1
|
Zhang Y, Gao Y, Vandeputte DJ, Leermakers M, Ruytinx J. Arbuscular Mycorrhizal Fungi Improve Rice Production in Zinc-Amended Soils by Altering Zinc Transport and Translocation Routes. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40202371 DOI: 10.1111/pce.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Human activities including industry and overcultivation resulted in marginal soils, unbalanced in nutrients or polluted with heavy metals. Zinc (Zn) is an essential micronutrient and its nonoptimal soil bio-availability, negatively affects plant growth and production. Arbuscular mycorrhizal fungi (AMF) could improve Zn acquisition in limited conditions and prevent accumulation in plant tissue in contaminated soils. However, it is not clear how AMF impact host plant Zn uptake and transport routes. In this study we assessed the potential of commercial AMF inoculum to support rice growth and production in non-Zn-fertilised, Zn-fertilised and Zn-polluted soils alongside their impact on host plant nutrient balances and Zn uptake and translocation routes. The results demonstrated that AMF inoculation restores rice growth and grain production in Zn-amended soils and that Zn amendment improves root colonisation. Shoot ionomes were particularly sensitive to differences in Zn supply and differentially affected in AMF and mock-inoculated plants. When present in excess, AMF inoculation decreased accumulation of Zn in shoots and disturbed Zn-P (phosphorus) relationship. We could not detect a mycorrhiza-specific Zn transporter in rice but rather a modification of expression for Zn transporters in the direct uptake routes. AMF inoculation interacts with the Zn-dependent response of heavy metal ATPase (OsHMA) transporters involved in root-to-shoot translocation. All together, these data indicate a change in relative importance of different direct Zn transport routes upon AMF colonisation. These findings provide valuable insights into how AMF symbiosis influences Zn uptake and distribution in rice under varying Zn conditions, allowing for the development of plant-fungus bioremediation and biofortification technologies.
Collapse
Affiliation(s)
- Yang Zhang
- Research groups Microbiology (MICR) and Plant Genetics (PLAN), Vrije Universiteit Brussel, Brussel, Belgium
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussel, Belgium
| | | | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Brussel, Belgium
| | - Joske Ruytinx
- Research groups Microbiology (MICR) and Plant Genetics (PLAN), Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
2
|
Sun Y, Zhong B, Meng Z, Zhang Y, Li Z, Yao C. Intact spermatogenesis in an azoospermic patient with AZFa (sY84 and sY86) microdeletion and a homozygous TG12-5T variant in CFTR. Basic Clin Androl 2025; 35:13. [PMID: 40169970 PMCID: PMC11963436 DOI: 10.1186/s12610-025-00260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Azoospermia, the most severe form of male infertility, is categorized into two types: non-obstructive azoospermia (NOA) and obstructive azoospermia (OA), which exhibit significant genetic heterogeneity. Azoospermia factor (AZF) deletion is a common cause of NOA, whereas congenital bilateral absence of the vas deferens (CBAVD), a severe subtype of OA, is frequently linked to cystic fibrosis transmembrane conductance regulator (CFTR) gene variants. This case report is the first to document the coexistence of a partial AZFa microdeletion and a homozygous CFTR variant in a CBAVD-affected azoospermic patient with intact spermatogenesis. CASE PRESENTATION A 32-year-old man presented with primary infertility and azoospermia. Clinical evaluation revealed CBAVD (normal hormone levels, low semen volume, pH 6.0, and absence of the vas deferens). Genetic analysis accidentally revealed a 384.9 kb AZFa deletion (sY84 and sY86, but not sY1064, 1182) that removed USP9Y but retained DDX3Y in the proband, his fertile brother, and his father. A homozygous CFTR variant (TG12-5T) was also detected in the proband and his brother and was inherited from heterozygous parental carriers. Microdissection testicular sperm extraction (micro-TESE) revealed intact spermatogenesis, confirmed by histology and immunofluorescence, indicating normal germ cell development. CONCLUSION This case expands the intricate genetic spectrum of azoospermia by illustrating the critical role of DDX3Y in the AZFa region in spermatogenesis and the variable penetrance of CFTR variant (TG12-5T) in CBAVD. These insights may refine diagnostic strategies and underscore the necessity for tailored fertility management in individuals with multifactorial genetic anomalies.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Beifen Zhong
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zizhou Meng
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuxiang Zhang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng Li
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, 225300, China.
| | - Chencheng Yao
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
3
|
Rengarajan S, Derks J, Bellott DW, Slavov N, Page DC. Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y. Genome Res 2025; 35:20-30. [PMID: 39794123 PMCID: PMC11789639 DOI: 10.1101/gr.279707.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multifunctional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, DDX3X is extraordinarily dosage sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y Chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X Chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. Thus, perturbation of either DDX3X or DDX3Y expression is buffered: by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells and by negative auto-regulation of DDX3X in 46,XX cells. DDX3X-DDX3Y cross-regulation is mediated through mRNA destabilization-as shown by metabolic labeling of newly transcribed RNA-and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) DDX3X gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.
Collapse
Affiliation(s)
- Shruthi Rengarajan
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jason Derks
- Departments of Bioengineering, Biology, Chemistry, and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry, and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
4
|
Rengarajan S, Derks J, Bellott DW, Slavov N, Page DC. Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602613. [PMID: 39026797 PMCID: PMC11257633 DOI: 10.1101/2024.07.08.602613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multi-functional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, DDX3X is extraordinarily dosage-sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. Thus, perturbation of either DDX3X or DDX3Y expression is buffered - by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells, and by negative auto-regulation of DDX3X in 46,XX cells. DDX3X-DDX3Y cross-regulation is mediated through mRNA destabilization - as shown by metabolic labeling of newly transcribed RNA - and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) DDX3 gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.
Collapse
Affiliation(s)
- Shruthi Rengarajan
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Ng R, Stanar P, Louie K, Chow V, Ma S. Increased Y Chromosome Microdeletions in Cord Blood of Male Newborns From Assisted Reproductive Technology Compared to Natural Conception. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102342. [PMID: 38176679 DOI: 10.1016/j.jogc.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES To investigate the incidence of Y chromosome microdeletions in male newborns conceived by intracytoplasmic sperm injection (ICSI), in vitro fertilization (IVF), and natural conception (NC). METHODS A total of 186 male newborns were recruited, including 35 conceived by ICSI, 37 conceived by IVF, and 114 conceived naturally. DNA was extracted from umbilical cord blood after birth. The Yq genetic status of the newborns was determined according to 18 Y-specific sequence tagging sites (STS) markers covering 3 azoospermia factor (AZF) sub-regions and internal control sequences. RESULTS Partial AZF microdeletions were identified in 8 of 35 (22.9%) ICSI newborns, 4 of 37 (10.8%) IVF newborns, and 1 of 114 (0.9%) NC newborns. There was a statistically significant difference in the proportion of newborns with partial Y chromosome microdeletions between the ICSI, IVF, and NC groups. When analyzed individually, only the SY114 and SY152 STS markers showed a statistically significant difference in incidence between the 3 cohorts. CONCLUSIONS Our study indicates that the population of male children conceived through assisted reproductive technologies (ART), particularly ICSI, is at an increased risk of genetic defect in the form of partial Y chromosome microdeletions. The growing population of ART-conceived children emphasizes the importance of studying the genetic repercussions of these procedures regarding the future fertility of males conceived in vitro.
Collapse
Affiliation(s)
- Richard Ng
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Paloma Stanar
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Kenny Louie
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Victor Chow
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Krausz C, Navarro-Costa P, Wilke M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State of the art 2023. Andrology 2024; 12:487-504. [PMID: 37674303 DOI: 10.1111/andr.13514] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Testing for AZoospermia Factor (AZF) deletions of the Y chromosome is a key component of the diagnostic workup of azoospermic and severely oligozoospermic men. This revision of the 2013 European Academy of Andrology (EAA) and EMQN CIC (previously known as the European Molecular Genetics Quality Network) laboratory guidelines summarizes recent clinically relevant advances and provides an update on the results of the external quality assessment program jointly offered by both organizations. A basic multiplex PCR reaction followed by a deletion extension analysis remains the gold-standard methodology to detect and correctly interpret AZF deletions. Recent data have led to an update of the sY84 reverse primer sequence, as well as to a refinement of what were previously considered as interchangeable border markers for AZFa and AZFb deletion breakpoints. More specifically, sY83 and sY143 are no longer recommended for the deletion extension analysis, leaving sY1064 and sY1192, respectively, as first-choice markers. Despite the transition, currently underway in several countries, toward a diagnosis based on certified kits, it should be noted that many of these commercial products are not recommended due to an unnecessarily high number of tested markers, and none of those currently available are, to the best of our knowledge, in accordance with the new first-choice markers for the deletion extension analysis. The gr/gr partial AZFc deletion remains a population-specific risk factor for impaired sperm production and a predisposing factor for testicular germ cell tumors. Testing for this deletion type is, as before, left at the discretion of the diagnostic labs and referring clinicians. Annual participation in an external quality control program is strongly encouraged, as the 22-year experience of the EMQN/EAA scheme clearly demonstrates a steep decline in diagnostic errors and an improvement in reporting practice.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Paulo Navarro-Costa
- EvoReproMed Lab, Environmental Health Institute (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Gulbenkian Science Institute, Oeiras, Portugal
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, Hook PW, Koren S, Rautiainen M, Alexandrov IA, Allen J, Asri M, Bzikadze AV, Chen NC, Chin CS, Diekhans M, Flicek P, Formenti G, Fungtammasan A, Garcia Giron C, Garrison E, Gershman A, Gerton JL, Grady PGS, Guarracino A, Haggerty L, Halabian R, Hansen NF, Harris R, Hartley GA, Harvey WT, Haukness M, Heinz J, Hourlier T, Hubley RM, Hunt SE, Hwang S, Jain M, Kesharwani RK, Lewis AP, Li H, Logsdon GA, Lucas JK, Makalowski W, Markovic C, Martin FJ, Mc Cartney AM, McCoy RC, McDaniel J, McNulty BM, Medvedev P, Mikheenko A, Munson KM, Murphy TD, Olsen HE, Olson ND, Paulin LF, Porubsky D, Potapova T, Ryabov F, Salzberg SL, Sauria MEG, Sedlazeck FJ, Shafin K, Shepelev VA, Shumate A, Storer JM, Surapaneni L, Taravella Oill AM, Thibaud-Nissen F, Timp W, Tomaszkiewicz M, Vollger MR, Walenz BP, Watwood AC, Weissensteiner MH, Wenger AM, Wilson MA, Zarate S, Zhu Y, Zook JM, Eichler EE, O'Neill RJ, Schatz MC, Miga KH, Makova KD, Phillippy AM. The complete sequence of a human Y chromosome. Nature 2023; 621:344-354. [PMID: 37612512 PMCID: PMC10752217 DOI: 10.1038/s41586-023-06457-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.
Collapse
Affiliation(s)
- Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergey Nurk
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Oxford Nanopore Technologies Inc., Oxford, UK
| | - Monika Cechova
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Savannah J Hoyt
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Nicolas Altemose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Paul W Hook
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mikko Rautiainen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A Alexandrov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Center for Algorithmic Biotechnology, Saint Petersburg State University, St Petersburg, Russia
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jamie Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Mobin Asri
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Andrey V Bzikadze
- Graduate Program in Bioinformatics and Systems Biology, University of California, San Diego, CA, USA
| | - Nae-Chyun Chen
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Chen-Shan Chin
- GeneDX Holdings Corp, Stamford, CT, USA
- Foundation of Biological Data Science, Belmont, CA, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - Carlos Garcia Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Patrick G S Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Reza Halabian
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Nancy F Hansen
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jakob Heinz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephen Hwang
- XDBio Program, Johns Hopkins University, Baltimore, MD, USA
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Rupesh K Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Julian K Lucas
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Christopher Markovic
- Genome Technology Access Center at the McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ann M Mc Cartney
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer McDaniel
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Brandy M McNulty
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Paul Medvedev
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, USA
| | - Alla Mikheenko
- Center for Algorithmic Biotechnology, Saint Petersburg State University, St Petersburg, Russia
- UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hugh E Olsen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Nathan D Olson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fedor Ryabov
- Masters Program in National Research University Higher School of Economics, Moscow, Russia
| | - Steven L Salzberg
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | | | - Alaina Shumate
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Likhitha Surapaneni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Angela M Taravella Oill
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, USA
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Brian P Walenz
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison C Watwood
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yiming Zhu
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Justin M Zook
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Investigator, Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Michael C Schatz
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Karen H Miga
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
9
|
Abdullah U, Saleh N, Shaw P, Jalal N. COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines (Basel) 2023; 11:319. [PMID: 36851197 PMCID: PMC9966855 DOI: 10.3390/vaccines11020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the agent behind the worst global pandemic of the 21st century (COVID-19), is primarily a respiratory-disease-causing virus called SARS-CoV-2 that is responsible for millions of new cases (incidence) and deaths (mortalities) worldwide. Many factors have played a role in the differential morbidity and mortality experienced by nations and ethnicities against SARS-CoV-2, such as the quality of primary medical health facilities or enabling economies. At the same time, the most important variable, i.e., the subsequent ability of individuals to be immunologically sensitive or resistant to the infection, has not been properly discussed before. Despite having excellent medical facilities, an astounding issue arose when some developed countries experienced higher morbidity and mortality compared with their relatively underdeveloped counterparts. Hence, this investigative review attempts to analyze the issue from an angle of previously undiscussed genetic, epigenetic, and molecular immune resistance mechanisms in correlation with the pathophysiology of SARS-CoV-2 and varied ethnicity-based immunological responses against it. The biological factors discussed here include the overall landscape of human microbiota, endogenous retroviral genes spliced into the human genome, and copy number variation, and how they could modulate the innate and adaptive immune systems that put a certain ethnic genetic architecture at a higher risk of SARS-CoV-2 infection than others. Considering an array of these factors in their entirety may help explain the geographic disparity of disease incidence, severity, and subsequent mortality associated with the disease while at the same time encouraging scientists to design new experimental approaches to investigation.
Collapse
Affiliation(s)
- Usman Abdullah
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
| | - Ned Saleh
- Synsal Inc., San Jose, CA 95138, USA
| | - Peter Shaw
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| | - Nasir Jalal
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
10
|
Ottmann M. [These viruses that inhabit and visit us: The human virome]. Med Sci (Paris) 2022; 38:1028-1038. [PMID: 36692282 DOI: 10.1051/medsci/2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in new sequencing technologies have opened the way to the deciphering of human virome. So far, human virome is defined as the complete list of viruses found in human body. Those viruses could be endogenous, prokaryotic, archaeal and eukaryotic. In addition, each compartment of the human body constitutes a different microenvironment with its own virome. Viral infections can be categorized according to the outcome of the acute phase and until recently, only symptomatic and pathological infections were studied. It is now well established that a healthy person has an extremely diverse virome. This review summarizes the current state of our knowledge and also proposes another classification of the human virome based on principles of ecology.
Collapse
Affiliation(s)
- Michèle Ottmann
- Centre international de recherche en infectiologie (CIRI), université Claude Bernard-Lyon 1, université de Lyon, Inserm U1111 - CNRS UMR 5308 - ENS, Laboratoire de virologie et pathologies humaines, Faculté de médecine RTH Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
11
|
Chang CH, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife 2022; 11:e75795. [PMID: 34989337 PMCID: PMC8794474 DOI: 10.7554/elife.75795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Lauren E Gregory
- Department of Biology, University of RochesterRochesterUnited States
| | - Kathleen E Gordon
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | | |
Collapse
|
12
|
Srinivasachar Badarinarayan S, Sauter D. Switching Sides: How Endogenous Retroviruses Protect Us from Viral Infections. J Virol 2021; 95:e02299-20. [PMID: 33883223 PMCID: PMC8315955 DOI: 10.1128/jvi.02299-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.
Collapse
MESH Headings
- Animals
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/physiology
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Humans
- Immunity, Cellular
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Pattern Recognition/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/metabolism
- Retroelements
- Viral Proteins/metabolism
- Virion/metabolism
- Virus Diseases/genetics
- Virus Diseases/immunology
- Virus Diseases/virology
Collapse
Affiliation(s)
- Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Germany
| |
Collapse
|
13
|
Witherspoon L, Dergham A, Flannigan R. Y-microdeletions: a review of the genetic basis for this common cause of male infertility. Transl Androl Urol 2021; 10:1383-1390. [PMID: 33850774 PMCID: PMC8039600 DOI: 10.21037/tau-19-599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human Y-chromosome contains genetic material responsible for normal testis development and spermatogenesis. The long arm (Yq) of the Y-chromosome has been found to be susceptible to self-recombination during spermatogenesis predisposing this area to deletions. The incidence of these deletions is estimated to be 1/4,000 in the general population but has been found to be much higher in infertile men. Currently, Y-microdeletions are the second most commonly identified genetic cause of male infertility after Klinefelter syndrome. This has led to testing for these deletions becoming standard practice in men with azoospermia and severe oligospermia. There are three commonly identified Y-microdeletions in infertile males, termed azoospermia factor (AZF) microdeletions AZFa, AZFb and AZFc. With increased understanding and investigation of this genetic basis for infertility a more comprehensive understanding of these deletions has evolved, with several other deletion subtypes being identified. Understanding the genetic basis and pathology behind these Y-microdeletions is essential for any clinician involved in reproductive medicine. In this review we discuss the genetic basis of Y-microdeletions, the various subtypes of deletions, and current technologies available for testing. Our understanding of this issue is evolving in many areas, and in this review we highlight future testing opportunities that may allow us to stratify men with Y-microdeletion associated infertility more accurately
Collapse
Affiliation(s)
- Luke Witherspoon
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Ali Dergham
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
14
|
Kuroda S, Usui K, Sanjo H, Takeshima T, Kawahara T, Uemura H, Yumura Y. Genetic disorders and male infertility. Reprod Med Biol 2020; 19:314-322. [PMID: 33071633 PMCID: PMC7542010 DOI: 10.1002/rmb2.12336] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At present, one out of six couples is infertile, and in 50% of cases, infertility is attributed to male infertility factors. Genetic abnormalities are found in 10%-20% of patients showing severe spermatogenesis disorders, including non-obstructive azoospermia. METHODS Literatures covering the relationship between male infertility and genetic disorders or chromosomal abnormalities were studied and summarized. MAIN FINDINGS RESULTS Genetic disorders, including Klinefelter syndrome, balanced reciprocal translocation, Robertsonian translocation, structural abnormalities in Y chromosome, XX male, azoospermic factor (AZF) deletions, and congenital bilateral absence of vas deferens were summarized and discussed from a practical point of view. Among them, understanding on AZF deletions significantly changed owing to advanced elucidation of their pathogenesis. Due to its technical progress, AZF deletion test can reveal their delicate variations and predict the condition of spermatogenesis. Thirty-nine candidate genes possibly responsible for azoospermia have been identified in the last 10 years owing to the advances in genome sequencing technologies. CONCLUSION Genetic testing for chromosomes and AZF deletions should be examined in cases of severe oligozoospermia and azoospermia. Genetic counseling should be offered before and after genetic testing.
Collapse
Affiliation(s)
- Shinnosuke Kuroda
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
- Department of Medical GeneticsYokohama City University Medical CentreKanagawaJapan
| | - Kimitsugu Usui
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| | - Hiroyuki Sanjo
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| | - Teppei Takeshima
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| | - Takashi Kawahara
- Department of Urology and Renal TransplantationYokohama City University Medical CentreKanagawaJapan
| | - Hiroji Uemura
- Department of Urology and Renal TransplantationYokohama City University Medical CentreKanagawaJapan
| | - Yasushi Yumura
- Department of Urology, Reproductive CentreYokohama City University Medical CentreKanagawaJapan
| |
Collapse
|
15
|
Dutta UR, Suttur MS, Venugopal VS, Posanapally LP, Gopalasetty S, Talwar S, Anand S, Billapati S, Jesudasan RA, Dalal A. Cytogenetic and molecular study of 370 infertile men in South India highlighting the importance of copy number variations by multiplex ligation-dependent probe amplification. Andrologia 2020; 52:e13761. [PMID: 32790203 DOI: 10.1111/and.13761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 02/01/2023] Open
Abstract
Male infertility is a common and severe problem affecting 7% of population. The main objective of this study is to identify the chromosomal abnormalities, Y microdeletions in infertile men and also to access the frequency of abnormal sperm count. Based on the sperm count and viability, the infertile men were grouped as Azoospermia, Asthenospermia, Oligospermia and the remaining as Idiopathic infertility. A total of 370 infertile men and 60 normal control men were recruited. Chromosomal abnormalities were identified in 3 men (3/370). The prevalence of Y microdeletions in the infertile group is 8/370 in the Azoospermia factor (AZF) region with four AZFc deletion/duplication, two AZFa deletion, one AZF b & AZFc deletion and one case of total AZF a, AZFb & AZFc deletion. However, only five cases of Y microdeletions were identified by Multiplex PCR but an additional three cases by MLPA (Multiplex ligation-dependent probe amplification). Fluorescence in situ hybridisation also confirmed the deletions. Here, we performed MLPA post-multiplex PCR, and our study revealed good yield of the Y microdeletion identification. The partial duplications which are difficult to be identified can now be easily identified by MLPA, and hence, we recommend MLPA as the choice of investigation compared to multiplex PCR for infertile men.
Collapse
Affiliation(s)
- Usha R Dutta
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | | | | | | | | | - Suhana Anand
- DOS in Zoology, University of Mysore, Mysore, India
| | | | | | - Ashwin Dalal
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
16
|
Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia 2020; 53:e13586. [PMID: 32314821 DOI: 10.1111/and.13586] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Male infertility is a complex condition with a strong genetic and epigenetic background. This review discusses the importance of genetic and epigenetic factors in the pathophysiology of male infertility. The interplay between thousands of genes, the epigenetic control of gene expression, and environmental and lifestyle factors, which influence genetic and epigenetic variants, determines the resulting male infertility phenotype. Currently, karyotyping, Y-chromosome microdeletion screening and CFTR gene mutation tests are routinely performed to investigate a possible genetic aetiology in patients with azoospermia and severe oligozoospermia. However, current testing is limited in its ability to identify a variety of genetic and epigenetic conditions that might be implicated in both idiopathic and unexplained infertility. Several epimutations of imprinting genes and developmental genes have been postulated to be candidate markers for male infertility. As such, development of novel diagnostic panels is essential to change the current landscape with regard to prevention, diagnosis and management. Understanding the underlying genetic mechanisms related to the pathophysiology of male infertility, and the impact of environmental exposures and lifestyle factors on gene expression might aid clinicians in developing individualised treatment strategies.
Collapse
Affiliation(s)
- Sezgin Gunes
- Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey.,Molecular Medicine, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, São Paulo, SP, Brazil.,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, São Paulo, SP, Brazil.,Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Yamaguchi K, Ishikawa T, Mizuta S, Takeuchi T, Matsubayashi H, Kokeguchi S, Habara T, Ichioka K, Ohashi M, Okamoto S, Kawamura T, Kanto S, Taniguchi H, Tawara F, Hara T, Hibi H, Masuda H, Matsuyama T, Yoshida H. Clinical outcomes of microdissection testicular sperm extraction and intracytoplasmic sperm injection in Japanese men with Y chromosome microdeletions. Reprod Med Biol 2020; 19:158-163. [PMID: 32273821 PMCID: PMC7138942 DOI: 10.1002/rmb2.12317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023] Open
Abstract
PURPOSE We investigated the clinical results of Japanese men with Y chromosome microdeletions. METHODS This study retrospectively examined 2163 azoospermic or severe oligozoospermic patients. We investigated the frequency of azoospermia factor (AZF) deletions and sperm retrieval rate (SRR) by microTESE in patients with these deletions, then analyzed the ICSI outcomes. RESULTS Azoospermia factor deletions were found in 201 patients. SRR was significantly higher than that of the control group (74.0% vs 20.4%, P < .001). Thirty-three couples underwent ICSI using testicular spermatozoa retrieved by microTESE, and eight couples underwent ICSI using ejaculatory spermatozoa. The fertilization rate and clinical pregnancy rate per embryo transfer cycle were significantly higher in the ejaculatory group than that of the testicular group (66.4% vs 43.7%, P < .001, 53.3% vs 24.7%, P = .03, respectively). When compared with the control group, the fertilization rate was significantly lower in the testicular group with AZFc microdeletions (43.7% vs 53.6%, P < .001). CONCLUSIONS Our study highlights that although microTESE in azoospermic men with AZFc microdeletions led to a higher SRR, ICSI outcomes of these men were worse than that of men without AZF deletions, even if testicular spermatozoa were retrieved.
Collapse
Affiliation(s)
| | | | - Shimpei Mizuta
- Division of InfertilityReproduction Clinic OsakaOsakaJapan
| | - Takumi Takeuchi
- Division of InfertilityReproduction Clinic OsakaOsakaJapan
- Kyono ART Clinic TakanawaTokyoJapan
| | | | | | | | | | | | - Sumihide Okamoto
- Obstetrics and GynecologyART Okamoto Women's ClinicNagasakiJapan
| | | | | | | | | | - Tetsuaki Hara
- Division of Reproductive MedicineHiroshima Prefectural HospitalHiroshimaJapan
| | - Hatsuki Hibi
- Division of UrologyKyoritsu General HospitalAichiJapan
| | | | | | | |
Collapse
|
18
|
Cerván-Martín M, Castilla JA, Palomino-Morales RJ, Carmona FD. Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. J Clin Med 2020; 9:jcm9020300. [PMID: 31973052 PMCID: PMC7074441 DOI: 10.3390/jcm9020300] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonobstructive azoospermia (NOA) represents the most severe expression of male infertility, involving around 1% of the male population and 10% of infertile men. This condition is characterised by the inability of the testis to produce sperm cells, and it is considered to have an important genetic component. During the last two decades, different genetic anomalies, including microdeletions of the Y chromosome, karyotype defects, and missense mutations in genes involved in the reproductive function, have been described as the primary cause of NOA in many infertile men. However, these alterations only explain around 25% of azoospermic cases, with the remaining patients showing an idiopathic origin. Recent studies clearly suggest that the so-called idiopathic NOA has a complex aetiology with a polygenic inheritance, which may alter the spermatogenic process. Although we are far from a complete understanding of the molecular mechanisms underlying NOA, the use of the new technologies for genetic analysis has enabled a considerable increase in knowledge during the last years. In this review, we will provide a comprehensive and updated overview of the genetic basis of NOA, with a special focus on the possible application of the recent insights in clinical practice.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, Calle Maestro Bretón 1, 18004 Granada, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Facultad de Ciencias, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Correspondence: ; Tel.: +34-958-241-000 (ext 20170)
| |
Collapse
|
19
|
The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes (Basel) 2019; 11:genes11010040. [PMID: 31905733 PMCID: PMC7016774 DOI: 10.3390/genes11010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization (WHO) defines infertility as the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy within one year. Statistics show that the two sexes are equally at risk. Several causes may be responsible for male infertility; however, in 30–40% of cases a diagnosis of idiopathic male infertility is made in men with normal urogenital anatomy, no history of familial fertility-related diseases and a normal panel of values as for endocrine, genetic and biochemical markers. Idiopathic male infertility may be the result of gene/environment interactions, genetic and epigenetic abnormalities. Numerical and structural anomalies of the Y chromosome represent a minor yet significant proportion and are the topic discussed in this review. We searched the PubMed database and major search engines for reports about Y-linked male infertility. We present cases of Y-linked male infertility in terms of (i) anomalies of the Y chromosome structure/number; (ii) Y chromosome misbehavior in a normal genetic background; (iii) Y chromosome copy number variations (CNVs). We discuss possible explanations of male infertility caused by mutations, lower or higher number of copies of otherwise wild type, Y-linked sequences. Despite Y chromosome structural anomalies are not a major cause of male infertility, in case of negative results and of normal DNA sequencing of the ascertained genes causing infertility and mapping on this chromosome, we recommend an analysis of the karyotype integrity in all cases of idiopathic fertility impairment, with an emphasis on the structure and number of this chromosome.
Collapse
|
20
|
Li XZ. What can PIWI-interacting RNA research learn from chickens, and vice versa? CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P-element induced wimpy testis (PIWI) interacting RNA (piRNA) are essential for fertility, by protecting the integrity of the germ-line genome via silencing of transposable elements (TE). Because new TE are constantly invading the host genome, piRNA-producing loci are under continuous pressure to undergo rapid evolution. This arms race between TE and piRNA is a prime example of the genome being more plastic than previously thought. Historically, the study of piRNA and TE has benefited from the use of diverse model organisms, including worms, fruit fly, zebrafish, frogs, and mice. In domestic chickens, we recently identified a new mode of piRNA acquisition in which the host hijacks and converts a pre-existing provirus into a piRNA-producing locus to defend against Avian leukosis virus, an adaptive immune strategy similar to the prokaryotic CRISPR–Cas [clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas)] system. This finding reveals a previously unrecognized mechanism of the host piRNA repertoire to rapidly evolve and target TE specifically. In this review, we will focus on both the unique and common features of chicken piRNA, as well as the advantages of using chickens as a model system, to address fundamental questions regarding piRNA acquisition in hosts. We will also comment on the potential application of piRNA for improving poultry health and reproductive efficiency.
Collapse
Affiliation(s)
- Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
21
|
|
22
|
Rani DS, Rajender S, Pavani K, Chaubey G, Rasalkar AA, Gupta NJ, Deendayal M, Chakravarty B, Thangaraj K. High frequencies of Non Allelic Homologous Recombination (NAHR) events at the AZF loci and male infertility risk in Indian men. Sci Rep 2019; 9:6276. [PMID: 31000748 PMCID: PMC6472346 DOI: 10.1038/s41598-019-42690-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
Deletions in the AZoospermia Factor (AZF) regions (spermatogenesis loci) on the human Y chromosome are reported as one of the most common causes of severe testiculopathy and spermatogenic defects leading to male infertility, yet not much data is available for Indian infertile men. Therefore, we screened for AZF region deletions in 973 infertile men consisting of 771 azoospermia, 105 oligozoospermia and 97 oligoteratozoospermia cases, along with 587 fertile normozoospermic men. The deletion screening was carried out using AZF-specific markers: STSs (Sequence Tagged Sites), SNVs (Single Nucleotide Variations), PCR-RFLP (Polymerase Chain Reaction - Restriction Fragment Length Polymorphism) analysis of STS amplicons, DNA sequencing and Southern hybridization techniques. Our study revealed deletion events in a total of 29.4% of infertile Indian men. Of these, non-allelic homologous recombination (NAHR) events accounted for 25.8%, which included 3.5% AZFb deletions, 2.3% AZFbc deletions, 6.9% complete AZFc deletions, and 13.1% partial AZFc deletions. We observed 3.2% AZFa deletions and a rare long AZFabc region deletion in 0.5% azoospermic men. This study illustrates how the ethnicity, endogamy and long-time geographical isolation of Indian populations might have played a major role in the high frequencies of deletion events.
Collapse
Affiliation(s)
- Deepa Selvi Rani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Kadupu Pavani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Nalini J Gupta
- Institute of Reproductive Medicine, Salt Lake, Kolkata, India
| | | | | | | |
Collapse
|
23
|
Cioppi F, Casamonti E, Krausz C. Age-Dependent De Novo Mutations During Spermatogenesis and Their Consequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:29-46. [DOI: 10.1007/978-3-030-21664-1_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Heterochromatin-Enriched Assemblies Reveal the Sequence and Organization of the Drosophila melanogaster Y Chromosome. Genetics 2018; 211:333-348. [PMID: 30420487 PMCID: PMC6325706 DOI: 10.1534/genetics.118.301765] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Heterochromatic regions of the genome are repeat-rich and poor in protein coding genes, and are therefore underrepresented in even the best genome assemblies. One of the most difficult regions of the genome to assemble are sex-limited chromosomes. The Drosophila melanogaster Y chromosome is entirely heterochromatic, yet has wide-ranging effects on male fertility, fitness, and genome-wide gene expression. The genetic basis of this phenotypic variation is difficult to study, in part because we do not know the detailed organization of the Y chromosome. To study Y chromosome organization in D. melanogaster, we develop an assembly strategy involving the in silico enrichment of heterochromatic long single-molecule reads and use these reads to create targeted de novo assemblies of heterochromatic sequences. We assigned contigs to the Y chromosome using Illumina reads to identify male-specific sequences. Our pipeline extends the D. melanogaster reference genome by 11.9 Mb, closes 43.8% of the gaps, and improves overall contiguity. The addition of 10.6 MB of Y-linked sequence permitted us to study the organization of repeats and genes along the Y chromosome. We detected a high rate of duplication to the pericentric regions of the Y chromosome from other regions in the genome. Most of these duplicated genes exist in multiple copies. We detail the evolutionary history of one sex-linked gene family, crystal-Stellate While the Y chromosome does not undergo crossing over, we observed high gene conversion rates within and between members of the crystal-Stellate gene family, Su(Ste), and PCKR, compared to genome-wide estimates. Our results suggest that gene conversion and gene duplication play an important role in the evolution of Y-linked genes.
Collapse
|
25
|
Jedidi I, Ouchari M, Yin Q. Sex chromosomes-linked single-gene disorders involved in human infertility. Eur J Med Genet 2018; 62:103560. [PMID: 31402110 DOI: 10.1016/j.ejmg.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
Human infertility is a healthcare problem that has a worldwide impact. Genetic causes of human infertility include chromosomal aneuploidies and rearrangements and single-gene defects. The sex chromosomes (X and Y) are critical players in human fertility since they contain several genes essential for sex determination and reproductive traits for both men and women. This paper provides a review of the most common sex chromosomes-linked single-gene disorders involved in human infertility and their corresponding phenotypes. In addition to the Y-linked SRY gene, which mutations may cause XY gonadal dysgenesis and sex reversal, the deletions of genes present in AZF regions of the Y chromosome (DAZ, RBMY, DBY and USP9Y genes) are implicated in varying degrees of spermatogenic dysfunction. Furthermore, a list of X-linked genes (KAL1, NR0B1, AR, TEX11, FMR1, PGRMC1, BMP15 and POF1 and 2 regions genes (XPNPEP2, POF1B, DACH2, CHM and DIAPH2)) were reported to have critical roles in pubertal and reproductive deficiencies in humans, affecting only men, only women or both sexes. Mutations in these genes may be transmitted to the offspring by a dominant or a recessive inheritance.
Collapse
Affiliation(s)
- Ines Jedidi
- Faculty of Medicine of Sousse, Sousse, Tunisia.
| | - Mouna Ouchari
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Qinan Yin
- Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Obstetrics and Gynecology, China Meitan General Hospital, Beijing, China
| |
Collapse
|
26
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
27
|
Kassiotis G, Stoye JP. Making a virtue of necessity: the pleiotropic role of human endogenous retroviruses in cancer. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0277. [PMID: 28893944 PMCID: PMC5597744 DOI: 10.1098/rstb.2016.0277] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Like all other mammals, humans harbour an astonishing number of endogenous retroviruses (ERVs), as well as other retroelements, embedded in their genome. These remnants of ancestral germline infection with distinct exogenous retroviruses display various degrees of open reading frame integrity and replication capability. Modern day exogenous retroviruses, as well as the infectious predecessors of ERVs, are demonstrably oncogenic. Further, replication-competent ERVs continue to cause cancers in many other species of mammal. Moreover, human cancers are characterized by transcriptional activation of human endogenous retroviruses (HERVs). These observations conspire to incriminate HERVs as causative agents of human cancer. However, exhaustive investigation of cancer genomes suggests that HERVs have entirely lost the ability for re-infection and thus the potential for insertional mutagenic activity. Although there may be non-insertional mechanisms by which HERVs contribute to cancer development, recent evidence also uncovers potent anti-tumour activities exerted by HERV replication intermediates or protein products. On balance, it appears that HERVs, despite their oncogenic past, now represent potential targets for immune-mediated anti-tumour mechanisms. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, UK .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
28
|
Goncalves C, Cunha M, Rocha E, Fernandes S, Silva J, Ferraz L, Oliveira C, Barros A, Sousa M. Y-chromosome microdeletions in nonobstructive azoospermia and severe oligozoospermia. Asian J Androl 2018; 19:338-345. [PMID: 26908064 PMCID: PMC5427791 DOI: 10.4103/1008-682x.172827] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of the present work was to present the outcomes of the patients with Y-chromosome microdeletions treated by intracytoplasmic sperm injection (ICSI), either using fresh (TESE) or frozen-thawed (TESE-C) testicular sperm and ejaculated sperm (EJAC). The originality of this work resides in the comparisons between the different types of Y-microdeletions (AZFa, AZFb, and AZFc) and treatments, with detailed demographic, stimulation, embryological, clinical, and newborn (NB) outcomes. Of 125 patients with Y-microdeletions, 33 patients presented severe oligozoospermia (18 performed ICSI with ejaculated sperm) and 92 secretory azoospermia (65 went for TESE with 40 having successful sperm retrieval and performed ICSI). There were 51 TESE treatment cycles and 43 TESE-C treatment cycles, with a birth of 19 NB (2 in AZFa/TESE-C, 12 in AZFc/TESE, and 5 in AZFc/TESE-C). Of the 29 EJAC cycles, there was a birth of 8 NB (in AZFc). In TESE and EJAC cycles, there were no significant differences in embryological and clinical parameters. In TESE-C cycles, there was a significant lower oocyte maturity rate, embryo cleavage rate and mean number of embryos transferred in AZFb, and a higher mean number of oocytes and lower fertilization rate in AZFc. In conclusion, although patients with AZFc microdeletions presented a high testicular sperm recovery rate and acceptable clinical outcomes, cases with AZFa and AZFb microdeletions presented a poor prognosis. Due to the reported heredity of microdeletions, patients should be informed about the infertile consequences on NB and the possibility of using preimplantation genetic diagnosis for female sex selection.
Collapse
Affiliation(s)
- Carolina Goncalves
- Department of Biology, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research, ICBAS-UP, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Prof. Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-009 Porto, Portugal
| | - Eduardo Rocha
- Department of Microscopy, Laboratory of Histology and Embryology, ICBAS-UP, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Susana Fernandes
- Department of Genetics, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal and Institute for Innovation and Health Research (I3S), University of Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Prof. Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-009 Porto, Portugal
| | - Luís Ferraz
- Department of Urology, Hospital Center of Vila Nova de Gaia, Rua Conceição Fernandes, 4430-502 Vila Nova de Gaia, Portugal
| | - Cristiano Oliveira
- Centre for Reproductive Genetics Prof. Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-009 Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-009 Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal and Institute for Innovation and Health Research (I3S), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research, ICBAS-UP, Portugal
| |
Collapse
|
29
|
Nailwal M, Chauhan J. Molecular genetic study on AZFa and AZFb sub region microdeletions in infertile men of Gujarat, Western India. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Hillmer M, Summerer A, Mautner VF, Högel J, Cooper DN, Kehrer-Sawatzki H. Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat 2017; 38:1711-1722. [PMID: 28862369 DOI: 10.1002/humu.23319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/30/2023]
Abstract
Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
31
|
Spermatogenic failure and the Y chromosome. Hum Genet 2017; 136:637-655. [PMID: 28456834 DOI: 10.1007/s00439-017-1793-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 12/29/2022]
Abstract
The Y chromosome harbors a number of genes essential for testis development and function. Its highly repetitive structure predisposes this chromosome to deletion/duplication events and is responsible for Y-linked copy-number variations (CNVs) with clinical relevance. The AZF deletions remove genes with predicted spermatogenic function en block and are the most frequent known molecular causes of impaired spermatogenesis (5-10% of azoospermic and 2-5% of severe oligozoospermic men). Testing for this deletion has both diagnostic and prognostic value for testicular sperm retrieval in azoospermic men. The most dynamic region on the Yq is the AZFc region, presenting numerous NAHR hotspots leading to partial losses or gains of the AZFc genes. The gr/gr deletion (a partial AZFc deletion) negatively affects spermatogenic efficiency and it is a validated, population-dependent risk factor for oligozoospermia. In certain populations, the Y background may play a role in the phenotypic expression of partial AZFc rearrangements and similarly it may affect the predisposition to specific deletions/duplication events. Also, the Yp contains a gene array, TSPY1, with potential effect on germ cell proliferation. Despite intensive investigations during the last 20 years on the role of this sex chromosome in spermatogenesis, a number of clinical and basic questions remain to be answered. This review is aimed at providing an overview of the role of Y chromosome-linked genes, CNVs, and Y background in spermatogenesis.
Collapse
|
32
|
Contribution of Syncytins and Other Endogenous Retroviral Envelopes to Human Placenta Pathologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:111-162. [DOI: 10.1016/bs.pmbts.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Pathak D, Yadav SK, Rawal L, Ali S. Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. J Genet 2016; 94:677-87. [PMID: 26690523 DOI: 10.1007/s12041-015-0582-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex chromosome-related anomalies engender plethora of conditions leading to male infertility. Hypogonadotropic hypogonadism (HH) is a rare but well-known cause of male infertility. Present study was conducted to ascertain possible consensus on the alterations of the Y-linked genes and loci in males representing hypogonadism (H), which in turn culminate in reproductive dysfunction. A total of nineteen 46, XY males, clinically diagnosed with H (11 representative HH adults and eight prepubertal boys suspected of having HH) were included in the study. Sequence-tagged site screening,SRY gene sequencing,fluorescence in situ hybridization mapping (FISH), copy number and relative expression studies by real-time PCR were conducted to uncover the altered status of the Y chromosome in the patients. The result showed random microdeletions within the AZFa (73%)/b (78%) and c(26%) regions. Sequencing of the SRY gene showed nucleotide variations within and outside of the HMG box in four males (21%). FISH uncovered mosaicism for SRY, AMELY,DAZ genes and DYZ1 arrays, structural rearrangement for AMELY (31%) and duplication of DAZ (57%) genes. Copy number variation for seven Y-linked genes (2-8 rounds of duplication), DYZ1 arrays (495-6201 copies) and differential expression of SRY,UTY and VCY in the patients' blood were observed. Present work demonstrates the organizational vulnerability of several Y-linked genes in H males. These results are envisaged to be useful during routine diagnosis of H patients.
Collapse
Affiliation(s)
- Deepali Pathak
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067,India.
| | | | | | | |
Collapse
|
34
|
Cardoso AR, Oliveira M, Amorim A, Azevedo L. Major influence of repetitive elements on disease-associated copy number variants (CNVs). Hum Genomics 2016; 10:30. [PMID: 27663310 PMCID: PMC5035501 DOI: 10.1186/s40246-016-0088-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/16/2016] [Indexed: 01/13/2023] Open
Abstract
Copy number variants (CNVs) are important contributors to the human pathogenic genetic diversity as demonstrated by a number of cases reported in the literature. The high homology between repetitive elements may guide genomic stability which will give rise to CNVs either by non-allelic homologous recombination (NAHR) or non-homologous end joining (NHEJ). Here, we present a short guide based on previously documented cases of disease-associated CNVs in order to provide a general view on the impact of repeated elements on the stability of the genomic sequence and consequently in the origin of the human pathogenic variome.
Collapse
Affiliation(s)
- Ana R Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Manuela Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
35
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
36
|
Copy number variation and microdeletions of the Y chromosome linked genes and loci across different categories of Indian infertile males. Sci Rep 2015; 5:17780. [PMID: 26638807 PMCID: PMC4671023 DOI: 10.1038/srep17780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/03/2015] [Indexed: 01/10/2023] Open
Abstract
We analyzed 34 azoospermic (AZ), 43 oligospermic (OS), and 40 infertile males with normal spermiogram (INS) together with 55 normal fertile males (NFM) from the Indian population. AZ showed more microdeletions in the AZFa and AZFb regions whereas oligospermic ones showed more microdeletions in the AZFc region. Frequency of the AZF partial deletions was higher in males with spermatogenic impairments than in INS. Significantly, SRY, DAZ and BPY2 genes showed copy number variation across different categories of the patients and much reduced copies of the DYZ1 repeat arrays compared to that in normal fertile males. Likewise, INS showed microdeletions, sequence and copy number variation of several Y linked genes and loci. In the context of infertility, STS deletions and copy number variations both were statistically significant (p = 0.001). Thus, semen samples used during in vitro fertilization (IVF) and assisted reproductive technology (ART) must be assessed for the microdeletions of AZFa, b and c regions in addition to the affected genes reported herein. Present study is envisaged to be useful for DNA based diagnosis of different categories of the infertile males lending support to genetic counseling to the couples aspiring to avail assisted reproductive technologies.
Collapse
|
37
|
Abstract
Mammals have the oldest sex chromosome system known: the mammalian X and Y chromosomes evolved from ordinary autosomes beginning at least 180 million years ago. Despite their shared ancestry, mammalian Y chromosomes display enormous variation among species in size, gene content, and structural complexity. Several unique features of the Y chromosome--its lack of a homologous partner for crossing over, its functional specialization for spermatogenesis, and its high degree of sequence amplification--contribute to this extreme variation. However, amid this evolutionary turmoil many commonalities have been revealed that have contributed to our understanding of the selective pressures driving the evolution and biology of the Y chromosome. Two biological themes have defined Y-chromosome research over the past six decades: testis determination and spermatogenesis. A third biological theme begins to emerge from recent insights into the Y chromosome's roles beyond the reproductive tract--a theme that promises to broaden the reach of Y-chromosome research by shedding light on fundamental sex differences in human health and disease.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Whitehead Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| | - David C Page
- Whitehead Institute, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| |
Collapse
|
38
|
Orthologous endogenous retroviruses exhibit directional selection since the chimp-human split. Retrovirology 2015; 12:52. [PMID: 26088204 PMCID: PMC4477479 DOI: 10.1186/s12977-015-0172-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Endogenous retroviruses (ERVs) are often viewed as selfish DNA that do not contribute to host phenotype. Yet ERVs have also been co-opted to play important roles in the maintenance of stem cell identity and placentation, amongst other things. This has led to debate over whether the typical ERV confers a cost or benefit upon the host. We studied the divergence of orthologous ERVs since the chimp-human split with the aim of assessing whether ERVs exert detectable fitness effects. Results ERVs have evolved faster than other selfish DNA in human and chimpanzee. The divergence of ERVs relative to neighbouring selfish DNA is positively correlated with the length of the long terminal repeat of an ERV and with the percentage of neighbouring DNA that is not selfish. ERVs from the HERV-H family have diverged particularly quickly and in a manner that correlates with their level of transcription in human stem cells. A substitution into a highly transcribed HERV-H has a selective coefficient of the order of 10−4. This is large enough to suggest these substitutions are not dominated by drift. Conclusions ERVs differ from other selfish DNA in the extent to which they diverge and appear to have measurable effects on hosts, even after fixation. The effects are strongest for HERV-H and suggest that the HERV-H transcriptome has recently evolved under the influence of directional selection. As there are many HERV-H loci distributed across the ape lineage, our results suggest that in future this family can be used to model the evolutionary consequences of ERV exaptation in primates and other mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0172-6) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Katsumi M, Ishikawa H, Tanaka Y, Saito K, Kobori Y, Okada H, Saito H, Nakabayashi K, Matsubara Y, Ogata T, Fukami M, Miyado M. Microhomology-mediated microduplication in the y chromosomal azoospermia factor a region in a male with mild asthenozoospermia. Cytogenet Genome Res 2015; 144:285-9. [PMID: 25765000 DOI: 10.1159/000377649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Y chromosomal azoospermia factor (AZF) regions AZFa, AZFb and AZFc represent hotspots for copy number variations (CNVs) in the human genome; yet the number of reports of AZFa-linked duplications remains limited. Nonallelic homologous recombination has been proposed as the underlying mechanism of CNVs in AZF regions. In this study, we identified a hitherto unreported microduplication in the AZFa region in a Japanese male individual. The 629,812-bp duplication contained 22 of 46 exons of USP9Y, encoding the putative fine tuner of spermatogenesis, together with all exons of 3 other genes/pseudogenes. The breakpoints of the duplication resided in the DNA/TcMar-Tigger repeat and nonrepeat sequences, respectively, and were associated with a 2-bp microhomology, but not with short nucleotide stretches. The breakpoint-flanking regions were not enriched with GC content, palindromes, or noncanonical DNA structures. Semen analysis of the individual revealed a normal sperm concentration and mildly reduced sperm motility. The paternal DNA sample of the individual was not available for genetic analysis. The results indicate that CNVs in AZF regions can be generated by microhomology-mediated break-induced replication in the absence of known rearrangement-inducing DNA features. AZFa-linked microduplications likely permit production of a normal amount of sperm, although the precise clinical consequences of these CNVs await further investigation.
Collapse
Affiliation(s)
- Momori Katsumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu XW, Wei ZT, Jiang YT, Zhang SL. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int J Clin Exp Med 2015; 8:14634-46. [PMID: 26628946 PMCID: PMC4658835 DOI: pmid/26628946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022]
Abstract
Spermatogenesis is an essential reproductive process that is regulated by many Y chromosome specific genes. Most of these genes are located in a specific region known as the azoospermia factor region (AZF) in the long arm of the human Y chromosome. AZF microdeletions are recognized as the most frequent structural chromosomal abnormalities and are the major cause of male infertility. Assisted reproductive techniques (ART) such as intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) can overcome natural fertilization barriers and help a proportion of infertile couples produce children; however, these techniques increase the transmission risk of genetic defects. AZF microdeletions and their associated phenotypes in infertile males have been extensively studied, and different AZF microdeletion types have been identified by sequence-tagged site polymerase chain reaction (STS-PCR), suspension array technology (SAT) and array-comparative genomic hybridization (aCGH); however, each of these approaches has limitations that need to be overcome. Even though the transmission of AZF microdeletions has been reported worldwide, arguments correlating ART and the incidence of AZF microdeletions and explaining the occurrence of de novo deletions and expansion have not been resolved. Using the newest findings in the field, this review presents a systematic update concerning progress in understanding the functions of AZF regions and their associated genes, AZF microdeletions and their phenotypes and novel approaches for screening AZF microdeletions. Moreover, the transmission characteristics of AZF microdeletions and the future direction of research in the field will be specifically discussed.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- Prenatal Diagnosis Center, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| | - Zhen-Tong Wei
- Department of Gynecologic Tumors, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| | - Yu-Ting Jiang
- Prenatal Diagnosis Center, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| | - Song-Ling Zhang
- Department of Gynecologic Tumors, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| |
Collapse
|
41
|
Venkatesh T, Suresh PS, Tsutsumi R. New insights into the genetic basis of infertility. APPLICATION OF CLINICAL GENETICS 2014; 7:235-43. [PMID: 25506236 PMCID: PMC4259396 DOI: 10.2147/tacg.s40809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Infertility is a disease of the reproductive system characterized by inability to achieve pregnancy after 12 or more months of regular unprotected sexual intercourse. A variety of factors, including ovulation defects, spermatogenic failure, parental age, obesity, and infections have been linked with infertility, in addition to specific karyotypes and genotypes. The study of genes associated with infertility in rodent models has expanded the field of translational genetics in identifying the underlying cause of human infertility problems. Many intriguing aspects of the molecular basis of infertility in humans remain poorly understood; however, application of genetic knowledge in this field looks promising. The growing literature on the genetics of human infertility disorders deserves attention and a critical concise summary is required. This paper provides information obtained from a systematic analysis of the literature related to current research into the genetics of infertility affecting both sexes.
Collapse
Affiliation(s)
- Thejaswini Venkatesh
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, India
| | | | - Rie Tsutsumi
- University of Tokushima, Institute of Health Bioscience, Department of Public Health and Nutrition, Tokushima, Japan
| |
Collapse
|
42
|
Dosage changes of a segment at 17p13.1 lead to intellectual disability and microcephaly as a result of complex genetic interaction of multiple genes. Am J Hum Genet 2014; 95:565-78. [PMID: 25439725 DOI: 10.1016/j.ajhg.2014.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022] Open
Abstract
The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.1 for whom we performed detailed clinical and molecular studies. Breakpoint mapping and retrospective analysis of published cases refined the smallest region of overlap (SRO) for microcephaly to a genomic interval containing nine genes. Dissection of this phenotype in zebrafish embryos revealed a complex genetic architecture: dosage perturbation of four genes (ASGR1, ACADVL, DVL2, and GABARAP) impeded neurodevelopment and decreased dosage of the same loci caused a reduced mitotic index in vitro. Moreover, epistatic analyses in vivo showed that dosage perturbations of discrete gene pairings induce microcephaly. Taken together, these studies support a model in which concomitant dosage perturbation of multiple genes within the CNV drive the microcephaly and possibly other neurodevelopmental phenotypes associated with rearrangements in the 17p13.1 SRO.
Collapse
|
43
|
Campbell IM, Gambin T, Dittwald P, Beck CR, Shuvarikov A, Hixson P, Patel A, Gambin A, Shaw CA, Rosenfeld JA, Stankiewicz P. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol 2014; 12:74. [PMID: 25246103 PMCID: PMC4195946 DOI: 10.1186/s12915-014-0074-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background Recurrent rearrangements of the human genome resulting in disease or variation are mainly mediated by non-allelic homologous recombination (NAHR) between low-copy repeats. However, other genomic structures, including AT-rich palindromes and retroviruses, have also been reported to underlie recurrent structural rearrangements. Notably, recurrent deletions of Yq12 conveying azoospermia, as well as non-pathogenic reciprocal duplications, are mediated by human endogenous retroviral elements (HERVs). We hypothesized that HERV elements throughout the genome can serve as substrates for genomic instability and result in human copy-number variation (CNV). Results We developed parameters to identify HERV elements similar to those that mediate Yq12 rearrangements as well as recurrent deletions of 3q13.2q13.31. We used these parameters to identify HERV pairs genome-wide that may cause instability. Our analysis highlighted 170 pairs, flanking 12.1% of the genome. We cross-referenced these predicted susceptibility regions with CNVs from our clinical databases for potentially HERV-mediated rearrangements and identified 78 CNVs. We subsequently molecularly confirmed recurrent deletion and duplication rearrangements at four loci in ten individuals, including reciprocal rearrangements at two loci. Breakpoint sequencing revealed clustering in regions of high sequence identity enriched in PRDM9-mediated recombination hotspot motifs. Conclusions The presence of deletions and reciprocal duplications suggests NAHR as the causative mechanism of HERV-mediated CNV, even though the length and the sequence homology of the HERV elements are less than currently thought to be required for NAHR. We propose that in addition to HERVs, other repetitive elements, such as long interspersed elements, may also be responsible for the formation of recurrent CNVs via NAHR. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0074-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, USA.
| |
Collapse
|
44
|
Purps J, Siegert S, Willuweit S, Nagy M, Alves C, Salazar R, Angustia SMT, Santos LH, Anslinger K, Bayer B, Ayub Q, Wei W, Xue Y, Tyler-Smith C, Bafalluy MB, Martínez-Jarreta B, Egyed B, Balitzki B, Tschumi S, Ballard D, Court DS, Barrantes X, Bäßler G, Wiest T, Berger B, Niederstätter H, Parson W, Davis C, Budowle B, Burri H, Borer U, Koller C, Carvalho EF, Domingues PM, Chamoun WT, Coble MD, Hill CR, Corach D, Caputo M, D'Amato ME, Davison S, Decorte R, Larmuseau MHD, Ottoni C, Rickards O, Lu D, Jiang C, Dobosz T, Jonkisz A, Frank WE, Furac I, Gehrig C, Castella V, Grskovic B, Haas C, Wobst J, Hadzic G, Drobnic K, Honda K, Hou Y, Zhou D, Li Y, Hu S, Chen S, Immel UD, Lessig R, Jakovski Z, Ilievska T, Klann AE, García CC, de Knijff P, Kraaijenbrink T, Kondili A, Miniati P, Vouropoulou M, Kovacevic L, Marjanovic D, Lindner I, Mansour I, Al-Azem M, Andari AE, Marino M, Furfuro S, Locarno L, Martín P, Luque GM, Alonso A, Miranda LS, Moreira H, Mizuno N, Iwashima Y, Neto RSM, Nogueira TLS, Silva R, Nastainczyk-Wulf M, Edelmann J, Kohl M, Nie S, Wang X, Cheng B, Núñez C, Pancorbo MMD, Olofsson JK, Morling N, Onofri V, Tagliabracci A, Pamjav H, Volgyi A, Barany G, Pawlowski R, Maciejewska A, Pelotti S, Pepinski W, Abreu-Glowacka M, Phillips C, Cárdenas J, Rey-Gonzalez D, Salas A, Brisighelli F, Capelli C, Toscanini U, Piccinini A, Piglionica M, Baldassarra SL, Ploski R, Konarzewska M, Jastrzebska E, Robino C, Sajantila A, Palo JU, Guevara E, Salvador J, Ungria MCD, Rodriguez JJR, Schmidt U, Schlauderer N, Saukko P, Schneider PM, Sirker M, Shin KJ, Oh YN, Skitsa I, Ampati A, Smith TG, Calvit LSD, Stenzl V, Capal T, Tillmar A, Nilsson H, Turrina S, De Leo D, Verzeletti A, Cortellini V, Wetton JH, Gwynne GM, Jobling MA, Whittle MR, Sumita DR, Wolańska-Nowak P, Yong RYY, Krawczak M, Nothnagel M, Roewer L. A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Sci Int Genet 2014; 12:12-23. [PMID: 24854874 PMCID: PMC4127773 DOI: 10.1016/j.fsigen.2014.04.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/19/2014] [Indexed: 02/05/2023]
Abstract
In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.
Collapse
Affiliation(s)
- Josephine Purps
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, Berlin, Germany
| | - Sabine Siegert
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Germany
| | - Sascha Willuweit
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, Berlin, Germany
| | - Marion Nagy
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, Berlin, Germany
| | - Cíntia Alves
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Renato Salazar
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | | | - Lorna H Santos
- Philippine National Police Crime Laboratory, Quezon City, Philippines
| | - Katja Anslinger
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität, München, Germany
| | - Birgit Bayer
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität, München, Germany
| | - Qasim Ayub
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Wei Wei
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | | | - Balazs Egyed
- GenoID Forensic DNA Laboratory, Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Beate Balitzki
- Institut für Rechtsmedizin, Universität Basel, Switzerland
| | | | - David Ballard
- Department of Forensic and Analytical Science, King's College London, London, UK
| | | | - Xinia Barrantes
- Forensic Sciences Department, Poder Judicial, Heredia, Costa Rica
| | | | - Tina Wiest
- Landeskriminalamt Baden-Württemberg, Germany
| | - Burkhard Berger
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria; Penn State Eberly College of Science, University Park, PA, USA
| | - Carey Davis
- Institute of Applied Genetics and Department of Molecular and Medical Genetics, Ft. Worth, USA
| | - Bruce Budowle
- Institute of Applied Genetics and Department of Molecular and Medical Genetics, Ft. Worth, USA; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helen Burri
- Forensische Genetik, Kantonsspital Aarau AG, Switzerland
| | - Urs Borer
- Forensische Genetik, Kantonsspital Aarau AG, Switzerland
| | | | - Elizeu F Carvalho
- Laboratorio de Diagnósticos por DNA, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Brazil
| | - Patricia M Domingues
- Laboratorio de Diagnósticos por DNA, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Brazil
| | | | - Michael D Coble
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Carolyn R Hill
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Daniel Corach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Servicio de Huellas Digitales Genetica and CONICET (National Scientific and Technical Research Council), Buenos Aires, Argentina
| | - Mariela Caputo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Servicio de Huellas Digitales Genetica and CONICET (National Scientific and Technical Research Council), Buenos Aires, Argentina
| | - Maria E D'Amato
- University of the Western Cape, Biotechnology Department, Forensic DNA Laboratory, Cape Town, South Africa
| | - Sean Davison
- University of the Western Cape, Biotechnology Department, Forensic DNA Laboratory, Cape Town, South Africa
| | - Ronny Decorte
- KU Leuven, Department of Imaging & Pathology, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium
| | - Maarten H D Larmuseau
- KU Leuven, Department of Imaging & Pathology, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium
| | - Claudio Ottoni
- KU Leuven, Department of Imaging & Pathology, Laboratory of Forensic Genetics and Molecular Archaeology, Leuven, Belgium
| | - Olga Rickards
- Centre of Molecular Antropology For Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, Italy
| | - Di Lu
- Collaborative Innovation Center of Judicial Civilization, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Chengtao Jiang
- Collaborative Innovation Center of Judicial Civilization, Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Tadeusz Dobosz
- Institute of Forensic Medicine, Medical University, Wroclaw, Poland
| | - Anna Jonkisz
- Institute of Forensic Medicine, Medical University, Wroclaw, Poland
| | - William E Frank
- Illinois State Police, Research & Development Laboratory, Springfield, USA
| | - Ivana Furac
- Department of Forensic Medicine and Criminology, University of Zagreb, Croatia
| | - Christian Gehrig
- University Center of Legal Medicine, Lausanne-Geneva, Lausanne, Switzerland
| | - Vincent Castella
- University Center of Legal Medicine, Lausanne-Geneva, Lausanne, Switzerland
| | - Branka Grskovic
- Forensic Science Centre "Ivan Vucetic", General Police Directorate, Ministry of Interior, Zagreb, Croatia
| | - Cordula Haas
- Institut für Rechtsmedizin, Universität Zürich, Switzerland
| | - Jana Wobst
- Institut für Rechtsmedizin, Universität Zürich, Switzerland
| | | | | | - Katsuya Honda
- Department of Legal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University, Chengdu, China
| | - Di Zhou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University, Chengdu, China
| | - Yan Li
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine Sichuan University, Chengdu, China
| | - Shengping Hu
- Molecular Biology and Forensic Genetics Laboratory, Shantou University Medical College, Shantou, China
| | - Shenglan Chen
- Molecular Biology and Forensic Genetics Laboratory, Shantou University Medical College, Shantou, China
| | | | | | - Zlatko Jakovski
- Institute for Forensic Medicine and Criminalistics, Medical Faculty, University "Ss. Cyril and Methodius", Skopje, Macedonia
| | - Tanja Ilievska
- Institute for Forensic Medicine and Criminalistics, Medical Faculty, University "Ss. Cyril and Methodius", Skopje, Macedonia
| | - Anja E Klann
- Institut für Rechtsmedizin, Universitätsmedizin Greifswald, Germany
| | | | - Peter de Knijff
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thirsa Kraaijenbrink
- Forensic Laboratory for DNA Research, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aikaterini Kondili
- Subdivision of Biological and Biochemical Examinations and Analyses F.S.D. - Hellenic Police, Athens, Greece
| | - Penelope Miniati
- Subdivision of Biological and Biochemical Examinations and Analyses F.S.D. - Hellenic Police, Athens, Greece
| | - Maria Vouropoulou
- Subdivision of Biological and Biochemical Examinations and Analyses F.S.D. - Hellenic Police, Athens, Greece
| | - Lejla Kovacevic
- Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Damir Marjanovic
- Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Iris Lindner
- Institut für Rechtsmedizin, Universität Rostock, Germany
| | - Issam Mansour
- Molecular Biology Laboratory, American University of Science and Technology Beirut, Lebanon and School of Criminal Justice, University of Lausanne, Switzerland
| | - Mouayyad Al-Azem
- Molecular Biology Laboratory, American University of Science and Technology Beirut, Lebanon and School of Criminal Justice, University of Lausanne, Switzerland
| | - Ansar El Andari
- Molecular Biology Laboratory, American University of Science and Technology Beirut, Lebanon and School of Criminal Justice, University of Lausanne, Switzerland
| | - Miguel Marino
- Laboratorio de Análisis de ADN, FCM - National University of Cuyo, Mendoza, Argentina
| | - Sandra Furfuro
- Laboratorio de Análisis de ADN, FCM - National University of Cuyo, Mendoza, Argentina
| | - Laura Locarno
- Laboratorio de Análisis de ADN, FCM - National University of Cuyo, Mendoza, Argentina
| | - Pablo Martín
- Instituto Nacional de Toxicología y Ciencias Forenses, Madrid, Spain
| | - Gracia M Luque
- Instituto Nacional de Toxicología y Ciencias Forenses, Madrid, Spain
| | - Antonio Alonso
- Instituto Nacional de Toxicología y Ciencias Forenses, Madrid, Spain
| | | | - Helena Moreira
- Departamento de Biologia, Universidade de Aveiro, Portugal
| | - Natsuko Mizuno
- National Research Institute of Police Science, Chiba, Japan
| | | | - Rodrigo S Moura Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro and DIMAV/INMETRO, Brazil
| | | | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Michael Kohl
- Institut für Rechtsmedizin, Universität Leipzig, Germany
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xianping Wang
- Department of Criminal Investigation, Xuanwei Public Security Bureau, Xuanwei, China
| | - Baowen Cheng
- Department of Criminal Investigation, Yunnan Provincial Public Security Bureau, Kunming, China
| | - Carolina Núñez
- BIOMICs Research Group, Universidad del País Vasco, Vitoria, Spain
| | | | - Jill K Olofsson
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Valerio Onofri
- Section of Legal Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | - Horolma Pamjav
- DNA Laboratory, Institute for Forensic Medicine, Network of Forensic Science Institutes, Ministry of Public Administration and Justice, Budapest, Hungary
| | - Antonia Volgyi
- DNA Laboratory, Institute for Forensic Medicine, Network of Forensic Science Institutes, Ministry of Public Administration and Justice, Budapest, Hungary
| | - Gusztav Barany
- DNA Laboratory, Institute for Forensic Medicine, Network of Forensic Science Institutes, Ministry of Public Administration and Justice, Budapest, Hungary
| | - Ryszard Pawlowski
- Forensic Genetics Laboratory, Institute of Forensic Medicine, Medical University of Gdansk, Poland
| | - Agnieszka Maciejewska
- Forensic Genetics Laboratory, Institute of Forensic Medicine, Medical University of Gdansk, Poland
| | - Susi Pelotti
- Department of Medical and Surgical Sciences (DIMEC), Institute of Legal Medicine, School of Medicine, University of Bologna, Italy
| | - Witold Pepinski
- Department of Forensic Medicine, Medical University of Bialystok, Poland
| | | | - Christopher Phillips
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain
| | - Jorge Cárdenas
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain
| | - Danel Rey-Gonzalez
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain
| | - Francesca Brisighelli
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain; Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain; Department of Zoology, University of Oxford, Oxford, UK
| | - Ulises Toscanini
- Unidade de Xenética Forense, Instituto de Ciencias Forenses, Grupo de Medicina Xenómica, Facultade de Medicina, Universidade de Santiago de Compostela, Spain; PRICAI-Fundación Favaloro, Buenos Aires, Argentina
| | - Andrea Piccinini
- Forensic Genetics Laboratory, Department of Human Morphology and Biomedical Sciences, Università degli Studi di Milano, Italy
| | - Marilidia Piglionica
- Interdisciplinary Department of Medicine, Section of Legal Medicine, University of Bari, Italy
| | - Stefania L Baldassarra
- Interdisciplinary Department of Medicine, Section of Legal Medicine, University of Bari, Italy
| | - Rafal Ploski
- Department of Medical Genetics, Warsaw Medical University, Poland
| | | | | | - Carlo Robino
- Department of Public Health Sciences and Pediatrics, University of Turin, Italy
| | - Antti Sajantila
- Institute of Applied Genetics and Department of Molecular and Medical Genetics, Ft. Worth, USA; Department of Forensic Medicine, University of Helsinki, Finland
| | - Jukka U Palo
- Department of Forensic Medicine, University of Helsinki, Finland
| | - Evelyn Guevara
- Department of Forensic Medicine, University of Helsinki, Finland
| | - Jazelyn Salvador
- DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Philippines
| | - Maria Corazon De Ungria
- DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Philippines
| | - Jae Joseph Russell Rodriguez
- DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Philippines; Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Ulrike Schmidt
- Institut für Rechtsmedizin, Universitätsklinikum Freiburg, Germany
| | | | - Pekka Saukko
- Department of Forensic Medicine, University of Turku, Finland
| | - Peter M Schneider
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Germany
| | - Miriam Sirker
- Institute of Legal Medicine, Faculty of Medicine, University of Cologne, Germany
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Na Oh
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Iulia Skitsa
- Athens Dept. of Legal Medicine, DNA Analysis Laboratory, Athens, Greece
| | - Alexandra Ampati
- Athens Dept. of Legal Medicine, DNA Analysis Laboratory, Athens, Greece
| | - Tobi-Gail Smith
- Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica
| | | | - Vlastimil Stenzl
- Laboratory of Forensic Genetics, Institute of Criminalistics, Prague, Czech Republic
| | - Thomas Capal
- Laboratory of Forensic Genetics, Institute of Criminalistics, Prague, Czech Republic
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Helena Nilsson
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Stefania Turrina
- Sezione di Medicina Legale, Dipartimento di Medicina e Sanità Pubblica, Università degli Studi di Verona, Italy
| | - Domenico De Leo
- Sezione di Medicina Legale, Dipartimento di Medicina e Sanità Pubblica, Università degli Studi di Verona, Italy
| | - Andrea Verzeletti
- Istituto di Medicina Legale, Universitá degli Studi di Brescia, Italy
| | | | - Jon H Wetton
- Department of Genetics, University of Leicester, UK
| | | | | | | | | | | | - Rita Y Y Yong
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University Kiel, Germany
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
45
|
Chen X, Wang J, Mitchell E, Guo J, Wang L, Zhang Y, Hodge JC, Shen Y. Recurrent 8q13.2-13.3 microdeletions associated with branchio-oto-renal syndrome are mediated by human endogenous retroviral (HERV) sequence blocks. BMC MEDICAL GENETICS 2014; 15:90. [PMID: 25135225 PMCID: PMC4152767 DOI: 10.1186/s12881-014-0090-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 07/18/2014] [Indexed: 01/18/2023]
Abstract
Background Human endogenous retroviral (HERV) sequences are the remnants of ancient retroviral infection and comprise approximately 8% of the human genome. The high abundance and interspersed nature of homologous HERV sequences make them ideal substrates for genomic rearrangements. A role for HERV sequences in mediating human disease-associated rearrangement has been reported but is likely currently underappreciated. Methods and Results In the present study, two independent de novo 8q13.2-13.3 microdeletion events were identified in patients with clinical features of Branchio-Oto-Renal (BOR) syndrome. Nucleotide-level mapping demonstrated the identical breakpoints, suggesting a recurrent microdeletion including multiple genes such as EYA1, SULF1, and SLCO5A1, which is mediated by HERV1 homologous sequences. Conclusions These findings raise the potential that HERV sequences may more commonly underlie recombination of dosage sensitive regions associated with recurrent syndromes.
Collapse
|
46
|
Lu C, Jiang J, Zhang R, Wang Y, Xu M, Qin Y, Lin Y, Guo X, Ni B, Zhao Y, Diao N, Chen F, Shen H, Sha J, Xia Y, Hu Z, Wang X. Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol Hum Reprod 2014; 20:836-43. [PMID: 24935076 DOI: 10.1093/molehr/gau043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The azoospermia factor c (AZFc) region in the long arm of human Y chromosome is characterized by massive palindromes. It harbors eight multi-copy gene families that are expressed exclusively or predominantly in testis. To assess systematically the role of the AZFc region and these eight gene families in spermatogenesis, we conducted a comprehensive molecular analysis (including Y chromosome haplogrouping, AZFc deletion typing and gene copy quantification) in 654 idiopathic infertile men and 781 healthy controls in a Han Chinese population. The b2/b3 partial deletion (including both deletion-only and deletion-duplication) was consistently associated with spermatogenic impairment. In the subjects without partial AZFc deletions, a notable finding was that the frequency of DAZ and/or BPY2 copy number alterations in the infertile group was significantly higher than in the controls. Combined patterns of DAZ and/or BPY2 copy number abnormality were associated with spermatogenic impairment when compared with the pattern of all AZFc genes with common level copies. In addition, in Y chromosome haplogroup O1 (Y-hg O1), the frequency of copy number alterations of all eight gene families was significantly higher in the case group than that in the control group. Our findings indicate that the DAZ, BPY2 genes may be prominent players in spermatogenesis, and genomic rearrangements may be enriched in individuals belonging to Y-hg O1. Our findings emphasize the necessity of routine molecular analysis of AZFc structural variation during the workup of azoospermia and/or oligozoospermia, which may diminish the genetic risk of assisted reproduction.
Collapse
Affiliation(s)
- Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jie Jiang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | - Bixian Ni
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nancy Diao
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, MA, USA
| | - Feng Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
47
|
Alechine E, Corach D. High-throughput screening for spermatogenesis candidate genes in the AZFc region of the Y chromosome by multiplex real time PCR followed by high resolution melting analysis. PLoS One 2014; 9:e97227. [PMID: 24828879 PMCID: PMC4020812 DOI: 10.1371/journal.pone.0097227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
Microdeletions in the AZF region of the Y chromosome are among the most frequent genetic causes of male infertility, although the specific role of the genes located in this region is not fully understood. AZFa and AZFb deletions impair spermatogenesis since no spermatozoa are found in the testis. Deletions of the AZFc region, despite being the most frequent in azoospermic patients, do not correlate with spermatogenic failure. Therefore, the aim of this work was to develop a screening method to ascertain the presence of the main spermatogenesis candidate genes located in the AZFc region in the light of the identification of those responsible for spermatogenic failure. DAZ, CDY, BPY2, PRY, GOLGA2LY and CSGP4LY genes were selected on the basis of their location in the AZFc region, testis-only expression, and confirmed or predicted protein codification. AMEL and SRY were used as amplification controls. The identification of Real Time PCR products was performed by High Resolution Melting analysis with SYTO 9 as intercalating dye. The herein described method allows a rapid, simple, low-cost, high-throughput screening for deletions of the main AZFc genes in patients with spermatogenic failure. This provides a strategy that would accelerate the identification of spermatogenesis candidate genes in larger populations of patients with non-obstructive idiopathic azoospermia.
Collapse
Affiliation(s)
- Evguenia Alechine
- Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Corach
- Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
48
|
Human germ cell differentiation from pluripotent embryonic stem cells and induced pluripotent stem cells. Methods Mol Biol 2014; 1154:563-78. [PMID: 24782029 DOI: 10.1007/978-1-4939-0659-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Although 10-15 % of couples are infertile, little is known of the diverse, underlying pathologies in men and women with poor germ cell production; furthermore, for those with few or no high-quality germ cells, there are few options available for treatment. Thus, over the last decade, concerted efforts have been aimed at developing a biological system to probe the fundamentals of human egg and sperm production via pluripotent stem cell cells with the hopes of informing clinical decisions and ultimately providing alternative methods for therapy which may include developing a source of germ cells ultimately for reproductive purposes.
Collapse
|
49
|
Asero P, Calogero AE, Condorelli RA, Mongioi' L, Vicari E, Lanzafame F, Crisci R, La Vignera S. Relevance of genetic investigation in male infertility. J Endocrinol Invest 2014; 37:415-27. [PMID: 24458834 DOI: 10.1007/s40618-014-0053-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/24/2023]
Abstract
Genetic causes can be directly responsible for various clinical conditions of male infertility and spermatogenic impairment. With the increased use of assisted reproduction technologies our understanding of genetic basis of male infertility has large implications not only for understanding the causes of infertility but also in determining the prognosis and management of such couples. For these reasons, the genetic investigations represent today an essential and useful tool in the treatment of male infertility. Several evidences are available for the clinical practice regarding the diagnosis; however, there are less information relative to the treatment of the genetic causes of male infertility. Focus of this review is to discuss the main and more common genetic causes of male infertility to better direct the genetics investigation in the treatment of spermatogenic impairment.
Collapse
Affiliation(s)
- P Asero
- Sezione di Endocrinologia, Andrologia e Medicina Interna, Dipartimento di Scienze Mediche e Pediatriche, Università di Catania, Policlinico "G. Rodolico," Bldg 4, Rm 2C18, Via S. Sofia 78, 95123, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2014; 2:5-19. [PMID: 24357628 PMCID: PMC4065365 DOI: 10.1111/j.2047-2927.2013.00173.x] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/06/2023]
Abstract
The molecular diagnosis of Y-chromosomal microdeletions is a common routine genetic test which is part of the diagnostic workup of azoospermic and severe oligozoospermic men. Since 1999, the European Academy of Andrology (EAA) and the European Molecular Genetics Quality Network (EMQN) have been actively involved in supporting the improvement of the quality of the diagnostic assays by publication of the laboratory guidelines for molecular diagnosis of Y-chromosomal microdeletions and by offering external quality assessment trials. The present revision of the 2004 laboratory guidelines summarizes all the clinical novelties related to the Y chromosome (classic, partial and gene-specific deletions, genotype-phenotype correlations, methodological issues) and provides an update on the results of the quality control programme. These aspects also reflect the consensus of a large group of specialists present at a round table session during the recent Florence-Utah-Symposium on 'Genetics of male infertility' (Florence, 19-21 September, 2013). During the last 10 years the gr/gr deletion has been demonstrated as a significant risk factor for impaired sperm production. However, the screening for this deletion type in the routine diagnostic setting is still a debated issue among experts. The original basic protocol based on two multiplex polymerase chain reactions remains fully valid and appropriate for accurate diagnosis of complete AZF deletions and it requires only a minor modification in populations with a specific Y chromosome background. However, in light of novel data on genotype-phenotype correlations, the extension analysis for the AZFa and AZFb deletions is now routinely recommended. Novel methods and kits with excessively high number of markers do not improve the sensitivity of the test, may even complicate the interpretation of the results and are not recommended. Annual participation in an external quality control programme is strongly encouraged. The 12-year experience with the EMQN/EAA scheme has shown a steep decline in diagnostic (genotyping) error rate and a simultaneous improvement on reporting practice.
Collapse
Affiliation(s)
- C Krausz
- Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | | | | |
Collapse
|