1
|
Li S, Zhang X, Huang H, Yin M, Jenks MA, Kosma DK, Yang P, Yang X, Zhao H, Lü S. Deciphering the core shunt mechanism in Arabidopsis cuticular wax biosynthesis and its role in plant environmental adaptation. NATURE PLANTS 2025; 11:165-175. [PMID: 39753959 DOI: 10.1038/s41477-024-01892-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/04/2024] [Indexed: 02/22/2025]
Abstract
Plant cuticular waxes serve as highly responsive adaptations to variable environments1-7. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways5,8. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour. How carbon resources are allocated between the 1-alcohol and alkane pathways responding to environmental stimuli is still largely unknown. Here, in Arabidopsis, we report a novel 1-alcohol biosynthesis pathway in which VLC acyl-CoAs are first reduced to aldehydes by CER3 and then converted into 1-alcohols via a newly identified putative aldehyde reductase SOH1. CER3, previously shown to interact with CER1 in alkane synthesis, is identified to interact with SOH1 as well, channelling wax precursors into either alcohol- or alkane-forming pathways, and the directional shunting of these precursors is tightly regulated by the SOH1-CER3-CER1 module in response to environmental conditions.
Collapse
Affiliation(s)
- Shipeng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mou Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, China.
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
2
|
Mozūraitis R, Cirksena K, Raftari M, Hajkazemian M, Mustapha Abiodun M, Brahimi J, Radžiutė S, Apšegaitė V, Bernotienė R, Ignatowicz L, Hick T, Kirschning A, Lenman A, Gerold G, Emami SN. Zika virus modulates human fibroblasts to enhance transmission success in a controlled lab-setting. Commun Biol 2025; 8:139. [PMID: 39885287 PMCID: PMC11782651 DOI: 10.1038/s42003-025-07543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Transmission of Zika virus (ZIKV) has been reported in 92 countries and the geographical spread of invasive virus-borne vectors has increased in recent years. Arboviruses naturally survive between vertebrate hosts and arthropod vectors. Transmission success requires the mosquito to feed on viraemic hosts. There is little specific understanding of factors that may promote ZIKV transmission-success. Here we show that mosquito host-seeking behaviour is impacted by viral infection of the vertebrae host and may be essential for the effective transmission of arboviruses like ZIKV. Human skin fibroblasts produce a variety of metabolites, and we show that ZIKV immediately alters gene/protein expression patterns in infected-dermal fibroblasts, altering their metabolism to increase the release of mosquito-attractive volatile organic compounds (VOCs), which improves its transmission success. We demonstrate that at the invasion stage, ZIKV differentially altered the emission of VOCs by significantly increasing or decreasing their amounts, while at the transmission stage of the virus, all VOCs are significantly increased. The findings are complemented by an extensive meta-proteome analysis. Overall, we demonstrate a multifaceted role of virus-host interaction and shed light on how arboviruses may influence the behaviour of their vectors as an evolved means of improving transmission-success.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Karsten Cirksena
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Mohammad Raftari
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Vector Biology Department (VBD), Liverpool School of Tropical Medicine (LSTM), Liverpool, UK
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Musa Mustapha Abiodun
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Juela Brahimi
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Molecular Attraction AB, Anderstorpsvägen 16, Solna, Stockholm, Sweden
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Rasa Bernotienė
- Laboratory of Entomology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Lech Ignatowicz
- Molecular Attraction AB, Anderstorpsvägen 16, Solna, Stockholm, Sweden
| | - Tessy Hick
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, Hannover, Germany
| | - Annasara Lenman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany.
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine (WCMM) & Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden.
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Vector Biology Department (VBD), Liverpool School of Tropical Medicine (LSTM), Liverpool, UK.
- Molecular Attraction AB, Anderstorpsvägen 16, Solna, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
3
|
Vasilieva AR, Slynko NM, Goncharov NP, Tatarova LE, Kuibida LV, Peltek SE. A GC-MS Metabolic Study on Lipophilic Compounds in the Leaves of Common Wheat Triticum aestivum L. Metabolites 2024; 14:426. [PMID: 39195522 DOI: 10.3390/metabo14080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Common wheat (Triticum aestivum L.) is one of the most valuable cereal crops worldwide. This study examined leaf extracts of 30 accessions of T. aestivum and its subspecies using 48 h maceration with methanol by GC-MS and GCxGC-MS. The plants were grown from seeds of the wheat genetics collection of the Wheat Genetics Sector of the Institute of Cytology and Genetics, SB RAS. The analysis revealed 263 components of epicuticular waxes, including linear and branched alkanes, aliphatic alcohols, aldehydes, ketones, β-diketones, carboxylic acids and their derivatives, mono- and diterpenes, phytosterols, and tocopherols. Hierarchical cluster analysis and principal component analysis were used to identify and visualize the differences between the leaf extracts of different wheat cultivars. Three clusters were identified, with the leading components being (1) octacosan-1-ol, (2) esters of saturated and unsaturated alcohols, and (3) fatty acid alkylamides, which were found for the first time in plant extracts. The results highlight the importance of metabolic studies in understanding the adaptive mechanisms and increasing wheat resistance to stress factors. These are crucial for breeding new-generation cultivars with improved traits.
Collapse
Affiliation(s)
- Asya R Vasilieva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
| | - Nikolay M Slynko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
| | - Nikolay P Goncharov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
| | - Ljudmila E Tatarova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
| | - Leonid V Kuibida
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey E Peltek
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue 10, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Tang X, Song G, Zou J, Ren J, Feng H. BrBCAT1 mutation resulted in deficiency of epicuticular wax crystal in Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:123. [PMID: 38722407 DOI: 10.1007/s00122-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Gengxing Song
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
Kojima H, Yamamoto K, Suzuki T, Hayakawa Y, Niwa T, Tokuhiro K, Katahira S, Higashiyama T, Ishiguro S. Broad Chain-Length Specificity of the Alkane-Forming Enzymes NoCER1A and NoCER3A/B in Nymphaea odorata. PLANT & CELL PHYSIOLOGY 2024; 65:428-446. [PMID: 38174441 PMCID: PMC11020225 DOI: 10.1093/pcp/pcad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 01/05/2024]
Abstract
Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.
Collapse
Affiliation(s)
- Hisae Kojima
- Technical Center, Nagoya University, Nagoya, 464-8601 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kanta Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Yuri Hayakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Tomoko Niwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kenro Tokuhiro
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192 Japan
| | | | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601 Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
6
|
Janković S, Alimpić Aradski A, Dodoš T, Novaković J, Ivanović S, Vujisić L, Marin PD, Rajčević N. Clinopodium L. Taxa from the Balkans-Are There Unique Leaf Micromorphological and Phytochemical Patterns? PLANTS (BASEL, SWITZERLAND) 2024; 13:251. [PMID: 38256803 PMCID: PMC10819394 DOI: 10.3390/plants13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The concept of the genus Clinopodium L. has changed considerably since its first description. Most of the currently accepted species of the genus have traditionally been treated as separate genera in the group Satureja sensu lato: Clinopodium L., Calamintha sensu Miller or Moench, and Acinos sensu Miller or Moench. This study aimed to gain a better insight into the species diversity of Clinopodium L. from the Balkans by analyzing the taxa that have traditionally been placed in separate genera. The alkane profile and the micromorphological characteristics of the leaves are analyzed. The leaves are visualized using scanning electron microscopy, and alkanes are isolated using n-hexane as a solvent and analyzed using gas chromatography/mass spectrometry. The alkane profile showed the differentiation of the Acinos-group from the other taxa based on the dominant n-C31, while most of the other taxa contained n-C33 as the dominant alkane. The micromorphological features also showed clear differences between the previously recognized genera, especially in the capitate trichomes. The results showed that micromorphological patterns are highly variable in certain groups of the genus Clinopodium.
Collapse
Affiliation(s)
- Smiljana Janković
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Ana Alimpić Aradski
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Tanja Dodoš
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Jelica Novaković
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Stefan Ivanović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Ljubodrag Vujisić
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Petar D. Marin
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| | - Nemanja Rajčević
- Facultyof Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (A.A.A.); (T.D.); (J.N.); (P.D.M.); (N.R.)
| |
Collapse
|
7
|
Chomicki G, Burin G, Busta L, Gozdzik J, Jetter R, Mortimer B, Bauer U. Convergence in carnivorous pitcher plants reveals a mechanism for composite trait evolution. Science 2024; 383:108-113. [PMID: 38175904 DOI: 10.1126/science.ade0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Composite traits involve multiple components that, only when combined, gain a new synergistic function. Thus, how they evolve remains a puzzle. We combined field experiments, microscopy, chemical analyses, and laser Doppler vibrometry with comparative phylogenetic analyses to show that two carnivorous Nepenthes pitcher plant species independently evolved similar adaptations in three distinct traits to acquire a new, composite trapping mechanism. Comparative analyses suggest that this new trait arose convergently through "spontaneous coincidence" of the required trait combination, rather than directional selection in the component traits. Our results indicate a plausible mechanism for composite trait evolution and highlight the importance of stochastic phenotypic variation as a facilitator of evolutionary novelty.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Bioscience, Durham University, South Road, Durham DH1 3LE, UK
| | - Gustavo Burin
- Natural History Museum London, Cromwell Road, London SW7 5BD, UK
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, 308 HCAMS, 1038 University Drive, Duluth, MN 55812, USA
| | - Jedrzej Gozdzik
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Department of Botany, University of British Columbia, 3200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Beth Mortimer
- Department of Biology, University of Oxford, Mansfield Road, Oxford OX1 3SZ, UK
| | - Ulrike Bauer
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
8
|
Gozdzik J, Busta L, Jetter R. Leaf cuticular waxes of wild-type Welsh onion (Allium fistulosum L.) and a wax-deficient mutant: Compounds with terminal and mid-chain functionalities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107679. [PMID: 37121165 DOI: 10.1016/j.plaphy.2023.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.
Collapse
Affiliation(s)
- Jedrzej Gozdzik
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
9
|
Yang J, Busta L, Jetter R, Sun Y, Wang T, Zhang W, Ni Y, Guo Y. Diversified chemical profiles of cuticular wax on alpine meadow plants of the Qinghai-Tibet Plateau. PLANTA 2023; 257:74. [PMID: 36879182 DOI: 10.1007/s00425-023-04107-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The alpine meadow plants showed great intra- and inter-genera variations of chemical profiles of cuticular waxes. Developing an understanding of wax structure-function relationships that will help us tackle global climate change requires a detailed understanding of plant wax chemistry. The goal in this study was to provide a catalog of wax structures, abundances, and compositions on alpine meadow plants. Here, leaf waxes from 33 plant species belonging to 11 families were sampled from alpine meadows of the east side of the Qinghai-Tibet Plateau. Across these species, total wax coverage varied from 2.30 μg cm-2 to 40.70 μg cm-2, showing variation both within as well as between genera and suggesting that wax variation is subject to both environmental and genetic effects. Across all wax samples, more than 140 wax compounds belonging to 13 wax compound classes were identified, including both ubiquitous wax compounds and lineage-specific compounds. Among the ubiquitous compounds (primary alcohols, alkyl esters, aldehydes, alkanes, and fatty acids), chain length profiles across a wide range of species point to key differences in the chain length specificity of alcohol and alkane formation machinery. The lineage-specific wax compound classes (diols, secondary alcohols, lactones, iso-alkanes, alkyl resorcinols, phenylethyl esters, cinnamate esters, alkyl benzoates, and triterpenoids) nearly all consisted of isomers with varying chain lengths or functional group positions, making the diversity of specialized wax compounds immense. The comparison of species relationships between chemical data and genetic data highlighted the importance of inferring phylogenetic relationships from data sets that contain a large number of variables that do not respond to environmental stimuli.
Collapse
Affiliation(s)
- Jianfeng Yang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yingpeng Sun
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianyu Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenlan Zhang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China.
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Batsale M, Alonso M, Pascal S, Thoraval D, Haslam RP, Beaudoin F, Domergue F, Joubès J. Tackling functional redundancy of Arabidopsis fatty acid elongase complexes. FRONTIERS IN PLANT SCIENCE 2023; 14:1107333. [PMID: 36798704 PMCID: PMC9928185 DOI: 10.3389/fpls.2023.1107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Very-long-chain fatty acids (VLCFA) are precursors for various lipids playing important physiological and structural roles in plants. Throughout plant tissues, VLCFA are present in multiple lipid classes essential for membrane homeostasis, and also stored in triacylglycerols. VLCFA and their derivatives are also highly abundant in lipid barriers, such as cuticular waxes in aerial epidermal cells and suberin monomers in roots. VLCFA are produced by the fatty acid elongase (FAE), which is an integral endoplasmic reticulum membrane multi-enzymatic complex consisting of four core enzymes. The 3-ketoacyl-CoA synthase (KCS) catalyzes the first reaction of the elongation and determines the chain-length substrate specificity of each elongation cycle, whereas the other three enzymes have broad substrate specificities and are shared by all FAE complexes. Consistent with the co-existence of multiple FAE complexes, performing sequential and/or parallel reactions to produce the broad chain-length-range of VLCFA found in plants, twenty-one KCS genes have been identified in the genome of Arabidopsis thaliana. Using CRISPR-Cas9 technology, we established an expression platform to reconstitute the different Arabidopsis FAE complexes in yeast. The VLCFA produced in these yeast strains were analyzed in detail to characterize the substrate specificity of all KCS candidates. Additionally, Arabidopsis candidate proteins were transiently expressed in Nicotiana benthamiana leaves to explore their activity and localization in planta. This work sheds light on the genetic and biochemical redundancy of fatty acid elongation in plants.
Collapse
Affiliation(s)
| | - Marie Alonso
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
- University of Bordeaux, INRAE, BFP, UMR 1332, Villenave d’Ornon, France
| | - Stéphanie Pascal
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | - Didier Thoraval
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | | | | | - Frédéric Domergue
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| | - Jérôme Joubès
- Univesity of Bordeaux, CNRS, LBM, UMR 5200, Villenave d’Ornon, France
| |
Collapse
|
11
|
Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress. Funct Integr Genomics 2022; 23:17. [PMID: 36562852 DOI: 10.1007/s10142-022-00940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Plant cuticular wax was a major consideration affecting the growth and quality of plants through protecting the plant from drought and other diseases. According to existing studies, CER1, as the core enzyme encoding the synthesis of alkanes, the main component of wax, can directly affect the response of plants to stress. However, there were few studies on the related functions of CER1 in apple. In this study, three MdCER1 genes in Malus domestica were identified and named MdCER1-1, MdCER1-2, and MdCER1-3 according to their distribution on chromosomes. Then, their physicochemical properties, sequence characteristics, and expression patterns were analyzed. MdCER1-1, with the highest expression level among the three members, was screened for cloning and functional verification. Real-time fluorescence quantitative PCR (qRT-PCR) analysis also showed that drought stress could increase the expression level of MdCER1-1. The experiment of water loss showed that overexpression of MdCER1-1 could effectively prevent water loss in apple calli, and the effect was more significant under drought stress. Meanwhile, MdYPB5, MdCER3, and MdKCS1 were significantly up-regulated, which would be bound up with waxy metabolism. Gas chromatography-mass spectrometer assay of wax fraction makes known that overexpression of MdCER1-1 apparently scaled up capacity of alkanes. The enzyme activities (SOD, POD) of overexpressed apple calli increased significantly, while the contents of proline increased compared with wild-type calli. In conclusion, MdCER1-1 can resist drought stress by reducing water loss in apple calli epidermis, increasing alkanes component content, stimulating the expression of waxy related genes (MdYPB5, MdCER3, and MdKCS1), and increasing antioxidant enzyme activity, which also provided a theoretical basis for exploring the role of waxy in other stresses.
Collapse
|
12
|
Scott S, Cahoon EB, Busta L. Variation on a theme: the structures and biosynthesis of specialized fatty acid natural products in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:954-965. [PMID: 35749584 PMCID: PMC9546235 DOI: 10.1111/tpj.15878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants are able to construct lineage-specific natural products from a wide array of their core metabolic pathways. Considerable progress has been made toward documenting and understanding, for example, phenylpropanoid natural products derived from phosphoenolpyruvate via the shikimate pathway, terpenoid compounds built using isopentyl pyrophosphate, and alkaloids generated by the extensive modification of amino acids. By comparison, natural products derived from fatty acids have received little attention, except for unusual fatty acids in seed oils and jasmonate-like oxylipins. However, scattered but numerous reports show that plants are able to generate many structurally diverse compounds from fatty acids, including some with highly elaborate and unique structural features that have novel bioproduct functionalities. Furthermore, although recent work has shed light on multiple new fatty acid natural product biosynthesis pathways and products in diverse plant species, these discoveries have not been reviewed. The aims of this work, therefore, are to (i) review and systematize our current knowledge of the structures and biosynthesis of fatty acid-derived natural products that are not seed oils or jasmonate-type oxylipins, specifically, polyacetylenic, very-long-chain, and aromatic fatty acid-derived natural products, and (ii) suggest priorities for future investigative steps that will bring our knowledge of fatty acid-derived natural products closer to the levels of knowledge that we have attained for other phytochemical classes.
Collapse
Affiliation(s)
- Samuel Scott
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| | - Edgar B. Cahoon
- Department of BiochemistryUniversity of Nebraska LincolnLincoln68588NEUSA
- Center for Plant Science InnovationUniversity of Nebraska LincolnLincoln68588NEUSA
| | - Lucas Busta
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| |
Collapse
|
13
|
Li S, Yang X, Huang H, Qiao R, Jenks MA, Zhao H, Lü S. Arabidopsis ACYL-ACTIVATING ENZYME 9 (AAE9) encoding an isobutyl-CoA synthetase is a key factor connecting branched-chain amino acid catabolism with iso-branched wax biosynthesis. THE NEW PHYTOLOGIST 2022; 233:2458-2470. [PMID: 34942034 DOI: 10.1111/nph.17941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Iso-branched wax compounds are well known in plants, but their biosynthetic pathways are still mostly unknown. It has been speculated that branched waxes are derived from branched-chain amino acid (BCAA) catabolism, but the evidence for this is very limited. Gas chromatography-flame ionisation detection (GC-FID) analysis revealed that mutations in two subunits of the branched-chain ketoacid dehydrogenase (BCKDH) complex, a key enzyme complex in the degradation of BCAAs, significantly decreased the amounts of branched wax compounds, indicating that BCAA degradation may be integral to the synthesis of iso-branched wax. Substrate feeding studies further revealed that the metabolic precursor of iso-branched wax compounds is isobutyric acid (iBA), which is derived from valine degradation in Arabidopsis. We also isolated a novel mutant and found that its branched wax deficient phenotype could not be rescued by iBA. Map-based cloning together with complementation analysis revealed that mutation in ACYL-ACTIVATING ENZYME 9 (AAE9) is responsible for this phenotype. Genetic and enzyme activity analysis demonstrated that AAE9 is located downstream of the BCAA degradation pathway, and that it activates iBA to isobutyryl-CoA for use on branched wax synthesis. Taken together, our study demonstrates that AAE9 is a key factor connecting BCAA catabolism with branched wax biosynthesis.
Collapse
Affiliation(s)
- Shipeng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Rong Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
14
|
WHIRLY1 functions in the nucleus to regulate barley leaf development and associated metabolite profiles. Biochem J 2022; 479:641-659. [PMID: 35212355 PMCID: PMC9022988 DOI: 10.1042/bcj20210810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1–1 and W1–7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1–1 and W1–7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1–1 and W1–7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development.
Collapse
|
15
|
Blasio M, Balzano S. Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Front Microbiol 2021; 12:718933. [PMID: 34659147 PMCID: PMC8511707 DOI: 10.3389/fmicb.2021.718933] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The exploitation of petrochemical hydrocarbons is compromising ecosystem and human health and biotechnological research is increasingly focusing on sustainable materials from plants and, to a lesser extent, microalgae. Fatty acid derivatives include, among others, oxylipins, hydroxy fatty acids, diols, alkenones, and wax esters. They can occur as storage lipids or cell wall components and possess, in some cases, striking cosmeceutical, pharmaceutical, and nutraceutical properties. In addition, long chain (>20) fatty acid derivatives mostly contain highly reduced methylenic carbons and exhibit a combustion enthalpy higher than that of C14 - 20 fatty acids, being potentially suitable as biofuel candidates. Finally, being the building blocks of cell wall components, some fatty acid derivatives might also be used as starters for the industrial synthesis of different polymers. Within this context, microalgae can be a promising source of fatty acid derivatives and, in contrast with terrestrial plants, do not require arable land neither clean water for their growth. Microalgal mass culturing for the extraction and the exploitation of fatty acid derivatives, along with products that are relevant in nutraceutics (e.g., polyunsaturated fatty acids), might contribute in increasing the viability of microalgal biotechnologies. This review explores fatty acids derivatives from microalgae with applications in the field of renewable energies, biomaterials and pharmaceuticals. Nannochloropsis spp. (Eustigmatophyceae, Heterokontophyta) are particularly interesting for biotechnological applications since they grow at faster rates than many other species and possess hydroxy fatty acids and aliphatic cell wall polymers.
Collapse
Affiliation(s)
- Martina Blasio
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
| | - Sergio Balzano
- Department of Marine Biotechnologies, Stazione Zoologica Anton Dohrn Napoli (SZN), Naples, Italy
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg (Texel), Netherlands
| |
Collapse
|
16
|
Liu J, Zhu L, Wang B, Wang H, Khan I, Zhang S, Wen J, Ma C, Dai C, Tu J, Shen J, Yi B, Fu T. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3051-3067. [PMID: 34120211 DOI: 10.1007/s00122-021-03879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The mutations BnA1.CER4 and BnC1.CER4 produce disordered wax crystals types and alter the composition of epidermal wax, causing increased cuticular permeability and sclerotium resistance. The aerial surfaces of land plants are coated with a cuticle, comprised of cutin and wax, which is a hydrophobic barrier for preventing uncontrolled water loss and environmental damage. However, the mechanisms by which cuticle components are formed are still unknown in Brassica napus L. and were therefore assessed here. BnA1.CER4 and BnC1.CER4, encoding fatty acyl-coenzyme A reductases localizing to the endoplasmic reticulum and highly expressed in leaves, were identified and functionally characterized. Expression of BnA1.CER4 and BnC1.CER4 cDNA in yeast (Saccharomyces cerevisiae) induced the accumulation of primary alcohols with chain lengths of 26 carbons. The mutant line Nilla glossy2 exhibited reduced wax crystal types, and wax composition analysis showed that the levels of branched primary alcohols were decreased, whereas those of the other branched components were increased. Further analysis showed that the mutant had reduced water retention but enhanced resistance to Sclerotinia sclerotiorum. Collectively, our study reports that BnA1.CER4 and BnC1.CER4 are fatty acyl-coenzyme A reductase genes in B. napus with a preference for branched substrates that participate in the biosynthesis of anteiso-primary alcohols.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Imran Khan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuqin Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Radulović NS, Živković Stošić MZ. Long-chain syn-1-phenylalkane-1,3-diyl diacetates, related phenylalkane derivatives, and sec-alcohols, all possessing dominantly iso-branched chain termini, and 2/3-methyl-branched fatty acids from Primula veris L. (Primulaceae) wax. PHYTOCHEMISTRY 2021; 186:112732. [PMID: 33761377 DOI: 10.1016/j.phytochem.2021.112732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Herein, the results of the first study of non-flavonoid constituents of aboveground surface-wax washings of Primula veris L. (Primulaceae) are presented. Chromatography of the washings yielded a minor fraction composed of n-, iso-, and anteiso-series of long-chained syn-1-phenylalkane-1,3-diyl diacetates, 3-oxo-1-phenylalkan-1-yl acetates, 1-phenylalkane-1,3-diones, 1-hydroxy-1-phenylalkan-3-ones, sec-alcohols (2- to 10-alkanols), and n-, iso-, anteiso-, 2-methylalkanoic and 3-methylalkanoic acids; 118 of these constituents represent up to now unreported natural compounds. The structural/stereochemical elucidation was accomplished by the synthesis of authentic standards, derivatization reactions, the use of gas chromatographic retention data and detailed 1D and 2D-NMR analyses of the obtained complex chromatographic fraction. Primula veris produces unusually high amounts of branched long-chained metabolites (>60%) except for the fatty acids where the percentage of branched isomers is comparable to the ones with n-chains. Noteworthy is the fact that long-chained α- and β-methyl substituted fatty acids were detected herein for the first time in the kingdom Plantae.
Collapse
Affiliation(s)
- Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Milena Z Živković Stošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
18
|
Živković Stošić MZ, Radulović NS, Genčić MS, Ranđelović VN. Very-Long-Chain Wax Constituents from Primula veris and P. acaulis: Does the Paradigm of Non-Branched vs. Branched Chain Dominance Universally Hold in all Plant Taxa? Chem Biodivers 2021; 18:e2100285. [PMID: 34028186 DOI: 10.1002/cbdv.202100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022]
Abstract
Herein n-, iso- and anteiso-series of very-long-chained (VLC) alkanes (C21 -C35 ), fatty acid benzyl esters (FABEs; C20 -C32 ), and 2-alkanones (C23 -C35 ) were identified in the wax of Primula veris L. and P. acaulis (L.) L. (Primulaceae). For the very first time in a sample of natural origin, the presence of iso- and anteiso-VLC FABEs and 2-alkanones was unequivocally confirmed by synthetic work, derivatization, and NMR. It should be noted that the studied species produced unusually high amounts of branched wax constituents (e. g., >50 % of 2-alkanones were branched isomers). The domination of iso-isomers, probably biosynthesized from leucine-derived starters, is a unique feature in the Plant Kingdom. The plant organ distribution of these VLC compounds in P. acaulis samples (different habitats and phenological phases) pointed to their possible ecological value. This was supported by a eutectic behavior of binary blends of FABEs and alkanes, as well as by high UV-C absorption by FABEs.
Collapse
Affiliation(s)
- Milena Z Živković Stošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Marija S Genčić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Vladimir N Ranđelović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
19
|
Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells 2021; 10:1284. [PMID: 34064239 PMCID: PMC8224384 DOI: 10.3390/cells10061284] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Domergue
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France; (M.B.); (D.B.); (L.F.); (S.M.); (J.J.)
| |
Collapse
|
20
|
A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry. Proc Natl Acad Sci U S A 2021; 118:2022982118. [PMID: 33723068 PMCID: PMC8000359 DOI: 10.1073/pnas.2022982118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Virtually all above-ground plant surfaces, such as leaf and stem exteriors, are covered in a cuticle: a wax-infused polyester. This waxy biocomposite is the largest interface between Earth’s biosphere and atmosphere. Its chemical composition is not only highly tuned to mediate nonstomatal water loss, but it also self-assembles to produce superhydrophobic surfaces, protects against UV radiation, and contains bioactive compounds that help resist microbial attack. Developing fundamental knowledge of waxy biocomposites, particularly those on crop species, is a prerequisite for an understanding of their structure–function relationships. Here, we uncover a likely genetic basis for the presence and absence, respectively, of triterpenoids in the leaf waxes of sorghum and maize—compounds previously associated with creating heat-tolerant cuticular water barriers. Virtually all land plants are coated in a cuticle, a waxy polyester that prevents nonstomatal water loss and is important for heat and drought tolerance. Here, we describe a likely genetic basis for a divergence in cuticular wax chemistry between Sorghum bicolor, a drought tolerant crop widely cultivated in hot climates, and its close relative Zea mays (maize). Combining chemical analyses, heterologous expression, and comparative genomics, we reveal that: 1) sorghum and maize leaf waxes are similar at the juvenile stage but, after the juvenile-to-adult transition, sorghum leaf waxes are rich in triterpenoids that are absent from maize; 2) biosynthesis of the majority of sorghum leaf triterpenoids is mediated by a gene that maize and sorghum both inherited from a common ancestor but that is only functionally maintained in sorghum; and 3) sorghum leaf triterpenoids accumulate in a spatial pattern that was previously shown to strengthen the cuticle and decrease water loss at high temperatures. These findings uncover the possibility for resurrection of a cuticular triterpenoid-synthesizing gene in maize that could create a more heat-tolerant water barrier on the plant’s leaf surfaces. They also provide a fundamental understanding of sorghum leaf waxes that will inform efforts to divert surface carbon to intracellular storage for bioenergy and bioproduct innovations.
Collapse
|
21
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
22
|
Wu H, Shi S, Lu X, Li T, Wang J, Liu T, Zhang Q, Sun W, Li C, Wang Z, Chen Y, Quan L. Expression Analysis and Functional Characterization of CER1 Family Genes Involved in Very-Long-Chain Alkanes Biosynthesis in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2019; 10:1389. [PMID: 31737015 PMCID: PMC6838206 DOI: 10.3389/fpls.2019.01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
Cuticular wax accumulation and composition affects drought resistance in plants. Brachypodium distachyon plants subjected to water deficit and polyethylene glycol treatments resulted in a significant increase in total wax load, in which very-long-chain (VLC) alkanes were more sensitive to these treatments than other wax compounds, implying that VLC alkanes biosynthesis plays a more important role in drought resistance in B. distachyon. ECERIFERUM1 (CER1) has been reported to encode a core enzyme involved in VLC alkanes biosynthesis in Arabidopsis (Arabidopsis thaliana), but few corresponding genes are investigated in B. distachyon. Here, we identified eight CER1 homologous genes in B. distachyon, namely BdCER1-1 to BdCER1-8, and then analyzed their sequences feature, expression patterns, stress induction, and biochemical activities. These genes had similar protein structure to other reported CER1 and CER1-like genes, but displayed closer phylogenetic relationship to the rice OsGL1 genes. They were further found to exhibit various tissue expression patterns after being induced by abiotic stresses. Among them, BdCER1-8 gene showed extremely high expression in leaves. Heterologous introduction of BdCER1-8 into the Arabidopsis cer1 mutant rescued VLC alkanes biosynthesis. These results indicate that BdCER1 genes are likely to be involved in VLC alkanes biosynthesis of B. distachyon. Taken together, BdCER1-8 seems to play an explicit and predominant role in VLC alkanes biosynthesis in leaf. Our work provides important clues for further characterizing function of CER1 homologous genes in B. distachyon and also an option to improve drought resistance of cereal crops.
Collapse
Affiliation(s)
- Hongqi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shandang Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoliang Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jiahuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- Shaanxi Province Tobacco Company of China National Tobacco Company, Xi’an, China
| | - Wei Sun
- Shaanxi Province Tobacco Company of China National Tobacco Company, Xi’an, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Li Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Chai G, Li C, Xu F, Li Y, Shi X, Wang Y, Wang Z. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2018; 18:41. [PMID: 29506473 PMCID: PMC5836450 DOI: 10.1186/s12870-018-1256-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. RESULTS We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. CONCLUSIONS These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary alcohols in hexaploid wheat and in response to multiple environmental stresses.
Collapse
Affiliation(s)
- Guaiqiang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Feng Xu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yang Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|