1
|
Zubair AS, McAlpine LS, Gobeske KT. Virology, ecology, epidemiology, pathology, and treatment of eastern equine encephalitis. J Neurol Sci 2024; 457:122886. [PMID: 38278094 DOI: 10.1016/j.jns.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Eastern equine encephalitis (EEE) was one of the first-recognized neuroinvasive arboviral diseases in North America, and it remains the most lethal. Although EEE is known to have periodic spikes in infection rates, there is increasing evidence that it may be undergoing a change in its prevalence and its public health burden. Numerous factors shape the scope of EEE in humans, and there are important similarities with other emergent viral diseases that have surfaced or strengthened in recent years. Because environmental and ecological conditions that broadly influence the epidemiology of arboviral diseases also are changing, and the frequency, severity, and scope of outbreaks are expected to worsen, an expanded understanding of EEE will have untold importance in coming years. Here we review the factors shaping EEE transmission cycles and the conditions leading to outbreaks in humans from an updated, multidomain perspective. We also provide special consideration of factors shaping the virology, host-vector-environment relationships, and mechanisms of pathology and treatment as a reference for broadening audiences.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Langsjoen RM, Key A, Shariatzadeh N, Jackson CR, Mahmood F, Arkun K, Alexandrescu S, Solomon IH, Piantadosi A. Eastern Equine Encephalitis Virus Diversity in Massachusetts Patients, 1938-2020. Am J Trop Med Hyg 2023; 109:387-396. [PMID: 37339758 PMCID: PMC10397450 DOI: 10.4269/ajtmh.23-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023] Open
Abstract
Eastern equine encephalitis virus (EEEV) is a relatively little-studied alphavirus that can cause devastating viral encephalitis, potentially leading to severe neurological sequelae or death. Although case numbers have historically been low, outbreaks have been increasing in frequency and scale since the 2000 s. It is critical to investigate EEEV evolutionary patterns, especially within human hosts, to understand patterns of emergence, host adaptation, and within-host evolution. To this end, we obtained formalin-fixed paraffin-embedded tissue blocks from discrete brain regions from five contemporary (2004-2020) patients from Massachusetts, confirmed the presence of EEEV RNA by in situ hybridization (ISH) staining, and sequenced viral genomes. We additionally sequenced RNA from scrapings of historical slides made from brain sections of a patient in the first documented EEE outbreak in humans in 1938. ISH staining revealed the presence of RNA in all contemporary samples, and quantification loosely correlated with the proportion of EEEV reads in samples. Consensus EEEV sequences were generated for all six patients, including the sample from 1938; phylogenetic analysis using additional publicly available sequences revealed clustering of each study sample with like sequences from a similar region, whereas an intrahost comparison of consensus sequences between discrete brain regions revealed minimal changes. Intrahost single nucleotide variant (iSNV) analysis of four samples from two patients revealed the presence of tightly compartmentalized, mostly nonsynonymous iSNVs. This study contributes critical primary human EEEV sequences, including a historic sequence as well as novel intrahost evolution findings, contributing substantially to our understanding of the natural history of EEEV infection in humans.
Collapse
Affiliation(s)
- Rose M. Langsjoen
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Autum Key
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Nima Shariatzadeh
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher R. Jackson
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Knarik Arkun
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Piantadosi
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Kapadia RK, Staples JE, Gill CM, Fischer M, Khan E, Laven JJ, Panella A, Velez JO, Hughes HR, Brault A, Pastula DM, Gould CV. Severe Arboviral Neuroinvasive Disease in Patients on Rituximab Therapy: A Review. Clin Infect Dis 2023; 76:1142-1148. [PMID: 36103602 PMCID: PMC10011006 DOI: 10.1093/cid/ciac766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
With increasing use of rituximab and other B-cell depleting monoclonal antibodies for multiple indications, infectious complications are being recognized. We summarize clinical findings of patients on rituximab with arboviral diseases identified through literature review or consultation with the Centers for Disease Control and Prevention. We identified 21 patients on recent rituximab therapy who were diagnosed with an arboviral disease caused by West Nile, tick-borne encephalitis, eastern equine encephalitis, Cache Valley, Jamestown Canyon, and Powassan viruses. All reported patients had neuroinvasive disease. The diagnosis of arboviral infection required molecular testing in 20 (95%) patients. Median illness duration was 36 days (range, 12 days to 1 year), and 15/19 (79%) patients died from their illness. Patients on rituximab with arboviral disease can have a severe or prolonged course with an absence of serologic response. Patients should be counseled about mosquito and tick bite prevention when receiving rituximab and other B-cell depleting therapies.
Collapse
Affiliation(s)
- Ronak K Kapadia
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Neurology, Department of Clinical Neurosciences, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Christine M Gill
- University of Iowa, Carver College of Medicine, Department of Neurology, Iowa City, Iowa, USA
| | - Marc Fischer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Ezza Khan
- Hunterdon Infectious Disease Specialists, Flemington, New Jersey, USA
| | - Janeen J Laven
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Amanda Panella
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Jason O Velez
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Holly R Hughes
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Aaron Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Carolyn V Gould
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Williams JA, Long SY, Zeng X, Kuehl K, Babka AM, Davis NM, Liu J, Trefry JC, Daye S, Facemire PR, Iversen PL, Bavari S, Pitt ML, Nasar F. Eastern equine encephalitis virus rapidly infects and disseminates in the brain and spinal cord of cynomolgus macaques following aerosol challenge. PLoS Negl Trop Dis 2022; 16:e0010081. [PMID: 35533188 PMCID: PMC9084534 DOI: 10.1371/journal.pntd.0010081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61–68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure. EEEV is an arbovirus endemic in parts of North America and is able to produce fatal encephalitis in humans and domesticated animals. Despite multiple human outbreaks during the last 80 years, there are still no therapeutic or vaccines to treat or prevent human disease. One critical obstacle in the development of effective countermeasure is the lack of insights into EEEV pathogenesis in a susceptible animal host. We recently conducted a study in cynomolgus macaques to investigate the disease course by measuring clinical parameters relevant to humans. Following infection, these parameters were rapidly and profoundly altered leading to severe disease. In this study, we examined the potential mechanisms that underlie pathogenesis to cause severe disease. The virus was present in many parts of the brain and spinal cord, however, minimal or no pathological lesions as well as active virus replication were observed. Additionally, neurons were the predominant target of EEEV infection and virus transport was facilitated via axonal transport system to spread neuron-to-neuron throughout the brain and spinal cord. These data show that EEEV likely hijacks essential transport system to rapidly spread in the brain and local/global neuronal dysfunction rather than neuronal death is the principal cause of severe disease.
Collapse
Affiliation(s)
- Janice A. Williams
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Simon Y. Long
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kathleen Kuehl
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - April M. Babka
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Neil M. Davis
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Jun Liu
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - John C. Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Paul R. Facemire
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Patrick L. Iversen
- Therapeutics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Margaret L. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| |
Collapse
|
5
|
Laboratory Validation of a Real-Time RT-PCR Assay for the Detection of Jamestown Canyon Virus. Pathogens 2022; 11:pathogens11050536. [PMID: 35631056 PMCID: PMC9146205 DOI: 10.3390/pathogens11050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The neuroinvasive disease caused by Jamestown Canyon virus (JCV) infection is rare. However, increasing incidence and widespread occurrence of the infection make JCV a growing public health concern. Presently, clinical diagnosis is achieved through serological testing, and mosquito pool surveillance requires virus isolation and identification. A rapid molecular detection test, such as real-time RT-PCR, for diagnosis and surveillance of JCV has not been widely utilized. To enhance testing and surveillance, here, we describe the development and validation of a real-time RT-PCR test for the detection of JCV RNA. Three primer and probe sets were evaluated for analytical sensitivity and specificity. One probe set, JCV132FAM, was found to be the most sensitive test detecting 7.2 genomic equivalents/µL. While less sensitive, a second probe set JCV231cFAM was the most specific test with limited detection of Keystone virus at high RNA loads. Taken together, these data indicate both probe sets can be utilized for a primary sensitive screening assay and a secondary specific confirmatory assay. While both primer and probe sets detected high viral loads of Keystone virus, these assays did not detect any virus in the California encephalitis virus clade, including negative detection of the medically important La Crosse virus (LACV) and snowshoe hare virus (SSHV). The real-time RT-PCR assay described herein could be utilized in diagnosis and surveillance in regions with co-circulation of JCV and LACV or SSHV to inform public health action.
Collapse
|
6
|
Hughes HR, Velez JO, Davis EH, Laven J, Gould CV, Panella AJ, Lambert AJ, Staples JE, Brault AC. Fatal Human Infection with Evidence of Intrahost Variation of Eastern Equine Encephalitis Virus, Alabama, USA, 2019. Emerg Infect Dis 2021; 27:1886-1892. [PMID: 34152960 PMCID: PMC8237905 DOI: 10.3201/eid2707.210315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is an arbovirus in the family Togaviridae, genus Alphavirus, found in North America and associated with freshwater/hardwood swamps in the Atlantic, Gulf Coast, and Great Lakes regions. EEEV disease in humans is rare but causes substantial illness and death. To investigate the molecular epidemiology and microevolution of EEEV from a fatal case in Alabama, USA, in 2019, we used next-generation sequencing of serum and cerebrospinal fluid (CSF). Phylogenetic inference indicated that the infecting strain may be closely related to isolates from Florida detected during 2010-2014, suggesting potential seeding from Florida. EEEV detected in serum displayed a higher degree of variability with more single-nucleotide variants than that detected in the CSF. These data refine our knowledge of EEEV molecular epidemiologic dynamics in the Gulf Coast region and demonstrate potential quasispecies bottlenecking within the central nervous system of a human host.
Collapse
|
7
|
Wilcox DR, Collens SI, Solomon IH, Mateen FJ, Mukerji SS. Eastern equine encephalitis and use of IV immunoglobulin therapy and high-dose steroids. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e917. [PMID: 33172962 PMCID: PMC7713729 DOI: 10.1212/nxi.0000000000000917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine the clinical presentation and patient outcomes after treatment with IV immunoglobulin (IVIG), high-dose steroids, or standard of care alone in Eastern equine encephalitis (EEE), a mosquito-borne viral infection with significant neurologic morbidity and mortality. METHODS A retrospective observational study of patients admitted to 2 tertiary academic medical centers in Boston, Massachusetts, with EEE from 2005 to 2019. RESULTS Of 17 patients (median [IQR] age, 63 [36-70] years; 10 (59%) male, and 16 (94%) White race), 17 patients had fever (100%), 15 had encephalopathy (88%), and 12 had headache (71%). Eleven of 14 patients with CSF cell count differential had a neutrophil predominance (mean = 60.6% of white blood cells) with an elevated protein level (median [IQR], 100 mg/dL [75-145]). Affected neuroanatomic regions included the basal ganglia (n = 9/17), thalamus (n = 7/17), and mesial temporal lobe (n = 7/17). A total of 11 patients (65%) received IVIG; 8 (47%) received steroids. Of the patients who received IVIG, increased time from hospital admission to IVIG administration correlated with worse long-term disability as assessed by the modified Rankin Scale (mRS) (r = 0.72, p = 0.02); steroid use was not associated with the mRS score. The mortality was 12%. CONCLUSIONS Clinicians should suspect EEE in immunocompetent patients with early subcortical neuroimaging abnormalities and CSF neutrophilic predominance. This study suggests a lower mortality than previously reported, but a high morbidity rate in EEE. IVIG as an adjunctive to standard of care may be considered early during hospitalization.
Collapse
Affiliation(s)
- Douglas R Wilcox
- From the Division of Neuroimmunology and Neuro-Infectious Diseases (D.R.W., S.I.C., F.J.M., S.S.M.), Department of Neurology, Massachusetts General Hospital; Department of Neurology (D.R.W.), Brigham and Women's Hospital; Department of Pathology (I.H.S.), Brigham and Women's Hospital; and Department of Neurology (D.R.W., F.J.M., S.S.M.), Harvard Medical School, Boston, MA.
| | - Sarah I Collens
- From the Division of Neuroimmunology and Neuro-Infectious Diseases (D.R.W., S.I.C., F.J.M., S.S.M.), Department of Neurology, Massachusetts General Hospital; Department of Neurology (D.R.W.), Brigham and Women's Hospital; Department of Pathology (I.H.S.), Brigham and Women's Hospital; and Department of Neurology (D.R.W., F.J.M., S.S.M.), Harvard Medical School, Boston, MA
| | - Isaac H Solomon
- From the Division of Neuroimmunology and Neuro-Infectious Diseases (D.R.W., S.I.C., F.J.M., S.S.M.), Department of Neurology, Massachusetts General Hospital; Department of Neurology (D.R.W.), Brigham and Women's Hospital; Department of Pathology (I.H.S.), Brigham and Women's Hospital; and Department of Neurology (D.R.W., F.J.M., S.S.M.), Harvard Medical School, Boston, MA
| | - Farrah J Mateen
- From the Division of Neuroimmunology and Neuro-Infectious Diseases (D.R.W., S.I.C., F.J.M., S.S.M.), Department of Neurology, Massachusetts General Hospital; Department of Neurology (D.R.W.), Brigham and Women's Hospital; Department of Pathology (I.H.S.), Brigham and Women's Hospital; and Department of Neurology (D.R.W., F.J.M., S.S.M.), Harvard Medical School, Boston, MA
| | - Shibani S Mukerji
- From the Division of Neuroimmunology and Neuro-Infectious Diseases (D.R.W., S.I.C., F.J.M., S.S.M.), Department of Neurology, Massachusetts General Hospital; Department of Neurology (D.R.W.), Brigham and Women's Hospital; Department of Pathology (I.H.S.), Brigham and Women's Hospital; and Department of Neurology (D.R.W., F.J.M., S.S.M.), Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Abstract
Domestic arthropod-borne viruses (arboviruses) are single-stranded RNA viruses, the most common of which include the mosquito-borne West Nile virus, St. Louis encephalitis virus, La Crosse virus, Jamestown Canyon virus, and eastern equine encephalitis virus, as well as the tick-borne Powassan virus. Previously considered rare infections, they have been detected with increasing frequency over the past 2 decades. Here, we present an overview of the domestic arboviruses listed above and describe the modalities employed to diagnose infection. Global arboviruses, including dengue virus, Zika virus, and chikungunya virus, have also been increasingly detected in the United States within the last 5 years but are not a focus of this minireview. Typical manifestations of arbovirus infection range from no symptoms, to meningitis or encephalitis, to death. Serologies are the standard means of diagnosis in the laboratory, since most viruses have a short period of replication, limiting the utility of molecular tests. The interpretation of serologies is confounded by antibody cross-reactivity with viruses belonging to the same serogroup and by long-lasting antibodies from prior infections. Next-generation assays have improved performance by increasing antigen purity, selecting optimal epitopes, and improving interpretive algorithms, but challenges remain. Due to cross-reactivity, a positive first-line serology test requires confirmation by either a plaque reduction neutralization test or detection of seroconversion or a 4-fold rise in virus-specific IgM or IgG antibody titers from acute- and convalescent-phase sera. The use of molecular diagnostics, such as reverse transcription PCR or unbiased metagenomic sequencing, is limited to the minority of patients who present with ongoing viremia or central nervous system replication. With the continued expansion of vector range, the diagnosis of domestic arboviruses will become an increasingly important task for generalists and specialists alike.
Collapse
|
9
|
Mukerji SS, Ard KL, Schaefer PW, Branda JA. Case 32-2020: A 63-Year-Old Man with Confusion, Fatigue, and Garbled Speech. N Engl J Med 2020; 383:1578-1586. [PMID: 33053289 DOI: 10.1056/nejmcpc2004996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shibani S Mukerji
- From the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| | - Kevin L Ard
- From the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| | - Pamela W Schaefer
- From the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| | - John A Branda
- From the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Massachusetts General Hospital, and the Departments of Neurology (S.S.M.), Medicine (K.L.A.), Radiology (P.W.S.), and Pathology (J.A.B.), Harvard Medical School - both in Boston
| |
Collapse
|
10
|
Raabe V, Lai L, Xu Y, Huerta C, Wang D, Pouch SM, Burke CW, Piper AE, Gardner CL, Glass PJ, Mulligan MJ. The Immune Response to Eastern Equine Encephalitis Virus Acquired Through Organ Transplantation. Front Microbiol 2020; 11:561530. [PMID: 33072022 PMCID: PMC7541818 DOI: 10.3389/fmicb.2020.561530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The human immune response to eastern equine encephalitis virus (EEEV) infection is poorly characterized due to the rarity of infection. We examined the humoral and cellular immune response to EEEV acquired from an infected donor via liver transplantation. Both binding and highly neutralizing antibodies to EEEV as well as a robust EEEV-specific IgG memory B cell response were generated. Despite triple-drug immunosuppressive therapy, a virus-specific CD4+ T cell response, predominated by interferon-γ production, was generated. T cell epitopes on the E2 envelope protein were identified by interferon-γ ELISpot. Although these results are from a single person who acquired EEEV by a non-traditional mechanism, to our knowledge this work represents the first analysis of the human cellular immune response to EEEV.
Collapse
Affiliation(s)
- Vanessa Raabe
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Lilin Lai
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Yong Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chris Huerta
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Dongli Wang
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Stephanie M Pouch
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Crystal W Burke
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christina L Gardner
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mark J Mulligan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Pouch SM, Katugaha SB, Shieh WJ, Annambhotla P, Walker WL, Basavaraju SV, Jones J, Huynh T, Reagan-Steiner S, Bhatnagar J, Grimm K, Stramer SL, Gabel J, Lyon GM, Mehta AK, Kandiah P, Neujahr DC, Javidfar J, Subramanian RM, Parekh SM, Shah P, Cooper L, Psotka MA, Radcliffe R, Williams C, Zaki SR, Staples JE, Fischer M, Panella AJ, Lanciotti RS, Laven JJ, Kosoy O, Rabe IB, Gould CV. Transmission of Eastern Equine Encephalitis Virus From an Organ Donor to 3 Transplant Recipients. Clin Infect Dis 2020; 69:450-458. [PMID: 30371754 DOI: 10.1093/cid/ciy923] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In fall 2017, 3 solid organ transplant (SOT) recipients from a common donor developed encephalitis within 1 week of transplantation, prompting suspicion of transplant-transmitted infection. Eastern equine encephalitis virus (EEEV) infection was identified during testing of endomyocardial tissue from the heart recipient. METHODS We reviewed medical records of the organ donor and transplant recipients and tested serum, whole blood, cerebrospinal fluid, and tissue from the donor and recipients for evidence of EEEV infection by multiple assays. We investigated blood transfusion as a possible source of organ donor infection by testing remaining components and serum specimens from blood donors. We reviewed data from the pretransplant organ donor evaluation and local EEEV surveillance. RESULTS We found laboratory evidence of recent EEEV infection in all organ recipients and the common donor. Serum collected from the organ donor upon hospital admission tested negative, but subsequent samples obtained prior to organ recovery were positive for EEEV RNA. There was no evidence of EEEV infection among donors of the 8 blood products transfused into the organ donor or in products derived from these donations. Veterinary and mosquito surveillance showed recent EEEV activity in counties nearby the organ donor's county of residence. Neuroinvasive EEEV infection directly contributed to the death of 1 organ recipient and likely contributed to death in another. CONCLUSIONS Our investigation demonstrated EEEV transmission through SOT. Mosquito-borne transmission of EEEV to the organ donor was the likely source of infection. Clinicians should be aware of EEEV as a cause of transplant-associated encephalitis.
Collapse
Affiliation(s)
- Stephanie M Pouch
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Shalika B Katugaha
- Infectious Diseases Physicians, Inc, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Wun-Ju Shieh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Pallavi Annambhotla
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - William L Walker
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado.,Epidemic Intelligence Service, Center for Surveillance, Epidemiology and Laboratory Services, CDC, Atlanta, Georgia
| | - Sridhar V Basavaraju
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jefferson Jones
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Thanhthao Huynh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Sarah Reagan-Steiner
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Julu Bhatnagar
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Kacie Grimm
- American Red Cross, Gaithersburg, Maryland, Emory University School of Medicine, Atlanta, Georgia
| | - Susan L Stramer
- American Red Cross, Gaithersburg, Maryland, Emory University School of Medicine, Atlanta, Georgia
| | - Julie Gabel
- Georgia Department of Public Health, Emory University School of Medicine, Atlanta, Georgia
| | - G Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Aneesh K Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Prem Kandiah
- Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - David C Neujahr
- Division of Pulmonary Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey Javidfar
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ram M Subramanian
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Samir M Parekh
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Palak Shah
- Department of Heart Failure and Transplantation, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Lauren Cooper
- Department of Heart Failure and Transplantation, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Mitchell A Psotka
- Department of Heart Failure and Transplantation, Inova Fairfax Hospital Heart and Vascular Institute, Falls Church, Virginia
| | - Rachel Radcliffe
- Division of Acute Disease Epidemiology, South Carolina Department of Health and Environmental Control, Columbia
| | | | - Sherif R Zaki
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - J Erin Staples
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Marc Fischer
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Amanda J Panella
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | | | - Janeen J Laven
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Olga Kosoy
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Ingrid B Rabe
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | - Carolyn V Gould
- Division of Vector-Borne Diseases, NCEZID, CDC, Fort Collins, Colorado
| | | |
Collapse
|
12
|
Solomon IH, Spera KM, Ryan SL, Helgager J, Andrici J, Zaki SR, Vaitkevicius H, Leon KE, Wilson MR, DeRisi JL, Koo S, Smirnakis SM, De Girolami U. Fatal Powassan Encephalitis (Deer Tick Virus, Lineage II) in a Patient With Fever and Orchitis Receiving Rituximab. JAMA Neurol 2019; 75:746-750. [PMID: 29554185 DOI: 10.1001/jamaneurol.2018.0132] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Powassan virus is a rare but increasingly recognized cause of severe neurological disease. Objective To highlight the diagnostic challenges and neuropathological findings in a fatal case of Powassan encephalitis caused by deer tick virus (lineage II) in a patient with follicular lymphoma receiving rituximab, with nonspecific anti-GAD65 antibodies, who was initially seen with fever and orchiepididymitis. Design, Setting, and Participants Comparison of clinical, radiological, histological, and laboratory findings, including immunohistochemistry, real-time polymerase chain reaction, antibody detection, and unbiased sequencing assays, in a single case report (first seen in December 2016) at an academic medical center. Exposure Infection with Powassan virus. Main Outcomes and Measures Results of individual assays compared retrospectively. Results In a 63-year-old man with fatal Powassan encephalitis, serum and cerebrospinal fluid IgM antibodies were not detected via standard methods, likely because of rituximab exposure. Neuropathological findings were extensive, including diffuse leptomeningeal and parenchymal lymphohistiocytic infiltration, microglial proliferation, marked neuronal loss, and white matter microinfarctions most severely involving the cerebellum, thalamus, and basal ganglia. Diagnosis was made after death by 3 independent methods, including demonstration of Powassan virus antigen in brain biopsy and autopsy tissue, detection of viral RNA in serum and cerebrospinal fluid by targeted real-time polymerase chain reaction, and detection of viral RNA in cerebrospinal fluid by unbiased sequencing. Extensive testing for other etiologies yielded negative results, including mumps virus owing to prodromal orchiepididymitis. Low-titer anti-GAD65 antibodies identified in serum, suggestive of limbic encephalitis, were not detected in cerebrospinal fluid. Conclusions and Relevance Owing to the rarity of Powassan encephalitis, a high degree of suspicion is required to make the diagnosis, particularly in an immunocompromised patient, in whom antibody-based assays may be falsely negative. Unbiased sequencing assays have the potential to detect uncommon infectious agents and may prove useful in similar scenarios.
Collapse
Affiliation(s)
- Isaac H Solomon
- Neuropathology Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kristyn M Spera
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sophia L Ryan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey Helgager
- Neuropathology Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juliana Andrici
- Neuropathology Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henrikas Vaitkevicius
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kristoffer E Leon
- currently at medical student at UCSF School of Medicine, University of California, San Francisco
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| | - Joseph L DeRisi
- Department of Biochemistry & Biophysics, University of California, San Francisco.,Chan Zuckerberg Biohub, San Francisco, California
| | - Sophia Koo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Umberto De Girolami
- Neuropathology Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Yang Y, Qiu J, Snyder-Keller A, Wu Y, Sun S, Sui H, Dean AB, Kramer L, Hernandez-Ilizaliturri F. Fatal Cache Valley virus meningoencephalitis associated with rituximab maintenance therapy. Am J Hematol 2018; 93:590-594. [PMID: 29282755 DOI: 10.1002/ajh.25024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanquan Yang
- Department of Medicine; Roswell Park Cancer Institute; Buffalo New York
| | - Jingxin Qiu
- Department of Pathology; Roswell Park Cancer Institute; Buffalo New York
| | | | - Yongping Wu
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Shufeng Sun
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Amy B. Dean
- Wadsworth Center, New York State Department of Health; Albany New York
| | - Laura Kramer
- Wadsworth Center, New York State Department of Health; Albany New York
| | | |
Collapse
|
14
|
Fragkoudis R, Dixon-Ballany CM, Zagrajek AK, Kedzierski L, Fazakerley JK. Following Acute Encephalitis, Semliki Forest Virus is Undetectable in the Brain by Infectivity Assays but Functional Virus RNA Capable of Generating Infectious Virus Persists for Life. Viruses 2018; 10:v10050273. [PMID: 29783708 PMCID: PMC5977266 DOI: 10.3390/v10050273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Abstract
Alphaviruses are mosquito-transmitted RNA viruses which generally cause acute disease including mild febrile illness, rash, arthralgia, myalgia and more severely, encephalitis. In the mouse, peripheral infection with Semliki Forest virus (SFV) results in encephalitis. With non-virulent strains, infectious virus is detectable in the brain, by standard infectivity assays, for around ten days. As we have shown previously, in severe combined immunodeficient (SCID) mice, infectious virus is detectable for months in the brain. Here we show that in MHC-II-/- mice, with no functional CD4 T-cells, infectious virus is also detectable in the brain for long periods. In contrast, in the brains of CD8-/- mice, virus RNA persists but infectious virus is not detectable. In SCID mice infected with SFV, repeated intraperitoneal administration of anti-SFV immune serum rapidly reduced the titer of infectious virus in the brain to undetectable, however virus RNA persisted. Repeated intraperitoneal passive transfer of immune serum resulted in maintenance of brain virus RNA, with no detectable infectious virus, for several weeks. When passive antibody transfer was stopped, antibody levels declined and infectious virus was again detectable in the brain. In aged immunocompetent mice, previously infected with SFV, immunosuppression of antibody responses many months after initial infection also resulted in renewed ability to detect infectious virus in the brain. In summary, antiviral antibodies control and determine whether infectious virus is detectable in the brain but immune responses cannot clear this infection from the brain. Functional virus RNA capable of generating infectious virus persists and if antibody levels decline, infectious virus is again detectable.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Brain/immunology
- Brain/virology
- Cell Line
- Cricetinae
- Cyclophosphamide/pharmacology
- Encephalitis, Viral/immunology
- Encephalitis, Viral/virology
- Immune Sera/immunology
- Immune Sera/isolation & purification
- Immunity, Cellular/drug effects
- Immunosuppressive Agents/pharmacology
- Mice
- Mice, Inbred Strains
- Mice, SCID
- RNA, Viral/genetics
- RNA, Viral/immunology
- Semliki forest virus/growth & development
- Semliki forest virus/immunology
- Semliki forest virus/physiology
- T-Lymphocytes/immunology
- Viral Plaque Assay
Collapse
Affiliation(s)
- Rennos Fragkoudis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| | - Catherine M Dixon-Ballany
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
| | - Adrian K Zagrajek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences at The Peter Doherty Institute for Infection and Immunity and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 792 Elizabeth Street, Melbourne 3000, Australia.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK.
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences at The Peter Doherty Institute for Infection and Immunity and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 792 Elizabeth Street, Melbourne 3000, Australia.
| |
Collapse
|