1
|
Firdoos N, Krumwiede L, Medina-Escobar N, Treichel L, Fischer L, Herde M, Witte CP. The vacuolar phosphatases purple acid phosphatase 26 and haloacid dehalogenase IIA2.1 hydrolyze 5'-, 3'-, and 2'-nucleotides derived from RNA degradation. PLANT PHYSIOLOGY 2024; 197:kiaf025. [PMID: 39823296 DOI: 10.1093/plphys/kiaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs). Vacuolar phosphatases that carry out 3'-NMP hydrolysis are required to metabolize 3'-NMPs, but the specific players remain unknown. Using a mutant of RNS2 and mutants of the autophagy-related genes 5 and 9 (atg5 and atg9), we confirmed that 3'-NMPs are products of vacuolar RNS2-mediated RNA degradation in Arabidopsis (Arabidopsis thaliana). Moreover, we identified purple acid phosphatase 26 (PAP26) and haloacid dehalogenase IIA2.1 (HIIA2.1) as vacuolar 3'-NMP phosphatases. Based on phylogenetic analysis, we propose systematic nomenclature for HADIIA enzymes, some of which were previously named vegetative storage proteins, which we critically discuss. PAP26 and HIIA2.1 differ in their NMP specificity and activity in vitro. However, hiia2.1 pap26 double mutant plants, but generally not the respective single mutants, accumulate 3'-NMPs in addition to 5'-NMPs and, surprisingly, also 2'-NMPs. These findings suggest that PAP26 and HIIA2.1 have overlapping NMP substrate spectra in vivo. Excess 3'- and 2'-NMPs accumulate in plants exposed to a prolonged night, presumably because carbon limitation enhances autophagy-mediated vacuolar RNA degradation. We conclude that vacuolar RNA catabolism releases 3'-NMPs and 2'-NMPs through RNS2 and other RNases that also generate 5'-NMPs. PAP26 and HIIA2.1 are required to dephosphorylate these NMPs, so that they can enter general nucleotide metabolism outside the vacuole.
Collapse
Affiliation(s)
- Nabila Firdoos
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Lukas Krumwiede
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Nieves Medina-Escobar
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Leonie Treichel
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Lisa Fischer
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany
| |
Collapse
|
2
|
Yoshinari A, Isoda R, Yagi N, Sato Y, Lindeboom JJ, Ehrhardt DW, Frommer WB, Nakamura M. Near-infrared imaging of phytochrome-derived autofluorescence in plant nuclei. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1699-1712. [PMID: 38509728 DOI: 10.1111/tpj.16699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.
Collapse
Affiliation(s)
- Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute of Advanced Research, Nagoya University, Nagoya, 464-0814, Japan
| | - Reika Isoda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Jelmer J Lindeboom
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Wolf B Frommer
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Molecular Physiology, Düsseldorf, 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
3
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
Nagasato D, Sugita Y, Tsuno Y, Tanaka R, Fukuda M, Matsuoka K. Glycosylphosphatidylinositol-anchoring is required for the proper transport and extensive glycosylation of a classical arabinogalactan protein precursor in tobacco BY-2 cells. Biosci Biotechnol Biochem 2023; 87:991-1008. [PMID: 37348475 DOI: 10.1093/bbb/zbad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Many precursors of plant arabinogalactan proteins (AGPs) contain a C-terminal glycosylphosphatidylinositol (GPI)-anchoring signal. Using NtAGP1, a classical tobacco AGP, as a model, and green fluorescent protein (GFP) and sweet potato sporamin (SPO) as tags, we analyzed the localization and modification of AGP and its mutant without GPI-anchoring signal (AGPΔC) in tobacco BY-2 cells. The NtAGP1 fusion proteins migrated as large smear on SDS-polyacrylamide gel, and these proteins also localized preferentially to the plasma membrane. In contrast, fusions of AGPΔC with GFP and SPO yielded several forms: The largest were secreted, whereas others were recovered in the endomembrane organelles, including vacuoles. Comparison of the glycan structures of the microsomal SPO-AGP and the secreted SPO-AGPΔC using antibodies against the glycan epitopes of AGP indicated that the glycan structures of these proteins are different. These observations indicate that GPI-anchoring is required for the proper transport and glycosylation of the AGP precursor.
Collapse
Affiliation(s)
- Daiki Nagasato
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Yuto Sugita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Yuhei Tsuno
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | | | - Maki Fukuda
- School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ken Matsuoka
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
- School of Agriculture, Kyushu University, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Soybean Mosaic Virus 6K1 Interactors Screening and GmPR4 and GmBI1 Function Characterization. Int J Mol Sci 2023; 24:ijms24065304. [PMID: 36982379 PMCID: PMC10049162 DOI: 10.3390/ijms24065304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Host proteins are essential during virus infection, and viral factors must target numerous host factors to complete their infectious cycle. The mature 6K1 protein of potyviruses is required for viral replication in plants. However, the interaction between 6K1 and host factors is poorly understood. The present study aims to identify the host interacting proteins of 6K1. Here, the 6K1 of Soybean mosaic virus (SMV) was used as the bait to screen a soybean cDNA library to gain insights about the interaction between 6K1 and host proteins. One hundred and twenty-seven 6K1 interactors were preliminarily identified, and they were classified into six groups, including defense-related, transport-related, metabolism-related, DNA binding, unknown, and membrane-related proteins. Then, thirty-nine proteins were cloned and merged into a prey vector to verify the interaction with 6K1, and thirty-three of these proteins were confirmed to interact with 6K1 by yeast two-hybrid (Y2H) assay. Of the thirty-three proteins, soybean pathogenesis-related protein 4 (GmPR4) and Bax inhibitor 1 (GmBI1) were chosen for further study. Their interactions with 6K1 were also confirmed by bimolecular fluorescence complementation (BiFC) assay. Subcellular localization showed that GmPR4 was localized to the cytoplasm and endoplasmic reticulum (ER), and GmBI1 was located in the ER. Moreover, both GmPR4 and GmBI1 were induced by SMV infection, ethylene and ER stress. The transient overexpression of GmPR4 and GmBI1 reduced SMV accumulation in tobacco, suggesting their involvement in the resistance to SMV. These results would contribute to exploring the mode of action of 6K1 in viral replication and improve our knowledge of the role of PR4 and BI1 in SMV response.
Collapse
|
6
|
Hao M, Wang W, Liu J, Wang H, Zhou R, Mei D, Fu L, Hu Q, Cheng H. Auxin Biosynthesis Genes in Allotetraploid Oilseed Rape Are Essential for Plant Development and Response to Drought Stress. Int J Mol Sci 2022; 23:15600. [PMID: 36555242 PMCID: PMC9778849 DOI: 10.3390/ijms232415600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Crucial studies have verified that IAA is mainly generated via the two-step pathway in Arabidopsis, in which tryptophan aminotransferase (TAA) and YUCCA (YUC) are the two crucial enzymes. However, the role of the TAA (or TAR) and YUC genes in allotetraploid oilseed rape underlying auxin biosynthesis and development regulation remains elusive. In the present study, all putative TAR and YUC genes were identified in B. napus genome. Most TAR and YUC genes were tissue that were specifically expressed. Most YUC and TAR proteins contained trans-membrane regions and were confirmed to be endoplasmic reticulum localizations. Enzymatic activity revealed that YUC and TAR protein members were involved in the conversion of IPA to IAA and Trp to IPA, respectively. Transgenic plants overexpressing BnaYUC6a in both Arabidopsis and B. napus displayed high auxin production and reduced plant branch angle, together with increased drought resistance. Moreover, mutation in auxin biosynthesis BnaTARs genes by CRISPR/Cas9 caused development defects. All these results suggest the convergent role of BnaYUC and BnaTAR genes in auxin biosynthesis. Different homoeologs of BnaYUC and BnaTAR may be divergent according to sequence and expression variation. Auxin biosynthesis genes in allotetraploid oilseed rape play a pivotal role in coordinating plant development processes and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
7
|
Ukawa T, Banno F, Ishikawa T, Kasahara K, Nishina Y, Inoue R, Tsujii K, Yamaguchi M, Takahashi T, Fukao Y, Kawai-Yamada M, Nagano M. Sphingolipids with 2-hydroxy fatty acids aid in plasma membrane nanodomain organization and oxidative burst. PLANT PHYSIOLOGY 2022; 189:839-857. [PMID: 35312013 PMCID: PMC9157162 DOI: 10.1093/plphys/kiac134] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 05/21/2023]
Abstract
Plant sphingolipids mostly possess 2-hydroxy fatty acids (HFA), the synthesis of which is catalyzed by FA 2-hydroxylases (FAHs). In Arabidopsis (Arabidopsis thaliana), two FAHs (FAH1 and FAH2) have been identified. However, the functions of FAHs and sphingolipids with HFAs (2-hydroxy sphingolipids) are still unknown because of the lack of Arabidopsis lines with the complete deletion of FAH1. In this study, we generated a FAH1 mutant (fah1c) using CRISPR/Cas9-based genome editing. Sphingolipid analysis of fah1c, fah2, and fah1cfah2 mutants revealed that FAH1 hydroxylates very long-chain FAs (VLCFAs), whereas the substrates of FAH2 are VLCFAs and palmitic acid. However, 2-hydroxy sphingolipids are not completely lost in the fah1cfah2 double mutant, suggesting the existence of other enzymes catalyzing the hydroxylation of sphingolipid FAs. Plasma membrane (PM) analysis and molecular dynamics simulations revealed that hydroxyl groups of sphingolipid acyl chains play a crucial role in the organization of nanodomains, which are nanoscale liquid-ordered domains mainly formed by sphingolipids and sterols in the PM, through hydrogen bonds. In the PM of the fah1cfah2 mutant, the expression levels of 26.7% of the proteins, including defense-related proteins such as the pattern recognition receptors (PRRs) brassinosteroid insensitive 1-associated receptor kinase 1 and chitin elicitor receptor kinase 1, NADPH oxidase respiratory burst oxidase homolog D (RBOHD), and heterotrimeric G proteins, were lower than that in the wild-type. In addition, reactive oxygen species (ROS) burst was suppressed in the fah1cfah2 mutant after treatment with the pathogen-associated molecular patterns flg22 and chitin. These results indicated that 2-hydroxy sphingolipids are necessary for the organization of PM nanodomains and ROS burst through RBOHD and PRRs during pattern-triggered immunity.
Collapse
Affiliation(s)
- Tomomi Ukawa
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Fumihiko Banno
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuuta Nishina
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Rika Inoue
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Keigo Tsujii
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama 338-8570, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Author for correspondence:
| |
Collapse
|
8
|
Tamura K, Ueda H, Hara-Nishimura I. In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus 2021; 12:82-89. [PMID: 34030583 PMCID: PMC8158034 DOI: 10.1080/19491034.2021.1930681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
The coordinated regulation of the nucelar envelope (NE) reassembly during cell division is an essential event. However, there is little information on the molecular components involved in NE assembly in plant cells. Here we developed an in vitro assay of NE assembly using tobacco BY-2 cultured cells. To start the NE assembly reaction, the demembranated nuclei and the S12 fraction (cytosol and microsomes) were mixed in the presence of GTP and ATP nucleotides. Time-course analysis indicated that tubule structures were extended from the microsomal vesicles that accumulated on the demembranated nuclei, and finally sealed the NE. Immunofluorescence confirmed that the assembled membrane contains a component of nuclear pore complex. The efficiency of the NE assembly is significantly inhibited by GTPγS that suppresses membrane fusion. This in-vitro assay system may elucidate the role of specific proteins and provide important insights into the molecular machinery of NE assembly in plant cells.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | |
Collapse
|
9
|
Yin J, Wang L, Jin T, Nie Y, Liu H, Qiu Y, Yang Y, Li B, Zhang J, Wang D, Li K, Xu K, Zhi H. A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. MOLECULAR PLANT 2021; 14:1881-1900. [PMID: 34303025 DOI: 10.1016/j.molp.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three nucleotide-binding domain leucine-rich repeat-containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this study, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to confer resistance to SMV, and CRISPR/Cas9-mediated editing of Rsc4-3 in resistant cultivar Dabaima compromised the resistance. Interestingly, Rsc4-3 encodes a cell-wall-localized NLR-type resistant protein. We found that the internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N terminus are essential for the resistance. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3-mediated resistance. Taken together, our work identified a unique NLR that recognizes plant virus in the apoplast, and provided a simple and effective method for identifying resistant genes against SMV infection.
Collapse
Affiliation(s)
- Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yang Nie
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yanglin Qiu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunhua Yang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bowen Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiaojiao Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dagang Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
Cesium tolerance is enhanced by a chemical which binds to BETA-GLUCOSIDASE 23 in Arabidopsis thaliana. Sci Rep 2021; 11:21109. [PMID: 34702872 PMCID: PMC8548588 DOI: 10.1038/s41598-021-00564-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Cesium (Cs) is found at low levels in nature but does not confer any known benefit to plants. Cs and K compete in cells due to the chemical similarity of Cs to potassium (K), and can induce K deficiency in cells. In previous studies, we identified chemicals that increase Cs tolerance in plants. Among them, a small chemical compound (C17H19F3N2O2), named CsToAcE1, was confirmed to enhance Cs tolerance while increasing Cs accumulation in plants. Treatment of plants with CsToAcE1 resulted in greater Cs and K accumulation and also alleviated Cs-induced growth retardation in Arabidopsis. In the present study, potential target proteins of CsToAcE1 were isolated from Arabidopsis to determine the mechanism by which CsToAcE1 alleviates Cs stress, while enhancing Cs accumulation. Our analysis identified one of the interacting target proteins of CsToAcE1 to be BETA-GLUCOSIDASE 23 (AtβGLU23). Interestingly, Arabidopsis atβglu23 mutants exhibited enhanced tolerance to Cs stress but did not respond to the application of CsToAcE1. Notably, application of CsToAcE1 resulted in a reduction of Cs-induced AtβGLU23 expression in wild-type plants, while this was not observed in a high affinity transporter mutant, athak5. Our data indicate that AtβGLU23 regulates plant response to Cs stress and that CsToAcE1 enhances Cs tolerance by repressing AtβGLU23. In addition, AtHAK5 also appears to be involved in this response.
Collapse
|
11
|
Rufián JS, Elmore JM, Bejarano ER, Beuzon CR, Coaker GL. ER Bodies Are Induced by Pseudomonas syringae and Negatively Regulate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1001-1009. [PMID: 34110257 PMCID: PMC8635791 DOI: 10.1094/mpmi-11-20-0330-sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are β-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- José S. Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Carmen R. Beuzon
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Gitta L. Coaker
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
12
|
Nobusawa T, Kamei M, Ueda H, Matsushima N, Yamatani H, Kusaba M. Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. PLANT PHYSIOLOGY 2021; 186:767-781. [PMID: 33620479 PMCID: PMC8154090 DOI: 10.1093/plphys/kiab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 05/07/2023]
Abstract
The cytochrome P450 CYP78A5/KLUH in Arabidopsis thaliana is predicted to be involved in the synthesis of a mobile signal molecule that has a pleiotropic function that is distinct from classical phytohormones. CYP78A5 has five close relatives in Arabidopsis. We first investigated their functions, focusing on the plastochron, leaf size, and leaf senescence. Our analyses revealed that CYP78A5 and CYP78A7 are involved in the plastochron and leaf size, and CYP78A6 and CYP78A9 are involved in leaf senescence. Complementation analyses using heterologous promoters and expression analyses suggested that CYP78A isoforms have a common biochemical function and are functionally differentiated via organ-specific expression. The altered meristem program1 (amp1) carboxypeptidase mutant shows a phenotype very similar to that of the cyp78a5 mutant. Complementation analyses using boundary and organizing center-specific promoters suggested that both CYP78A5 and AMP1 act in a non-cell-autonomous manner. Analyses of multiple cyp78a mutants and crosses between cyp78a and amp1 mutants revealed that AMP1/LIKE AMP1 (LAMP1) and CYP78A isoforms regulate plastochron length and leaf senescence in the same genetic pathway, whereas leaf size is independently regulated. Furthermore, we detected feedback regulation between CYP78A6/CYP78A9 and AMP1 at the gene expression level. These observations raise the possibility that AMP1 and CYP78A isoforms are involved in the synthesis of the same mobile signal molecule, and suggest that AMP1 and CYP78A signaling pathways have a very close, albeit complex, functional relationship.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Misaki Kamei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Present address: Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Shimoidai 1618, Matsuyama 791-0112, Japan
| | - Naoya Matsushima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Yamatani
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Institute of Crop Science NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Author for communication:
| |
Collapse
|
13
|
Goto C, Hara-Nishimura I, Tamura K. Regulation and Physiological Significance of the Nuclear Shape in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:673905. [PMID: 34177991 PMCID: PMC8222917 DOI: 10.3389/fpls.2021.673905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
The shape of plant nuclei varies among different species, tissues, and cell types. In Arabidopsis thaliana seedlings, nuclei in meristems and guard cells are nearly spherical, whereas those of epidermal cells in differentiated tissues are elongated spindle-shaped. The vegetative nuclei in pollen grains are irregularly shaped in angiosperms. In the past few decades, it has been revealed that several nuclear envelope (NE) proteins play the main role in the regulation of the nuclear shape in plants. Some plant NE proteins that regulate nuclear shape are also involved in nuclear or cellular functions, such as nuclear migration, maintenance of chromatin structure, gene expression, calcium and reactive oxygen species signaling, plant growth, reproduction, and plant immunity. The shape of the nucleus has been assessed both by labeling internal components (for instance chromatin) and by labeling membranes, including the NE or endoplasmic reticulum in interphase cells and viral-infected cells of plants. Changes in NE are correlated with the formation of invaginations of the NE, collectively called the nucleoplasmic reticulum. In this review, what is known and what is unknown about nuclear shape determination are presented, and the physiological significance of the control of the nuclear shape in plants is discussed.
Collapse
Affiliation(s)
- Chieko Goto
- Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- *Correspondence: Kentaro Tamura,
| |
Collapse
|
14
|
Romanchuk S. Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance. UKRAINIAN BOTANICAL JOURNAL 2020. [DOI: 10.15407/ukrbotj77.06.480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.
Collapse
|
15
|
Duan Z, Tanaka M, Kanazawa T, Haraguchi T, Takyu A, Era A, Ueda T, Ito K, Tominaga M. Characterization of ancestral myosin XI from Marchantia polymorpha by heterologous expression in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:460-473. [PMID: 32717107 PMCID: PMC7689712 DOI: 10.1111/tpj.14937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2020] [Indexed: 05/30/2023]
Abstract
Previous studies have revealed duplications and diversification of myosin XI genes between angiosperms and bryophytes; however, the functional differentiation and conservation of myosin XI between them remain unclear. Here, we identified a single myosin XI gene from the liverwort Marchantia polymorpha (Mp). The molecular properties of Mp myosin XI are similar to those of Arabidopsis myosin XIs responsible for cytoplasmic streaming, suggesting that the motor function of myosin XI is able to generate cytoplasmic streaming. In cultured Arabidopsis cells, transiently expressed green fluorescent protein (GFP)-fused Mp myosin XI was observed as some intracellular structures moving along the F-actin. These intracellular structures were co-localized with motile endoplasmic reticulum (ER) strands, suggesting that Mp myosin XI binds to the ER and generates intracellular transport in Arabidopsis cells. The tail domain of Mp myosin XI was co-localized with that of Arabidopsis myosin XI-2 and XI-K, suggesting that all these myosin XIs bind to common cargoes. Furthermore, expression of GFP-fused Mp myosin XI rescued the defects of growth, cytoplasmic streaming and actin organization in Arabidopsis multiple myosin XI knockout mutants. The heterologous expression experiments demonstrated the cellular and physiological competence of Mp myosin XI in Arabidopsis. However, the average velocity of organelle transport in Marchantia rhizoids was 0.04 ± 0.01 μm s-1 , which is approximately one-hundredth of that in Arabidopsis cells. Taken together, our results suggest that the molecular properties of myosin XI are conserved, but myosin XI-driven intracellular transport in vivo would be differentiated from bryophytes to angiosperms.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and SciencesWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| | - Misato Tanaka
- Graduate School of Science and EngineeringWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| | - Takehiko Kanazawa
- Division of Cellular DynamicsNational Institute for Basic BiologyNishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
- Department of Basic BiologySOKENDAINishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
| | - Takeshi Haraguchi
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Akiko Takyu
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Atsuko Era
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Takashi Ueda
- Division of Cellular DynamicsNational Institute for Basic BiologyNishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
- Department of Basic BiologySOKENDAINishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
| | - Kohji Ito
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and SciencesWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
- Graduate School of Science and EngineeringWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| |
Collapse
|
16
|
Nagano M, Ueda H, Fukao Y, Kawai-Yamada M, Hara-Nishimura I. Generation of Arabidopsis lines with a red fluorescent marker for endoplasmic reticulum using a tail-anchored protein cytochrome b5 -B. PLANT SIGNALING & BEHAVIOR 2020; 15:1790196. [PMID: 32633191 PMCID: PMC8550181 DOI: 10.1080/15592324.2020.1790196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle that performs multiple cellular activities in eukaryotes. Visualizing ER using fluorescent proteins is a powerful method of analyzing its dynamics and to understand its functions. However, red fluorescent proteins with both an N-terminal signal peptide (SP) and a C-terminal ER retention tetrapeptide (HDEL) often cause mislocalization to vacuoles or extracellular spaces when they are constitutively expressed in Arabidopsis. To obtain a red fluorescent ER marker, we selected Arabidopsis cytochrome b5 -B (Cb5-B), a tail-anchored (TA) protein on the ER membrane. Its localization is determined by the transmembrane domain (TMD) and tail domain at the C-terminus. We fused the TMD and the tail domain of Cb5-B to the C-terminus of a red fluorescent protein, tdTomato (tdTomato-CTT). When tdTomato-CTT was constitutively expressed under the ubiquitin10 promoter in Arabidopsis, the fluorescent signal was exclusively detected at the ER by means of the reliable ER marker SP-GFP-HDEL. Therefore, tdTomato-CTT can accurately visualize the ER in stable Arabidopsis lines. Additionally, transient assays showed that tdTomato-CTT can also be used as an ER marker in onion, rice, and Nicotiana benthamiana. We believe that TA proteins could be used to generate various organellar membrane markers in plants.
Collapse
Affiliation(s)
- Minoru Nagano
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | |
Collapse
|
17
|
Qi X, Yoshinari A, Bai P, Maes M, Zeng SM, Torii KU. The manifold actions of signaling peptides on subcellular dynamics of a receptor specify stomatal cell fate. eLife 2020; 9:58097. [PMID: 32795387 PMCID: PMC7470842 DOI: 10.7554/elife.58097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
Receptor endocytosis is important for signal activation, transduction, and deactivation. However, how a receptor interprets conflicting signals to adjust cellular output is not clearly understood. Using genetic, cell biological, and pharmacological approaches, we report here that ERECTA-LIKE1 (ERL1), the major receptor restricting plant stomatal differentiation, undergoes dynamic subcellular behaviors in response to different EPIDERMAL PATTERNING FACTOR (EPF) peptides. Activation of ERL1 by EPF1 induces rapid ERL1 internalization via multivesicular bodies/late endosomes to vacuolar degradation, whereas ERL1 constitutively internalizes in the absence of EPF1. The co-receptor, TOO MANY MOUTHS is essential for ERL1 internalization induced by EPF1 but not by EPFL6. The peptide antagonist, Stomagen, triggers retention of ERL1 in the endoplasmic reticulum, likely coupled with reduced endocytosis. In contrast, the dominant-negative ERL1 remained dysfunctional in ligand-induced subcellular trafficking. Our study elucidates that multiple related yet unique peptides specify cell fate by deploying the differential subcellular dynamics of a single receptor.
Collapse
Affiliation(s)
- Xingyun Qi
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States
| | - Akira Yoshinari
- Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Aichi, Japan
| | - Pengfei Bai
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Michal Maes
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States
| | - Scott M Zeng
- Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.,Department of Physics, University of Washington, Seattle, United States
| | - Keiko U Torii
- Howard Hughes Medical Institute and Department of Biology, University of Washington, Seattle, United States.,Institute of Transformative Biomolecules (WPI-ITbM), Nagoya University, Aichi, Japan.,Howard Hughes Medical Institute and Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
18
|
Characterization of rhizome transcriptome and identification of a rhizomatous ER body in the clonal plant Cardamine leucantha. Sci Rep 2020; 10:13291. [PMID: 32764594 PMCID: PMC7413523 DOI: 10.1038/s41598-020-69941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/03/2020] [Indexed: 11/24/2022] Open
Abstract
The rhizome is a plant organ that develops from a shoot apical meristem but penetrates into belowground environments. To characterize the gene expression profile of rhizomes, we compared the rhizome transcriptome with those of the leaves, shoots and roots of a rhizomatous Brassicaceae plant, Cardamine leucantha. Overall, rhizome transcriptomes were characterized by the absence of genes that show rhizome-specific expression and expression profiles intermediate between those of shoots and roots. Our results suggest that both endogenous developmental factors and external environmental factors are important for controlling the rhizome transcriptome. Genes that showed relatively high expression in the rhizome compared to shoots and roots included those related to belowground defense, control of reactive oxygen species and cell elongation under dark conditions. A comparison of transcriptomes further allowed us to identify the presence of an ER body, a defense-related belowground organelle, in epidermal cells of the C. leucantha rhizome, which is the first report of ER bodies in rhizome tissue.
Collapse
|
19
|
Sauret-Güeto S, Frangedakis E, Silvestri L, Rebmann M, Tomaselli M, Markel K, Delmans M, West A, Patron NJ, Haseloff J. Systematic Tools for Reprogramming Plant Gene Expression in a Simple Model, Marchantia polymorpha. ACS Synth Biol 2020; 9:864-882. [PMID: 32163700 DOI: 10.1021/acssynbio.9b00511] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues. We describe new techniques for simple and efficient axenic propagation and maintenance of Marchantia lines with no requirement for glasshouse facilities. Marchantia plants spontaneously produce clonal propagules within a few weeks of regeneration, and lines can be amplified million-fold in a single generation by induction of the sexual phase of growth, crossing, and harvesting of progeny spores. The plant has a simple morphology and genome with reduced gene redundancy, and the dominant phase of its life cycle is haploid, making genetic analysis easier. We have built robust Loop assembly vector systems for nuclear and chloroplast transformation and genome editing. These have provided the basis for building and testing a modular library of standardized DNA elements with highly desirable properties. We have screened transcriptomic data to identify a range of candidate genes, extracted putative promoter sequences, and tested them in vivo to identify new constitutive promoter elements. The resources have been combined into a toolkit for plant bioengineering that is accessible for laboratories without access to traditional facilities for plant biology research. The toolkit is being made available under the terms of the OpenMTA and will facilitate the establishment of common standards and the use of this simple plant as testbed for synthetic biology.
Collapse
Affiliation(s)
- Susanna Sauret-Güeto
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Eftychios Frangedakis
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Linda Silvestri
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Kasey Markel
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | | | | | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| |
Collapse
|
20
|
Shimada TL, Shimada T, Okazaki Y, Higashi Y, Saito K, Kuwata K, Oyama K, Kato M, Ueda H, Nakano A, Ueda T, Takano Y, Hara-Nishimura I. HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. NATURE PLANTS 2019; 5:1154-1166. [PMID: 31712757 DOI: 10.1038/s41477-019-0537-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/18/2019] [Indexed: 05/21/2023]
Abstract
Plants strictly regulate the levels of sterol in their cells, as high sterol levels are toxic. However, how plants achieve sterol homeostasis is not fully understood. We isolated an Arabidopsis thaliana mutant that abundantly accumulated sterol esters in structures of about 1 µm in diameter in leaf cells. We designated the mutant high sterol ester 1 (hise1) and called the structures sterol ester bodies. Here, we show that HISE1, the gene product that is altered in this mutant, functions as a key factor in plant sterol homeostasis on the endoplasmic reticulum (ER) and participates in a fail-safe regulatory system comprising two processes. First, HISE1 downregulates the protein levels of the β-hydroxy β-methylglutaryl-CoA reductases HMGR1 and HMGR2, which are rate-limiting enzymes in the sterol synthesis pathway, resulting in suppression of sterol overproduction. Second, if the first process is not successful, excess sterols are converted to sterol esters by phospholipid sterol acyltransferase1 (PSAT1) on ER microdomains and then segregated in SE bodies.
Collapse
Affiliation(s)
- Takashi L Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Kaori Oyama
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Akihiko Nakano
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Advanced Photonics, Wako, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- JST, PRESTO, Kawaguchi, Japan
- SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| | | | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto, Japan.
- Faculty of Science and Engineering, Konan University, Kobe, Japan.
| |
Collapse
|
21
|
Madina MH, Rahman MS, Zheng H, Germain H. Vacuolar membrane structures and their roles in plant-pathogen interactions. PLANT MOLECULAR BIOLOGY 2019; 101:343-354. [PMID: 31621005 DOI: 10.1007/s11103-019-00921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.
Collapse
Affiliation(s)
- Mst Hur Madina
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Md Saifur Rahman
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
22
|
Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat Commun 2017; 8:14493. [PMID: 28205516 PMCID: PMC5316897 DOI: 10.1038/ncomms14493] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022] Open
Abstract
Vector-borne pathogens influence host characteristics relevant to host-vector contact, increasing pathogen transmission and survival. Previously, we demonstrated that infection with Turnip mosaic virus, a member of one of the largest families of plant-infecting viruses, increases vector attraction and reproduction on infected hosts. These changes were due to a single viral protein, NIa-Pro. Here we show that NIa-Pro responds to the presence of the aphid vector during infection by relocalizing to the vacuole. Remarkably, vacuolar localization is required for NIa-Pro's ability to enhance aphid reproduction on host plants, vacuole localization disappears when aphids are removed, and this phenomenon occurs for another potyvirus, Potato virus Y, suggesting a conserved role for the protein in vector-host interactions. Taken together, these results suggest that potyviruses dynamically respond to the presence of their vectors, promoting insect performance and transmission only when needed.
Collapse
Affiliation(s)
- Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Andrea L. Cheung
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Chunling Yang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Sakai Y, Sugano SS, Kawase T, Shirakawa M, Imai Y, Kawamoto Y, Sugiyama H, Nakagawa T, Hara-Nishimura I, Shimada T. Inhibition of cell polarity establishment in stomatal asymmetric cell division using the chemical compound bubblin. Development 2017; 144:499-506. [DOI: 10.1242/dev.145458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/16/2016] [Indexed: 01/07/2023]
Abstract
Stem-cell polarization is a crucial step in asymmetric cell division, which is a universal system for generating cellular diversity in multicellular organisms. Several conventional genetics studies have attempted to elucidate the mechanisms underlying cell polarization in plants, but it remains largely unknown. In plants, stomata, which are valves for gas exchange, are generated through several rounds of asymmetric divisions. In this study, we identified and characterized a chemical compound that affects stomatal stem-cell polarity. High-throughput screening for bioactive molecules identified a pyridine-thiazole derivative, named bubblin, which induced stomatal clustering in Arabidopsis epidermis. Bubblin perturbed stomatal asymmetric division, resulting in the generation of two identical daughter cells. Both cells continued to express the stomatal-fate determinant SPEECHLESS, and then differentiated into mispatterned stomata. Bubblin-treated cells had a defect in the polarized localization of BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), which is required for asymmetric cell fate determination. Our results suggest that bubblin induces stomatal lineage cells to divide without BASL-dependent pre-mitotic establishment of polarity. Bubblin is a potentially valuable tool for investigating cell polarity establishment in stomatal asymmetric division.
Collapse
Affiliation(s)
- Yumiko Sakai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeo S. Sugano
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Kawase
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Shirakawa
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yu Imai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Science (WPI–iCeMS), Kyoto University, Kyoto 606–8501, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, Matsue 690-8504, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Cui S, Hayashi Y, Otomo M, Mano S, Oikawa K, Hayashi M, Nishimura M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana. J Biol Chem 2016; 291:19734-45. [PMID: 27466365 DOI: 10.1074/jbc.m116.748814] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 02/02/2023] Open
Abstract
Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.
Collapse
Affiliation(s)
- Songkui Cui
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the RIKEN Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, the Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan, and
| | - Yasuko Hayashi
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Masayoshi Otomo
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Shoji Mano
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the Laboratory of Biological Diversity, Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Makoto Hayashi
- the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama 526-0829, Japan
| | - Mikio Nishimura
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan,
| |
Collapse
|
25
|
Scheuring D, Löfke C, Krüger F, Kittelmann M, Eisa A, Hughes L, Smith RS, Hawes C, Schumacher K, Kleine-Vehn J. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci U S A 2016; 113:452-7. [PMID: 26715743 PMCID: PMC4720293 DOI: 10.1073/pnas.1517445113] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.
Collapse
Affiliation(s)
- David Scheuring
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Christian Löfke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Falco Krüger
- Center for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Ahmed Eisa
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Louise Hughes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Karin Schumacher
- Center for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
26
|
Zhuang X, Chung KP, Jiang L. Origin of the Autophagosomal Membrane in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1655. [PMID: 27867391 PMCID: PMC5096340 DOI: 10.3389/fpls.2016.01655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
During autophagy, cargo molecules destined for degradation are sequestrated into a double-membrane structure called autophagosome, which subsequently fuses with the vacuole. An isolation membrane structure (also called the phagophore) initiates from the platform termed PAS (phagophore assembly site or preautophagosomal structure), which then elongates and expands to become the completed autophagosome. The origin of the membrane for autophagosome formation has been extensively investigated but remains an enigma in the field of autophagy. In yeast and mammalian cells multiple membrane sources have been suggested to contribute to autophagosome formation at different steps, from initiation through expansion and maturation. Recent studies in plants have provided a significant advance in our understanding of the conserved role of autophagy and the underlying mechanism for autophagosome formation. Here, we will discuss and evaluate these new findings on autophagosome formation in plants, with a particular focus on the origin of plant autophagosomal membranes.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
- *Correspondence: Liwen Jiang, Xiaohong Zhuang,
| | - Kin Pan Chung
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research InstituteShenzhen, China
- *Correspondence: Liwen Jiang, Xiaohong Zhuang,
| |
Collapse
|
27
|
Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T. Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS One 2015; 10:e0138876. [PMID: 26406247 PMCID: PMC4583185 DOI: 10.1371/journal.pone.0138876] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously reported Agrobacterium-mediated transformation methods for the liverwort Marchantia polymorpha using the hygromycin phosphotransferase gene as a marker for selection with hygromycin. In this study, we developed three additional markers for M. polymorpha transformation: the gentamicin 3'-acetyltransferase gene for selection with gentamicin; a mutated acetolactate synthase gene for selection with chlorsulfuron; and the neomycin phosphotransferase II gene for selection with G418. Based on these four marker genes, we have constructed a series of Gateway binary vectors designed for transgenic experiments on M. polymorpha. The 35S promoter from cauliflower mosaic virus and endogenous promoters for constitutive and heat-inducible expression were used to create these vectors. The reporters and tags used were Citrine, 3×Citrine, Citrine-NLS, TagRFP, tdTomato, tdTomato-NLS, GR, SRDX, SRDX-GR, GUS, ELuc(PEST), and 3×FLAG. These vectors, designated as the pMpGWB series, will facilitate molecular genetic analyses of the emerging model plant M. polymorpha.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Block MA, Jouhet J. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr Opin Cell Biol 2015; 35:21-9. [PMID: 25868077 DOI: 10.1016/j.ceb.2015.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.
Collapse
Affiliation(s)
- Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France.
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
29
|
Kong Y, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li X, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1296-306. [PMID: 25673778 PMCID: PMC4378170 DOI: 10.1104/pp.114.255943] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 05/18/2023]
Abstract
Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.
Collapse
Affiliation(s)
- Yingzhen Kong
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Maria J Peña
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Luciana Renna
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Utku Avci
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Sami T Tuomivaara
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Xuemei Li
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Wolf-Dieter Reiter
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Federica Brandizzi
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Michael G Hahn
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Alan G Darvill
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - William S York
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center (Y.K., M.J.P., U.A., S.P., S.T.T., M.G.H., A.G.D., W.S.Y., M.A.O.), Department of Plant Biology (M.G.H.), and Department of Biochemistry and Molecular Biology (A.G.D., W.S.Y.), University of Georgia, Athens, Georgia 30602;Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China (Y.K.);United States Department of Energy Plant Research Laboratory (L.R., F.B.) and United States Department of Energy Great Lakes Bioenergy Research Center (F.B.), Michigan State University, East Lansing, Michigan 48824; andDepartment of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269 (X.L., W.-D.R.)
| |
Collapse
|
30
|
Garcia de la Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensio-Rubio JS, Bru R, Olmos E. New insights into plant salt acclimation: the roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. THE NEW PHYTOLOGIST 2015; 205:216-39. [PMID: 25187269 DOI: 10.1111/nph.12997] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.
Collapse
|
31
|
Yin YX, Wang SB, Xiao HJ, Zhang HX, Zhang Z, Jing H, Zhang YL, Chen RG, Gong ZH. Overexpression of the CaTIP1-1 pepper gene in tobacco enhances resistance to osmotic stresses. Int J Mol Sci 2014; 15:20101-16. [PMID: 25375192 PMCID: PMC4264158 DOI: 10.3390/ijms151120101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/17/2022] Open
Abstract
Both the gene expression and activity of water channel protein can control transmembrane water movement. We have reported the overexpression of CaTIP1-1, which caused a decrease in chilling tolerance in transgenic plants by increasing the size of the stomatal pore. CaTIP1-1 expression was strongly induced by salt and mannitol stresses in pepper (Capsicum annuum). However, its biochemical and physiological functions are still unknown in transgenic tobacco. In this study, transient expression of CaTIP1-1-GFP in tobacco suspension cells revealed that the protein was localized in the tonoplast. CaTIP1-1 overexpressed in radicle exhibited vigorous growth under high salt and mannitol treatments more than wild-type plants. The overexpression of CaTIP1-1 pepper gene in tobacco enhanced the antioxidant enzyme activities and increased transcription levels of reactive oxygen species-related gene expression under osmotic stresses. Moreover, the viability of transgenic tobacco cells was higher than the wild-type after exposure to stress. The pepper plants with silenced CaTIP1-1 in P70 decreased tolerance to salt and osmotic stresses using the detached leaf method. We concluded that the CaTIP1-1 gene plays an important role in response to osmotic stresses in tobacco.
Collapse
Affiliation(s)
- Yan-Xu Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shu-Bin Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Huai-Juan Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hua Jing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ying-Li Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ru-Gang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Zhang C, Hicks GR, Raikhel NV. Plant vacuole morphology and vacuolar trafficking. FRONTIERS IN PLANT SCIENCE 2014; 5:476. [PMID: 25309565 PMCID: PMC4173805 DOI: 10.3389/fpls.2014.00476] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/29/2014] [Indexed: 05/23/2023]
Abstract
Plant vacuoles are essential organelles for plant growth and development, and have multiple functions. Vacuoles are highly dynamic and pleiomorphic, and their size varies depending on the cell type and growth conditions. Vacuoles compartmentalize different cellular components such as proteins, sugars, ions and other secondary metabolites and play critical roles in plants response to different biotic/abiotic signaling pathways. In this review, we will summarize the patterns of changes in vacuole morphology in certain cell types, our understanding of the mechanisms of plant vacuole biogenesis, and the role of SNAREs and Rab GTPases in vacuolar trafficking.
Collapse
Affiliation(s)
- Chunhua Zhang
- *Correspondence: Chunhua Zhang, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| | | | | |
Collapse
|
33
|
Ogawa Y, Shirakawa M, Koumoto Y, Honda M, Asami Y, Kondo Y, Hara-Nishimura I. A simple and reliable multi-gene transformation method for switchgrass. PLANT CELL REPORTS 2014; 33:1161-72. [PMID: 24700247 DOI: 10.1007/s00299-014-1605-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 05/20/2023]
Abstract
A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.
Collapse
Affiliation(s)
- Yoichi Ogawa
- Kazusa Unit, Honda Research Institute Japan (HRI-JP), Kisarazu, Chiba, 292-0818, Japan,
| | | | | | | | | | | | | |
Collapse
|
34
|
Tanoue R, Kobayashi M, Katayama K, Nagata N, Wada H. Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett 2014; 588:1680-5. [PMID: 24632290 DOI: 10.1016/j.febslet.2014.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
Abstract
Phosphatidylglycerophosphate (PGP) synthase, encoded by PGP1 and PGP2 in Arabidopsis, catalyzes a committed step in the biosynthesis of phosphatidylglycerol (PG). In this study, we isolated a pgp1pgp2 double mutant of Arabidopsis to study the function of PG. In this mutant, embryo development was delayed and the majority of seeds did not germinate. Thylakoid membranes did not develop in plastids, mitochondrial membrane structures were abnormal in the mutant embryos, and radiolabeling of phospholipids showed that radioactivity was not significantly incorporated into PG. These results demonstrated that PG biosynthesis is essential for the development of embryos and normal membrane structures of chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Ryo Tanoue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Megumi Kobayashi
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Kenta Katayama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Noriko Nagata
- Department of Chemical Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
35
|
Tamaki T, Betsuyaku S, Fujiwara M, Fukao Y, Fukuda H, Sawa S. SUPPRESSOR OF LLP1 1-mediated C-terminal processing is critical for CLE19 peptide activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:970-81. [PMID: 24118638 DOI: 10.1111/tpj.12349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 05/05/2023]
Abstract
Cell-to-cell communication is essential for the coordinated development of multicellular organisms. Members of the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED (CLE) family, a group of small secretory peptides, are involved in these processes in plants. Although post-translational modifications are considered to be indispensable for their activity, the detailed mechanisms governing these modifications are not well understood. Here, we report that SUPPRESSOR OF LLP1 1 (SOL1), a putative Zn²⁺ carboxypeptidase previously isolated as a suppressor of the CLE19 over-expression phenotype, functions in C-terminal processing of the CLE19 proprotein to produce the functional CLE19 peptide. Newly isolated sol1 mutants are resistant to CLE19 over-expression, consistent with the previous report (Casamitjana-Martinez, E., Hofhuis, H.F., Xu, J., Liu, C.M., Heidstra, R. and Scheres, B. (2003) Curr. Biol. 13, 1435-1441). As expected, our experiment using synthetic CLE19 peptide revealed that the sol1 mutation does not compromise CLE signal transduction pathways per se. SOL1 possesses enzymatic activity to remove the C-terminal arginine residue of CLE19 proprotein in vitro, and SOL1-dependent cleavage of the C-terminal arginine residue is necessary for CLE19 activity in vivo. Additionally, the endosomal localization of SOL1 suggests that this processing occurs in endosomes in the secretory pathway. Thus, our data indicate the importance of C-terminal processing of CLE proproteins to ensure CLE activities.
Collapse
Affiliation(s)
- Takayuki Tamaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. PLANT PHYSIOLOGY 2013; 161:108-20. [PMID: 23166355 PMCID: PMC3532245 DOI: 10.1104/pp.112.207654] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | | | - Momoko Nishina
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Ikuko Hara-Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| |
Collapse
|
37
|
Nakayama M, Kaneko Y, Miyazawa Y, Fujii N, Higashitani N, Wada S, Ishida H, Yoshimoto K, Shirasu K, Yamada K, Nishimura M, Takahashi H. A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. PLANTA 2012; 236:999-1012. [PMID: 22532286 DOI: 10.1007/s00425-012-1655-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/11/2012] [Indexed: 05/31/2023]
Abstract
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.
Collapse
Affiliation(s)
- Mayumi Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Zhao X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang Y, Jiang L, Ding J, Wang J, Xu C, Li X, Zhang Q. A Killer-Protector System Regulates Both Hybrid Sterility and Segregation Distortion in Rice. Science 2012; 337:1336-40. [DOI: 10.1126/science.1223702] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Kera K, Takahashi S, Sutoh T, Koyama T, Nakayama T. Identification and characterization of a cis,trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS J 2012; 279:3813-27. [PMID: 22883514 DOI: 10.1111/j.1742-4658.2012.08742.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 08/03/2012] [Accepted: 08/08/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, dolichols (C(70-120)) play indispensable roles as glycosyl carrier lipids in the biosynthesis of glycoproteins on endoplasmic reticulum. In addition to dolichols, seed plants have other types of Z,E-mixed polyisoprenoids termed ficaprenol (tri-trans,poly-cis-polyprenol, C(45-75)) and betulaprenol (di-trans,poly-cis-polyprenol, C(30-45) and C(≥70)) in abundance. However, the physiological significance of these polyprenols has not been elucidated because of limited information regarding cis-prenyltransferases (cPTs) which catalyze the formation of the structural backbone of Z,E-mixed polyisoprenoids. In the comprehensive identification and characterization of cPT homologues from Arabidopsis thaliana, AtHEPS was identified as a novel cis,trans-mixed heptaprenyl diphosphate synthase. AtHEPS heterologously expressed in Escherichia coli catalyzed the formation of C(35) polyisoprenoid as a major product, independent of the chain lengths of all-trans allylic primer substrates. Kinetic analyses revealed that farnesyl diphosphate was the most favorable for AtHEPS among the allylic substrates tested suggesting that AtHEPS was responsible for the formation of C(35) betulaprenol. AtHEPS partially suppressed the phenotypes of a yeast cPT mutant deficient in the biosynthesis of dolichols. Moreover, in A. thaliana cells, subcellular localization of AtHEPS on the endoplasmic reticulum was shown by using green fluorescent protein fused proteins. However, a cold-stress-inducible expression of AtHEPS suggested that AtHEPS and its product might function in response to abiotic stresses rather than in cell maintenance as a glycosyl carrier lipid on the endoplasmic reticulum.
Collapse
Affiliation(s)
- Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
40
|
Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One 2012; 7:e43189. [PMID: 22952644 PMCID: PMC3430636 DOI: 10.1371/journal.pone.0043189] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/18/2012] [Indexed: 11/22/2022] Open
Abstract
Hydrangea (Hydrangea macrophylla) is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al) ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT) and plasma membrane Al transporter 1 (PALT1), respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively.
Collapse
Affiliation(s)
- Takashi Negishi
- Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
- G-COE in Chemistry, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Kenshiro Oshima
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masatake Kanai
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi, Japan
| | - Kumi Yoshida
- Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
- G-COE in Chemistry, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
41
|
Hayashi M, Nanba C, Saito M, Kondo M, Takeda A, Watanabe Y, Nishimura M. Loss of XRN4 function can trigger cosuppression in a sequence-dependent manner. PLANT & CELL PHYSIOLOGY 2012; 53:1310-1321. [PMID: 22611176 DOI: 10.1093/pcp/pcs078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OLE1 encodes an oleosin isoprotein, a major membrane protein of the lipid-reserve organelle in seeds known as the oil body. Transgenic Arabidopsis were generated to contain an artificial chimeric transgene composed of OLE1 and green fluorescent protein (GFP). Overexpression of the fusion protein allowed visualization of the oil body size and structure in living cells using fluorescence microscopy. Two mutants, xrn4-8(OleG) and xrn4-9(OleG), accumulating enlarged oil bodies with reduced GFP fluorescence were isolated from the mutagenized progeny of a transgenic plant. Both mutants contained a defect in EXORIBONUCLEASE4 (XRN4), a gene known to encode a ribonuclease that specifically degrades uncapped mRNAs. Transgene expression was silenced in these mutants, as demonstrated by the reduced levels of the transgene mRNA and its product, OLE1-GFP. XRN4 loss of function also triggered cosuppression, i.e. simultaneous reduction in expression of the transgene and an endogenous OLE1 gene that shared a region of identical sequence. The enlarged oil bodies exhibiting reduced GFP fluorescence were formed in the xrn4-8(OleG) and xrn4-9(OleG) mutants due to the reduction of the endogenous OLE1 and the transgene product, OLE1-GFP, respectively. Cosuppression triggered by the xrn4 mutation also occurs for other genes such as PYK10, which encodes an endoplasmic reticulum (ER) body-resident β-glucosidase. The overall results indicate that a loss of XRN4 function can potentially trigger the cosuppression in a sequence-dependent manner.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/biosynthesis
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Fluorescence
- Gene Expression Regulation, Plant
- Genes, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mutation
- Phenotype
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plasmids/genetics
- Plasmids/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Seed Storage Proteins/genetics
- Seed Storage Proteins/metabolism
- Seeds/metabolism
- Transformation, Genetic
- Transgenes
- beta-Glucosidase/genetics
- beta-Glucosidase/metabolism
Collapse
Affiliation(s)
- Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Zwiewka M, Friml J. Fluorescence imaging-based forward genetic screens to identify trafficking regulators in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:97. [PMID: 22654887 PMCID: PMC3359526 DOI: 10.3389/fpls.2012.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/25/2012] [Indexed: 05/25/2023]
Abstract
Coordinated, subcellular trafficking of proteins is one of the fundamental properties of the multicellular eukaryotic organisms. Trafficking involves a large diversity of compartments, pathways, cargo molecules, and vesicle-sorting events. It is also crucial in regulating the localization and, thus, the activity of various proteins, but the process is still poorly genetically defined in plants. In the past, forward genetics screens had been used to determine the function of genes by searching for a specific morphological phenotype in the organism population in which mutations had been induced chemically or by irradiation. Unfortunately, these straightforward genetic screens turned out to be limited in identifying new regulators of intracellular protein transport, because mutations affecting essential trafficking pathways often lead to lethality. In addition, the use of these approaches has been restricted by functional redundancy among trafficking regulators. Screens for mutants that rely on the observation of changes in the cellular localization or dynamics of fluorescent subcellular markers enable, at least partially, to circumvent these issues. Hence, such image-based screens provide the possibility to identify either alleles with weak effects or components of the subcellular trafficking machinery that have no strong impact on the plant growth.
Collapse
Affiliation(s)
- Marta Zwiewka
- Department of Plant Systems Biology, VIB Life Sciences Research InstituteGent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent UniversityGent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB Life Sciences Research InstituteGent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent UniversityGent, Belgium
| |
Collapse
|
43
|
Hamada T, Tominaga M, Fukaya T, Nakamura M, Nakano A, Watanabe Y, Hashimoto T, Baskin TI. RNA Processing Bodies, Peroxisomes, Golgi Bodies, Mitochondria, and Endoplasmic Reticulum Tubule Junctions Frequently Pause at Cortical Microtubules. ACTA ACUST UNITED AC 2012; 53:699-708. [DOI: 10.1093/pcp/pcs025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Yamada K, Hara-Nishimura I, Nishimura M. Unique defense strategy by the endoplasmic reticulum body in plants. PLANT & CELL PHYSIOLOGY 2011; 52:2039-49. [PMID: 22102697 DOI: 10.1093/pcp/pcr156] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Nishigo-naka 38, Okazaki 444-8585, Aichi, Japan
| | | | | |
Collapse
|
45
|
Tan X, Wang Q, Tian B, Zhang H, Lu D, Zhou J. A Brassica napus lipase locates at the membrane contact sites involved in chloroplast development. PLoS One 2011; 6:e26831. [PMID: 22046373 PMCID: PMC3202582 DOI: 10.1371/journal.pone.0026831] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/05/2011] [Indexed: 11/26/2022] Open
Abstract
Background Fatty acids synthesized in chloroplast are transported to endoplasmic reticulum (ER) for triacylglycerols (TAGs) resembling. The development of chloroplast also requires lipids trafficking from ER to chloroplast. The membrane contact sites (MCSs) between ER and chloroplast has been demonstrated to be involved for the trafficking of lipids and proteins. Lipids trafficking between ER and chloroplast is often accompanied by lipids interconversion. However, it is rarely known how lipids interconversion happens during their trafficking. Methodology/Principal Findings We cloned a lipase gene from Brassica napus L., designated as BnCLIP1. Green fluorescence protein (GFP)-tagged BnCLIP1 was shown to locate at the MCSs between ER and chloroplasts in tobacco leaves. Heterogeneous expression of BnCLIP1 in Saccharomyces cerevisiae (pep4) reduced the total amount of fatty acid. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the truncated BnCLIP1 had a substrate preference for C16:0 lipids in Saccharomyces cerevisiae (pep4). To probe the physiological function of BnCLIP1, two Brassica napus lines with different oil-content were introduced to investigate the transcript patterns of BnCLIP1 during seed development. Intriguingly, the transcript level of BnCLIP1 was found to be immediately up-regulated during the natural seed senescence of both lines; the transcription response of BnCLIP1 in the high oil-content seeds was faster than the lower ones, suggesting a potential role of BnCLIP1 in affecting seed oil synthesis via regulating chloroplast integrity. Further researches showed that chemical disruption of leaf chloroplast also activated the transcription of BnCLIP1. Conclusions/Significance The findings of this study show that BnCLIP1 encodes a lipase, localizes at the MCSs and involves in chloroplast development.
Collapse
Affiliation(s)
- Xiaoli Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qiuye Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Baoxia Tian
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Henan Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Daoli Lu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jia Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
- * E-mail:
| |
Collapse
|
46
|
Yokota E, Ueda H, Hashimoto K, Orii H, Shimada T, Hara-Nishimura I, Shimmen T. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. PLANT PHYSIOLOGY 2011; 156:129-43. [PMID: 21427277 PMCID: PMC3091044 DOI: 10.1104/pp.111.175018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/18/2011] [Indexed: 05/17/2023]
Abstract
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.
Collapse
Affiliation(s)
- Etsuo Yokota
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kajikawa M, Shoji T, Kato A, Hashimoto T. Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco. PLANT PHYSIOLOGY 2011; 155:2010-22. [PMID: 21343426 PMCID: PMC3091092 DOI: 10.1104/pp.110.170878] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/21/2011] [Indexed: 05/21/2023]
Abstract
Tobacco (Nicotiana tabacum) plants synthesize nicotine and related pyridine-type alkaloids, such as anatabine, in their roots and accumulate them in their aerial parts as chemical defenses against herbivores. Herbivory-induced jasmonate signaling activates structural genes for nicotine biosynthesis and transport by way of the NICOTINE (NIC) regulatory loci. The biosynthesis of tobacco alkaloids involves the condensation of an unidentified nicotinic acid-derived metabolite with the N-methylpyrrolinium cation or with itself, but the exact enzymatic reactions and enzymes involved remain unclear. Here, we report that jasmonate-inducible tobacco genes encoding flavin-containing oxidases of the berberine bridge enzyme family (BBLs) are expressed in the roots and regulated by the NIC loci. When expression of the BBL genes was suppressed in tobacco hairy roots or in tobacco plants, nicotine production was highly reduced, with a gradual accumulation of a novel nicotine metabolite, dihydromethanicotine. In the jasmonate-elicited cultured tobacco cells, suppression of BBL expression efficiently inhibited the formation of anatabine and other pyridine alkaloids. Subcellular fractionation and localization of green fluorescent protein-tagged BBLs showed that BBLs are localized in the vacuoles. These results indicate that BBLs are involved in a late oxidation step subsequent to the pyridine ring condensation reaction in the biosynthesis of tobacco alkaloids.
Collapse
Affiliation(s)
| | | | | | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
48
|
Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:231-40. [PMID: 21205032 DOI: 10.1111/j.1365-313x.2011.04483.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A high accumulation of silicon (Si) is required for overcoming abiotic and biotic stresses, but the molecular mechanisms of Si uptake, especially in dicotyledonous species, is poorly understood. Herein, we report the identification of an influx transporter of Si in two Cucurbita moschata (pumpkin) cultivars greatly differing in Si accumulation, which are used for the rootstocks of bloom and bloomless Cucumis sativus (cucumber), respectively. Heterogeneous expression in both Xenopus oocytes and rice mutant defective in Si uptake showed that the influx transporter from the bloom pumpkin rootstock can transport Si, whereas that from the bloomless rootstock cannot. Analysis with site-directed mutagenesis showed that, among the two amino acid residues differing between the two types of rootstocks, only changing a proline to a leucine at position 242 results in the loss of Si transport activity. Furthermore, all pumpkin cultivars for bloomless rootstocks tested have this mutation. The transporter is localized in all cells of the roots, and investigation of the subcellular localization with different approaches consistently showed that the influx Si transporter from the bloom pumpkin rootstock was localized at the plasma membrane, whereas the one from the bloomless rootstock was localized at the endoplasmic reticulum. Taken together, our results indicate that the difference in Si uptake between two pumpkin cultivars is probably the result of allelic variation in one amino acid residue of the Si influx transporter, which affects the subcellular localization and subsequent transport of Si from the external solution to the root cells.
Collapse
Affiliation(s)
- Namiki Mitani
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
49
|
Matsui T, Tabayashi A, Iwano M, Shinmyo A, Kato K, Nakayama H. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure. PLANT & CELL PHYSIOLOGY 2011; 52:413-20. [PMID: 21216746 DOI: 10.1093/pcp/pcq205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.
Collapse
Affiliation(s)
- Takeshi Matsui
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara, 630-0101 Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Gattolin S, Sorieul M, Frigerio L. Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. MOLECULAR PLANT 2011; 4:180-9. [PMID: 20833734 DOI: 10.1093/mp/ssq051] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have mapped the expression of the tonoplast intrinsic protein (TIP) gene family members in Arabidopsis seeds by fluorescent protein tagging of their genomic sequences and confocal microscopy. Three isoforms (TIP1;1, TIP2;1, and TIP2;2) have distinct patterns of expression in maternal tissues (outer integument and placento-chalazal region). Two isoforms, TIP3;1 and the previously uncharacterized TIP3;2, are the only detectable TIPs in embryos during seed maturation and the early stages of seed germination. Throughout these developmental stages, both isoforms co-locate to the tonoplast of the protein storage vacuoles, but also appear to label the plasma membrane. Plasma membrane labeling is specific to TIP3;1 and TIP3;2, is independent of the position of the fluorescent protein tag, and appears to be specific to early seed maturation and early germination stages. We discuss these results in the context of the predicted distribution of aquaporins in Arabidopsis seeds.
Collapse
Affiliation(s)
- Stefano Gattolin
- Department of Biological Sciences, University of Warwick, Coventry CV47AL, UK
| | | | | |
Collapse
|