1
|
Tyszczuk-Rotko K, Staniec K, Hanaka A. Green and cost-effective voltammetric assay based on activated glassy carbon electrode for determination of the plant growth regulator methyl jasmonate. Biosens Bioelectron 2025; 274:117217. [PMID: 39892336 DOI: 10.1016/j.bios.2025.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
A green, cost-effective, and efficient square-wave voltammetric (SWV) assay based on an electrochemically activated glassy carbon electrode (aGCE) for the determination of the plant growth regulator methyl jasmonate (MeJA) was developed. The activation was performed by anodization in 0.1 mol L-1 NaOH by 5 cyclic voltammetric measurements in the potential range of 0-2 V at a scan rate of 100 mV s-1. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) were applied to analyze the difference between the bare GCE and the aGCE in terms of their electrochemical properties. The functionalization of the GCE surface by oxygen-containing groups not only creates new active sites but also improves electron transfer dynamics and electrocatalytic activity. The SWV procedure displays a wide linear response from 0.1 to 50.0 μmol L-1, a low LOD = 0.027 μmol L-1, and LOQ = 0.097 μmol L-1. The aGCE was successfully applied to MeJA analysis in Phaseolus coccineus leaf extracts.
Collapse
Affiliation(s)
- Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031, Lublin, Poland.
| | - Katarzyna Staniec
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031, Lublin, Poland
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University in Lublin, 20-033, Lublin, Poland
| |
Collapse
|
2
|
Kim E, Kwon GS, Choi S, Kim SY, Heo KY, Kim YS, Kim CY, Kim S, Jeong JC, Hwang J, Lee JH, Lee JH, Moh SH. Potential role of ice-binding protein in mitochondria-lipid and ATP mechanisms during freezing of plant callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108866. [PMID: 39002307 DOI: 10.1016/j.plaphy.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Plant calli, a perpetually undifferentiated cell culture, have defects in maintaining their genetic fidelity during prolonged tissue culture. Cryopreservation using ice-binding proteins (IBP) is a potential solution. Despite a few studies on cryopreservation using IBPs in plant calli, detailed insights into the intracellular metabolism during freezing, thawing, and re-induction remain sparse. This study investigated and employed IBP from polar yeast Leucosporidium sp. (LeIBP) in the cryopreservation process across diverse taxa, including gymnosperms, monocots, dicots, and woody plants. Molecular-level analyses encompassing reactive oxygen species levels, mitochondrial function, and ATP and lipophilic compounds content were conducted. The results across nine plant species revealed the effects of LeIBP on callus competency post-thawing, along with enhanced survival rates, reactive oxygen species reduction, and restored metabolic activities to the level of those of fresh calli. Moreover, species-specific survival optimization with LeIBP treatments and morphological assessments revealed intriguing extracellular matrix structural changes post-cryopreservation, suggesting a morphological strategy for maintaining the original cellular states and paracrine signaling. This study pioneered the comprehensive application of LeIBP in plant callus cryopreservation, alleviating cellular stress and enhancing competence. Therefore, our findings provide new insights into the identification of optimal LeIBP concentrations, confirmation of genetic conformity post-thawing, and the intracellular metabolic mechanisms of cryopreservation advancements in plant research, thereby addressing the challenges associated with long-term preservation and reducing labor-intensive cultivation processes. This study urges a shift towards molecular-level assessments in cryopreservation protocols for plant calli, advocating a deeper understanding of callus re-induction mechanisms and genetic fidelity post-thawing.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Gi-Sok Kwon
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Sunmee Choi
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Soo-Yun Kim
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Kyeong Yeon Heo
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Young Soon Kim
- Korea Research Institute of Bioscience and Biotechnology, South Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Soyoung Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea; Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Jeong Hun Lee
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Sang Hyun Moh
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea.
| |
Collapse
|
3
|
Xu F, Valappil AK, Zheng S, Zheng B, Yang D, Wang Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024; 14:705. [PMID: 38927108 PMCID: PMC11201925 DOI: 10.3390/biom14060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Phytochemicals are crucial antioxidants that play a significant role in preventing cancer. (2) Methods: We explored the use of methyl jasmonate (MeJA) in the in vitro cultivation of D. morbifera adventitious roots (DMAR) and evaluated its impact on secondary metabolite production in DMAR, optimizing concentration and exposure time for cost-effectiveness. We also assessed its anti-inflammatory and anti-lung cancer activities and related gene expression levels. (3) Results: MeJA treatment significantly increased the production of the phenolic compound 3,5-Di-caffeoylquinic acid (3,5-DCQA). The maximum 3,5-DCQA production was achieved with a MeJA treatment at 40 µM for 36 h. MeJA-DMARE displayed exceptional anti-inflammatory activity by inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-induced RAW 264.7 cells. Moreover, it downregulated the mRNA expression of key inflammation-related cytokines. Additionally, MeJA-DMARE exhibited anti-lung cancer activity by promoting ROS production in A549 lung cancer cells and inhibiting its migration. It also modulated apoptosis in lung cancer cells via the Bcl-2 and p38 MAPK pathways. (4) Conclusions: MeJA-treated DMARE with increased 3,5-DCQA production holds significant promise as a sustainable and novel material for pharmaceutical applications thanks to its potent antioxidant, anti-inflammatory, and anti-lung cancer properties.
Collapse
Affiliation(s)
- Fengjiao Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Anjali Kariyarath Valappil
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (F.X.); (S.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Deokchun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Republic of Korea;
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
4
|
Solomonova E, Shoman N, Akimov A, Rylkova O, Meger Y. Application of confocal microscopy and flow cytometry to identify physiological responses of Prorocentrum micans to the herbicide glyphosate. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106417. [PMID: 38394976 DOI: 10.1016/j.marenvres.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The physiological response of the dinoflagellate P. micans to the effect of the herbicide glyphosate at a concentration of 25-200 μg L-1 was evaluated. It has been shown that P. micans is able to grow due to the consumption of dissolved organic phosphorus formed as a result of the mineralization of glyphosate by bacteria. The addition of glyphosate to the medium inhibits the photosynthetic activity of cells; there is a pronounced inhibition of the relative electron transfer rate along the electron transport chain and the maximum quantum efficiency of the use of light energy. Morphological and ultrastructural changes in P. micans cells were evaluated at sublethal (150 μg L-1) and lethal (200 μg L-1) glyphosate concentrations. It has been shown that at a herbicide concentration of 150 μg L-1, the first signs of apoptosis appear in most P. micans cells: a decrease in lateral light scattering, cytoplasmic retraction, partial destruction of cytoplasmic organelles, a change in the morphology of nuclei, mitochondria, a change in the potential of mitochondrial membranes, and a decrease in the autofluorescence of chlorophyll in cells. At a glyphosate concentration of 200 μg L-1, P. micans showed signs of a late stage of apoptosis: violation of the integrity of intracellular organelles and chromatin organization, fragmentation of nuclei, condensation of cytoplasm, disorganization of chloroplasts in the cells, and the release of cell contents beyond the cell membrane. The effectiveness of using flow cytometry and laser scanning confocal microscopy methods for identifying signs and stages of cell apoptosis when exposed to glyphosate is discussed.
Collapse
Affiliation(s)
- Ekaterina Solomonova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Avе., Sevastopol, Russian Federation.
| | - Natalia Shoman
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Avе., Sevastopol, Russian Federation
| | - Arkady Akimov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Avе., Sevastopol, Russian Federation
| | - Olga Rylkova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, 2, Nahimov Avе., Sevastopol, Russian Federation
| | - Yakov Meger
- Sevastopol State University, 299053, Universitetskaya Street, 33, Sevastopol, Russian Federation
| |
Collapse
|
5
|
Dey S, Sen Raychaudhuri S. Methyl jasmonate improves selenium tolerance via regulating ROS signalling, hormonal crosstalk and phenylpropanoid pathway in Plantago ovata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108533. [PMID: 38520967 DOI: 10.1016/j.plaphy.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Selenium (Se) toxicity is an emerging contaminant of global concern. It is known to cause oxidative stress, affecting plant growth and yield. Plantago ovata, a major cash crop known for its medicinal properties, is often cultivated in Se-contaminated soil. Thus, the aim of this study was to evaluate the use of methyl jasmonate (MeJA) seed priming technique to mitigate Se-induced phytotoxicity. The results demonstrated that Se stress inhibited P. ovata growth, biomass and lowered chlorophyll content in a dose-dependent manner. Treatment with 1 μM MeJA enhanced the antioxidant defence system via ROS signalling and upregulated key enzymes of phenylpropanoid pathway, PAL (1.9 times) and CHI (5.4 times) in comparison to control. Caffeic acid, Vanillic acid, Chlorogenic acid, Coumaric acid and Luteoloside were the most abundant polyphenols. Enzymatic antioxidants involved in ROS scavenging, such as CAT (up to 1.3 times) and GPOX (up to 1.4 times) were raised, while SOD (by 0.6 times) was reduced. There was an upregulation of growth-inducible hormones, IAA (up to 2.1 fold) and GA (up to 1.5 fold) whereas, the stress-responsive hormones ABA (by 0.6 fold) and SA (by 0.5 fold) were downregulated. The alleviation of Se toxicity was also evident from the decrease in H2O2 and MDA contents under MeJA treatment. These findings suggest that MeJA can effectively improve Se tolerance and nutraceutical value in P. ovata by modulating the phytohormone regulatory network, redox homeostasis and elicits accumulation of polyphenols. Therefore, MeJA seed priming could be an efficient way to enhance stress resilience and sustainable crop production.
Collapse
Affiliation(s)
- Sankalan Dey
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata - 700009, West Bengal, India
| | - Sarmistha Sen Raychaudhuri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata - 700009, West Bengal, India.
| |
Collapse
|
6
|
Demiwal P, Nabi SU, Mir JI, Verma MK, Yadav SR, Roy P, Sircar D. Methyl jasmonate improves resistance in scab-susceptible Red Delicious apple by altering ROS homeostasis and enhancing phenylpropanoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108371. [PMID: 38271863 DOI: 10.1016/j.plaphy.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 μM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sajad Un Nabi
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Mahendra K Verma
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
7
|
Koenig AM, Liu B, Hu J. Visualizing the dynamics of plant energy organelles. Biochem Soc Trans 2023; 51:2029-2040. [PMID: 37975429 PMCID: PMC10754284 DOI: 10.1042/bst20221093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response.
Collapse
Affiliation(s)
- Amanda M. Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, U.S.A
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
8
|
Okemo PA, Njaci I, Kim YM, McClure RS, Peterson MJ, Beliaev AS, Hixson KK, Mundree S, Williams B. Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying. Sci Rep 2023; 13:20613. [PMID: 37996547 PMCID: PMC10667271 DOI: 10.1038/s41598-023-47456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.
Collapse
Affiliation(s)
- Pauline A Okemo
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Isaac Njaci
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Alexander S Beliaev
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim K Hixson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sagadevan Mundree
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Rodríguez-Saavedra C, García-Ortiz DA, Burgos-Palacios A, Morgado-Martínez LE, King-Díaz B, Guevara-García ÁA, Sánchez-Nieto S. Identification and Characterization of VDAC Family in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:2542. [PMID: 37447103 DOI: 10.3390/plants12132542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane (OMM) of all eukaryotes, having an important role in the communication between mitochondria and cytosol. The plant VDAC family consists of a wide variety of members that may participate in cell responses to several environmental stresses. However, there is no experimental information about the members comprising the maize VDAC (ZmVDAC) family. In this study, the ZmVDAC family was identified, and described, and its gene transcription profile was explored during the first six days of germination and under different biotic stress stimuli. Nine members were proposed as bona fide VDAC genes with a high potential to code functional VDAC proteins. Each member of the ZmVDAC family was characterized in silico, and nomenclature was proposed according to phylogenetic relationships. Transcript levels in coleoptiles showed a different pattern of expression for each ZmVDAC gene, suggesting specific roles for each one during seedling development. This expression profile changed under Fusarium verticillioides infection and salicylic acid, methyl jasmonate, and gibberellic acid treatments, suggesting no redundancy for the nine ZmVDAC genes and, thus, probably specific and diverse functions according to plant needs and environmental conditions. Nevertheless, ZmVDAC4b was significantly upregulated upon biotic stress signals, suggesting this gene's potential role during the biotic stress response.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Donají Azucena García-Ortiz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca C.P. 62209, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
10
|
Wang Y, Ye H, Gao K, Li G, Xu Q, Deng X, Li J, Mei F, Zhou Z. The opening of mitochondrial permeability transition pore (mPTP) and the inhibition of electron transfer chain (ETC) induce mitophagy in wheat roots under waterlogging stress. PROTOPLASMA 2023; 260:1179-1191. [PMID: 36745240 DOI: 10.1007/s00709-022-01834-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 06/07/2023]
Abstract
Mitochondria are crucial for the regulation of intracellular energy metabolism, biosynthesis, and cell survival. And studies have demonstrated the role of mitochondria in oxidative stress-induced autophagy in plants. Previous studies found that waterlogging stress can induce the opening of mitochondrial permeability transition pore (mPTP) and the release of cytochrome c in endosperm cells, which proved that mPTP plays an important role in the programmed cell death of endosperm cells under waterlogging stress. This study investigated the effects of the opening of mPTP and the inhibition of ETC on mitophagy in wheat roots under waterlogging stress. The results showed that autophagy related genes in the mitochondria of wheat root cells could respond to waterlogging stress; waterlogging stress led to the degradation of the characteristic proteins cytochrome c and COXII in the mitochondria of root cells. With the prolongation of waterlogging time, the protein degradation degree and the occurrence of mitophagy gradually increased. Under waterlogging stress, exogenous mPTP opening inhibitor CsA inhibited mitophagy in root cells and alleviated mitophagy induced by flooding stress, while exogenous mPTP opening inducer CCCP induced mitophagy in root cells; exogenous mPTP opening inducer CCCP induced mitophagy in root cells. The electron transfer chain inhibitor antimycin A induces mitophagy in wheat root cells and exacerbates mitochondrial degradation. In conclusion, waterlogging stress led to the degradation of mitochondrial characteristic proteins and the occurrence of mitophagy in wheat root cells, and the opening of mPTP and the inhibition of ETC induced the occurrence of mitophagy.
Collapse
Affiliation(s)
- Yueli Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hailong Ye
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kaiyue Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Gege Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiutao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangyi Deng
- College of Food and Biological Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiwei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fangzhu Mei
- Division of Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuqing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
11
|
Yamagishi A, Egoshi Y, Fujiwara MT, Suzuki N, Taniguchi T, Itoh RD, Suzuki Y, Masuyama Y, Monde K, Usuki T. Total Synthesis, Absolute Configuration, and Phytotoxic Activity of Foeniculoxin. Chemistry 2023; 29:e202203396. [PMID: 36354746 DOI: 10.1002/chem.202203396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Foeniculoxin is a major phytotoxin produced by Italian strains of Phomopsis foeniculi. The first total synthesis is described utilizing the ene reaction and Sonogashira cross-coupling reaction as key steps. The absolute configuration of the C6' was determined using chiral separation and an advanced Mosher's method. The phytotoxicity of the synthesized compound was demonstrated via syringe-based infiltration into Chenopodium album and Arabidopsis thaliana leaves. Synthetic foeniculoxin induced various defects in A. thaliana leaf cells before lesion formation, including protein leakage into the cytoplasm from both chloroplasts and mitochondria and mitochondrial rounding and swelling. Furthermore, foeniculoxin and the antibiotic hygromycin B caused similar agglomeration of mitochondria around chloroplasts, highlighting this event as a common component in the early stages of plant cell death.
Collapse
Affiliation(s)
- Akane Yamagishi
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Yuki Egoshi
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Makoto T Fujiwara
- Plant Functions Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Noriyuki Suzuki
- Synthetic Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Yumiko Suzuki
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Yoshiro Masuyama
- Synthetic Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, 001-0021, Japan
| | - Toyonobu Usuki
- Organic Chemistry Laboratory, Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| |
Collapse
|
12
|
Nie T, Sun X, Wang S, Wang D, Ren Y, Chen Q. Genome-Wide Identification and Expression Analysis of the 4-Coumarate: CoA Ligase Gene Family in Solanum tuberosum. Int J Mol Sci 2023; 24:1642. [PMID: 36675157 PMCID: PMC9866895 DOI: 10.3390/ijms24021642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
4-coumarate: CoA ligase (4CL) is not only involved in the biosynthetic processes of flavonoids and lignin in plants but is also closely related to plant tolerance to abiotic stress. UV irradiation can activate the expression of 4CL genes in plants, and the expression of 4CL genes changed significantly in response to different phytohormone treatments. Although the 4CL gene has been cloned in potatoes, there have been fewer related studies of the 4CL gene family on the potato genome-wide scale. In this study, a total of 10 potato 4CL genes were identified in the potato whole genome. Through multiple sequence alignment, phylogenetic analysis as well as gene structure analysis indicated that the potato 4CL gene family could be divided into two subgroups. Combined with promoter cis-acting element analysis, transcriptome data, and RT-qPCR results indicated that potato 4CL gene family was involved in potato response to white light, UV irradiation, ABA treatment, MeJA treatment, and PEG simulated drought stress. Abiotic stresses such as UV, ABA, MeJA, and PEG could promote the up-regulated expression of St4CL6 and St4CL8 but inhibits the expression of St4CL5. The above results will increase our understanding of the evolution and expression regulation of the potato 4CL gene family and provide reference value for further research on the molecular biological mechanism of 4CL participating in response to diverse environmental signals in potatoes.
Collapse
Affiliation(s)
- Tengkun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinxin Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shenglan Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Dongdong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yamei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
14
|
Bittner A, Cieśla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B. Organelles and phytohormones: a network of interactions in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7165-7181. [PMID: 36169618 PMCID: PMC9675595 DOI: 10.1093/jxb/erac384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.
Collapse
|
15
|
The CRK5 and WRKY53 Are Conditional Regulators of Senescence and Stomatal Conductance in Arabidopsis. Cells 2022; 11:cells11223558. [PMID: 36428987 PMCID: PMC9688832 DOI: 10.3390/cells11223558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis thaliana, cysteine-rich receptor-like kinases (CRKs) constitute a large group of membrane-localized proteins which perceive external stimuli and transduce the signal into the cell. Previous reports based on their loss-of-function phenotypes and expression profile support their role in many developmental and stress-responsive pathways. Our study revealed that one member of this family, CRK5, acts as a negative regulator of leaf aging. Enrichment of the CRK5 promoter region in W-box cis-elements demonstrated that WRKY transcription factors control it. We observed significantly enhanced WRKY53 expression in crk5 and reversion of its early-senescence phenotype in the crk5 wrky53 line, suggesting a negative feedback loop between these proteins antagonistically regulating chlorophyll a and b contents. Yeast-two hybrid assay showed further that CRK5 interacts with several proteins involved in response to water deprivation or calcium signaling, while gas exchange analysis revealed a positive effect of CRK5 on water use efficiency. Consistent with that, the crk5 plants showed disturbed foliar temperature, stomatal conductance, transpiration, and increased susceptibility to osmotic stress. These traits were fully or partially reverted to wild-type phenotype in crk5 wrky53 double mutant. Obtained results suggest that WRKY53 and CRK5 are antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
Collapse
|
16
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Jiang Y, Ye J, Liu B, Rikisahedew JJ, Tosens T, Niinemets Ü. Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153721. [PMID: 35597107 DOI: 10.1016/j.jplph.2022.153721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Methyl jasmonate (MeJA) is an airborne hormonal elicitor that induces a fast rise of emissions of characteristic stress marker compounds methanol and green leaf volatiles (GLV), and a longer-term release of volatile terpenoids, but there is limited information of how terpene emissions respond to MeJA in terpene-storing species. East-Indian lemongrass (Cymbopogon flexuosus), an aromatic herb with a large terpenoid storage pool in idioblasts, was used to investigate the short- (0-1 h) and long-term (1-16 h) responses of leaf net assimilation rate (A), stomatal conductance (Gs) and volatile emissions to MeJA concentrations ranging from moderate to lethal. Both A and Gs were increasingly inhibited with increasing MeJA concentration in both short and long term. MeJA exposure resulted in a rapid elicitation, within 1 h after exposure, of methanol and GLV emissions. Subsequently, a secondary rise of GLV emissions was observed, peaking at 2 h after MeJA exposure for the highest and at 8 h for the lowest application concentration. The total amount and maximum emission rate of methanol and the first and second GLV emission bursts were positively correlated with MeJA concentration. Unexpectedly, no de novo elicitation of terpene emissions was observed through the experiment. Although high MeJA application concentrations led to visible lesions and desiccation in extensive leaf regions, this did not result in breakage of terpene-storing idioblasts. The study highlights an overall insensitivity of lemongrass to MeJA and indicates that differently from mechanical wounding, MeJA-driven cellular death does not break terpene-storing cells. Further studies are needed to characterize the sensitivity of induced defense responses in species with strongly developed constitutive defenses.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Jesamine Jöneva Rikisahedew
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
18
|
Asfaw KG, Liu Q, Eghbalian R, Purper S, Akaberi S, Dhakarey R, Münch SW, Wehl I, Bräse S, Eiche E, Hause B, Bogeski I, Schepers U, Riemann M, Nick P. The jasmonate biosynthesis Gene OsOPR7 can mitigate salinity induced mitochondrial oxidative stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111156. [PMID: 35151439 DOI: 10.1016/j.plantsci.2021.111156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Salinity poses a serious threat to global agriculture and human food security. A better understanding of plant adaptation to salt stress is, therefore, mandatory. In the non-photosynthetic cells of the root, salinity perturbs oxidative balance in mitochondria, leading to cell death. In parallel, plastids accumulate the jasmonate precursor cis (+)12-Oxo-Phyto-Dienoic Acid (OPDA) that is then translocated to peroxisomes and has been identified as promoting factor for salt-induced cell death as well. In the current study, we probed for a potential interaction between these three organelles that are primarily dealing with oxidative metabolism. We made use of two tools: (i) Rice OPDA Reductase 7 (OsOPR7), an enzyme localised in peroxisomes converting OPDA into the precursors of the stress hormone JA-Ile. (ii) A Trojan Peptoid, Plant PeptoQ, which can specifically target to mitochondria and scavenge excessive superoxide accumulating in response to salt stress. We show that overexpression of OsOPR7 as GFP fusion in tobacco (Nicotiana tabacum L. cv. Bright Yellow 2, BY-2) cells, as well as a pretreatment with Plant PeptoQ can mitigate salt stress with respect to numerous aspects including proliferation, expansion, ionic balance, redox homeostasis, and mortality. This mitigation correlates with a more robust oxidative balance, evident from a higher activity of superoxide dismutase (SOD), lower levels of superoxide and lipid peroxidation damage, and a conspicuous and specific upregulation of mitochondrial SOD transcripts. Although both, Plant PeptoQ and ectopic OsOPR7, were acting in parallel and mostly additive, there are two specific differences: (i) OsOPR7 is strictly localised to the peroxisomes, while Plant PeptoQ found in mitochondria. (ii) Plant PeptoQ activates transcripts of NAC, a factor involved in retrograde signalling from mitochondria to the nucleus, while these transcripts are suppressed significantly in the cells overexpressing OsOPR7. The fact that overexpression of a peroxisomal enzyme shifting the jasmonate pathway from the cell-death signal OPDA towards JA-Ile, a hormone linked with salt adaptation, is accompanied by more robust redox homeostasis in a different organelle, the mitochondrion, indicates that cross-talk between peroxisome and mitochondrion is a crucial factor for efficient adaptation to salt stress.
Collapse
Affiliation(s)
- Kinfemichael Geressu Asfaw
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rose Eghbalian
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sabine Purper
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Sahar Akaberi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Rohit Dhakarey
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Stephan W Münch
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Ilona Wehl
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Elisabeth Eiche
- Institute of Applied Geochemistry (AGW), Geochemistry and Economic Geology Group, Karlsruhe Institute of Technology (KIT), Adenauerring 20b, D-76131, Karlsruhe, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, 37073, Göttingen, Germany
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Organic Chemistry I, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1 D, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
19
|
Fu M, Bai Q, Zhang H, Guo Y, Peng Y, Zhang P, Shen L, Hong N, Xu W, Wang G. Transcriptome Analysis of the Molecular Patterns of Pear Plants Infected by Two Colletotrichum fructicola Pathogenic Strains Causing Contrasting Sets of Leaf Symptoms. FRONTIERS IN PLANT SCIENCE 2022; 13:761133. [PMID: 35251071 PMCID: PMC8888856 DOI: 10.3389/fpls.2022.761133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Colletotrichum fructicola infects pear leaves, resulting in two major symptoms: tiny black spots (TS) followed by severe early defoliation and big necrotic lesions (BnL) without apparent damage depending on the pathotypes. How the same fungal species causes different symptoms remains unclear. To understand the molecular mechanism underlying the resulting diseases and the diverse symptoms, two C. fructicola pathogenetic strains (PAFQ31 and PAFQ32 responsible for TS and BnL symptoms, respectively) were inoculated on Pyrus pyrifolia leaves and subjected to transcriptome sequencing at the quiescent stage (QS) and necrotrophic stage (NS), respectively. In planta, the genes involved in the salicylic acid (SA) signaling pathway were upregulated at the NS caused by the infection of each strain. In contrast, the ethylene (ET), abscisic acid (ABA), and jasmonic acid (JA) signaling pathways were specifically related to the TS symptoms caused by the infection of strain PAFQ31, corresponding to the yellowish and early defoliation symptoms triggered by the strain infection. Correspondingly, SA was accumulated in similar levels in the leaves infected by each strain at NS, but JA was significantly higher in the PAFQ31-infected as measured using high-performance liquid chromatography. Weighted gene co-expression network analysis also reveals specific genes, pathways, phytohormones, and transcription factors (TFs) associated with the PAFQ31-associated early defoliation. Taken together, these data suggest that specific metabolic pathways were regulated in P. pyrifolia in response to the infection of two C. fructicola pathotypes resulting in the diverse symptoms: JA, ET, and ABA accumulated in the PAFQ31-infected leaves, which negatively affected the chlorophyll metabolism and photosynthesis pathways while positively affecting the expression of senescence-associated TFs and genes, resulted in leaf yellowing and defoliation; whereas SA inhibited JA-induced gene expression in the PAFQ32-infected leaves, which led to hypersensitive response-like reaction and BnL symptoms.
Collapse
Affiliation(s)
- Min Fu
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Bai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yashuang Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuhong Peng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Shen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenxing Xu
- Hubei Hongshan Laboratory, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Mohamed ME, El Semary NA, Younis NS. Silver Nanoparticle Production by the Cyanobacterium Cyanothece sp.: De Novo Manipulation of Nano-Biosynthesis by Phytohormones. Life (Basel) 2022; 12:life12020139. [PMID: 35207426 PMCID: PMC8878298 DOI: 10.3390/life12020139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Numerous cyanobacteria have the potential to reduce metallic ions to form pure metal nanoparticles in a green biosynthesis process. Aim: To investigate the production capacity of silver nanoparticles by the cyanobacterium Cyanothece sp. and to examine the effect of five different phytohormones, indole acetic acid, kinetin; gibberellic acid; abscisic acid; and methyl jasmonate, on this capacity. Methods: The cyanobacterial strain was grown for 60 days and the harvested cyanobacterium biomass was incubated with 0.1 mM of AgNO3. Percentage conversion of Ag+ to Ag0 was calculated to indicate the AgNPs’ production capacity. Different concentrations of the five phytohormones were added to cultures and the AgNP production was monitored throughout different time intervals. Results: Cyanothece sp. biosynthesized spherical AgNPs (diameter range 70 to 140 nm, average diameter 84.37 nm). The addition of indole acetic acid and kinetin provoked the maximum conversion (87.29% and 55.16%, respectively) of Ag+ to Ag0, exceeding or slightly below that of the control (56%). Gibberellic and abscisic acids failed to elevate the Ag+ to Ag0 conversion rate (45.23% and 47.95%, respectively) above that of the control. Methyl jasmonate increased the Ag+ to Ag0 conversion rate to 90.29%, although nearly all the cyanobacterial cultures died at the end. Conclusion: Phytohormones could be used to induce or inhibit the green production of AgNPs with the cyanobacterium Cyanothece sp. This novel manipulation technique may have several applications in agriculture or biomedicine.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pharmacognosy Department, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.E.M.); (N.A.E.S.)
| | - Nermin A. El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11975, Egypt
- Correspondence: (M.E.M.); (N.A.E.S.)
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
21
|
Sung J, Wang L, Long D, Yang C, Merlin D. PepT1-knockout mice harbor a protective metabolome beneficial for intestinal wound healing. Am J Physiol Gastrointest Liver Physiol 2021; 320:G888-G896. [PMID: 33759563 PMCID: PMC8202197 DOI: 10.1152/ajpgi.00299.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genetic knockout (KO) of peptide transporter-1 (PepT1) protein is known to provide resistance to acute colitis and colitis-associated cancer (CAC) in mouse models. However, it was unclear which molecule(s) or pathway(s) formed the basis for these protective effects. Recently, we demonstrated that the PepT1-/- microbiota is sufficient to protect against colitis and CAC. Given that PepT1 KO alters the gut microbiome and thereby changes the intestinal metabolites that are ultimately reflected in the feces, we investigated the fecal metabolites of our PepT1 KO mice. Using a liquid chromatography-mass spectrometry (LC-MS)-based untargeted-metabolomics technique, we found that the fecal metabolites were significantly different between the KO and normal wild-type (WT) mice. Among the altered fecal metabolites, tuberonic acid (TA) was sevenfold higher in KO mouse feces than in WT mouse feces. Accordingly, we studied whether the increased TA could direct an anti-inflammatory effect. Using in vitro models, we discovered that TA not only prevented lipopolysaccharide (LPS)-induced inflammation in macrophages but also improved the epithelial cell healing processes. Our results suggest that TA, and possibly other fecal metabolites, play a crucial role in the pathway(s) associated with the anticolitis effects of PepT1 KO.NEW & NOTEWORTHY Fecal metabolites were significantly different between the KO and normal wild-type (WT) mice. One fecal metabolite, tuberonic acid (TA), was sevenfold higher in KO mouse feces than in WT mouse feces. TA prevented lipopolysaccharide (LPS)-induced inflammation in macrophages and improved the epithelial cell healing process.
Collapse
Affiliation(s)
- Junsik Sung
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Lixin Wang
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Dingpei Long
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Chunhua Yang
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
22
|
Yamashita F, Rodrigues AL, Rodrigues TM, Palermo FH, Baluška F, de Almeida LFR. Potential Plant-Plant Communication Induced by Infochemical Methyl Jasmonate in Sorghum ( Sorghum bicolor). PLANTS 2021; 10:plants10030485. [PMID: 33806670 PMCID: PMC8001897 DOI: 10.3390/plants10030485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Despite the fact that they are sessile organisms, plants actively move their organs and also use these movements to manipulate the surrounding biotic and abiotic environments. Plants maintain communication with neighboring plants, herbivores, and predators through the emission of diverse chemical compounds by their shoots and roots. These infochemicals modify the environment occupied by plants. Moreover, some infochemicals may induce morphophysiological changes of neighboring plants. We have used methyl-jasmonate (MeJa), a plant natural infochemical, to trigger communication between emitters and receivers Sorghum bicolor plants. The split roots of two plants were allocated to three different pots, with the middle pot containing the roots of both plants. We scored low stomatal conductance (gS) and low CO2 net assimilation (A) using the plants that had contact with the infochemical for the first time. During the second contact, these parameters showed no significant differences, indicating a memory effect. We also observed that the plants that had direct leaf contact with MeJa transmitted sensory information through their roots to neighboring plants. This resulted in higher maximum fluorescence (FM) and structural changes in root anatomy. In conclusion, MeJa emerges as possible trigger for communication between neighboring sorghum plants, in response to the environmental challenges.
Collapse
Affiliation(s)
- Felipe Yamashita
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany;
- Correspondence:
| | - Angélica Lino Rodrigues
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - Tatiane Maria Rodrigues
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - Fernanda Helena Palermo
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany;
| | - Luiz Fernando Rolim de Almeida
- Section of Plant Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (A.L.R.); (T.M.R.); (F.H.P.); (L.F.R.d.A.)
| |
Collapse
|
23
|
Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O 2 and mitochondrial cytochrome-c release. JOURNAL OF PLANT RESEARCH 2021; 134:179-194. [PMID: 33569718 DOI: 10.1007/s10265-021-01259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Facultad de Farmacia, Universidad de Santiago de Compostela (USC), Campus Vida, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
24
|
Commault AS, Kuzhiumparambil U, Herdean A, Fabris M, Jaramillo-Madrid AC, Abbriano RM, Ralph PJ, Pernice M. Methyl Jasmonate and Methyl-β-Cyclodextrin Individually Boost Triterpenoid Biosynthesis in Chlamydomonas Reinhardtii UVM4. Pharmaceuticals (Basel) 2021; 14:125. [PMID: 33562714 PMCID: PMC7915139 DOI: 10.3390/ph14020125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
The commercialisation of valuable plant triterpenoids faces major challenges, including low abundance in natural hosts and costly downstream purification procedures. Endeavours to produce these compounds at industrial scale using microbial systems are gaining attention. Here, we report on a strategy to enrich the biomass of the biotechnologically-relevant Chlamydomonas reinhardtii strain UVM4 with valuable triterpenes, such as squalene and (S)-2,3-epoxysqualene. C. reinhardtii UVM4 was subjected to the elicitor compounds methyl jasmonate (MeJA) and methyl-β-cyclodextrine (MβCD) to increase triterpene yields. MeJA treatment triggered oxidative stress, arrested growth, and altered the photosynthetic activity of the cells, while increasing squalene, (S)-2,3-epoxysqualene, and cycloartenol contents. Applying MβCD to cultures of C. reinhardtii lead to the sequestration of the two main sterols (ergosterol and 7-dehydroporiferasterol) into the growth medium and the intracellular accumulation of the intermediate cycloartenol, without compromising cell growth. When MβCD was applied in combination with MeJA, it counteracted the negative effects of MeJA on cell growth and physiology, but no synergistic effect on triterpene yield was observed. Together, our findings provide strategies for the triterpene enrichment of microalgal biomass and medium.
Collapse
Affiliation(s)
- Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| | - Andrei Herdean
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
- Synthetic Biology Future Science Platform, CSIRO, Brisbane, QLD 4001, Australia
| | - Ana Cristina Jaramillo-Madrid
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; (U.K.); (A.H.); (M.F.); (A.C.J.-M.); (R.M.A.); (P.J.R.); (M.P.)
| |
Collapse
|
25
|
Wang X, Yan X, Li S, Jing Y, Gu L, Zou S, Zhang J, Liu B. Genome-wide identification, evolution and expression analysis of the aspartic protease gene family during rapid growth of moso bamboo (Phyllostachys edulis) shoots. BMC Genomics 2021; 22:45. [PMID: 33423665 PMCID: PMC7798191 DOI: 10.1186/s12864-020-07290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/28/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Aspartic proteases (APs) are a class of aspartic peptidases belonging to nine proteolytic enzyme families whose members are widely distributed in biological organisms. APs play essential functions during plant development and environmental adaptation. However, there are few reports about APs in fast-growing moso bamboo. RESULT In this study, we identified a total of 129 AP proteins (PhAPs) encoded by the moso bamboo genome. Phylogenetic and gene structure analyses showed that these 129 PhAPs could be divided into three categories (categories A, B and C). The PhAP gene family in moso bamboo may have undergone gene expansion, especially the members of categories A and B, although homologs of some members in category C have been lost. The chromosomal location of PhAPs suggested that segmental and tandem duplication events were critical for PhAP gene expansion. Promoter analysis revealed that PhAPs in moso bamboo may be involved in plant development and responses to environmental stress. Furthermore, PhAPs showed tissue-specific expression patterns and may play important roles in rapid growth, including programmed cell death, cell division and elongation, by integrating environmental signals such as light and gibberellin signals. CONCLUSION Comprehensive analysis of the AP gene family in moso bamboo suggests that PhAPs have experienced gene expansion that is distinct from that in rice and may play an important role in moso bamboo organ development and rapid growth. Our results provide a direction and lay a foundation for further analysis of plant AP genes to clarify their function during rapid growth.
Collapse
Affiliation(s)
- Xiaqin Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation & Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Xinyang Yan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation & Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shubin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun Jing
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Colleges and Universities Engineering Research Institute of Conservation & Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China.
| | - Bobin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Colleges and Universities Engineering Research Institute of Conservation & Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Sychta K, Słomka A, Kuta E. Insights into Plant Programmed Cell Death Induced by Heavy Metals-Discovering a Terra Incognita. Cells 2021; 10:cells10010065. [PMID: 33406697 PMCID: PMC7823951 DOI: 10.3390/cells10010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death (PCD) is a process that plays a fundamental role in plant development and responses to biotic and abiotic stresses. Knowledge of plant PCD mechanisms is still very scarce and is incomparable to the large number of studies on PCD mechanisms in animals. Quick and accurate assays, e.g., the TUNEL assay, comet assay, and analysis of caspase-like enzyme activity, enable the differentiation of PCD from necrosis. Two main types of plant PCD, developmental (dPCD) regulated by internal factors, and environmental (ePCD) induced by external stimuli, are distinguished based on the differences in the expression of the conserved PCD-inducing genes. Abiotic stress factors, including heavy metals, induce necrosis or ePCD. Heavy metals induce PCD by triggering oxidative stress via reactive oxygen species (ROS) overproduction. ROS that are mainly produced by mitochondria modulate phytotoxicity mechanisms induced by heavy metals. Complex crosstalk between ROS, hormones (ethylene), nitric oxide (NO), and calcium ions evokes PCD, with proteases with caspase-like activity executing PCD in plant cells exposed to heavy metals. This pathway leads to very similar cytological hallmarks of heavy metal induced PCD to PCD induced by other abiotic factors. The forms, hallmarks, mechanisms, and genetic regulation of plant ePCD induced by abiotic stress are reviewed here in detail, with an emphasis on plant cell culture as a suitable model for PCD studies. The similarities and differences between plant and animal PCD are also discussed.
Collapse
|
27
|
Kang CH, Park JH, Lee ES, Paeng SK, Chae HB, Hong JC, Lee SY. Redox-Dependent Structural Modification of Nucleoredoxin Triggers Defense Responses against Alternaria brassicicola in Arabidopsis. Int J Mol Sci 2020; 21:ijms21239196. [PMID: 33276577 PMCID: PMC7730559 DOI: 10.3390/ijms21239196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
In plants, thioredoxin (TRX) family proteins participate in various biological processes by regulating the oxidative stress response. However, their role in phytohormone signaling remains largely unknown. In this study, we investigated the functions of TRX proteins in Arabidopsis thaliana. Quantitative polymerase chain reaction (qPCR) experiments revealed that the expression of ARABIDOPSIS NUCLEOREDOXIN 1 (AtNRX1) is specifically induced by the application of jasmonic acid (JA) and upon inoculation with a necrotrophic fungal pathogen, Alternaria brassicicola. The AtNRX1 protein usually exists as a low molecular weight (LMW) monomer and functions as a reductase, but under oxidative stress AtNRX1 transforms into polymeric forms. However, the AtNRX1M3 mutant protein, harboring four cysteine-to-serine substitutions in the TRX domain, did not show structural modification under oxidative stress. The Arabidopsisatnrx1 null mutant showed greater resistance to A. brassicicola than wild-type plants. In addition, plants overexpressing both AtNRX1 and AtNRX1M3 were susceptible to A. brassicicola infection. Together, these findings suggest that AtNRX1 normally suppresses the expression of defense-responsive genes, as if it were a safety pin, but functions as a molecular sensor through its redox-dependent structural modification to induce disease resistance in plants.
Collapse
|
28
|
Yang S, Fan M, Li D, Zhou J, Fan G, Peng L, Zhang S. Physiological and iTRAQ-based proteomic analyses reveal the mechanism of pinocembrin against Penicillium italicum through targeting mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104534. [PMID: 32527431 DOI: 10.1016/j.pestbp.2020.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
The physiological and iTRAQ-based proteomic analyses were used to reveal the inhibitory roles of pinocembrin on mitochondria of P. italicum and its cell death mechanism. The results show that pinocembrin damages both mitochondrial structure and function. 167 and 807 differentially expressed proteins (DEPs) were detected in P. italicum mycelia after treatment with pinocembrin for 8 h and 24 h respectively, and the DEPs were significantly enriched in the oxidative phosphorylation (OXPHOS) pathway, especially for mitochondrial respiratory chain (MRC) complexes I and V. Furthermore, the expression levels of proteins related to programmed cell death (PCD) were significantly up-regulated in mycelia with Pinocembrin incubation for 24 h. Combined with the results of physio-chemical analysis, the data revealed that pinocembrin targeted MRC complexes I and V, to induce ATP depletion, enhance ROS accumulation, stimulate mitochondrial permeability transition pore (MPTP) opening, accelerate the loss of mitochondrial membrane potential (MMP) and promote cytochrome c release from mitochondria to the cytoplasm, which, as a result, effectively triggered three classical types of PCD pathways in mycelia of P. italicum.
Collapse
Affiliation(s)
- Shuzhen Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jie Zhou
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Litao Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shixin Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
29
|
Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 2020; 21:ijms21124335. [PMID: 32570736 PMCID: PMC7352393 DOI: 10.3390/ijms21124335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis efficiency of barley seedlings that had been exposed to different doses of MeJA (15–1000 µM × 120 h) in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA (500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore, methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen content in the leaves decreases. Our research provides tips on physiological role of the individual TIP subfamily members of aquaporins under methyl jasmonate action.
Collapse
|
30
|
Li H, Yao L, Sun L, Zhu Z. ETHYLENE INSENSITIVE 3 suppresses plant de novo root regeneration from leaf explants and mediates age-regulated regeneration decline. Development 2020; 147:dev.179457. [PMID: 32291272 DOI: 10.1242/dev.179457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/30/2020] [Indexed: 11/20/2022]
Abstract
Powerful regeneration ability enables plant survival when plants are wounded. For example, adventitious roots can regenerate from the cutting site in detached Arabidopsis thaliana leaf explants, even in the absence of any exogenous plant hormone treatment. This process is known as de novo root regeneration (DNRR). Although the developmental program underlying DNRR is known, the precise regulatory mechanisms underlying DNRR are not completely understood. Here, we show that ethylene treatment or genetic activation of transcription factor ETHYLENE INSENSITIVE 3 (EIN3) strongly suppresses DNRR rates, while a mutant lacking EIN3 and its homolog EIL1 (ein3 eil1) displays a higher DNRR capacity. Previous reports have shown that the sequential induction of WUSCHEL RELATED HOMEOBOX 11 (WOX11)/WOX12 and WOX5/WOX7 expression is required for the establishment of DNRR. We found that EIN3 directly targets WOX11 and WOX5 promoter regions to suppress their transcription. Furthermore, older plants show enhanced EIN3 activity, and repressed expression of WOX11 and WOX5 Taken together, these results illustrate that plant aging at least partially takes advantage of EIN3 as a negative regulator to suppress DNRR through inhibiting the activation of WOX genes.
Collapse
Affiliation(s)
- Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lulu Yao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lili Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
31
|
Liu Y, Xin J, Liu L, Song A, Guan Z, Fang W, Chen F. A temporal gene expression map of Chrysanthemum leaves infected with Alternaria alternata reveals different stages of defense mechanisms. HORTICULTURE RESEARCH 2020; 7:23. [PMID: 32140232 PMCID: PMC7049303 DOI: 10.1038/s41438-020-0245-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/24/2019] [Accepted: 01/04/2020] [Indexed: 05/28/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) black spot disease (CBS) poses a major threat to Chrysanthemum cultivation owing to suitable climate conditions and current lack of resistant cultivars for greenhouse cultivation. In this study, we identified a number of genes that respond to Alternaria alternata infection in resistant and susceptible Chrysanthemum cultivars. Based on RNA sequencing technology and a weighted gene coexpression network analysis (WGCNA), we constructed a model to elucidate the response of Chrysanthemum leaves to A. alternata infection at different stages and compared the mapped response of the resistant cultivar 'Jinba' to that of the susceptible cultivar 'Zaoyihong'. In the early stage of infection, when lesions had not yet formed, abscisic acid (ABA), salicylic acid (SA) and EDS1-mediated resistance played important roles in the Chrysanthemum defense system. With the formation of necrotic lesions, ethylene (ET) metabolism and the Ca2+ signal transduction pathway strongly responded to A. alternata infection. During the late stage, when necrotic lesions continued to expand, members of the multidrug and toxic compound extrusion (MATE) gene family were highly expressed, and their products may be involved in defense against A. alternata invasion by exporting toxins produced by the pathogen, which plays important roles in the pathogenicity of A. alternata. Furthermore, the function of hub genes was verified by qPCR and transgenic assays. The identification of hub genes at different stages, the comparison of hub genes between the two cultivars and the highly expressed genes in the resistant cultivar 'Jinba' provide a theoretical basis for breeding cultivars resistant to CBS.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Xin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lina Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Role of Stomatal Conductance in Modifying the Dose Response of Stress-Volatile Emissions in Methyl Jasmonate Treated Leaves of Cucumber ( Cucumis sativa). Int J Mol Sci 2020; 21:ijms21031018. [PMID: 32033119 PMCID: PMC7038070 DOI: 10.3390/ijms21031018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.
Collapse
|
33
|
Kanagendran A, Chatterjee P, Liu B, Sa T, Pazouki L, Niinemets Ü. Foliage inoculation by Burkholderia vietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153032. [PMID: 31491672 PMCID: PMC6863749 DOI: 10.1016/j.jplph.2019.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5 mM) to severe (20 mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Faculty of Science, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea; Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|
34
|
Udomsin O, Yusakul G, Kitisripanya T, Juengwatanatrakul T, Putalun W. The Deoxymiroestrol and Isoflavonoid Production and Their Elicitation of Cell Suspension Cultures of Pueraria candollei var. mirifica: from Shake Flask to Bioreactor. Appl Biochem Biotechnol 2019; 190:57-72. [PMID: 31301012 DOI: 10.1007/s12010-019-03094-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
To address the high demand for Pueraria candollei var. mirifica (PM) used as the active ingredient in health products and its difficulty to cultivate in the field, the growth and production of deoxymiroestrol (DME) and isoflavonoid (ISF) phytoestrogens in PM cell suspensions were studied. In a 125-mL shake flask, the cell suspension produced DME [78.7 ± 8.79-116 ± 18.2 μg/g dry weight (DW)] and ISF (140 ± 6.83-548 ± 18.5 μg/g DW), which are the predominant ISF glycosides. While ISF aglycones accumulated in the PM cell suspension cultured in the airlift bioreactor. The DME content was increased to 976 ± 79.6 μg/g DW when the PM cell suspension was cultured in the 5-L scale bioreactor. The production of DME and ISF was enhanced by elicitors including methyl jasmonate (MJ), yeast extract (YE), and chitosan (CHI). MJ produced the highest induction of DME accumulation, while ISF accumulation was the highest with YE treatment. Analysis of catalase activity implied that the elicitors enhanced ROS production, which resulted in the enhancement of DME and ISF production and accumulation in PM cell suspension cultures. PM cell suspension culture is a promising source of beneficial PM phytoestrogens that exhibit bioactivity that may useful for the treatment of menopausal symptoms.
Collapse
Affiliation(s)
- Orapin Udomsin
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Research Group for Faculty of Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gorawit Yusakul
- Drug and Cosmetics Excellence Center, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand.,School of Pharmacy, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Rajthevi, Bangkok, 10400, Thailand
| | | | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Research Group for Faculty of Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
35
|
Xiao C, Wang L, Hu D, Zhou Q, Huang X. Effects of exogenous bisphenol A on the function of mitochondria in root cells of soybean (Glycine max L.) seedlings. CHEMOSPHERE 2019; 222:619-627. [PMID: 30731382 DOI: 10.1016/j.chemosphere.2019.01.195] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA), a contaminant of emerging concern, can affect plant root growth by changing various physiological processes. Mitochondria are critical organelles that produce energy for growth. However, how BPA affects the function and ultrastructure of mitochondria and then plant root growth remains unclear. Here, we evaluated the lethality of BPA to root tip cells, investigated the energy production process of mitochondria, observed mitochondrial ultrastructure, and measured reactive oxygen species (ROS) and lipid peroxidation levels in mitochondria of soybean seedlings roots exposed to exogenous BPA. We found that low-dose BPA (1.5 mg/L) exposure induced limited toxicity in root tip cells, increased the activities of key enzymes (citrate synthase, succinate dehydrogenase, malate dehydrogenase and cytochrome C oxidase) involved in tricarboxylic acid cycle and oxidative phosphorylation, promoted adenosine triphosphate (ATP) synthesis, and increased ROS production in mitochondria. Higher doses of BPA (6.0, 17.2 mg/L) exposure caused massive cell death in root tips, decreased the above key enzyme activities and ATP production, and destroyed mitochondrial ultrastructure; meanwhile, these doses also significantly increased mitochondrial ROS and membrane lipid peroxidation levels. In conclusion, we found that mitochondria were significant subcellular sites through which BPA can damage plant roots. BPA-induced excessive ROS destroyed mitochondrial ultrastructure and inhibited key enzyme activities in energy production, resulting in decreased ATP synthesis and cell death in root tips. Our results demonstrated the effects of BPA on mitochondrial function and structure in plant root cells, providing new insights into understanding the underlying mechanisms of BPA affecting plant root growth.
Collapse
Affiliation(s)
- Changyun Xiao
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Dandan Hu
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
36
|
Poór P, Patyi G, Takács Z, Szekeres A, Bódi N, Bagyánszki M, Tari I. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). JOURNAL OF PLANT RESEARCH 2019; 132:273-283. [PMID: 30758749 PMCID: PMC7196940 DOI: 10.1007/s10265-019-01085-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
The growth regulator, salicylic acid (SA) plays an important role in the induction of cell death in plants. Production of reactive oxygen species (ROS) by mitochondrial electron transport chain (mtETC), cytochrome c (cyt c) release from mitochondria and loss of mitochondrial integrity can be observed during cell death execution in plant tissues. The aim of this work was to study the putative role of hexokinases (HXKs) in the initiation of cell death using tomato (Solanum lycopersicum L.) leaves and mitochondria isolated from plants exposed to a sublethal, 0.1 mM and a cell death-inducing, 1 mM concentrations of SA. Both treatments enhanced ROS and nitric oxide (NO) production in the leaves, which contributed to a concentration-dependent loss of membrane integrity. Images prepared by transmission electron microscopy showed swelling and disorganisation of mitochondrial cristae and vacuolization of mitochondria after SA exposure. Using post-embedding immunohistochemistry, cyt c release from mitochondria was also detected after 1 mM SA treatment. Both SA treatments decreased the activity and transcript levels of HXKs in the leaves and the total mtHXK activity in the mitochondrial fraction. The role of mitochondrial hexokinases (mtHXKs) in ROS and NO production of isolated mitochondria was investigated by the addition of HXK substrate, glucose (Glc) and a specific HXK inhibitor, N-acetylglucosamine (NAG) to the mitochondrial suspension. Both SA treatments enhanced ROS production by mtETC in the presence of succinate and ADP, which was slightly inhibited by Glc and increased significantly by NAG in control and in 0.1 mM SA-treated mitochondria. These changes were not significant at 1 mM SA, which caused disorganisation of mitochondrial membranes. Thus the inhibition of mtHXK activity can contribute to the mitochondrial ROS production, but it is not involved in NO generation in SA-treated leaf mitochondria suggesting that SA can promote cell death by suppressing mtHXK transcription and activity.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Gábor Patyi
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| |
Collapse
|
37
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
38
|
Qi YH, Mao FF, Zhou ZQ, Liu DC, Deng XY, Li JW, Mei FZ. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. PROTOPLASMA 2018; 255:1651-1665. [PMID: 29717349 DOI: 10.1007/s00709-018-1256-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.
Collapse
Affiliation(s)
- Yuan-Hong Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Mao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhu-Qing Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Cheng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Yi Deng
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Ji-Wei Li
- College of Food and Biological Science and Technology, Wuhan Institute of Design and Sciences, Wuhan, 430070, Hubei, China
| | - Fang-Zhu Mei
- Division of Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
39
|
Guo Q, Major IT, Howe GA. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:72-81. [PMID: 29555489 DOI: 10.1016/j.pbi.2018.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Induced plant resistance depends on the production of specialized metabolites that repel attack by biotic aggressors and is often associated with reduced growth of vegetative tissues. Despite progress in understanding the signal transduction networks that control growth-defense tradeoffs, much remains to be learned about how growth rate is coordinated with changes in metabolism during growth-to-defense transitions. Here, we highlight recent advances in jasmonate research to suggest how a major branch of plant immunity is dynamically regulated to calibrate growth-defense balance with shifts in carbon availability. We review evidence that diminished growth, as an integral facet of induced resistance, may optimize the temporal and spatial expression of defense compounds without compromising other critical roles of central metabolism. New insights into the evolution of jasmonate signaling further suggest that opposing selective pressures associated with too much or too little defense may have shaped the emergence of a modular jasmonate pathway that integrates primary and specialized metabolism through the control of repressor-transcription factor complexes. A better understanding of the mechanistic basis of growth-defense balance has important implications for boosting plant productivity, including insights into how these tradeoffs may be uncoupled for agricultural improvement.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
40
|
Wang J, Wang J, Wang X, Li R, Chen B. Proteomic response of hybrid wild rice to cold stress at the seedling stage. PLoS One 2018; 13:e0198675. [PMID: 29879216 PMCID: PMC5991693 DOI: 10.1371/journal.pone.0198675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Low temperature at the seedling stage is a major damaging factor for rice production in southern China. To better understand the cold response of cultivated and wild rice, cold-sensitive cultivar 93–11 (Oryza sativa L. ssp. Indica) and cold-resistant hybrid wild rice DC907 with a 93–11 genetic background were used for a quantitative proteomic analysis with tandem mass tags (TMT) in parallel. Rice seedlings grown for four weeks at a normal temperature (25°C) were treated at 8–10°C for 24, 72 and 120 h. The number of differentially expressed proteins increased gradually over time in the cold-exposed rice in comparison with the untreated rice. A total of 366 unique proteins involved in ATP synthesis, photosystem, reactive oxygen species, stress response, cell growth and integrity were identified as responding to cold stress in DC907. While both DC907 and 93–11 underwent similar alterations in proteomic profiles in response to cold stress, DC907 responded in a prompter manner in terms of expressing cold-responding proteins, maintained a higher level of photosynthesis to power the cells, and possessed a stable and higher level of DIR proteins to prevent the plant from obtaining irreversible cell structure damage. The observations made in this study may lay a new foundation for further investigation of cold sensitivity or tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xin Wang
- College of Agriculture, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| |
Collapse
|
41
|
He H, Huang W, Oo TL, Gu M, Zhan J, Wang A, He LF. Nitric oxide suppresses aluminum-induced programmed cell death in peanut ( Arachis hypoganea L.) root tips by improving mitochondrial physiological properties. Nitric Oxide 2018; 74:47-55. [DOI: 10.1016/j.niox.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
|
42
|
Guo L, Wang P, Gu Z, Jin X, Yang R. Proteomic analysis of broccoli sprouts by iTRAQ in response to jasmonic acid. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:16-25. [PMID: 28763705 DOI: 10.1016/j.jplph.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/02/2023]
Abstract
Jasmonic acid (JA) is well known as a linolenic acid-derived signal molecule related to the plant response to biotic and abiotic stresses. JA can regulate various plant metabolisms, such as glucosinolate metabolism. In this study, the proteome profiles of broccoli sprouts under JA treatment were analyzed using the iTRAQ-based quantitative proteome approach. A total of 122 differentially expressed proteins participating in a wide range of physiological processes were confidently identified in broccoli sprouts treated with JA. Functional classification analysis showed that photosynthesis and protein synthesis were inhibited by JA treatment, thereby inhibiting sprout growth, while proteins related to carbohydrate catabolism and amino acid metabolism showed an increased expression. Additionally, proteins involved in defense and secondary metabolism were also up-regulated. Proteins related to glucosinolate biosynthesis and degradation were mediated by JA, leading to the accumulation of glucosinolates and sulforaphane. These results indicate that JA stimulated a defense response at the proteome level by redirecting metabolism of growth and physiology in broccoli sprouts.
Collapse
Affiliation(s)
- Liping Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaolin Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
43
|
Jiang Y, Ye J, Li S, Niinemets Ü. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4679-4694. [PMID: 28981785 PMCID: PMC5853251 DOI: 10.1093/jxb/erx244] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Methyl jasmonate (MeJA) is a key airborne elicitor activating jasmonate-dependent signaling pathways, including induction of stress-related volatile emissions, but how the magnitude and timing of these emissions scale with MeJA dose is not known. Treatments with exogenous MeJA concentrations ranging from mild (0.2 mM) to lethal (50 mM) were used to investigate quantitative relationships among MeJA dose and the kinetics and magnitude of volatile release in Cucumis sativus by combining high-resolution measurements with a proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. The results highlighted biphasic kinetics of elicitation of volatiles. The early phase, peaking in 0.1-1 h after the MeJA treatment, was characterized by emissions of lipoxygenase (LOX) pathway volatiles and methanol. In the subsequent phase, starting in 6-12 h and reaching a maximum in 15-25 h after the treatment, secondary emissions of LOX compounds as well as emissions of monoterpenes and sesquiterpenes were elicited. For both phases, the maximum emission rates and total integrated emissions increased with applied MeJA concentration. Furthermore, the rates of induction and decay, and the duration of emission bursts were positively, and the timing of emission maxima were negatively associated with MeJA dose for LOX compounds and terpenoids, except for the duration of the first LOX burst. These results demonstrate major effects of MeJA dose on the kinetics and magnitude of volatile response, underscoring the importance of biotic stress severity in deciphering the downstream events of biological impacts.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- College of Art, Changzhou University, Gehu, Changzhou, Jiangsu, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
| | - Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu, Tallinn, Estonia
- Correspondence:
| |
Collapse
|
44
|
Akanni OO, Abiola OJ, Adaramoye OA. Methyl Jasmonate Ameliorates Testosterone Propionate-induced Prostatic Hyperplasia in Castrated Wistar Rats. Phytother Res 2017; 31:647-656. [DOI: 10.1002/ptr.5778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Olubukola Oyebimpe Akanni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| | - Olusoji John Abiola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine; University of Ibadan; Ibadan Nigeria
| | - Oluwatosin Adekunle Adaramoye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
45
|
Pokrzywinski KL, Tilney CL, Modla S, Caplan JL, Ross J, Warner ME, Coyne KJ. Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates. HARMFUL ALGAE 2017; 62:127-135. [PMID: 28118887 DOI: 10.1016/j.hal.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The algicide, IRI-160AA, induces mortality in dinoflagellates but not other species of algae, suggesting that a shared characteristic or feature renders this class of phytoplankton vulnerable to the algicide. In contrast to other eukaryotic species, the genome of dinoflagellates is stabilized by high concentrations of divalent cations and transition metals and contains large amounts of DNA with unusual base modifications. These distinctions set dinoflagellates apart from other phytoplankton and suggest that the nucleus may be a dinoflagellate-specific target for IRI-160AA. In this study, morphological and ultrastructural changes in three dinoflagellate species, Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum, were evaluated after short-term exposure to IRI-160AA using super resolution structured illumination microscopy (SR-SIM) and transmission electron microscopy (TEM). Exposure to the algicide resulted in cytoplasmic membrane blebbing, differing chloroplast morphologies, nuclear expansion, and chromosome expulsion and/or destabilization. TEM analysis showed that chromosomes of algicide-treated K. veneficum appeared electron dense with fibrous protrusions. In algicide-treated P. minimum and G. instriatum, chromosome decompaction occurred, while for P. minimum, nuclear expulsion was also observed for several cells. Results of this investigation demonstrate that exposure to the algicide destabilizes dinoflagellate chromosomes, although it was not clear if the nucleus was the primary target of the algicide or if the observed effects on chromosomal structure were due to downstream impacts. In all cases, changes in cellular morphology and ultrastructure were observed within two hours, suggesting that the algicide may be an effective and rapid approach to mitigate dinoflagellate blooms.
Collapse
Affiliation(s)
- Kaytee L Pokrzywinski
- College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Charles L Tilney
- College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Shannon Modla
- Biomaging Center, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Jeffery L Caplan
- Biomaging Center, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Jean Ross
- Biomaging Center, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Mark E Warner
- College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
| | - Kathryn J Coyne
- College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA.
| |
Collapse
|
46
|
Chang X, Seo M, Takebayashi Y, Kamiya Y, Riemann M, Nick P. Jasmonates are induced by the PAMP flg22 but not the cell death-inducing elicitor Harpin in Vitis rupestris. PROTOPLASMA 2017; 254:271-283. [PMID: 26769707 DOI: 10.1007/s00709-016-0941-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/02/2016] [Indexed: 05/18/2023]
Abstract
Plants employ two layers of defence that differ with respect to cell death: pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). In our previous work, we have comparatively mapped the molecular events in a cell system derived from the wild American grape Vitis rupestris, where cell death-independent defence can be triggered by PAMP flg22, whereas the elicitor Harpin activates a cell death-related ETI-like response. Both defence responses overlapped with respect to early events, such as calcium influx, apoplastic alkalinisation, oxidative burst, mitogen-activated protein kinase (MAPK) signalling, activation of defence-related genes and accumulation of phytoalexins. However, timing and amplitude of early signals differed. In the current study, we address the role of jasmonates (JAs) as key signalling compounds in hypersensitive cell death. We find, in V. rupestris, that jasmonic acid and its bioactive conjugate jasmonoyl-isoleucine (JA-Ile) rapidly accumulate in response to flg22 but not in response to Harpin. However, Harpin can induce programmed cell death, whereas exogenous methyl jasmonate (MeJA) fails to do so, although both signals induce a similar response of defence genes. Also in a second cell line from V. vinifera cv. 'Pinot Noir', where Harpin cannot activate cell death and where flg22 fails to induce JA and JA-Ile, defence genes are activated in a similar manner. These findings indicate that the signal pathway culminating in cell death must act independently from the events culminating in the accumulation of toxic stilbenes.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Plant Pathology, Agricultural College, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany.
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 2, 76131, Karlsruhe, Germany
| |
Collapse
|
47
|
Hazra S, Bhattacharyya D, Chattopadhyay S. Methyl Jasmonate Regulates Podophyllotoxin Accumulation in Podophyllum hexandrum by Altering the ROS-Responsive Podophyllotoxin Pathway Gene Expression Additionally through the Down Regulation of Few Interfering miRNAs. FRONTIERS IN PLANT SCIENCE 2017; 8:164. [PMID: 28261233 PMCID: PMC5306198 DOI: 10.3389/fpls.2017.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/26/2017] [Indexed: 05/04/2023]
Abstract
Podophylloxin (ptox), primarily obtained from Podophyllum hexandrum, is the precursor for semi-synthetic anticancer drugs viz. etoposide, etopophos, and teniposide. Previous studies established that methyl jasmonate (MeJA) treated cell culture of P. hexandrum accumulate ptox significantly. However, the molecular mechanism of MeJA induced ptox accumulation is yet to be explored. Here, we demonstrate that MeJA induces reactive oxygen species (ROS) production, which stimulates ptox accumulation significantly and up regulates three ROS-responsive ptox biosynthetic genes, namely, PhCAD3, PhCAD4 (cinnamyl alcohol dehydrogenase), and NAC3 by increasing their mRNA stability. Classic uncoupler of oxidative phosphorylation, carbonylcyanide m-chlorophenylhydrazone, as well as H2O2 treatment induced the ROS generation and consequently, enhanced the ptox production. However, when the ROS was inhibited with NADPH oxidase inhibitor diphenylene iodonium and Superoxide dismutase inhibitor diethyldithio-carbamic acid, the ROS inhibiting agent, the ptox production was decreased significantly. We also noted that, MeJA up regulated other ptox biosynthetic pathway genes which are not affected by the MeJA induced ROS. Further, these ROS non-responsive genes were controlled by MeJA through the down regulation of five secondary metabolites biosynthesis specific miRNAs viz. miR172i, miR035, miR1438, miR2275, and miR8291. Finally, this study suggested two possible mechanisms through which MeJA modulates the ptox biosynthesis: primarily by increasing the mRNA stability of ROS-responsive genes and secondly, by the up regulation of ROS non-responsive genes through the down regulation of some ROS non-responsive miRNAs.
Collapse
|
48
|
Liu H, Deng Z, Chen J, Wang S, Hao L, Li D. Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:90-101. [PMID: 27085600 DOI: 10.1016/j.plaphy.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 05/13/2023]
Abstract
Metacaspases, a family of cysteine proteases, have been suggested to play important roles in programmed cell death (PCD) during plant development and stress responses. To date, no systematic characterization of this gene family has been reported in rubber tree (Hevea brasiliensis). In the present study, nine metacaspase genes, designated as HbMC1 to HbMC9, were identified from whole-genome sequence of rubber tree. Multiple sequence alignment and phylogenetic analyses suggested that these genes were divided into two types: type I (HbMC1-HBMC7) and type II (HbMC8 and HbMC9). Gene structure analysis demonstrated that type I and type II HbMCs separately contained four and two introns, indicating the conserved exon-intron organization of HbMCs. Quantitative real-time PCR analysis revealed that HbMCs showed distinct expression patterns in different tissues, suggesting the functional diversity of HbMCs in various tissues during development. Most of the HbMCs were regulated by drought, cold, and salt stress, implying their possible functions in regulating abiotic stress-induced cell death. Of the nine HbMCs, HbMC1, HbMC2, HbMC5, and HbMC8 displayed a significantly higher relative transcript accumulation in barks of tapping panel dryness (TPD) trees compared with healthy trees. In addition, the four genes were up-regulated by ethephon (ET) and methyl jasmonate (MeJA), indicating their potential involvement in TPD resulting from ET- or JA-induced PCD. In summary, this work provides valuable information for further functional characterization of HbMC genes in rubber tree.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Jiangshu Chen
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Sen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lili Hao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| |
Collapse
|
49
|
Fabro G, Rizzi YS, Alvarez ME. Arabidopsis Proline Dehydrogenase Contributes to Flagellin-Mediated PAMP-Triggered Immunity by Affecting RBOHD. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:620-8. [PMID: 27269509 DOI: 10.1094/mpmi-01-16-0003-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent years, the elicitors, receptors, and signaling pathways leading to PTI have been extensively studied. However, the contribution of organelles to this program deserves further characterization. Here, we studied how processes altering the mitochondrial electron transport chain (mETC) influence PTI establishment. With particular emphasis, we evaluated the effect of proline dehydrogenase (ProDH), an enzyme that can load electrons into the mETC and regulate the cellular redox state. We found that mETC uncouplers (antimycin or rotenone) and manganese superoxide dismutase deficiency impair flg22-induced responses such as accumulation of reactive oxygen species (ROS) and bacterial growth limitation. ProDH mutants also reduce these defenses, decreasing callose deposition as well. Using ProDH inhibitors and ProDH inducers (exogenous Pro treatment), we showed that this enzyme modulates the generation of ROS by the plasma membrane respiratory burst NADPH oxidase homolog D. In this way, we contribute to the understanding of mitochondrial activities influencing early and late PTI responses and the coordination of the redox-associated mitochondrial enzyme ProDH with defense events initiated at the plasma membrane.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Yanina Soledad Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
50
|
Wang A, Zhou X. ER Stress, UPR and Virus Infections in Plants. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123154 DOI: 10.1007/978-3-319-32919-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The endoplasmic reticulum (ER) endomembrane is a central site for protein synthesis. Perturbation of ER homeostasis can result in an accumulation of unfolded proteins within the ER lumen, causing ER stress and the unfolded protein response (UPR). In humans, ER stress and UPR are closely associated with a vast number of diseases, including viral diseases. In plants, two arms that govern the UPR signaling network have been described: one that contains two ER membrane–associated transcription factors (bZIP17 and bZIP28) and the other that encompasses a dual protein kinase (RNA-splicing factor IRE1) and its target RNA (bZIP60). Although early studies mainly focus on the essential roles of the UPR in abiotic stresses, the significance of UPR in plant diseases caused by virus infections has recently drawn much attention. This chapter summarizes the latest scenario of ER stress and UPR in virus-infected plant cells, highlights the emerging roles of the IRE1 pathway in virus infections, and outlines exciting future directions to spark more research interest in the UPR field in plants.
Collapse
Affiliation(s)
- Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario Canada
| | - Xueping Zhou
- State Key Laboratory for Biology of Plan, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|