FBDGs. A total of 34 out of 53 European countries were identified as having official FBDGs, and for 15 of these, documents with information on the scientific basis could be identified and described. Subsequently, aspects underlying the derivation of current FBDGs and aspects considered in the literature as important for future FBDGs were discussed. Eight aspects were identified: diet-health relations, nutrient supply, energy supply, dietary habits, sustainability, food-borne contaminants, target group segmentation, and individualization. The first 4 have already been widely applied in existing FBDGs; the others have almost never been taken into account. It remains a future challenge to (re)conceptionalize the development of FBDGs, to operationalize the aspects to be incorporated in their derivation, and to convert concepts into systematic approaches. The current review may assist national expert groups and clarifies the options for future development of local FBDGs.
Collapse
Affiliation(s)
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Inge Tetens
- Vitality–Center for Good Older Lives, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Lukas Schwingshackl
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, University of Bonn, Bonn, Germany
| |
Collapse
|
42
|
Krämer L, Jäger C, Trezzi JP, Jacobs DM, Hiller K. Quantification of Stable Isotope Traces Close to Natural Enrichment in Human Plasma Metabolites Using Gas Chromatography-Mass Spectrometry. Metabolites 2018; 8:metabo8010015. [PMID: 29443915 PMCID: PMC5876004 DOI: 10.3390/metabo8010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/08/2023] Open
Abstract
Currently, changes in metabolic fluxes following consumption of stable isotope-enriched foods are usually limited to the analysis of postprandial kinetics of glucose. Kinetic information on a larger diversity of metabolites is often lacking, mainly due to the marginal percentage of fully isotopically enriched plant material in the administered food product, and hence, an even weaker 13C enrichment in downstream plasma metabolites. Therefore, we developed an analytical workflow to determine weak 13C enrichments of diverse plasma metabolites with conventional gas chromatography-mass spectrometry (GC-MS). The limit of quantification was increased by optimizing (1) the metabolite extraction from plasma, (2) the GC-MS measurement, and (3) most importantly, the computational data processing. We applied our workflow to study the catabolic dynamics of 13C-enriched wheat bread in three human subjects. For that purpose, we collected time-resolved human plasma samples at 16 timepoints after the consumption of 13C-labeled bread and quantified 13C enrichment of 12 metabolites (glucose, lactate, alanine, glycine, serine, citrate, glutamate, glutamine, valine, isoleucine, tyrosine, and threonine). Based on isotopomer specific analysis, we were able to distinguish catabolic profiles of starch and protein hydrolysis. More generally, our study highlights that conventional GC-MS equipment is sufficient to detect isotope traces below 1% if an appropriate data processing is integrated.
Collapse
Affiliation(s)
- Lisa Krämer
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 4362 Esch-sur-Alzette, Luxembourg.
| | - Jean-Pierre Trezzi
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 4362 Esch-sur-Alzette, Luxembourg.
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 3555 Dudelange, Luxembourg.
| | - Doris M Jacobs
- Unilever R&D Vlaardingen, 3133 AT Vlaardingen, The Netherlands.
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
- Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany.
| |
Collapse
|
43
|
van Ommen B, Wopereis S, van Empelen P, van Keulen HM, Otten W, Kasteleyn M, Molema JJW, de Hoogh IM, Chavannes NH, Numans ME, Evers AWM, Pijl H. From Diabetes Care to Diabetes Cure-The Integration of Systems Biology, eHealth, and Behavioral Change. Front Endocrinol (Lausanne) 2018; 8:381. [PMID: 29403436 PMCID: PMC5786854 DOI: 10.3389/fendo.2017.00381] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/26/2017] [Indexed: 12/23/2022] Open
Abstract
From a biological view, most of the processes involved in insulin resistance, which drives the pathobiology of type 2 diabetes, are reversible. This theoretically makes the disease reversible and curable by changing dietary habits and physical activity, particularly when adopted early in the disease process. Yet, this is not fully implemented and exploited in health care due to numerous obstacles. This article reviews the state of the art in all areas involved in a diabetes cure-focused therapy and discusses the scientific and technological advancements that need to be integrated into a systems approach sustainable lifestyle-based healthcare system and economy. The implementation of lifestyle as cure necessitates personalized and sustained lifestyle adaptations, which can only be established by a systems approach, including all relevant aspects (personalized diagnosis and diet, physical activity and stress management, self-empowerment, motivation, participation and health literacy, all facilitated by blended care and ehealth). Introduction of such a systems approach in type 2 diabetes therapy not only requires a concerted action of many stakeholders but also a change in healthcare economy, with new winners and losers. A "call for action" is put forward to actually initiate this transition. The solution provided for type 2 diabetes is translatable to other lifestyle-related disorders.
Collapse
Affiliation(s)
- Ben van Ommen
- Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Leiden, Netherlands
| | - Suzan Wopereis
- Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Leiden, Netherlands
| | - Pepijn van Empelen
- Netherlands Organization for Applied Scientific Research (TNO), Department of Child Health, Leiden, Netherlands
| | - Hilde M. van Keulen
- Netherlands Organization for Applied Scientific Research (TNO), Department of Child Health, Leiden, Netherlands
| | - Wilma Otten
- Netherlands Organization for Applied Scientific Research (TNO), Department of Child Health, Leiden, Netherlands
| | - Marise Kasteleyn
- Leiden University Medical Center (LUMC), Department of Public Health and Primary Care, Leiden, Netherlands
| | - Johanna J. W. Molema
- Netherlands Organization for Applied Scientific Research (TNO), Department of Work Health Technology, Leiden, Netherlands
| | - Iris M. de Hoogh
- Netherlands Organization for Applied Scientific Research (TNO), Department of Microbiology and Systems Biology, Leiden, Netherlands
| | - Niels H. Chavannes
- Leiden University Medical Center (LUMC), Department of Public Health and Primary Care, Leiden, Netherlands
| | - Mattijs E. Numans
- Leiden University Medical Center (LUMC), Department of Public Health and Primary Care, Leiden, Netherlands
| | - Andrea W. M. Evers
- Department of Health, Medical and Neuropsychology, Leiden University Medical Centre, Leiden University, Leiden, Netherlands
- Department of Psychiatry, Leiden University Medical Centre, Leiden University, Leiden, Netherlands
| | - Hanno Pijl
- Leiden University Medical Center (LUMC), Department of Internal Medicine, Leiden, Netherlands
| |
Collapse
|
44
|
van den Broek TJ, Bakker GCM, Rubingh CM, Bijlsma S, Stroeve JHM, van Ommen B, van Erk MJ, Wopereis S. Ranges of phenotypic flexibility in healthy subjects. GENES & NUTRITION 2017; 12:32. [PMID: 29225708 PMCID: PMC5718019 DOI: 10.1186/s12263-017-0589-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 11/14/2022]
Abstract
BACKGROUND A key feature of metabolic health is the ability to adapt upon dietary perturbations. A systemic review defined an optimal nutritional challenge test, the "PhenFlex test" (PFT). Recently, it has been shown that the PFT enables the quantification of all relevant metabolic processes involved in maintaining or regaining homeostasis of metabolic health. Furthermore, it was demonstrated that quantification of PFT response was more sensitive as compared to fasting markers in demonstrating reduced phenotypic flexibility in metabolically impaired type 2 diabetes subjects. METHODS This study aims to demonstrate that quantification of PFT response can discriminate between different states of health within the healthy range of the population. Therefore, 100 healthy subjects were enrolled (50 males, 50 females) ranging in age (young, middle, old) and body fat percentage (low, medium, high), assuming variation in phenotypic flexibility. Biomarkers were selected to quantify main processes which characterize phenotypic flexibility in response to PFT: flexibility in glucose, lipid, amino acid and vitamin metabolism, and metabolic stress. Individual phenotypic flexibility was visualized using the "health space" by representing the four processes on the health space axes. By quantifying and presenting the study subjects in this space, individual phenotypic flexibility was visualized. RESULTS Using the "health space" visualization, differences between groups as well as within groups from the healthy range of the population can be easily and intuitively assessed. The health space showed a different adaptation to the metabolic PhenFlex test in the extremes of the recruited population; persons of young age with low to normal fat percentage had a markedly different position in the health space as compared to persons from old age with normal to high fat percentage. CONCLUSION The results of the metabolic PhenFlex test in conjunction with the health space reliably assessed health on an individual basis. This quantification can be used in the future for personalized health quantification and advice.
Collapse
Affiliation(s)
| | | | - C. M. Rubingh
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - S. Bijlsma
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | | | - B. van Ommen
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - M. J. van Erk
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - S. Wopereis
- TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| |
Collapse
|