1
|
Muktadir MA, Merchant A, Sadeque A, Tanveer M, Adhikari KN, Huang L. Carbon isotope and soluble metabolites reflect physiological status among contrasting faba bean genotypes in response to water deficit. FRONTIERS IN PLANT SCIENCE 2022; 13:955406. [PMID: 36186012 PMCID: PMC9523585 DOI: 10.3389/fpls.2022.955406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Identification and validation of biomarkers and bioindicators to select genotypes with superior tolerance to water deficit (WD) under field conditions are paramount to plant breeding programs. However, the co-occurrence of different abiotic stresses such as WD, heat, and radiation makes it difficult to develop generalized protocols to monitor the physiological health of the plant system. The study assessed the most abundant carbohydrates and sugar alcohols in five faba bean (Vicia faba) genotypes under field conditions and the abundance of naturally occurring carbon isotopes in bulk leaf material to predict water use efficiency (WUE). Plant water status and biomass accumulation were also assessed. Among the accumulated sugars, inter-specific variation in glucose was most prevalent and was found at a higher concentration (8.52 mg g-1 leaf) in rainfed trial. myo-Inositol concentrations followed that of glucose accumulation in that the rainfed trial had higher amounts compared to the irrigated trial. WUE calculated from carbon isotope abundance was consistently offset with measured WUE from measurements of leaf gas exchange. All genotypes demonstrated significant relationships between predicted and measured WUE (p < 0.05) apart from control variety PBA Warda. Thus, bulk leaf-level carbon isotope abundance can be used to calculate WUE and used as an effective selection criterion for improving WUE in faba bean breeding programs under field conditions.
Collapse
Affiliation(s)
- Md Abdul Muktadir
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
- Faculty of Science, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
- Pulses Research Centre, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Andrew Merchant
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Abdus Sadeque
- Faculty of Science, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Kedar Nath Adhikari
- Faculty of Science, Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
2
|
Smith MR, Dinglasan E, Veneklaas E, Polania J, Rao IM, Beebe SE, Merchant A. Effect of Drought and Low P on Yield and Nutritional Content in Common Bean. FRONTIERS IN PLANT SCIENCE 2022; 13:814325. [PMID: 35422826 PMCID: PMC9002355 DOI: 10.3389/fpls.2022.814325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Common bean (Phaseolus vulgaris L.) production in the tropics typically occurs in rainfed systems on marginal lands where yields are low, primarily as a consequence of drought and low phosphorus (P) availability in soil. This study aimed to investigate the physiological and chemical responses of 12 bush bean genotypes for adaptation to individual and combined stress factors of drought and low P availability. Water stress and P deficiency, both individually and combined, decreased seed weight and aboveground biomass by ∼80%. Water deficit and P deficiency decreased photosynthesis and stomatal conductance during plant development. Maximum rates of carboxylation, electron transport, and triose phosphate utilization were superior for two common bean genotypes (SEF60 and NCB226) that are better adapted to combined stress conditions of water deficit and low P compared to the commercial check (DOR390). In response to water deficit treatment, carbon isotope fractionation in the leaf tissue decreased at all developmental stages. Within the soluble leaf fraction, combined water deficit and low P, led to significant changes in the concentration of key nutrients and amino acids, whereas no impact was detected in the seed. Our results suggest that common bean genotypes have a degree of resilience in yield development, expressed in traits such as pod harvest index, and conservation of nutritional content in the seed. Further exploration of the chemical and physiological traits identified here will enhance the resilience of common bean production systems in the tropics.
Collapse
Affiliation(s)
- Millicent R. Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, QLD, Australia
| | - Erik Veneklaas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | | | - Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
| | - Andrew Merchant
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Gimeno TE, Campany CE, Drake JE, Barton CVM, Tjoelker MG, Ubierna N, Marshall JD. Whole-tree mesophyll conductance reconciles isotopic and gas-exchange estimates of water-use efficiency. THE NEW PHYTOLOGIST 2021; 229:2535-2547. [PMID: 33217000 DOI: 10.1111/nph.17088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic water-use efficiency (WUE) describes the link between terrestrial carbon (C) and water cycles. Estimates of intrinsic WUE (iWUE) from gas exchange and C isotopic composition (δ13 C) differ due to an internal conductance in the leaf mesophyll (gm ) that is variable and seldom computed. We present the first direct estimates of whole-tree gm , together with iWUE from whole-tree gas exchange and δ13 C of the phloem (δ13 Cph ). We measured gas exchange, online 13 C-discrimination, and δ13 Cph monthly throughout spring, summer, and autumn in Eucalyptus tereticornis grown in large whole-tree chambers. Six trees were grown at ambient temperatures and six at a 3°C warmer air temperature; a late-summer drought was also imposed. Drought reduced whole-tree gm . Warming had few direct effects, but amplified drought-induced reductions in whole-tree gm . Whole-tree gm was similar to leaf gm for these same trees. iWUE estimates from δ13 Cph agreed with iWUE from gas exchange, but only after incorporating gm . δ13 Cph was also correlated with whole-tree 13 C-discrimination, but offset by -2.5 ± 0.7‰, presumably due to post-photosynthetic fractionations. We conclude that δ13 Cph is a good proxy for whole-tree iWUE, with the caveats that post-photosynthetic fractionations and intrinsic variability of gm should be incorporated to provide reliable estimates of this trait in response to abiotic stress.
Collapse
Affiliation(s)
- Teresa E Gimeno
- Basque Centre for Climate Change (BC3), Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48008, Spain
| | - Courtney E Campany
- Department of Biology, Shepherd University, Shepherdstown, WV, 25443, USA
| | - John E Drake
- Forest and Natural Resources Management, SUNY-ESF, Syracuse, NY, 132110, USA
| | - Craig V M Barton
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Nerea Ubierna
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Skogsmarksgränd 17, 907 36, Umeå, Sweden
| |
Collapse
|
4
|
Ma WT, Tcherkez G, Wang XM, Schäufele R, Schnyder H, Yang Y, Gong XY. Accounting for mesophyll conductance substantially improves 13 C-based estimates of intrinsic water-use efficiency. THE NEW PHYTOLOGIST 2021; 229:1326-1338. [PMID: 32984961 DOI: 10.1111/nph.16958] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
Carbon isotope discrimination (Δ) has been used widely to infer intrinsic water-use efficiency (iWUE) of C3 plants, a key parameter linking carbon and water fluxes. Despite the essential role of mesophyll conductance (gm ) in photosynthesis and Δ, its effect on Δ-based predictions of iWUE has generally been neglected. Here, we derive a mathematical expression of iWUE as a function of Δ that includes gm (iWUEmes ) and exploits the gm -stomatal conductance (gsc ) relationship across drought-stress levels and plant functional groups (deciduous or semideciduous woody, evergreen woody and herbaceous species) in a global database. iWUEmes was further validated with an independent dataset of online-Δ and CO2 and H2 O gas exchange measurements with seven species. Drought stress reduced gsc and gm by nearly one-half across all plant functional groups, but had no significant effect on the gsc : gm ratio, with a well supported value of 0.79 ± 0.07 (95% CI, n = 198). gm was negatively correlated to iWUE. Incorporating the gsc : gm ratio greatly improved estimates of iWUE, compared with calculations that assumed infinite gm . The inclusion of the gsc : gm ratio, fixed at 0.79 when gm was unknown, proved desirable to eliminate significant errors in estimating iWUE from Δ across various C3 vegetation types.
Collapse
Affiliation(s)
- Wei Ting Ma
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Guillaume Tcherkez
- Research School of Biology, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, Beaucouzé, 49070, France
| | - Xu Ming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising, 85354, Germany
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, Freising, 85354, Germany
| | - Yusheng Yang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
5
|
Vernay A, Tian X, Chi J, Linder S, Mäkelä A, Oren R, Peichl M, Stangl ZR, Tor-Ngern P, Marshall JD. Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances. PLANT, CELL & ENVIRONMENT 2020; 43:2124-2142. [PMID: 32596814 DOI: 10.1111/pce.13835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Gross primary production (GPP) is a key component of the forest carbon cycle. However, our knowledge of GPP at the stand scale remains uncertain, because estimates derived from eddy covariance (EC) rely on semi-empirical modelling and the assumptions of the EC technique are sometimes not fully met. We propose using the sap flux/isotope method as an alternative way to estimate canopy GPP, termed GPPiso/SF , at the stand scale and at daily resolution. It is based on canopy conductance inferred from sap flux and intrinsic water-use efficiency estimated from the stable carbon isotope composition of phloem contents. The GPPiso/SF estimate was further corrected for seasonal variations in photosynthetic capacity and mesophyll conductance. We compared our estimate of GPPiso/SF to the GPP derived from PRELES, a model parameterized with EC data. The comparisons were performed in a highly instrumented, boreal Scots pine forest in northern Sweden, including a nitrogen fertilized and a reference plot. The resulting annual and daily GPPiso/SF estimates agreed well with PRELES, in the fertilized plot and the reference plot. We discuss the GPPiso/SF method as an alternative which can be widely applied without terrain restrictions, where the assumptions of EC are not met.
Collapse
Affiliation(s)
- Antoine Vernay
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Xianglin Tian
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jinshu Chi
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sune Linder
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Annikki Mäkelä
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ram Oren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Division of Environmental Science & Policy, Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Department of Civil & Environmental Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Zsofia R Stangl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pantana Tor-Ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Environment, Health and Social Data Analytics Research Group, Chulalongkorn University, Bangkok, Thailand
| | - John D Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
6
|
Smith MR, Fuentes D, Merchant A. Chemical and isotopic markers detect water deficit and its influence on nutrient allocation in Phaseolus vulgaris. PHYSIOLOGIA PLANTARUM 2019; 167:391-403. [PMID: 30548265 DOI: 10.1111/ppl.12899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The impact of drought on plant growth and yield has been widely studied and is considered a major limitation to crops reaching yield potential. Less known is the impact of water deficit on the nutritional quality of the resulting yield. This study characterised the impact of water deficit on carbon assimilation, modelled water use efficiency from carbon isotope discrimination and analysed the concentration of mineral nutrients, amino acids and sugars in leaf, phloem and pod pools collected from Phaseolus vulgaris L. (common bean) grown in a controlled environment. Water deficit led to an isohydric response, impacting on carbon isotope abundance in all tissues though not translating to any significant treatment differences in water use efficiency or nutrient content in tissues over the course of plant development. The results obtained in this study demonstrate that nutrient content of P. vulgaris yield was not impacted by the availability of water. The absence of significant changes in the nutrient content of individual seeds highlights the plasticity of developing reproductive tissue to changes in whole plant water availability.
Collapse
Affiliation(s)
- Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - David Fuentes
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Merchant
- School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Churakova Sidorova OV, Lehmann MM, Siegwolf RTW, Saurer M, Fonti MV, Schmid L, Timofeeva G, Rinne-Garmston KT, Bigler C. Compound-specific carbon isotope patterns in needles of conifer tree species from the Swiss National Park under recent climate change. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:264-272. [PMID: 30925436 DOI: 10.1016/j.plaphy.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/03/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Elevated CO2 along with rising temperature and water deficits can lead to changes in tree physiology and leaf biochemistry. These changes can increase heat- and drought-induced tree mortality. We aim to reveal the impacts of climatic drivers on individual compounds at the leaf level among European larch (Larix decidua) and mountain pine (Pinus mugo) trees, which are widely distributed at high elevations. We investigated seasonal carbon isotope composition (δ13C) and concentration patterns of carbohydrates and organic acids in needles of these two different species from a case study in the Swiss National Park (SNP). We found that average and minimum air temperatures were the main climatic drivers of seasonal variation of δ13C in sucrose and glucose as well as in concentrations of carbohydrates and citric acid/citrate in needles of both tree species. The impact of seasonal climatic drivers on larch and mountain pine trees at the needle level is in line with our earlier study in this region for long-term changes at the tree-ring level. We conclude that the species-specific changes in δ13C and concentrations of carbohydrates and organic acids are sensitive indicators of changes in the metabolic pathways occurring as a result of climatic changes.
Collapse
Affiliation(s)
- Olga V Churakova Sidorova
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Siberian Federal University, Institute of Ecology and Geography, Laboratory of Ecosystems Biogeochemistry, 660041 Krasnoyarsk, Svobodniy pr 82/6, bld. 25, Russian Federation.
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Paul Scherrer Institute, 5232 Villigen - PSI, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Paul Scherrer Institute, 5232 Villigen - PSI, Switzerland
| | - Marina V Fonti
- Siberian Federal University, Institute of Ecology and Geography, Laboratory of Ecosystems Biogeochemistry, 660041 Krasnoyarsk, Svobodniy pr 82/6, bld. 25, Russian Federation
| | - Lola Schmid
- Paul Scherrer Institute, 5232 Villigen - PSI, Switzerland
| | - Galina Timofeeva
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Paul Scherrer Institute, 5232 Villigen - PSI, Switzerland
| | - Katja T Rinne-Garmston
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Christof Bigler
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Smith MR, Merchant A. Limitations to using phloem sap to assess tree water and nutrient status. TREE PHYSIOLOGY 2019; 39:332-339. [PMID: 30551158 DOI: 10.1093/treephys/tpy132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Rapid, reliable tools are needed to infer physiological and nutritional health for managing forest systems. Understanding the processes governing tree health is central to the development of these tools. Non-foliar approaches such as the collection of phloem sap reflect processes governing both the use and acquisition of plant water and nutrients at a wide range of temporal (diurnal to seasonal) and spatial (canopy) scales. Despite this, phloem sap is not commonly employed due to an incomplete understanding of transport and post-photosynthetic processes and their effects on chemical concentrations and carbon isotope discrimination. We highlight the need to characterize the influences of storage, remobilization and transport on the concentrations of metabolites to address the time and spatial decoupling of phloem contents to that of environmental stimuli. A conceptual framework is suggested to focus research on key phenomena regarding metabolite transport and highlight significant advantages, misconceptions and limitations to its application.
Collapse
Affiliation(s)
- Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW, Australia
| | - A Merchant
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney NSW, Australia
| |
Collapse
|