1
|
Paulraj RS, Afroz S, Palaniappan B, Murughiyan U, Singh S, Arthur S, Sundaram U. Intestinal Epithelial Cell Brush Border Membrane Cl:HCO 3 Exchanger Regulation by Mast Cells in Chronic Ileitis. Int J Mol Sci 2024; 25:11208. [PMID: 39456989 PMCID: PMC11508389 DOI: 10.3390/ijms252011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Malabsorption of NaCl is the primary cause of diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption occurs via the dual operation of Na:H and Cl:HCO3 exchange in the brush border membrane (BBM) of villus cells. Cl:HCO3 exchange is mediated by BBM transporters DRA (downregulated in adenoma) and PAT1 (putative anion transporter 1) in the mammalian small intestine. DRA/PAT1-mediated Cl:HCO3 exchange was significantly downregulated in the BBM of villus cells in a rabbit model of chronic ileitis, while Na:H exchange was unaffected. The inhibition of Cl:HCO3 exchange was restored in the rabbits when treated with a broad-spectrum immunomodulator, i.e. a glucocorticoid, indicating that the downregulation of DRA/PAT1 is likely to be immune-mediated during chronic enteritis. Mucosal mast cells are one type of key immune cells that are known to proliferate and release immune inflammatory mediators, thus playing a significant role in the pathogenesis of IBD. However, how mast cells may regulate DRA- and PAT1-mediated Cl:HCO3 exchange in a rabbit model of chronic ileitis is unknown. In this study, treatment of rabbits with chronic intestinal inflammation with the mast cell stabilizer ketotifen did not affect the mucosal architecture of the inflamed intestine. However, ketotifen treatment reversed the inhibition of Cl:HCO3 activity in the BBM of villus cells. This restoration of Cl:HCO3 activity to normal levels by ketotifen was found to be secondary to restoring the affinity of the exchangers for its substrate chloride. This observation was consistent with molecular studies, where the mRNA and BBM protein expressions of DRA and PAT1 remained unaffected in the villus cells under all experimental conditions. Thus, this study indicates that mast cells mediated the inhibition of coupled NaCl absorption by inhibiting Cl:HCO3 exchange in a rabbit model of chronic enteritis.
Collapse
Affiliation(s)
- Raja Singh Paulraj
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
| | - Sheuli Afroz
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
| | - Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
| | - Usha Murughiyan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA (B.P.); (U.M.)
| |
Collapse
|
2
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Rahman MM, Afroz S, Arthur S, Sundaram U. Mast Cell Mediated Regulation of Small Intestinal Chloride Malabsorption in SAMP1/YitFc Mouse Model of Spontaneous Chronic Ileitis. Cells 2021; 10:cells10030697. [PMID: 33801010 PMCID: PMC8004028 DOI: 10.3390/cells10030697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
In Inflammatory Bowel Disease (IBD), malabsorption of electrolytes (NaCl) results in diarrhea. Inhibition of coupled NaCl absorption, mediated by the dual operation of Na:H and Cl:HCO3 exchangers on the brush border membrane (BBM) of the intestinal villus cells has been reported in IBD. In the SAMP1/YitFcs (SAMP1) mice model of spontaneous ileitis, representing Crohn’s disease, DRA (Downregulated in Adenoma) mediated Cl:HCO3 exchange was shown to be inhibited secondary to diminished affinity of the exchanger for Cl. However, NHE3 mediated Na:H exchange remained unaffected. Mast cells and their secreted mediators are known to be increased in the IBD mucosa and can affect intestinal electrolyte absorption. However, how mast cell mediators may regulate Cl:HCO3 exchange in SAMP1 mice is unknown. Therefore, the aim of this study was to determine the effect of mast cell mediators on the downregulation of DRA in SAMP1 mice. Mast cell numbers and their degranulation marker enzyme (β-hexosaminidase) levels were significantly increased in SAMP1 mice compared to control AKR mice. However, treatment of SAMP1 mice with a mast cell stabilizer, ketotifen, restored the β-hexosaminidase enzyme levels to normal in the intestine, demonstrating stabilization of mast cells by ketotifen. Moreover, downregulation of Cl:HCO3 exchange activity was restored in ketotifen treated SAMP1 mice. Kinetic studies showed that ketotifen restored the altered affinity of Cl:HCO3 exchange in SAMP1 mice villus cells thus reinstating its activity to normal. Further, RT-qPCR, Western blot and immunofluorescence studies showed that the expression levels of DRA mRNA and BBM protein, respectively remained unaltered in all experimental conditions, supporting the kinetic data. Thus, inhibition of Cl:HCO3 exchange resulting in chloride malabsorption leading to diarrhea in IBD is likely mediated by mast cell mediators.
Collapse
|
4
|
Lyte JM, Keane J, Eckenberger J, Anthony N, Shrestha S, Marasini D, Daniels KM, Caputi V, Donoghue AM, Lyte M. Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions. MICROBIOME 2021; 9:38. [PMID: 33531080 PMCID: PMC7856774 DOI: 10.1186/s40168-020-00962-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/06/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microbial endocrinology, which is the study of neuroendocrine-based interkingdom signaling, provides a causal mechanistic framework for understanding the bi-directional crosstalk between the host and microbiome, especially as regards the effect of stress on health and disease. The importance of the cecal microbiome in avian health is well-recognized, yet little is understood regarding the mechanisms underpinning the avian host-microbiome relationship. Neuroendocrine plasticity of avian tissues that are focal points of host-microbiome interaction, such as the gut and lung, has likewise received limited attention. Avian in vivo models that enable the study of the neuroendocrine dynamic between host and microbiome are needed. As such, we utilized Japanese quail (Coturnix japonica) that diverge in corticosterone response to stress to examine the relationship between stress-related neurochemical concentrations at sites of host-microbe interaction, such as the gut, and the cecal microbiome. RESULTS Our results demonstrate that birds which contrast in corticosterone response to stress show profound separation in cecal microbial community structure as well as exhibit differences in tissue neurochemical concentrations and structural morphologies of the gut. Changes in neurochemicals known to be affected by the microbiome were also identified in tissues outside of the gut, suggesting a potential relationship in birds between the cecal microbiome and overall avian physiology. CONCLUSIONS The present study provides the first evidence that the structure of the avian cecal microbial community is shaped by selection pressure on the bird for neuroendocrine response to stress. Identification of unique region-dependent neurochemical changes in the intestinal tract following stress highlights environmental stressors as potential drivers of microbial endocrinology-based mechanisms of avian host-microbiome dialogue. Together, these results demonstrate that tissue neurochemical concentrations in the avian gut may be related to the cecal microbiome and reveal the Japanese quail as a novel avian model in which to further examine the mechanisms underpinning these relationships. Video abstract.
Collapse
Affiliation(s)
- Joshua M. Lyte
- Poultry Production and Product Safety Research, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701 USA
| | - James Keane
- Department of Computer Science, Cork Institute of Technology, Cork, Ireland
| | - Julia Eckenberger
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Nicholas Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Sandip Shrestha
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Daya Marasini
- Weems Design Studio Inc., Suwanee, Georgia, USA/ Contractor to Centers for Disease control and Prevention, Atlanta, GA 30333 USA
| | - Karrie M. Daniels
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | | | - Annie M. Donoghue
- Poultry Production and Product Safety Research, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701 USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
5
|
|
6
|
Tachibana T, Ueoka W, Khan MSI, Makino R, Cline MA. Compound 48/80 reduces the crop-emptying rate, likely through a histamine-associated pathway in chicks. Domest Anim Endocrinol 2019; 66:57-63. [PMID: 30472035 DOI: 10.1016/j.domaniend.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/31/2018] [Accepted: 10/11/2018] [Indexed: 11/15/2022]
Abstract
Infectious conditions are associated with reduced food passage through the digestive tract in both mammals and chicks; however, the precise mechanism mediating this response in chicks remains unclear. The purpose of the present study was to determine if mast cells, a blood cell type which plays an important role in the immune system, might affect food passage through the digestive tract in chicks. Specifically, we performed intraperitoneal (IP) injections of compound 48/80, an inducer of mast cell degranulation, and measured crop emptying. The IP injection of compound 48/80 significantly reduced the crop-emptying rate, but it did not affect the proventriculus to small intestine transit rate or the number of defecations. We also found that IP-injected histamine, which is secreted by mast cells, also reduced the crop-emptying rate. In addition, IP injection of 2-pyridylethylamine (histamine H1 receptor agonist), but not dimaprit, (R)-(-)-α-methylhistamine, and VUF8430 (histamine H2, H3, and H4 receptor agonists, respectively), reduced the crop-emptying rate, implying that histamine reduces the crop emptying rate via the histamine H1 receptor. Finally, we found that IP injection of compound 48/80 reduced mRNA expression of histidine decarboxylase, a rate-limiting enzyme for histamine synthesis, in the esophagus and proventriculus at 1 h and the proventriculus and duodenum at 3 h after the injection. In sum, the present study suggests that the degranulation of mast cells causes a reduction in the crop-emptying rate, possibly via the histamine pathway in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Wataru Ueoka
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University, Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Ganda Mall JP, Casado-Bedmar M, Winberg ME, Brummer RJ, Schoultz I, Keita ÅV. A β-Glucan-Based Dietary Fiber Reduces Mast Cell-Induced Hyperpermeability in Ileum From Patients With Crohn's Disease and Control Subjects. Inflamm Bowel Dis 2018; 24:166-178. [PMID: 29272475 PMCID: PMC6166688 DOI: 10.1093/ibd/izx002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Administration of β-glucan has shown immune-enhancing effects. Our aim was to investigate whether β-glucan could attenuate mast cell (MC)-induced hyperpermeability in follicle-associated epithelium (FAE) and villus epithelium (VE) of patients with Crohn's disease (CD) and in noninflammatory bowel disease (IBD)-controls. Further, we studied mechanisms of β-glucan uptake and effects on MCs in vitro. METHODS Segments of FAE and VE from 8 CD patients and 9 controls were mounted in Ussing chambers. Effects of the MC-degranulator compound 48/80 (C48/80) and yeast-derived β-1,3/1,6 glucan on hyperpermeability were investigated. Translocation of β-glucan and colocalization with immune cells were studied by immunofluorescence. Caco-2-cl1- and FAE-cultures were used to investigate β-glucan-uptake using endocytosis inhibitors and HMC-1.1 to study effects on MCs. RESULTS β-glucan significantly attenuated MC-induced paracellular hyperpermeability in CD and controls. Transcellular hyperpermeability was only significantly attenuated in VE. Baseline paracellular permeability was higher in FAE than VE in both groups, P<0.05, and exhibited a more pronounced effect by C48/80 and β-glucan P<0.05. No difference was observed between CD and controls. In vitro studies showed increased passage, P<0.05, of β-glucan through FAE-culture compared to Caco-2-cl1. Passage was mildly attenuated by the inhibitor methyl-β-cyclodextrin. HMC-1.1 experiments showed a trend to decreasing MC-degranulation and levels of TNF-α but not IL-6 by β-glucan. Immunofluorescence revealed more β-glucan-uptake and higher percentage of macrophages and dendritic cells close to β-glucan in VE of CD compared to controls. CONCLUSIONS We demonstrated beneficial effects of β-glucan on intestinal barrier function and increased β-glucan-passage through FAE model. Our results provide important and novel knowledge on possible applications of β-glucan in health disorders and diseases characterized by intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John-Peter Ganda Mall
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| | - Maite Casado-Bedmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin E Winberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Robert J Brummer
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| | - Ida Schoultz
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden,Address correspondence to: Asa V. Keita, PhD, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology, Medical Faculty, Linköping University, 581 85 Linköping, Sweden. E-mail:
| |
Collapse
|
8
|
Zhang L, Song J, Hou X. Mast Cells and Irritable Bowel Syndrome: From the Bench to the Bedside. J Neurogastroenterol Motil 2016; 22:181-92. [PMID: 26755686 PMCID: PMC4819856 DOI: 10.5056/jnm15137] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/07/2015] [Accepted: 12/26/2015] [Indexed: 12/11/2022] Open
Abstract
Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder since it lacks demonstrable pathological abnormalities. However, in recent years, low grade inflammatory infiltration, often rich in mast cells, in both the small and large bowel, has been observed in some patients with IBS. The close association of mast cells with major intestinal functions, such as epithelial secretion and permeability, neuroimmune interactions, visceral sensation, and peristalsis, makes researchers and gastroenterologists to focus attention on the key roles of mast cells in the pathogenesis of IBS. Numerous studies have been carried out to identify the mechanisms in the development, infiltration, activation, and degranulation of intestinal mast cells, as well as the actions of mast cells in the processes of mucosal barrier disruption, mucosal immune dysregulation, visceral hypersensitivity, dysmotility, and local and central stress in IBS. Moreover, therapies targeting mast cells, such as mast cell stabilizers (cromoglycate and ketotifen) and antagonists of histamine and serotonin receptors, have been tried in IBS patients, and have partially exhibited considerable efficacy. This review focuses on recent advances in the role of mast cells in IBS, with particular emphasis on bridging experimental data with clinical therapeutics for IBS patients.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Keely S, Walker MM, Marks E, Talley NJ. Immune dysregulation in the functional gastrointestinal disorders. Eur J Clin Invest 2015; 45:1350-9. [PMID: 26444549 DOI: 10.1111/eci.12548] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/03/2015] [Indexed: 12/14/2022]
Abstract
Gastrointestinal conditions may be broadly classified into two: organic and functional disease, with functional disorders accounting for the majority of patients with chronic gastrointestinal symptoms. Functional gastrointestinal disorders (FGIDs) present with no obvious pathology or well-accepted biochemical mechanism and, as such, treatment strategies are limited and focus on symptoms rather than cure. Irritable bowel syndrome and functional dyspepsia are the most widely recognised FGIDs, and there is a growing body of evidence to suggest an underlying inflammatory phenotype in subsets with these conditions. Here, we discuss the current knowledge of immune involvement in FGIDs and the commonalities between the different manifestations of FGIDs and propose a new hypothesis, potentially defining an underlying immunopathological basis of these conditions.
Collapse
Affiliation(s)
- Simon Keely
- School of Biomedical Sciences & Pharmacy, University of Newcastle & Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Marjorie M Walker
- School of Medicine & Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Ellen Marks
- School of Biomedical Sciences & Pharmacy, University of Newcastle & Vaccine and Asthma (VIVA) Program, Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Nicholas J Talley
- School of Medicine & Public Health, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
10
|
Carroll SY, O’Mahony SM, Grenham S, Cryan JF, Hyland NP. Disodium cromoglycate reverses colonic visceral hypersensitivity and influences colonic ion transport in a stress-sensitive rat strain. PLoS One 2013; 8:e84718. [PMID: 24367692 PMCID: PMC3867510 DOI: 10.1371/journal.pone.0084718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/18/2013] [Indexed: 01/05/2023] Open
Abstract
The interface between psychiatry and stress-related gastrointestinal disorders (GI), such as irritable bowel syndrome (IBS), is well established, with anxiety and depression the most frequently occurring comorbid conditions. Moreover, stress-sensitive Wistar Kyoto (WKY) rats, which display anxiety- and depressive-like behaviors, exhibit GI disturbances akin to those observed in stress-related GI disorders. Additionally, there is mounting preclinical and clinical evidence implicating mast cells as significant contributors to the development of abdominal visceral pain in IBS. In this study we examined the effects of the rat connective tissue mast cell (CTMC) stabiliser, disodium cromoglycate (DSCG) on visceral hypersensitivity and colonic ion transport, and examined both colonic and peritoneal mast cells from stress-sensitive WKY rats. DSCG significantly decreased abdominal pain behaviors induced by colorectal distension in WKY animals independent of a reduction in colonic rat mast cell mediator release. We further demonstrated that mast cell-stimulated colonic ion transport was sensitive to inhibition by the mast cell stabiliser DSCG, an effect only observed in stress-sensitive rats. Moreover, CTMC-like mast cells were significantly increased in the colonic submucosa of WKY animals, and we observed a significant increase in the proportion of intermediate, or immature, peritoneal mast cells relative to control animals. Collectively our data further support a role for mast cells in the pathogenesis of stress-related GI disorders.
Collapse
Affiliation(s)
- Siobhan Yvonne Carroll
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| | - Siobhain Mary O’Mahony
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Susan Grenham
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - John Francis Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Niall Patrick Hyland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Pharmacology & Therapeutics, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Awad WA, Aschenbach JR, Khayal B, Hess C, Hess M. Intestinal epithelial responses to Salmonella enterica serovar Enteritidis: effects on intestinal permeability and ion transport. Poult Sci 2012; 91:2949-57. [PMID: 23091155 DOI: 10.3382/ps.2012-02448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella infection of chickens that leads to potential human foodborne salmonellosis continues to be a major concern. Chickens serve as carriers but, in contrast to humans, rarely show any clinical signs including diarrhea. The present investigations aimed to elucidate whether the absence of diarrhea during acute Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) infection may be linked to specific changes in the electrophysiological properties of the chicken gut. Immediately after slaughter, intestinal pieces of the mid-jejunum and cecum of either commercial broiler or specific pathogen-free (SPF) chickens were mounted in Ussing chambers in 2 separate experimental series. Living Salmonella Enteritidis (3 × 10(9)) or Salmonella Enteritidis endotoxin (20 mg/L), or both, were added to the mucosal side for 1 h. In both experimental series, the Salmonella infection decreased the trans-epithelial ion conductance G(t) (P < 0.05). In the jejunum of SPF chickens, there was also a marked decrease in net charge transfer across the epithelium, evidenced by decreased short-circuit current (I(sc), P < 0.05). Interestingly, the mucosal application of Salmonella endotoxin to the epithelial preparations from jejunum and cecum of SPF chicken had an effect similar to living bacteria. However, the endotoxin had no additional effect on the intestinal function in the presence of bacteria. The decreasing effect of Salmonella and or its endotoxin on G(t) could be partly reversed by serosal addition of histamine. To our knowledge, this is the first study to address the functional response of native intestinal epithelium of chicken to an in vitro Salmonella infection. For the first time, it can be reported that intestinal ion permeability of chicken decreases acutely by the presence of Salmonella. This type of response could counteract ion and fluid secretion and may thus, at least in part, explain why chickens do not develop overt diarrhea after Salmonella infection.
Collapse
Affiliation(s)
- W A Awad
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | | | |
Collapse
|
12
|
Baccari GC, Pinelli C, Santillo A, Minucci S, Rastogi RK. Mast Cells in Nonmammalian Vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:1-53. [DOI: 10.1016/b978-0-12-386037-8.00006-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|