1
|
Fischer K, Valentin Jordbræk S, Olsen S, Bockwoldt M, Schwacke R, Usadel B, Krause K. Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Mol Phylogenet Evol 2024:108243. [PMID: 39581358 DOI: 10.1016/j.ympev.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The evolution of plant genomes is riddled with exchanges of genetic material within one plant (endosymbiotic gene transfer/EGT) and between unrelated plants (horizontal gene transfer/HGT). These exchanges have left their marks on plant genomes. Parasitic plants with their special evolutionary niche provide ample examples for these processes because they are under a reduced evolutionary pressure to maintain autotrophy and thus to conserve their plastid genomes. On the other hand, the close physical connections with different hosts enabled them to acquire genetic material from other plants. Based on an analysis of an extensive dataset including the parasite Cuscuta campestris and other parasitic plant species, we identified a unique evolutionary history of rpl32 genes coding for an essential plastid ribosomal subunit in Cuscuta. Our analysis suggests that the gene was most likely sequestered by HGT from a member of the Oxalidales order serving as host to an ancestor of the Cuscuta subgenus Grammica. Oxalidales had suffered an ancestral EGT of rpl32 predating the evolution of the genus Cuscuta. The HGT subsequently relieved the plastid rpl32 from its evolutionary constraint and led to its loss from the plastid genome. The HGT-based acquisition in Cuscuta is supported by a high sequence similarity of the mature L32 protein between species of the subgenus Grammica and representatives of the Oxalidales, and by a surprisingly conserved transit peptide, whose functionality in Cuscuta was experimentally verified. The findings are discussed in view of an overall pattern of EGT events for plastid ribosomal subunits in Streptophyta.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Faculty of Mathematics and Natural Sciences, Institute for Biological Data Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Zgłobicki P, Hermanowicz P, Kłodawska K, Bażant A, Łabuz J, Grzyb J, Dutka M, Kowalska E, Jawor J, Leja K, Banaś AK. The photoreactivation of 6 - 4 photoproducts in chloroplast and nuclear DNA depends on the amount of the Arabidopsis UV repair defective 3 protein. BMC PLANT BIOLOGY 2024; 24:723. [PMID: 39080534 PMCID: PMC11287969 DOI: 10.1186/s12870-024-05439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.
Collapse
Affiliation(s)
- Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Paweł Hermanowicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Justyna Łabuz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Małgorzata Dutka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Jawor
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Katarzyna Leja
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Łojasiewicza 11, Kraków, 30-348, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
3
|
Nishimura Y. Plastid Nucleoids: Insights into Their Shape and Dynamics. PLANT & CELL PHYSIOLOGY 2024; 65:551-559. [PMID: 37542434 DOI: 10.1093/pcp/pcad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/07/2023]
Abstract
Chloroplasts/plastids are unique organelles found in plant cells and some algae and are responsible for performing essential functions such as photosynthesis. The plastid genome, consisting of circular and linear DNA molecules, is packaged and organized into specialized structures called nucleoids. The composition and dynamics of these nucleoids have been the subject of intense research, as they are critical for proper plastid functions and development. In this mini-review, recent advances in understanding the organization and regulation of plastid nucleoids are overviewed, with a focus on the various proteins and factors that regulate the shape and dynamics of nucleoids, including DNA-binding proteins and membrane anchorage proteins. The dynamic nature of nucleoid organization, which is influenced by a variety of developmental cues and the cell cycle, is also examined.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
4
|
Hernández‐Verdeja T, Vuorijoki L, Jin X, Vergara A, Dubreuil C, Strand Å. GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:188-203. [PMID: 35322876 PMCID: PMC9324965 DOI: 10.1111/nph.18115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
Collapse
Affiliation(s)
- Tamara Hernández‐Verdeja
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Linda Vuorijoki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Xu Jin
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Alexander Vergara
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Carole Dubreuil
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Åsa Strand
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| |
Collapse
|
5
|
Duan S, Hu L, Dong B, Jin HL, Wang HB. Signaling from Plastid Genome Stability Modulates Endoreplication and Cell Cycle during Plant Development. Cell Rep 2021; 32:108019. [PMID: 32783941 DOI: 10.1016/j.celrep.2020.108019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
Plastid-nucleus genome coordination is crucial for plastid activity, but the mechanisms remain unclear. By treating Arabidopsis plants with the organellar genome-damaging agent ciprofloxacin, we found that plastid genome instability can alter endoreplication and the cell cycle. Similar results are observed in the plastid genome instability mutants of reca1why1why3. Cell division and embryo development are disturbed in the reca1why1why3 mutant. Notably, SMR5 and SMR7 genes, which encode cell-cycle kinase inhibitors, are upregulated in plastid genome instability plants, and the mutation of SMR7 can restore the endoreplication and growth phenotype of reca1why1why3 plants. Furthermore, we establish that the DNA damage response transcription factor SOG1 mediates the alteration of endoreplication and cell cycle triggered by plastid genome instability. Finally, we demonstrate that reactive oxygen species produced in plastids are important for plastid-nucleus genome coordination. Our findings uncover a molecular mechanism for the coordination of plastid and nuclear genomes during plant growth and development.
Collapse
Affiliation(s)
- Sujuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China; Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Lili Hu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Beibei Dong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China.
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China; Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Huang W, Zhang Y, Shen L, Fang Q, Liu Q, Gong C, Zhang C, Zhou Y, Mao C, Zhu Y, Zhang J, Chen H, Zhang Y, Lin Y, Bock R, Zhou F. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. THE NEW PHYTOLOGIST 2020; 228:1401-1416. [PMID: 32583432 PMCID: PMC7689822 DOI: 10.1111/nph.16769] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/11/2020] [Indexed: 05/02/2023]
Abstract
Plastid-encoded genes are coordinately transcribed by the nucleus-encoded RNA polymerase (NEP) and the plastid-encoded RNA polymerase (PEP). Resulting primary transcripts are frequently subject to RNA editing by cytidine-to-uridine conversions at specific sites. The physiological role of many editing events is largely unknown. Here, we have used the CRISPR/Cas9 technique in rice to knock out a member of the PLS-DYW subfamily of pentatricopeptide repeat (PPR) proteins. We found that OsPPR16 is responsible for a single editing event at position 545 in the chloroplast rpoB messenger RNA (mRNA), resulting in an amino acid change from serine to leucine in the β-subunit of the PEP. In striking contrast to loss-of-function mutations of the putative orthologue in Arabidopsis, which were reported to have no visible phenotype, knockout of OsPPR16 leads to impaired accumulation of RpoB, reduced expression of PEP-dependent genes, and a pale phenotype during early plant development. Thus, by editing the rpoB mRNA, OsPPR16 is required for faithful plastid transcription, which in turn is required for Chl synthesis and efficient chloroplast development. Our results provide new insights into the interconnection of the finely tuned regulatory mechanisms that operate at the transcriptional and post-transcriptional levels of plastid gene expression.
Collapse
Affiliation(s)
- Weifeng Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yang Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Liqiang Shen
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Qun Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Chenbo Gong
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Chen Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yong Zhou
- College of Bioscience and BioengineeringJiangxi Agricultural UniversityNanchan330045China
| | - Cui Mao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yongli Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Jinghong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Hongping Chen
- Nanchang Subcenter of Rice National Engineering LaboratoryKey Laboratory of Rice Physiology and Genetics of Jiangxi ProvinceRice Research InstituteJiangxi Academy of Agricultural SciencesNanchang330200China
| | - Yu Zhang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1Potsdam‐GolmD‐14476Germany
| | - Fei Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
7
|
Teubner M, Lenzen B, Espenberger LB, Fuss J, Nickelsen J, Krause K, Ruwe H, Schmitz-Linneweber C. The Chloroplast Ribonucleoprotein CP33B Quantitatively Binds the psbA mRNA. PLANTS 2020; 9:plants9030367. [PMID: 32192026 PMCID: PMC7154868 DOI: 10.3390/plants9030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
Chloroplast RNAs are stabilized and processed by a multitude of nuclear-encoded RNA-binding proteins, often in response to external stimuli like light and temperature. A particularly interesting RNA-based regulation occurs with the psbA mRNA, which shows light-dependent translation. Recently, the chloroplast ribonucleoprotein CP33B was identified as a ligand of the psbA mRNA. We here characterized the interaction of CP33B with chloroplast RNAs in greater detail using a combination of RIP-chip, quantitative dot-blot, and RNA-Bind-n-Seq experiments. We demonstrate that CP33B prefers psbA over all other chloroplast RNAs and associates with the vast majority of the psbA transcript pool. The RNA sequence target motif, determined in vitro, does not fully explain CP33B's preference for psbA, suggesting that there are other determinants of specificity in vivo.
Collapse
Affiliation(s)
- Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Benjamin Lenzen
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Lucas Bernal Espenberger
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Janina Fuss
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Jörg Nickelsen
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany;
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Christian Schmitz-Linneweber
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
- Correspondence: ; Tel.: ++49-30-2093-49700
| |
Collapse
|
8
|
Lee S, Joung YH, Kim JK, Do Choi Y, Jang G. An isoform of the plastid RNA polymerase-associated protein FSD3 negatively regulates chloroplast development. BMC PLANT BIOLOGY 2019; 19:524. [PMID: 31775615 PMCID: PMC6882211 DOI: 10.1186/s12870-019-2128-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plastid-encoded RNA polymerase (PEP) plays an essential role in chloroplast development by governing the expression of genes involved in photosynthesis. At least 12 PEP-associated proteins (PAPs), including FSD3/PAP4, regulate PEP activity and chloroplast development by modulating formation of the PEP complex. RESULTS In this study, we identified FSD3S, a splicing variant of FSD3; the FSD3 and FSD3S transcripts encode proteins with identical N-termini, but different C-termini. Characterization of FSD3 and FSD3S proteins showed that the C-terminal region of FSD3S contains a transmembrane domain, which promotes FSD3S localization to the chloroplast membrane but not to nucleoids, in contrast to FSD3, which localizes to the chloroplast nucleoid. We also found that overexpression of FSD3S negatively affects photosynthetic activity and chloroplast development by reducing expression of genes involved in photosynthesis. In addition, FSD3S failed to complement the chloroplast developmental defects in the fsd3 mutant. CONCLUSION These results suggest FSD3 and FSD3S, with their distinct localization patterns, have different functions in chloroplast development, and FSD3S negatively regulates expression of PEP-dependent chloroplast genes, and development of chloroplasts.
Collapse
Affiliation(s)
- Sangyool Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/Green BioScience and Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- The National Academy of Sciences, Seoul, 06579 Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
9
|
Kamimura Y, Tanaka H, Kobayashi Y, Shikanai T, Nishimura Y. Chloroplast nucleoids as a transformable network revealed by live imaging with a microfluidic device. Commun Biol 2018; 1:47. [PMID: 30271930 PMCID: PMC6123815 DOI: 10.1038/s42003-018-0055-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Chloroplast DNA is organized into DNA–protein conglomerates called chloroplast nucleoids, which are replicated, transcribed, and inherited. We applied live-imaging technology with a microfluidic device to examine the nature of chloroplast nucleoids in Chlamydomonas reinhardtii. We observed the dynamic and reversible dispersion of globular chloroplast nucleoids into a network structure in dividing chloroplasts. In the monokaryotic chloroplast (moc) mutant, in which chloroplast nucleoids are unequally distributed following chloroplast division due to a defect in MOC1, the early stages of chloroplast nucleoid formation occurred mainly in the proximal area. This suggests the chloroplast nucleoid transformable network consists of a highly compact core with proximal areas associated with cpDNA replication and nucleoid formation. Yoshitaka Kamimura and colleagues combine live-imaging technology with microfluidics to examine chloroplast DNA organization in nucleoids. They find that these structures form a network structure in dividing chloroplasts, and propose a mechanism for their inheritance in organelle replication.
Collapse
Affiliation(s)
- Yoshitaka Kamimura
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hitomi Tanaka
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yusuke Kobayashi
- Department of Cell Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshiharu Shikanai
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiki Nishimura
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
10
|
Kobayashi Y, Misumi O, Odahara M, Ishibashi K, Hirono M, Hidaka K, Endo M, Sugiyama H, Iwasaki H, Kuroiwa T, Shikanai T, Nishimura Y. Holliday junction resolvases mediate chloroplast nucleoid segregation. Science 2018; 356:631-634. [PMID: 28495749 DOI: 10.1126/science.aan0038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/14/2017] [Indexed: 01/11/2023]
Abstract
Holliday junctions, four-stranded DNA structures formed during homologous recombination, are disentangled by resolvases that have been found in prokaryotes and eukaryotes but not in plant organelles. Here, we identify monokaryotic chloroplast 1 (MOC1) as a Holliday junction resolvase in chloroplasts by analyzing a green alga Chlamydomonas reinhardtii mutant defective in chloroplast nucleoid (DNA-protein complex) segregation. MOC1 is structurally similar to a bacterial Holliday junction resolvase, resistance to ultraviolet (Ruv) C, and genetically conserved among green plants. Reduced or no expression of MOC1 in Arabidopsis thaliana leads to growth defects and aberrant chloroplast nucleoid segregation. In vitro biochemical analysis and high-speed atomic force microscopic analysis revealed that A. thaliana MOC 1 (AtMOC1) binds and cleaves the core of Holliday junctions symmetrically. MOC1 may mediate chloroplast nucleoid segregation in green plants by resolving Holliday junctions.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kota Ishibashi
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan
| | - Masafumi Hirono
- Department of Frontier Bioscience, Hosei University, Tokyo 184-8584, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Iwasaki
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Toshiharu Shikanai
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Delfosse K, Wozny MR, Barton KA, Mathur N, Griffiths N, Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. FRONTIERS IN PLANT SCIENCE 2018; 9:754. [PMID: 29915611 PMCID: PMC5995270 DOI: 10.3389/fpls.2018.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
UNLABELLED Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.
Collapse
|
12
|
Teubner M, Fuß J, Kühn K, Krause K, Schmitz-Linneweber C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:472-485. [PMID: 27743418 DOI: 10.1111/tpj.13396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Chloroplast RNA metabolism depends on a multitude of nuclear-encoded RNA-binding proteins (RBPs). Most known chloroplast RBPs address specific RNA targets and RNA-processing functions. However, members of the small chloroplast ribonucleoprotein family (cpRNPs) play a global role in processing and stabilizing chloroplast RNAs. Here, we show that the cpRNP CP33A localizes to a distinct sub-chloroplastic domain and is essential for chloroplast development. The loss of CP33A yields albino seedlings that exhibit aberrant leaf development and can only survive in the presence of an external carbon source. Genome-wide RNA association studies demonstrate that CP33A associates with all chloroplast mRNAs. For a given transcript, quantification of CP33A-bound versus free RNAs demonstrates that CP33A associates with the majority of most mRNAs analyzed. Our results further show that CP33A is required for the accumulation of a number of tested mRNAs, and is particularly relevant for unspliced and unprocessed precursor mRNAs. Finally, CP33A fails to associate with polysomes or to strongly co-precipitate with ribosomal RNA, suggesting that it defines a ribodomain that is separate from the chloroplast translation machinery. Collectively, these findings suggest that CP33A contributes to globally essential RNA processes in the chloroplasts of higher plants.
Collapse
Affiliation(s)
- Marlene Teubner
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Janina Fuß
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | - Kristina Kühn
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | | |
Collapse
|
13
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
14
|
Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. PLANTA 2017; 245:45-60. [PMID: 27578095 DOI: 10.1007/s00425-016-2590-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling stage. Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although a few regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. Here, we report the characterization of a temperature-sensitive young seedling stripe1 (yss1) rice mutant, which develops striated leaves at the seedling stage, particularly in leaf 3, but produces wild-type leaves in leaf 5 and onwards. The chlorotic leaves have decreased chlorophyll (Chls) accumulation and impaired chloroplast structure. Positional cloning combined with sequencing demonstrated that aberrant splicing of the 8th intron in YSS1 gene, due to a single nucleotide deletion around splicing donor site, leads to decreased expression of YSS1 and accumulation of an 8th intron-retained yss1 transcript. Furthermore, complementation test revealed that downregulation of YSS1 but not accumulation of yss1 transcript confers yss1 mutant phenotype. YSS1 encodes a chloroplast nucleoid-localized protein belonging to the DUF3727 superfamily. Expression analysis showed that YSS1 gene is more expressed in newly expanded leaves, and distinctly up-regulated as temperatures increase and by light stimulus. PEP- and nuclear-encoded phage-type RNA polymerase (NEP)-dependent genes are separately down-regulated and up-regulated in yss1 mutant, indicating that PEP activity may be impaired. Furthermore, levels of chloroplast proteins are mostly reduced in yss1 seedlings. Together, our findings identify YSS1 as a novel regulator of PEP activity essential for chloroplast development at rice seedling stage.
Collapse
Affiliation(s)
- Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Feng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Long Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jia Lyu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaolu Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiupin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Odahara M, Kobayashi Y, Shikanai T, Nishimura Y. Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts. PLANT PHYSIOLOGY 2016; 172:2337-2346. [PMID: 27756821 PMCID: PMC5129732 DOI: 10.1104/pp.16.01533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens Here, overexpression and knockdown analysis of cpRECA in the green alga Chlamydomonas reinhardtii revealed that cpRECA was involved in cp nucleoid dynamics as well as having a role in maintaining cp genome integrity. Overexpression of cpRECA tagged with yellow fluorescent protein or hemagglutinin resulted in the formation of giant filamentous structures that colocalized exclusively to chloroplast DNA and cpRECA localized to cp nucleoids in a heterogenous manner. Knockdown of cpRECA led to a significant reduction in cp nucleoid number that was accompanied by nucleoid enlargement. This phenotype resembled those of gyrase inhibitor-treated cells and monokaryotic chloroplast mutant cells and suggested that cpRECA was involved in organizing cp nucleoid dynamics. The cp genome also was destabilized by induced recombination between short dispersed repeats in cpRECA-knockdown cells and gyrase inhibitor-treated cells. Taken together, these results suggest that cpRECA and gyrase are both involved in nucleoid dynamics and the maintenance of genome integrity and that the mechanisms underlying these processes may be intimately related in C. reinhardtii cps.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| | - Yusuke Kobayashi
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| |
Collapse
|
16
|
Yang J, Suzuki M, McCarty DR. Essential role of conserved DUF177A protein in plastid 23S rRNA accumulation and plant embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5447-5460. [PMID: 27574185 PMCID: PMC5049393 DOI: 10.1093/jxb/erw311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DUF177 proteins are nearly universally conserved in bacteria and plants except the Chlorophyceae algae. Thus far, duf177 mutants in bacteria have not established a function. In contrast, duf177a mutants have embryo lethal phenotypes in maize and Arabidopsis. In maize inbred W22, duf177a mutant embryos arrest at an early transition stage, whereas the block is suppressed in the B73 inbred background, conditioning an albino seedling phenotype. Background-dependent embryo lethal phenotypes are characteristic of maize plastid gene expression mutants. Consistent with the plastid gene expression hypothesis, quantitative real-time PCR revealed a significant reduction of 23S rRNA in an Escherichia coli duf177 knockout. Plastid 23S rRNA contents of duf177a mutant tissues were also markedly reduced compared with the wild-type, whereas plastid 16S, 5S, and 4.5S rRNA contents were less affected, indicating that DUF177 is specifically required for accumulation of prokaryote-type 23S rRNA. An AtDUF177A-green fluorescent protein (GFP) transgene controlled by the native AtDUF177A promoter fully complemented the Arabidopsis atduf177a mutant. Transient expression of AtDUF177A-GFP in Nicotiana benthamiana leaves showed that the protein was localized in chloroplasts. The essential role of DUF177A in chloroplast-ribosome formation is reminiscent of IOJAP, another highly conserved ribosome-associated protein, suggesting that key mechanisms controlling ribosome formation in plastids evolved from non-essential pathways for regulation of the prokaryotic ribosome.
Collapse
Affiliation(s)
- Jiani Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
Riggs JW, Rockwell NC, Cavales PC, Callis J. Identification of the Plant Ribokinase and Discovery of a Role for Arabidopsis Ribokinase in Nucleoside Metabolism. J Biol Chem 2016; 291:22572-22582. [PMID: 27601466 DOI: 10.1074/jbc.m116.754689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribose can be used for energy or as a component of several important biomolecules, but for it to be used in either capacity it must first be phosphorylated by ribokinase (RBSK). RBSK proteins are part of the phosphofructokinase-B (pfkB) family of carbohydrate kinases. Sequence comparisons of pfkB proteins from the model plant Arabidopsis thaliana with the human and Escherichia coli RBSK identified a single candidate RBSK, At1g17160 (AtRBSK). AtRBSK is more similar to predicted RBSKs from other plant species and known mammalian and prokaryotic RBSK than to all other PfkB proteins in Arabidopsis AtRBSK contains a predicted chloroplast transit peptide, and we confirmed plastid localization using AtRBSK fused to YFP. Structure prediction software verified that the AtRBSK sequence mapped onto a known RBSK structure. Kinetic parameters of purified recombinant AtRBSK were determined to be Kmribose = 150 μm ± 17 μm, KmATP = 45 μm ± 5.6 μm, and kcat = 2.0 s-1 Substrate inhibition was observed for AtRBSK (KiATP = 2.44 mm ± 0.36 mm), as has been demonstrated for other RBSK proteins. Ribose accumulated in Arabidopsis plants lacking AtRBSK. Such plants grew normally unless media was supplemented with ribose, which led to chlorosis and growth inhibition. Both chlorosis and ribose accumulation were abolished upon the introduction of a transgene expressing AtRBSK-MYC, demonstrating that the loss of protein is responsible for ribose hypersensitivity. Ribose accumulation in plants lacking AtRBSK was reduced in plants also deficient in the nucleoside ribohydrolase NSH1, linking AtRBSK activity to nucleoside metabolism.
Collapse
Affiliation(s)
- John W Riggs
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Nathan C Rockwell
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Philip C Cavales
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Judy Callis
- From the Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
18
|
Cole LW. The Evolution of Per-cell Organelle Number. Front Cell Dev Biol 2016; 4:85. [PMID: 27588285 PMCID: PMC4988970 DOI: 10.3389/fcell.2016.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/04/2016] [Indexed: 11/13/2022] Open
Abstract
Organelles with their own distinct genomes, such as plastids and mitochondria, are found in most eukaryotic cells. As these organelles and their host cells have evolved, the partitioning of metabolic processes and the encoding of interacting gene products have created an obligate codependence. This relationship has played a role in shaping the number of organelles in cells through evolution. Factors such as stochastic evolutionary forces acting on genes involved in organelle biogenesis, organelle-nuclear gene interactions, and physical limitations may, to varying degrees, dictate the selective constraint that per-cell organelle number is under. In particular, coordination between nuclear and organellar gene expression may be important in maintaining gene product stoichiometry, which may have a significant role in constraining the evolution of this trait.
Collapse
Affiliation(s)
- Logan W Cole
- Department of Biology, Indiana University Bloomington, IN, USA
| |
Collapse
|
19
|
Virdi KS, Wamboldt Y, Kundariya H, Laurie JD, Keren I, Kumar KRS, Block A, Basset G, Luebker S, Elowsky C, Day PM, Roose JL, Bricker TM, Elthon T, Mackenzie SA. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. MOLECULAR PLANT 2016; 9:245-260. [PMID: 26584715 DOI: 10.1016/j.molp.2015.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors.
Collapse
Affiliation(s)
- Kamaldeep S Virdi
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Yashitola Wamboldt
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Hardik Kundariya
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - John D Laurie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ido Keren
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - K R Sunil Kumar
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Anna Block
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Gilles Basset
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Steve Luebker
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Philip M Day
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Johnna L Roose
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas Elthon
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
20
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
21
|
Chi W, He B, Manavski N, Mao J, Ji D, Lu C, Rochaix JD, Meurer J, Zhang L. RHON1 mediates a Rho-like activity for transcription termination in plastids of Arabidopsis thaliana. THE PLANT CELL 2014; 26:4918-32. [PMID: 25480370 PMCID: PMC4311204 DOI: 10.1105/tpc.114.132118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 11/15/2014] [Indexed: 05/20/2023]
Abstract
Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding β-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jean David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
22
|
Glutathionyl-hydroquinone reductases from poplar are plastidial proteins that deglutathionylate both reduced and oxidized glutathionylated quinones. FEBS Lett 2014; 589:37-44. [PMID: 25455804 DOI: 10.1016/j.febslet.2014.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/04/2014] [Accepted: 11/15/2014] [Indexed: 12/15/2022]
Abstract
Glutathionyl-hydroquinone reductases (GHRs) catalyze the deglutathionylation of quinones via a catalytic cysteine. The two GHR genes in the Populus trichocarpa genome, Pt-GHR1 and Pt-GHR2, are primarily expressed in reproductive organs. Both proteins are localized in plastids. More specifically, Pt-GHR2 localizes in nucleoids. At the structural level, Pt-GHR1 adopts a typical GHR fold, with a dimerization interface comparable to that of the bacterial and fungal GHR counterparts. Pt-GHR1 catalyzes the deglutathionylation of both reduced and oxidized glutathionylated quinones, but the enzyme is more catalytically efficient with the reduced forms.
Collapse
|
23
|
Powikrowska M, Khrouchtchova A, Martens HJ, Zygadlo-Nielsen A, Melonek J, Schulz A, Krupinska K, Rodermel S, Jensen PE. SVR4 (suppressor of variegation 4) and SVR4-like: two proteins with a role in proper organization of the chloroplast genetic machinery. PHYSIOLOGIA PLANTARUM 2014; 150:477-92. [PMID: 24111559 DOI: 10.1111/ppl.12108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
SUPPRESSOR OF VARIEGATION 4 (SVR4, also called MRL7) and its homolog SVR4-like (also called MRL7-Like) were originally identified as important proteins for proper function of the chloroplast in Arabidopsis. Both are nuclear-encoded chloroplast-located proteins, and knockout mutants of either gene result in seedling lethality. Transmission electron microscopy analysis revealed that chloroplast development is arrested at an early developmental stage in both mutants. Accordingly, in the mutant plants severely decreased levels of photosynthetic pigments as well as subunits of the photosynthetic complexes could be detected. In absence of either of the two proteins chloroplast DNA organization was clearly affected. Immunological analysis revealed that SVR4 is a component of the transcriptionally active chromosome (TAC) from barley chloroplasts. Analyses of gene expression indicate that SVR4 and SVR4-like are required for proper function of the plastid transcriptional machinery. We propose that SVR4 and SVR4-like function as molecular chaperones ensuring proper organization of the nucleoids in chloroplasts.
Collapse
Affiliation(s)
- Marta Powikrowska
- Villum Centre of Excellence "Plant Plasticity" and Center for Synthetic Biology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pfalz J, Pfannschmidt T. Essential nucleoid proteins in early chloroplast development. TRENDS IN PLANT SCIENCE 2013; 18:186-94. [PMID: 23246438 DOI: 10.1016/j.tplants.2012.11.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/01/2012] [Accepted: 11/12/2012] [Indexed: 05/04/2023]
Abstract
The plastid transcription machinery can be biochemically purified at different organisational levels as soluble RNA polymerase, transcriptionally active chromosome, or nucleoid. Recent proteomic studies have uncovered several novel proteins in these structures and functional genomic studies have indicated that a lack of many of these proteins results in chlorotic phenotypes of varying degree. The most severe cases exhibit complete albino phenotypes, which led to the conclusion that the proteins that were lacking had important regulatory roles in plastid gene expression and chloroplast development. In this opinion article, we propose an alternative model in which the structural establishment of a transcriptional subdomain within the nucleoid represents an early developmental bottleneck that leads to abortion of proper chloroplast biogenesis if disturbed.
Collapse
Affiliation(s)
- Jeannette Pfalz
- Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743 Jena, Germany
| | | |
Collapse
|
25
|
Krupinska K, Melonek J, Krause K. New insights into plastid nucleoid structure and functionality. PLANTA 2013; 237:653-64. [PMID: 23212213 DOI: 10.1007/s00425-012-1817-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/09/2012] [Indexed: 05/04/2023]
Abstract
Investigations over many decades have revealed that nucleoids of higher plant plastids are highly dynamic with regard to their number, their structural organization and protein composition. Membrane attachment and environmental cues seem to determine the activity and functionality of the nucleoids and point to a highly regulated structure-function relationship. The heterogeneous composition and the many functions that are seemingly associated with the plastid nucleoids could be related to the high number of chromosomes per plastid. Recent proteomic studies have brought novel nucleoid-associated proteins into the spotlight and indicated that plastid nucleoids are an evolutionary hybrid possessing prokaryotic nucleoid features and eukaryotic (nuclear) chromatin components, several of which are dually targeted to the nucleus and chloroplasts. Future studies need to unravel if and how plastid-nucleus communication depends on nucleoid structure and plastid gene expression.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| | | | | |
Collapse
|
26
|
Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC, Weiss C, Azem A, Jinn TL. CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. THE NEW PHYTOLOGIST 2013; 197:99-110. [PMID: 23057508 DOI: 10.1111/j.1469-8137.2012.04369.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 05/08/2023]
Abstract
Iron superoxide dismutases (FeSODs; FSDs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FSD1 conferred the only detectable FeSOD activity, whereas the thylakoid membrane- and nucleoid-co-localized FSD2 and FSD3 double mutant showed arrested chloroplast development. FeSOD requires cofactor Fe for its activity, but its mechanism of activation is unclear. We used reversed-phase high-performance liquid chromatography (HPLC), gel filtration chromatography, LC-MS/MS, protoplast transient expression and virus-induced gene silencing (VIGS) analyses to identify and characterize a factor involved in FeSOD activation. We identified the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. The relationship between CPN20 and FeSOD was confirmed by in vitro experiments showing that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity. The in vivo results showed that CPN20-overexpressing mutants and mutants with defective co-chaperonin activity increased FSD1 activity, without changing the chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also led to decreased FeSOD activity. Our findings reveal that CPN20 can mediate FeSOD activation in chloroplasts, a role independent of its known function in the chaperonin system.
Collapse
Affiliation(s)
- W Y Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - C H Huang
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - A C Liu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - C P Cheng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - S H Li
- Department of Medical Research, Mackay Memorial Hospital, Tamshui, 25160, Taiwan
| | - W C Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - C Weiss
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - A Azem
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - T L Jinn
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
27
|
Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, Barkan A, Consonni G, M. Rogowsky P. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5843-57. [PMID: 22945943 PMCID: PMC3467297 DOI: 10.1093/jxb/ers232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522. Independent evidence that disruption of PPR8522 caused the emb phenotype was provided by fine mapping to a region of 116kb containing no other gene than PPR8522 and complementation of the emb8522 mutant by a PPR8522 cDNA. The deduced PPR8522 amino acid sequence of 832 amino acids contains 10 PPR repeats and a chloroplast target peptide, the function of which was experimentally demonstrated by transient expression in Nicotiana benthamiana. Whereas mutant endosperm is apparently normal, mutant embryos deviate from normal development as early as 3 days after pollination, are reduced in size, exhibit more or less severe morphological aberrations depending on the genetic background, and generally do not germinate. The emb8522 mutation is the first to associate the loss of a PPR gene with an embryo-lethal phenotype in maize. Analyses of mutant plantlets generated by embryo-rescue experiments indicate that emb8522 also affects vegetative plant growth and chloroplast development. The loss of chloroplast transcription dependent on plastid-encoded RNA polymerase is the likely cause for the lack of an organized thylakoid network and an albino, seedling-lethal phenotype.
Collapse
Affiliation(s)
- Davide Sosso
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
- Dipartimento di Produzione Vegetale, Università degli Studi di
Milano,20133 Milan,Italy
| | - Matthieu Canut
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Ghislaine Gendrot
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Annick Dedieu
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Pierre Chambrier
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, EugeneOR 97403,USA
| | - Gabriella Consonni
- Dipartimento di Produzione Vegetale, Università degli Studi di
Milano,20133 Milan,Italy
| | - Peter M. Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon,
Université Lyon 1, Unité Reproduction et Développement des
Plantes,F-69364 Lyon,France
- INRA, UMR879 Reproduction et Développement des Plantes,F-69364 Lyon,France
- CNRS, UMR5667 Reproduction et Développement des Plantes,F-69364 Lyon,France
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
28
|
Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T. Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase. Proc Natl Acad Sci U S A 2012; 109:7541-6. [PMID: 22529394 PMCID: PMC3358912 DOI: 10.1073/pnas.1119403109] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastid transcription is mediated by two distinct types of RNA polymerases (RNAPs), bacterial-type RNAP (PEP) and phage-type RNAP (NEP). Recent genomic and proteomic studies revealed that higher plants have lost most prokaryotic transcription regulators and have acquired eukaryotic-type proteins during plant evolution. However, in vivo dynamics of chloroplast RNA polymerases and eukaryotic-type plastid nucleoid proteins have not been directly characterized experimentally. Here, we examine the association of the α-subunit of PEP and eukaryotic-type protein, plastid transcriptionally active chromosome 3 (pTAC3) with transcribed regions in vivo by using chloroplast chromatin immunoprecipitation (cpChIP) assays. PEP α-subunit preferentially associates with PEP promoters of photosynthesis and rRNA genes, but not with NEP promoter regions, suggesting selective and accurate recognition of PEP promoters by PEP. The cpChIP assays further demonstrate that the peak of PEP association occurs at the promoter-proximal region and declines gradually along the transcribed region. pTAC3 is a putative DNA-binding protein that is localized to chloroplast nucleoids and is essential for PEP-dependent transcription. Density gradient and immunoprecipitation analyses of PEP revealed that pTAC3 is associated with the PEP complex. Interestingly, pTAC3 associates with the PEP complex not only during transcription initiation, but also during elongation and termination. These results suggest that pTAC3 is an essential component of the chloroplast PEP complex. In addition, we demonstrate that light-dependent chloroplast transcription is mediated by light-induced association of the PEP-pTAC3 complex with promoters. This study illustrates unique dynamics of PEP and its associated protein pTAC3 during light-dependent transcription in chloroplasts.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture and
- Institute of Advanced Study, Kyushu University, Fukuoka 812-8581, Japan
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| | - Yuzuru Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan; and
| |
Collapse
|
29
|
Newell CA, Natesan SKA, Sullivan JA, Jouhet J, Kavanagh TA, Gray JC. Exclusion of plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:399-410. [PMID: 21951134 DOI: 10.1111/j.1365-313x.2011.04798.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stromules are stroma-filled tubules that extend from the surface of plastids and allow the transfer of proteins as large as 550 kDa between interconnected plastids. The aim of the present study was to determine if plastid DNA or plastid ribosomes are able to enter stromules, potentially permitting the transfer of genetic information between plastids. Plastid DNA and ribosomes were marked with green fluorescent protein (GFP) fusions to LacI, the lac repressor, which binds to lacO-related sequences in plastid DNA, and to plastid ribosomal proteins Rpl1 and Rps2, respectively. Fluorescence from GFP-LacI co-localised with plastid DNA in nucleoids in all tissues of transgenic tobacco (Nicotiana tabacum L.) examined and there was no indication of its presence in stromules, not even in hypocotyl epidermal cells, which contain abundant stromules. Fluorescence from Rpl1-GFP and Rps2-GFP was also observed in a punctate pattern in chloroplasts of tobacco and Arabidopsis [Arabidopsis thaliana (L.) Heynh.], and fluorescent stromules were not detected. Rpl1-GFP was shown to assemble into ribosomes and was co-localised with plastid DNA. In contrast, in hypocotyl epidermal cells of dark-grown Arabidopsis seedlings, fluorescence from Rpl1-GFP was more evenly distributed in plastids and was observed in stromules on a total of only four plastids (<0.02% of the plastids observed). These observations indicate that plastid DNA and plastid ribosomes do not routinely move into stromules in tobacco and Arabidopsis, and suggest that transfer of genetic information by this route is likely to be a very rare event, if it occurs at all.
Collapse
Affiliation(s)
- Christine A Newell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | | | | | | |
Collapse
|
30
|
Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. PLANT PHYSIOLOGY 2012; 158:156-89. [PMID: 22065420 PMCID: PMC3252073 DOI: 10.1104/pp.111.188474] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 05/18/2023]
Abstract
Plastids contain multiple copies of the plastid chromosome, folded together with proteins and RNA into nucleoids. The degree to which components of the plastid gene expression and protein biogenesis machineries are nucleoid associated, and the factors involved in plastid DNA organization, repair, and replication, are poorly understood. To provide a conceptual framework for nucleoid function, we characterized the proteomes of highly enriched nucleoid fractions of proplastids and mature chloroplasts isolated from the maize (Zea mays) leaf base and tip, respectively, using mass spectrometry. Quantitative comparisons with proteomes of unfractionated proplastids and chloroplasts facilitated the determination of nucleoid-enriched proteins. This nucleoid-enriched proteome included proteins involved in DNA replication, organization, and repair as well as transcription, mRNA processing, splicing, and editing. Many proteins of unknown function, including pentatricopeptide repeat (PPR), tetratricopeptide repeat (TPR), DnaJ, and mitochondrial transcription factor (mTERF) domain proteins, were identified. Strikingly, 70S ribosome and ribosome assembly factors were strongly overrepresented in nucleoid fractions, but protein chaperones were not. Our analysis strongly suggests that mRNA processing, splicing, and editing, as well as ribosome assembly, take place in association with the nucleoid, suggesting that these processes occur cotranscriptionally. The plastid developmental state did not dramatically change the nucleoid-enriched proteome but did quantitatively shift the predominating function from RNA metabolism in undeveloped plastids to translation and homeostasis in chloroplasts. This study extends the known maize plastid proteome by hundreds of proteins, including more than 40 PPR and mTERF domain proteins, and provides a resource for targeted studies on plastid gene expression. Details of protein identification and annotation are provided in the Plant Proteome Database.
Collapse
|
31
|
Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. PLANT PHYSIOLOGY 2011; 157:1043-55. [PMID: 21949211 PMCID: PMC3252157 DOI: 10.1104/pp.111.184515] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/14/2011] [Indexed: 05/18/2023]
Abstract
The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.
Collapse
|
32
|
DNA repair in organelles: Pathways, organization, regulation, relevance in disease and aging. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:186-200. [DOI: 10.1016/j.bbamcr.2010.10.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/20/2022]
|
33
|
Newell CA, Gray JC. Binding of lac repressor-GFP fusion protein to lac operator sites inserted in the tobacco chloroplast genome examined by chromatin immunoprecipitation. Nucleic Acids Res 2010; 38:e145. [PMID: 20484380 PMCID: PMC2919732 DOI: 10.1093/nar/gkq413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 11/12/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of approximately 600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins.
Collapse
Affiliation(s)
| | - John C. Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
34
|
Melonek J, Mulisch M, Schmitz-Linneweber C, Grabowski E, Hensel G, Krupinska K. Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. PLANTA 2010; 232:471-81. [PMID: 20473685 DOI: 10.1007/s00425-010-1183-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/23/2010] [Indexed: 05/04/2023]
Abstract
The nucleic acid binding protein Whirly1 of barley has been located to both chloroplasts and the nucleus of the same cell. Immunogold labelling furthermore showed that in vivo Whirly1 does not strictly co-localize with DNA in chloroplasts, while it is closely associated with DNA in the nucleus. High-resolution imaging of Whirly1-GFP and PEND-RFP fusion proteins revealed that only a minor part of Whirly1 co-localizes with nucleoids. The co-localization with nucleoids is in accordance with the detection of Whirly1 in a conventionally prepared fraction of the transcriptionally active chromosome (TAC). By further purification and enrichment of transcriptional activity Whirly1, however, was lost from the TAC fraction. Knockdown of Whirly1 in transgenic barley plants had neither impact on transcription of selected protein coding genes nor on genes coding for ribosomal RNAs or tRNAs. The results of RIP-chip experiments showed that barley Whirly1 as its maize orthologue associates with a set of intron containing plastid RNAs. Taken together, the results suggest that plastid-located Whirly1 functions primarily in RNA metabolism rather than as a DNA binding protein.
Collapse
Affiliation(s)
- Joanna Melonek
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Kabeya Y, Nakanishi H, Suzuki K, Ichikawa T, Kondou Y, Matsui M, Miyagishima SY. The YlmG protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria. BMC PLANT BIOLOGY 2010; 10:57. [PMID: 20359373 PMCID: PMC2923531 DOI: 10.1186/1471-2229-10-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/02/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Reminiscent of their free-living cyanobacterial ancestor, chloroplasts proliferate by division coupled with the partition of nucleoids (DNA-protein complexes). Division of the chloroplast envelope membrane is performed by constriction of the ring structures at the division site. During division, nucleoids also change their shape and are distributed essentially equally to the daughter chloroplasts. Although several components of the envelope division machinery have been identified and characterized, little is known about the molecular components/mechanisms underlying the change of the nucleoid structure. RESULTS In order to identify new factors that are involved in the chloroplast division, we isolated Arabidopsis thaliana chloroplast division mutants from a pool of random cDNA-overexpressed lines. We found that the overexpression of a previously uncharacterized gene (AtYLMG1-1) of cyanobacterial origin results in the formation of an irregular network of chloroplast nucleoids, along with a defect in chloroplast division. In contrast, knockdown of AtYLMG1-1 resulted in a concentration of the nucleoids into a few large structures, but did not affect chloroplast division. Immunofluorescence microscopy showed that AtYLMG1-1 localizes in small puncta on thylakoid membranes, to which a subset of nucleoids colocalize. In addition, in the cyanobacterium Synechococcus elongates, overexpression and deletion of ylmG also displayed defects in nucleoid structure and cell division. CONCLUSIONS These results suggest that the proper distribution of nucleoids requires the YlmG protein, and the mechanism is conserved between cyanobacteria and chloroplasts. Given that ylmG exists in a cell division gene cluster downstream of ftsZ in gram-positive bacteria and that ylmG overexpression impaired the chloroplast division, the nucleoid partitioning by YlmG might be related to chloroplast and cyanobacterial division processes.
Collapse
Affiliation(s)
- Yukihiro Kabeya
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiromitsu Nakanishi
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Suzuki
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanari Ichikawa
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Youichi Kondou
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Plant Functional Genomics Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin-ya Miyagishima
- Initiative Research Program, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
36
|
Kang YW, Lee JY, Jeon Y, Cheong GW, Kim M, Pai HS. In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2010; 72:569-83. [PMID: 20047069 DOI: 10.1007/s11103-009-9593-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 12/15/2009] [Indexed: 05/03/2023]
Abstract
Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development.
Collapse
Affiliation(s)
- Yong-Won Kang
- Department of Biology, Yonsei University, Seoul, 120-749, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Sakamoto W, Uno Y, Zhang Q, Miura E, Kato Y. Arrested differentiation of proplastids into chloroplasts in variegated leaves characterized by plastid ultrastructure and nucleoid morphology. PLANT & CELL PHYSIOLOGY 2009; 50:2069-2083. [PMID: 19755395 DOI: 10.1093/pcp/pcp127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Leaf variegation is seen in many ornamental plants and is often caused by a cell-lineage type formation of white sectors lacking functional chloroplasts. A mutant showing such leaf variegation is viable and is therefore suitable for studying chloroplast development. In this study, the formation of white sectors was temporally investigated in the Arabidopsis leaf-variegated mutant var2. Green sectors were found to emerge from white sectors after the formation of the first true leaf. Transmission electron microscopic examination of plastid ultrastructures confirmed that the peripheral zone in the var2 shoot meristem contained proplastids but lacked developing chloroplasts that were normally detected in wild type. These data suggest that chloroplast development proceeds very slowly in var2 variegated leaves. A notable feature in var2 is that the plastids in white sectors contain remarkable globular vacuolated membranes and prolamellar body-like structures. Although defective plastids were hardly observed in shoot meristems, they began to accumulate during early leaf development. Consistent with these observations, large plastid nucleoids detected in white sectors by DNA-specific fluorescent dyes were characteristic of those found in proplastids and were clearly distinguished from those in chloroplasts. These results strongly imply that in white sectors, differentiation of plastids into chloroplasts is arrested at the early stage of thylakoid development. Interestingly, large plastid nucleoids were detected in variegated sectors from species other than Arabidopsis. Thus, plastids in variegated leaves appear to share a common feature and represent a novel plastid type.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | | | | | | | |
Collapse
|
38
|
Terasawa K, Sato N. Plastid localization of the PEND protein is mediated by a noncanonical transit peptide. FEBS J 2009; 276:1709-19. [PMID: 19220850 DOI: 10.1111/j.1742-4658.2009.06901.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Plastid envelope DNA-binding protein (PEND) is a DNA-binding protein with a chloroplast basic region-zipper domain at its N-terminus and a transmembrane domain at its C-terminus. The localization of PEND to the inner envelope membrane was demonstrated in a targeting experiment using isolated membranes and green fluorescent protein-tagged fusion proteins. An N-terminal sequence analysis showed that the presequence is 15 amino acids long; however, based on neural network-based prediction tools, this short peptide is not predicted to be a chloroplast-targeting sequence. In the present study we confirmed, by the digestion of intact chloroplasts, that PEND is located in the envelope membrane. We then demonstrated that the N-terminal 88-amino acid sequence is sufficient for plastid import in vitro. The transient expression of green fluorescent protein-tagged fusion proteins revealed that neither the N-terminal 29-amino acid sequence nor the 16-amino acid sequence directed green fluorescent protein to chloroplasts, but that the N-terminal 66-amino acid sequence was sufficient for correct targeting. These results suggest that targeting of PEND to the chloroplast requires both the presequence and the basic region, whereas postimport processing cleaves only the presequence. Interestingly, deletion of the presequence in the green fluorescent protein-tagged 88-amino acid construct resulted in targeting to the nucleus. This raises the possibility of plastid-to-nuclear signal transduction by the relocalization of PEND.
Collapse
Affiliation(s)
- Kimihiro Terasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
39
|
Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. THE PLANT CELL 2008; 20:3148-62. [PMID: 18996978 PMCID: PMC2613658 DOI: 10.1105/tpc.108.061341] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/05/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
There are three iron superoxide dismutases in Arabidopsis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), FSD2, and FSD3. Their biological roles in chloroplast development are unknown. Here, we show that FSD2 and FSD3 play essential roles in early chloroplast development, whereas FSD1, which is found in the cytoplasm, does not. An fsd2-1 fsd3-1 double mutant had a severe albino phenotype on agar plates, whereas fsd2 and fsd3 single knockout mutants had pale green phenotypes. Chloroplast development was arrested in young seedlings of the double mutant. The mutant plants were highly sensitive to oxidative stress and developed increased levels of reactive oxygen species (ROS) during extended darkness. The FSD2 and FSD3 proteins formed a heteromeric protein complex in the chloroplast nucleoids. Furthermore, transgenic Arabidopsis plants overexpressing both the FSD2 and FSD3 genes showed greater tolerance to oxidative stress induced by methyl viologen than did the wild type or single FSD2- or FSD3-overexpressing lines. We propose that heteromeric FSD2 and FSD3 act as ROS scavengers in the maintenance of early chloroplast development by protecting the chloroplast nucleoids from ROS.
Collapse
Affiliation(s)
- Fumiyoshi Myouga
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mathur J. The illuminated plant cell. TRENDS IN PLANT SCIENCE 2007; 12:506-513. [PMID: 17933577 DOI: 10.1016/j.tplants.2007.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 05/04/2023]
Abstract
The past decade has provided biologists with a palette of genetically encoded, multicolored fluorescent proteins. The living plant cell turned into a 'coloring book' and today, nearly every text-book organelle has been highlighted in scintillating fluorescent colors. This review provides a concise listing of the earliest representative fluorescent-protein probes used to highlight various targets within the plant cell, and introduces the idea of using the numerous multicolor, subcellular probes for the development of an early intracellular response profile of plants.
Collapse
Affiliation(s)
- Jaideep Mathur
- Laboratory of Plant Development and Interactions, Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 588 Gordon Street, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
41
|
Garcion C, Guilleminot J, Kroj T, Parcy F, Giraudat J, Devic M. AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:895-906. [PMID: 17092312 DOI: 10.1111/j.1365-313x.2006.02922.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
EMB506 is a chloroplast protein essential for embryo development, the function of which is unknown. A two-hybrid interaction screen was performed to provide insight into the role of EMB506. A single interacting partner, AKRP, was identified among a cDNA library from immature siliques. The AKR gene (Zhang et al., 1992, Plant Cell 4, 1575-1588) encodes a protein containing five ankyrin repeats, very similar to EMB506. Protein truncation series demonstrated that both proteins interact through their ankyrin domains. Using reverse genetics, we showed that loss of akr function resulted in an embryo-defective (emb) phenotype indistinguishable from the emb506 phenotype. Transient expression of the signal peptide of AKRP fused to green fluorescent protein demonstrated the chloroplast localization of AKRP. The ABI3 promoter was used to express AKR in a seed-specific manner in order to analyse the post-embryonic effect of AKR loss of function in akr/akr seedlings. Homozygous fertile and viable akr/akr plants were obtained. These plants exhibited mild to severe defects in chloroplast and leaf cellular organization. We conclude that EMB506 and AKRP are involved in crucial and tightly controlled events in plastid differentiation linked to cell differentiation, morphogenesis and organogenesis during the plant life cycle.
Collapse
Affiliation(s)
- C Garcion
- Laboratoire Génome et Développement des Plantes, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | | | | | | | | | | |
Collapse
|