1
|
Cazuza RA, Zagrai SM, Grieco AR, Avery TD, Abell AD, Wey HY, Loggia ML, Grace PM. 18 kDa Translocator protein (TSPO) is upregulated in rat brain after peripheral nerve injury and downregulated by diroximel fumarate. Brain Behav Immun 2025; 123:11-27. [PMID: 39218234 PMCID: PMC11624078 DOI: 10.1016/j.bbi.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuroimmune signaling is a key process underlying neuropathic pain. Clinical studies have demonstrated that 18 kDa translocator protein (TSPO), a putative marker of neuroinflammation, is upregulated in discrete brain regions of patients with chronic pain. However, no preclinical studies have investigated TSPO dynamics in the brain in the context of neuropathic pain and in response to analgesic treatments. We used positron emission tomography-computed tomography (PET-CT) and [18F]-PBR06 radioligand to measure TSPO levels in the brain across time after chronic constriction injury (CCI) of the sciatic nerve in both male and female rats. Up to 10 weeks post-CCI, TSPO expression was increased in discrete brain regions, including medial prefrontal cortex, somatosensory cortex, insular cortex, anterior cingulate cortex, motor cortex, ventral tegmental area, amygdala, midbrain, pons, medulla, and nucleus accumbens. TSPO was broadly upregulated across these regions at 4 weeks post CCI in males, and 10 weeks in females, though there were regional differences between the sexes. Using immunohistochemistry, we confirmed TSPO expression in these regions. We further demonstrated that TSPO was upregulated principally in microglia in the nucleus accumbens core, and astrocytes and endothelial cells in the nucleus accumbens shell. Finally, we tested whether TSPO upregulation was sensitive to diroximel fumarate, a drug that induces endogenous antioxidants via nuclear factor E2-related factor 2 (Nrf2). Diroximel fumarate alleviated neuropathic pain and reduced TSPO upregulation. Our findings indicate that TSPO is upregulated over the course of neuropathic pain development and is resolved by an antinociceptive intervention in animals with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sever M Zagrai
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anamaria R Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
2
|
Grosu AV, Gheorghe R, Filippi A, Deftu AF, Isler M, Suter M, Ristoiu V. Dorsal root ganglia CSF1 + neuronal subtypes have different impact on macrophages and microglia after spared nerve injury. J Peripher Nerv Syst 2024; 29:514-527. [PMID: 39581686 PMCID: PMC11625985 DOI: 10.1111/jns.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND AND AIMS Colony-stimulating factor 1 (CSF1) is a growth factor secreted by dorsal root ganglia (DRG) neurons important for DRG macrophages and spinal cord (SC) microglia injury-induced proliferation and activation, specifically released after spared nerve injury (SNI). In this study, we investigated if SNI-induced CSF1 expression and perineuronal rings of macrophages around mouse DRG neurons vary between L3-L5 DRG and with the neuronal type, and if the CSF1+ neuronal projections at the SC dorsal horns were associated with an increased microglial number in the corresponding laminae. METHODS Seven days after surgery, L3-L5 DRG as well as their corresponding segments at the SC level were collected, frozen, and cut. DRG sections were double-immunostained using antibodies against CSF1 and NF200, CGRP or IB4, while SC sections were immunostained using a fluorescent Nissl Stain and analyzed for CX3CR1-GFP microglia number and distribution by an in-house ImageJ Plug-in. RESULTS Our results showed that SNI-induced CSF1 expression was common for all subtypes of mouse DRG neurons, being responsible for attracting more resident macrophages around them in a DRG-dependent manner, with L4 showing the stronger response and CSF1+/NF200+ neurons showing the highest incidence. Even though the total number of microglia in the SC ipsilateral dorsal horns increased after SNI, the increase at their specific laminar projection sites did not mirror the incidence of DRG neuronal subtypes among CSF1+ neurons. INTERPRETATION Taken together, these results contribute to a more comprehensive understanding of the connection between CSF1 and macrophage/microglia response after SNI and emphasize the importance of considering L3-L5 DRG individually when investigating SNI-neuropathic pain pathogenesis in mice.
Collapse
Affiliation(s)
- Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Roxana‐Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Alexandru Filippi
- Department of Biophysics and BiochemistryUniversity of Medicine and Pharmacy “Carol Davila”BucharestRomania
| | - Alexandru Florian Deftu
- Pain Center, Department of AnesthesiologyLausanne University Hospital and University of Lausanne (CHUV)LausanneSwitzerland
| | - Manon Isler
- Pain Center, Department of AnesthesiologyLausanne University Hospital and University of Lausanne (CHUV)LausanneSwitzerland
| | - Marc Suter
- Pain Center, Department of AnesthesiologyLausanne University Hospital and University of Lausanne (CHUV)LausanneSwitzerland
- Department of Fundamental Neurosciences, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of BiologyUniversity of BucharestBucharestRomania
| |
Collapse
|
3
|
Simpson EL, Augustin M, Thaçi D, Misery L, Armstrong AW, Blauvelt A, Papp KA, Szepietowski JC, Boguniewicz M, Kwatra SG, Kallender H, Sturm D, Ren H, Kircik L. Ruxolitinib Cream Monotherapy Improved Symptoms and Quality of Life in Adults and Adolescents with Mild-to-Moderate Atopic Dermatitis: Patient-Reported Outcomes from Two Phase III Studies. Am J Clin Dermatol 2024:10.1007/s40257-024-00901-z. [PMID: 39546129 DOI: 10.1007/s40257-024-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is associated with itch, skin pain, sleep disturbances, and diminished quality of life (QoL). Ruxolitinib (Janus kinase [JAK] 1/JAK2 inhibitor) cream demonstrated efficacy and safety in adults and adolescents with mild-to-moderate AD in two phase III studies (TRuE-AD1/TRuE-AD2). In TRuE-AD1/TRuE-AD2, significant improvements in itch were observed as early as 12 h following application of ruxolitinib cream. OBJECTIVE The aim of this paper was to assess additional patient-reported outcomes (PROs) in the vehicle-controlled (VC) and long-term safety (LTS) periods of TRuE-AD1/TRuE-AD2. METHODS In the TRuE-AD studies, patients aged ≥12 years with AD were randomized 2:2:1 to apply twice-daily 1.5% ruxolitinib cream, 0.75% ruxolitinib cream, or vehicle cream continuously for 8 weeks (VC period). During the LTS period, patients applied the same ruxolitinib cream strength, but on an as-needed basis; patients who initially applied vehicle were re-randomized to apply 0.75% or 1.5% ruxolitinib cream. Pooled data from both study periods were analyzed. PRO assessments included symptoms (itch [Patient-Oriented Eczema Measure, POEM], skin pain [numerical rating scale], and sleep [POEM and Patient-Reported Outcomes Measurement Information System]) and assessments of disease-specific QoL (Dermatology Life Quality Index [DLQI] and the children's version [CDLQI]). RESULTS A total of 1208 and 1031 patients from the VC and LTS periods, respectively, were included in the analysis. Significant improvements in skin pain were observed within 12 h among patients who applied ruxolitinib cream versus vehicle; improvements continued throughout the VC period. Improvements in patient-reported symptoms (including sleep) were observed within 2 weeks (first assessment) of ruxolitinib cream application. At Week 2, significant improvements in symptom burden and overall QoL were observed with ruxolitinib cream (0.75%/1.5%) versus vehicle in POEM (-8.9/-9.8 vs -2.2; both p < 0.0001), DLQI (mean changes from baseline, -5.8/-6.1 vs -1.2; both p < 0.0001), and CDLQI (-4.3/-5.3 vs -1.3; both p < 0.0001). Further symptom burden and QoL improvements were reported during the VC period and were maintained through the end of the LTS period (Week 52). CONCLUSIONS Consistent with the previously reported itch response data, ruxolitinib cream improved skin pain within 12 h of application. Ruxolitinib cream improved patient-reported AD symptom burden and overall QoL by Week 2. Improvements continued or were maintained for 52 weeks. (Graphical abstract and plain language summary available). TRIAL REGISTRATION ClinicalTrials.gov identifiers, NCT03745638 and NCT03745651 (both studies were registered on November 19, 2018).
Collapse
Affiliation(s)
- Eric L Simpson
- Oregon Health and Science University, 3303 S. Bond Ave, Portland, OR, 97239, USA.
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Diamant Thaçi
- Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Lübeck, Germany
| | | | | | - Andrew Blauvelt
- Oregon Medical Research Center, Portland, OR, USA
- Blauvelt Consulting, LLC, Lake Oswego, OR, USA
| | - Kim A Papp
- Alliance Clinical Trials and Probity Medical Research, Waterloo, ON, Canada
- Division of Dermatology, University of Toronto School of Medicine, Toronto, ON, Canada
| | - Jacek C Szepietowski
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
- Maryland Itch Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Haobo Ren
- Incyte Corporation, Wilmington, DE, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Coaccioli S, Sarzi-Puttini P, Fornasari DMM, Schweiger V, Zis P, Viswanath O, Varrassi G. Immune Competence and Pain: A Narrative Review. Curr Pain Headache Rep 2024; 28:1145-1154. [PMID: 38935243 DOI: 10.1007/s11916-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW This review aims to summarize current knowledge on the pathophysiology of pain and the role of neuro-immune crosstalk in the development of acute and chronic pain (CP). Specifically, the review focuses on the role of immune cells involved in the innate and acquired immune response, emphasizing their bidirectional interactions with the nervous systems and discussing the implications of this crosstalk on acute and CP management. RECENT FINDINGS In the last two decades, multiple studies have uncovered the important role of the immune system in initiating, maintaining, and resolving pain stimuli. Furthermore, researchers discovered that the immune system interacts tightly with the nervous system, creating a bidirectional crosstalk in which immune cells influence the response of peripheral and central nerve fibers while neurotransmitters and neuropeptides released by nociceptors directly and indirectly modulate the immune response. The neuro-immune crosstalk in acute and CP is a complex and not fully understood process that comprise the interactions of multiple diverse molecules, bidirectional interferences, and numerous redundant processes. Despite the complexity, important steps have been taken in recent years toward explaining the specific roles of each immune cell type and molecule in the initiation, maintenance and resolution of pain. These findings may set the basis for innovative therapeutic options that target the immune system, overcoming the limitations of current treatments in providing pain relief and the disadvantages associated with opioid therapy.
Collapse
Affiliation(s)
| | | | - Diego M M Fornasari
- Dept. of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vittorio Schweiger
- Dept. of Anesthesia, Intensive Care and Pain Therapy, Verona University Hospital, Verona, Italy
| | - Panagiotis Zis
- Medical School University of Cyprus, Nicosia, Cyprus
- 2nd Dept. of Neurology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Omar Viswanath
- Clinical Professor of Anesthesiology, Creighton University School of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
5
|
José Alcaraz M. Control of articular degeneration by extracellular vesicles from stem/stromal cells as a potential strategy for the treatment of osteoarthritis. Biochem Pharmacol 2024; 228:116226. [PMID: 38663683 DOI: 10.1016/j.bcp.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint condition that contributes to years lived with disability. Current therapeutic approaches are limited as there are no disease-modifying interventions able to delay or inhibit the progression of disease. In recent years there has been an increasing interest in the immunomodulatory and regenerative properties of mesenchymal stem/stromal cells (MSCs) to develop new OA therapies. Extracellular vesicles (EVs) mediate many of the biological effects of these cells and may represent an alternative avoiding the limitations of cell-based therapy. There is also a growing interest in EV modifications to enhance their efficacy and applications. Recent preclinical studies have provided strong evidence supporting the potential of MSC EVs for the development of OA treatments. Thus, MSC EVs may regulate chondrocyte functions to avoid cartilage destruction, inhibit abnormal subchondral bone metabolism and synovial tissue alterations, and control pain behavior. EV actions may be mediated by the transfer of their cargo to target cells, with an important role for proteins and non-coding RNAs modulating signaling pathways relevant for OA progression. Nevertheless, additional investigations are needed concerning EV optimization, and standardization of preparation procedures. More research is also required for a better knowledge of possible effects on different OA phenotypes, pharmacokinetics, mechanism of action, long-term effects and safety profile. Furthermore, MSC EVs have a high potential as vehicles for drug delivery or as adjuvant therapy to potentiate or complement the effects of other approaches.
Collapse
Affiliation(s)
- María José Alcaraz
- Department of Pharmacology, University of Valencia, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
6
|
Ma J, Subramaniam P, Yancey JR, Farrington AA, McGlade EC, Renshaw PF, Yurgelun-Todd DA. Elevated circulating soluble interleukin-2 receptor (sCD25) level is associated with prefrontal excitatory-inhibitory imbalance in individuals with chronic pain: A proton MRS study. Brain Behav Immun 2024; 120:1-9. [PMID: 38772429 PMCID: PMC11269041 DOI: 10.1016/j.bbi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/29/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Aberrant neuronal excitability in the anterior cingulate cortex (ACC) is implicated in cognitive and affective pain processing. Such excitability may be amplified by activated circulating immune cells, including T lymphocytes, that interact with the central nervous system. Here, we conducted a study of individuals with chronic pain using magnetic resonance spectroscopy (MRS) to investigate the clinical evidence for the interaction between peripheral immune activation and prefrontal excitatory-inhibitory imbalance. In thirty individuals with chronic musculoskeletal pain, we assessed markers of peripheral immune activation, including soluble interleukin-2 receptor alpha chain (sCD25) levels, as well as brain metabolites, including Glx (glutamate + glutamine) to GABA+ (γ-aminobutyric acid + macromolecules/homocarnosine) ratio in the ACC. We found that the circulating level of sCD25 was associated with prefrontal Glx/GABA+. Greater prefrontal Glx/GABA+ was associated with higher pain catastrophizing, evaluative pain ratings, and anxiodepressive symptoms. Further, the interaction effect of sCD25 and prefrontal Glx/GABA+ on pain catastrophizing was significant, indicating the joint association of these two markers with pain catastrophizing. Our results provide the first evidence suggesting that peripheral T cellular activation, as reflected by elevated circulating sCD25 levels, may be linked to prefrontal excitatory-inhibitory imbalance in individuals with chronic pain. The interaction between these two systems may play a role as a potential mechanism underlying pain catastrophizing. Further prospective and treatment studies are needed to elucidate the specific role of the immune and brain interaction in pain catastrophizing.
Collapse
Affiliation(s)
- Jiyoung Ma
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Punitha Subramaniam
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James R Yancey
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA
| | - Amy A Farrington
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Erin C McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA
| | - Perry F Renshaw
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA
| | - Deborah A Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA; Diagnostic Neuroimaging Laboratory, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Naratadam GT, Mecklenburg J, Shein SA, Zou Y, Lai Z, Tumanov AV, Price TJ, Akopian AN. Degenerative and regenerative peripheral processes are associated with persistent painful chemotherapy-induced neuropathies in males and females. Sci Rep 2024; 14:17543. [PMID: 39080341 PMCID: PMC11289433 DOI: 10.1038/s41598-024-68485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
This study investigated the time course of gene expression changes during the progression of persistent painful neuropathy caused by paclitaxel (PTX) in male and female mouse hindpaws and dorsal root ganglia (DRG). Bulk RNA-seq was used to examine these gene expression changes at 1, 16, and 31 days post-last PTX. At these time points, differentially expressed genes (DEGs) were predominantly related to the reduction or increase in epithelial, skin, bone, and muscle development and to angiogenesis, myelination, axonogenesis, and neurogenesis. These processes are accompanied by the regulation of DEGs related to the cytoskeleton, extracellular matrix organization, and cellular energy production. This gene plasticity during the progression of persistent painful neuropathy could be interpreted as a biological process linked to tissue regeneration/degeneration. In contrast, gene plasticity related to immune processes was minimal at 1-31 days after PTX. It was also noted that despite similarities in biological processes and pain chronicity between males and females, specific DEGs differed dramatically according to sex. The main conclusions of this study are that gene expression plasticity in hindpaw and DRG during PTX neuropathy progression similar to tissue regeneration and degeneration, minimally affects immune system processes and is heavily sex-dependent at the individual gene level.
Collapse
Affiliation(s)
- George T Naratadam
- South Texas Medical Scientist Training Program (STX-MSTP), Integrated Biomedical Sciences (IBMS) Program, The Long School of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sergey A Shein
- Department of Microbiology, Immunology and Molecular Genetics, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yi Zou
- Department of Molecular Medicine, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Department of Molecular Medicine, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- South Texas Medical Scientist Training Program (STX-MSTP), Integrated Biomedical Sciences (IBMS) Program, The Long School of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology and Molecular Genetics, The Long School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Armen N Akopian
- South Texas Medical Scientist Training Program (STX-MSTP), Integrated Biomedical Sciences (IBMS) Program, The Long School of Medicine, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Xiang C, Hong SM, Zhao B, Pi H, Du F, Lu X, Tang Y, Shen N, Yang C, Wang R. Fibroblast expression of neurotransmitter receptor HTR2A associates with inflammation in rheumatoid arthritis joint. Clin Exp Med 2024; 24:84. [PMID: 38662111 PMCID: PMC11045650 DOI: 10.1007/s10238-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The study of neuroimmune crosstalk and the involvement of neurotransmitters in inflammation and bone health has illustrated their significance in joint-related conditions. One important mode of cell-to-cell communication in the synovial fluid (SF) is through extracellular vesicles (EVs) carrying microRNAs (miRNAs). The role of neurotransmitter receptors in the pathogenesis of inflammatory joint diseases, and whether there are specific miRNAs regulating differentially expressed HTR2A, contributing to the inflammatory processes and bone metabolism is unclear. Expression of neurotransmitter receptors and their correlated inflammatory molecules were identified in rheumatoid arthritis (RA) and osteoarthritis (OA) synovium from a scRNA-seq dataset. Immunohistochemistry staining of synovial tissue (ST) from RA and OA patients was performed for validation. Expression of miRNAs targeting HTR2A carried by SF EVs was screened in low- and high-grade inflammation RA from a public dataset and validated by qPCR. HTR2A reduction by target miRNAs was verified by miRNAs mimics transfection into RA fibroblasts. HTR2A was found to be highly expressed in fibroblasts derived from RA synovial tissue. Its expression showed a positive correlation with the degree of inflammation observed. 5 miRNAs targeting HTR2A were decreased in RA SF EVs compared to OA, three of which, miR-214-3p, miR-3120-5p and miR-615-3p, mainly derived from monocytes in the SF, were validated as regulators of HTR2A expression. The findings suggest that fibroblast HTR2A may play a contributory role in inflammation and the pathogenesis of RA. Additionally, targeting miRNAs that act upon HTR2A could present novel therapeutic strategies for alleviating inflammation in RA.
Collapse
Affiliation(s)
- Chunyan Xiang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Soon-Min Hong
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Hui Pi
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Fang Du
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Xingyu Lu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China.
| | - Chunxi Yang
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China.
| | - Runci Wang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China.
| |
Collapse
|
9
|
Barakat A, Munro G, Heegaard AM. Finding new analgesics: Computational pharmacology faces drug discovery challenges. Biochem Pharmacol 2024; 222:116091. [PMID: 38412924 DOI: 10.1016/j.bcp.2024.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Despite the worldwide prevalence and huge burden of pain, pain is an undertreated phenomenon. Currently used analgesics have several limitations regarding their efficacy and safety. The discovery of analgesics possessing a novel mechanism of action has faced multiple challenges, including a limited understanding of biological processes underpinning pain and analgesia and poor animal-to-human translation. Computational pharmacology is currently employed to face these challenges. In this review, we discuss the theory, methods, and applications of computational pharmacology in pain research. Computational pharmacology encompasses a wide variety of theoretical concepts and practical methodological approaches, with the overall aim of gaining biological insight through data acquisition and analysis. Data are acquired from patients or animal models with pain or analgesic treatment, at different levels of biological organization (molecular, cellular, physiological, and behavioral). Distinct methodological algorithms can then be used to analyze and integrate data. This helps to facilitate the identification of biological molecules and processes associated with pain phenotype, build quantitative models of pain signaling, and extract translatable features between humans and animals. However, computational pharmacology has several limitations, and its predictions can provide false positive and negative findings. Therefore, computational predictions are required to be validated experimentally before drawing solid conclusions. In this review, we discuss several case study examples of combining and integrating computational tools with experimental pain research tools to meet drug discovery challenges.
Collapse
Affiliation(s)
- Ahmed Barakat
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | | | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
11
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
12
|
Gordon C, Trainor J, Shah RJ, Studholme K, Gelman A, Doswell F, Sadar F, Giovannetti A, Gershenson J, Khan A, Nicholson J, Huang Z, Spurgat M, Tang SJ, Wang H, Ojima I, Carlson D, Komatsu DE, Kaczocha M. Fatty acid binding protein 5 inhibition attenuates pronociceptive cytokine/chemokine expression and suppresses osteoarthritis pain: A comparative human and rat study. Osteoarthritis Cartilage 2024; 32:266-280. [PMID: 38035977 PMCID: PMC11283882 DOI: 10.1016/j.joca.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.
Collapse
Affiliation(s)
- Chris Gordon
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Trainor
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Rohan J Shah
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Keith Studholme
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Alex Gelman
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faniya Doswell
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Faisal Sadar
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Allessio Giovannetti
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Josh Gershenson
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ayesha Khan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James Nicholson
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - ZeYu Huang
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Michael Spurgat
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - David Carlson
- Genomics Core Facility and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Selmi C, Chimenti MS, Novelli L, Parikh BK, Morello F, de Vlam K, Ciccia F. Pain in axial spondyloarthritis: role of the JAK/STAT pathway. Front Immunol 2024; 15:1341981. [PMID: 38464510 PMCID: PMC10921361 DOI: 10.3389/fimmu.2024.1341981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that is characterized by new bone formation in the axial musculoskeletal system, with X-ray discriminating between radiographic and non-radiographic forms. Current therapeutic options include non-steroidal anti-inflammatory drugs in addition to biological disease-modifying anti-rheumatic drugs that specifically target tumor necrosis factor-alpha (TNFα) or interleukin (IL)-17. Pain is the most critical symptom for axSpA patients, significantly contributing to the burden of disease and impacting daily life. While the inflammatory process exerts a major role in determining pain in the early phases of the disease, the symptom may also result from mechanical and neuromuscular causes that require complex, multi-faceted pharmacologic and non-pharmacologic treatment, especially in the later phases. In clinical practice, pain often persists and does not respond further despite the absence of inflammatory disease activity. Cytokines involved in axSpA pathogenesis interact directly/indirectly with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling cascade, a fundamental component in the origin and development of spondyloarthropathies. The JAK/STAT pathway also plays an important role in nociception, and new-generation JAK inhibitors have demonstrated rapid pain relief. We provide a comprehensive review of the different pain types observed in axSpA and the potential role of JAK/STAT signaling in this context, with specific focus on data from preclinical studies and data from clinical trials with JAK inhibitors.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome Tor Vergata, Rome, Italy
| | | | - Bhumik K. Parikh
- Global Medical Affairs, AbbVie, Inc., Mettawa, IL, United States
| | | | - Kurt de Vlam
- Department of Rheumatology, University Hospital Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KULeuven, Leuven, Belgium
| | - Francesco Ciccia
- Department of Precision Medicine Napoli, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
14
|
Lin Z, Luo X, Wickman JR, Reddy D, Pande R, Tian Y, Triana V, Lee J, Furdui CM, Pink D, Sacan A, Ajit SK. Inflammatory pain resolution by mouse serum-derived small extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.578759. [PMID: 38405813 PMCID: PMC10888877 DOI: 10.1101/2024.02.16.578759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.
Collapse
Affiliation(s)
- Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Desmond Pink
- Nanostics Inc., Edmonton, Alberta, T5J 4P6, Canada
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
15
|
Martin Gil C, Raoof R, Versteeg S, Willemen HLDM, Lafeber FPJG, Mastbergen SC, Eijkelkamp N. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav Immun 2024; 116:203-215. [PMID: 38070625 DOI: 10.1016/j.bbi.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.
Collapse
Affiliation(s)
- Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanneke L D M Willemen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Alvarez-Flores MP, Correia Batista IDF, Villas Boas IM, Bufalo MC, de Souza JG, Oliveira DS, Bonfá G, Fernandes CM, Marques Porto R, Lichtenstein F, Picolo G, Tambourgi DV, Chudzinski-Tavassi AM, Ibañez OCM, Teixeira C. Snake and arthropod venoms: Search for inflammatory activity in human cells involved in joint diseases. Toxicon 2024; 238:107568. [PMID: 38110040 DOI: 10.1016/j.toxicon.2023.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1β, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and β-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Isadora Maria Villas Boas
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | | | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil
| | | | - Giuliano Bonfá
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunochemistry, Instituto Butantan, Sao Paulo, Brazil
| | - Cristina Maria Fernandes
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil
| | - Rafael Marques Porto
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil
| | - Gisele Picolo
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pain and Signaling, Instituto Butantan, Sao Paulo, Brazil
| | | | | | - Olga Célia Martinez Ibañez
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Immunogenetics, Instituto Butantan, Sao Paulo, Brazil.
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery, Instituto Butantan, Sao Paulo, Brazil; Laboratory of Pharmacology, Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Su Y, Han Y, Choi HS, Lee GY, Cho HW, Choi H, Choi JH, Jang YS, Seo JW. Lipid mediators obtained from docosahexaenoic acid by soybean lipoxygenase attenuate RANKL-induced osteoclast differentiation and rheumatoid arthritis. Biomed Pharmacother 2024; 171:116153. [PMID: 38232664 DOI: 10.1016/j.biopha.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by persistent inflammation and joint destruction. A lipid mediator (LM, namely, 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA, exhibits anti-inflammatory activity. In this study, we determined the effect of LM on collagen antibody-induced arthritis (CAIA) in mice and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in RAW264.7 cells. LM effectively downregulated the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K, inhibited osteoclast formation, and suppressed the NF-κB signaling pathway in vitro. In vivo, LM at 10 μg/kg/day significantly decreased paw swelling and inhibited progression of arthritis in CAIA mice. Moreover, proinflammatory cytokine (tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-17, and interferon-γ) levels in serum were decreased, whereas IL-10 levels were increased following LM treatment. Furthermore, LM alleviated joint inflammation, cartilage erosion, and bone destruction in the ankles, which may be related to matrix metalloproteinase and Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathway. Our findings suggest that LM attenuates arthritis severity, restores serum imbalances, and modifies joint damage. Thus, LM represents a promising therapy for relieving RA symptoms.
Collapse
Affiliation(s)
- Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea; Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea
| | - Yunjon Han
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea
| | - Hack Sun Choi
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Gil-Yong Lee
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea
| | - Hee Won Cho
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea
| | - Heonsik Choi
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| |
Collapse
|
18
|
Naratadam GT, Mecklenburg J, Shein SA, Zou Y, Lai Z, Tumanov AV, Price TJ, Akopian AN. Degenerative and regenerative peripheral processes are associated with persistent painful chemotherapy-induced neuropathies in males and females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577218. [PMID: 38328207 PMCID: PMC10849728 DOI: 10.1101/2024.01.25.577218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This study aimed to investigate the time course of gene expression changes during the progression of persistent painful neuropathy caused by paclitaxel (PTX) in male and female mouse hind paws and dorsal root ganglia (DRG). Bulk RNA-seq was used to investigate the gene expression changes in the paw and DRG collected at 1, 16, and 31 days post-PTX. At these time points, differentially expressed DEGs were predominantly related to reduction or increase in epithelial, skin, bone, and muscle development and to angiogenesis, myelination, axonogenesis, and neurogenesis. These processes were accompanied by regulation of DEGs related to cytoskeleton, extracellular matrix organization and cellular energy production. This gene plasticity during persistent painful neuropathy progression likely represents biological processes linked to tissue regeneration and degeneration. Unlike regeneration/degeneration, gene plasticity related to immune processes was minimal at 1-31 days post-PTX. It was also noted that despite similarities in biological processes and pain chronicity in males and females, specific DEGs showed dramatic sex-dependency. The main conclusions of this study are that gene expression plasticity in paws and DRG during PTX neuropathy progression relates to tissue regeneration and degeneration, minimally affects the immune system processes, and is heavily sex-dependent at the individual gene level.
Collapse
|
19
|
Lindquist KA, Shein SA, Hovhannisyan AH, Mecklenburg J, Zou Y, Lai Z, Tumanov AV, Akopian AN. Associations of tissue damage induced inflammatory plasticity in masseter muscle with the resolution of chronic myalgia. Sci Rep 2023; 13:22057. [PMID: 38086903 PMCID: PMC10716154 DOI: 10.1038/s41598-023-49280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Gene plasticity during myogenous temporomandibular disorder (TMDM) development is largely unknown. TMDM could be modeled by intramuscular inflammation or tissue damage. To model inflammation induced TMDM we injected complete Freund's adjuvant (CFA) into masseter muscle (MM). To model tissue damage induced TMDM we injected extracellular matrix degrading collagenase type 2 (Col). CFA and Col produced distinct myalgia development trajectories. We performed bulk RNA-seq of MM to generate gene plasticity time course. CFA initiated TMDM (1d post-injection) was mainly linked to chemo-tacticity of monocytes and neutrophils. At CFA-induced hypersensitivity post-resolution (5d post-injection), tissue repair processes were pronounced, while inflammation was absent. Col (0.2U) produced acute hypersensitivity linked to tissue repair without inflammatory processes. Col (10U) generated prolonged hypersensitivity with inflammatory processes dominating initiation phase (1d). Pre-resolution phase (6d) was accompanied with acceleration of expressions for tissue repair and pro-inflammatory genes. Flow cytometry showed that immune processes in MM was associated with accumulations of macrophages, natural killer, dendritic and T-cells, further confirming our RNA-seq findings. Altogether, CFA and Col treatments induced different immune processes in MM. Importantly, TMDM resolution was preceded with muscle cell and extracellular matrix repairs, an elevation in immune system gene expressions and distinct immune cell accumulations in MM.
Collapse
Affiliation(s)
- Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sergey A Shein
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yi Zou
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
| | - Zhao Lai
- Departments of Molecular Medicine, The School of Medicine, UTHSCSA, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Microbiology, Immunology & Molecular Genetics, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| | - Armen N Akopian
- Integrated Biomedical Sciences (IBMS) Program, The School of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
20
|
Willemen HLDM, Santos Ribeiro PS, Broeks M, Meijer N, Versteeg S, Tiggeler A, de Boer TP, Małecki JM, Falnes PØ, Jans J, Eijkelkamp N. Inflammation-induced mitochondrial and metabolic disturbances in sensory neurons control the switch from acute to chronic pain. Cell Rep Med 2023; 4:101265. [PMID: 37944527 PMCID: PMC10694662 DOI: 10.1016/j.xcrm.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.
Collapse
Affiliation(s)
- Hanneke L D M Willemen
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Patrícia Silva Santos Ribeiro
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Melissa Broeks
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Nils Meijer
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Annefien Tiggeler
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 Utrecht, the Netherlands
| | - Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; CRES-O - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, 3508 Utrecht, the Netherlands.
| |
Collapse
|
21
|
Zhang Y, Ji Q. Current advances of photobiomodulation therapy in treating knee osteoarthritis. Front Cell Dev Biol 2023; 11:1286025. [PMID: 38033853 PMCID: PMC10687633 DOI: 10.3389/fcell.2023.1286025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Knee osteoarthritis (KOA) is manifested by low-grade joint inflammation, irreversible cartilage degeneration, subchondral bone remodeling and osteophyte formation. It is one of the most prevalent degenerative diseases in the elderly. KOA usually results in chronic joint pain, physical impairment even disability bringing a huge socioeconomic burden. Unfortunately, there is so far no effective interventions to delay the progression and development of KOA. There is a pressing need for explorations and developments of new effective interventions. Photobiomodulation therapy (PBMT), also known as low-level light therapy (LLLT), has attracted widespread attention in treating KOA because it is drug-free, non-invasive, safe and useful with rarely reported side effects. It provides the biological stimulatory effects primarily by enhancing the activity of mitochondrial cytochrome c oxidase. This stimulation, in turn, fosters cell proliferation and tissue regeneration. In addition to this, the paper provides a concise overview of the light parameters and the effectiveness of PBMT when applied in the treatment of KOA patients in clinical settings. It also delves into the experimental evidence supporting the modulatory effects of PBMT and its potential underlying mechanisms in addressing synovitis, cartilage degeneration, and pain resolution.
Collapse
Affiliation(s)
| | - Quanbo Ji
- Department of Orthopedics, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
22
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
23
|
Zhang Y, Ji Q. Macrophage polarization in osteoarthritis progression: a promising therapeutic target. Front Cell Dev Biol 2023; 11:1269724. [PMID: 37954210 PMCID: PMC10639142 DOI: 10.3389/fcell.2023.1269724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of pain and disability in the elderly. Synovitis, cartilage destruction and osteophyte formation histologically manifest OA. Unfortunately, there is currently no effective therapy to delay its progression and the underlying mechanisms of OA require further exploration. Macrophage is a main cellular component of joint synovium. It is highly plastic and can be stimulated to polarize to different phenotypes, namely, the pro-inflammatory phenotype (M1) and the anti-inflammatory/tissue-repairing phenotype (M2). Ample evidence has demonstrated the vital roles of macrophages in the progression of OA. Imbalanced M1/M2 ratio is significantly related to OA severity indicating macrophage polarization might be a promising therapeutic target for OA. In this review, we summarized the involvements of polarized macrophages in synovitis, cartilage degradation, osteophyte formation and OA-related chronic pain. Promising therapies targeting macrophage polarization including the intra-articular cell/derivates-based therapy and the alternative non-invasive intervention such as photobiomodulation therapy were reviewed as well.
Collapse
Affiliation(s)
| | - Quanbo Ji
- Department of Orthopedics, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
24
|
Vroman R, Hunter RS, Wood MJ, Davis OC, Malfait Z, George DS, Ren D, Tavares-Ferreira D, Price TJ, Miller RJ, Malfait AM, Malfait F, Miller RE, Syx D. Analysis of matrisome expression patterns in murine and human dorsal root ganglia. Front Mol Neurosci 2023; 16:1232447. [PMID: 37664243 PMCID: PMC10471487 DOI: 10.3389/fnmol.2023.1232447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The extracellular matrix (ECM) is a dynamic structure of molecules that can be divided into six different categories and are collectively called the matrisome. The ECM plays pivotal roles in physiological processes in many tissues, including the nervous system. Intriguingly, alterations in ECM molecules/pathways are associated with painful human conditions and murine pain models. Nevertheless, mechanistic insight into the interplay of normal or defective ECM and pain is largely lacking. The goal of this study was to integrate bulk, single-cell, and spatial RNA sequencing (RNAseq) datasets to investigate the expression and cellular origin of matrisome genes in male and female murine and human dorsal root ganglia (DRG). Bulk RNAseq showed that about 65% of all matrisome genes were expressed in both murine and human DRG, with proportionally more core matrisome genes (glycoproteins, collagens, and proteoglycans) expressed compared to matrisome-associated genes (ECM-affiliated genes, ECM regulators, and secreted factors). Single cell RNAseq on male murine DRG revealed the cellular origin of matrisome expression. Core matrisome genes, especially collagens, were expressed by fibroblasts whereas matrisome-associated genes were primarily expressed by neurons. Cell-cell communication network analysis with CellChat software predicted an important role for collagen signaling pathways in connecting vascular cell types and nociceptors in murine tissue, which we confirmed by analysis of spatial transcriptomic data from human DRG. RNAscope in situ hybridization and immunohistochemistry demonstrated expression of collagens in fibroblasts surrounding nociceptors in male and female human DRG. Finally, comparing human neuropathic pain samples with non-pain samples also showed differential expression of matrisome genes produced by both fibroblasts and by nociceptors. This study supports the idea that the DRG matrisome may contribute to neuronal signaling in both mouse and human, and that dysregulation of matrisome genes is associated with neuropathic pain.
Collapse
Affiliation(s)
- Robin Vroman
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Rahel S. Hunter
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Matthew J. Wood
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Olivia C. Davis
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Zoë Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Dale S. George
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Dongjun Ren
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Rachel E. Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Elfving A, Harila-Saari A, Nilsson L, Berntson L. An explorative study on proteomic analyses related to inflammation and pain in children with juvenile idiopathic arthritis. BMC Pediatr 2023; 23:365. [PMID: 37454049 PMCID: PMC10349407 DOI: 10.1186/s12887-023-04181-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Our aim was attempting to find proteins involved in the pain process and correlating with pain but not degree of inflammation in children with juvenile idiopathic arthritis (JIA), using a proteomics panel. METHODS A total of 87 plasma samples were collected from 51 children with JIA (51 at diagnosis in a higher disease activity state, 18 at follow-up in a lower disease activity state) and 18 healthy controls. Relative levels of 92 proteins related to a wide range of biological processes in inflammation were obtained using a proximity extension assay panel. Comparisons between children with and without JIA, in different disease categories, by juvenile disease activity score (JADAS27) and degree of pain on a visual analogue scale (VAS), were performed using parametric and non-parametric statistical methods. RESULTS Nineteen proteins involved in arthritic inflammation, such as interleukin 6 (IL-6) and S100 protein A12, were higher in patients with JIA than controls, seven decreased significantly during treatment, and 18 correlated significantly with JADAS27. Three proteins correlated with pain VAS scores in unadjusted analyses: the glial cell line-derived neurotrophic factor (GDNF), transforming growth factor beta, and IL-18R1. Levels of GDNF correlated significantly with pain VAS scores but not with JADAS27. CONCLUSIONS Plasma levels of 18 of 92 tested proteins correlated with degree of disease activity. Levels of three proteins correlated with pain, and levels of one, GDNF, originating from neural cells, correlated with pain without correlating with inflammatory degree, suggesting that it may play a role in pain in JIA. Further studies in larger cohorts are warranted.
Collapse
Affiliation(s)
- Andreas Elfving
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Arja Harila-Saari
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Ludwig Nilsson
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Lillemor Berntson
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
26
|
Das D, Choy E. Non-inflammatory pain in inflammatory arthritis. Rheumatology (Oxford) 2023; 62:2360-2365. [PMID: 36478185 PMCID: PMC10321089 DOI: 10.1093/rheumatology/keac671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/19/2022] [Indexed: 07/20/2023] Open
Abstract
'Non-inflammatory' pain, pain that is not associated with measures of inflammation, is common in patients with inflammatory arthritis including RA. One important cause of non-inflammatory pain is concomitant fibromyalgia. Systematic review has shown that fibromyalgia is common in inflammatory arthritis including RA affecting 1 in 5 patients and is associated with higher disease activity scores due to inflated tender joint count and patient global assessment. Consequently, many patients with RA and concomitant fibromyalgia may fail to reach treatment target and switch to alternate disease modifying drugs frequently. European Alliance of Association for Rheumatology has highlighted that concomitant fibromyalgia is an important consideration in assessing difficult-to-treat RA. The incidence and prevalence of fibromyalgia are higher in RA than the general population, raising the possibility that fibromyalgia may be 'secondary' to RA rather than a concomitant disease. The precise mechanisms whereby patients with RA develop fibromyalgia are unknown. In this review, we discussed fibromyalgia in RA, its clinical impact and epidemiology as well as data suggesting fibromyalgia might be 'secondary'. Lastly, we reviewed potential pathogenic mechanisms which included inflammatory cytokines sensitizing nociceptive neurones, temporal summation, also known as windup, from chronic pain and impaired coping from poor quality sleep and mental well-being. Deciphering the exact mechanisms may lead to treatment strategies that prevent development of secondary fibromyalgia and will address a common factor associated with difficult-to-treat RA.
Collapse
Affiliation(s)
- Dhivya Das
- Consultant Rheumatologist, Northern Care Alliance NHS Foundation Trust, University School of Medicine (Formerly with Cardiff), Cardiff, UK
| | - Ernest Choy
- CREATE Centre, Section of Rheumatology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
27
|
Warmink K, Rios JL, Varderidou-Minasian S, Torres-Torrillas M, van Valkengoed DR, Versteeg S, Eijkelkamp N, Weinans H, Korthagen NM, Lorenowicz MJ. Mesenchymal stem/stromal cells-derived extracellular vesicles as a potentially more beneficial therapeutic strategy than MSC-based treatment in a mild metabolic osteoarthritis model. Stem Cell Res Ther 2023; 14:137. [PMID: 37226203 DOI: 10.1186/s13287-023-03368-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) hold promise as a disease modifying treatment in osteoarthritis (OA). Obesity, and its associated inflammation, contribute to OA development and metabolic OA represents a specific and significant group of the OA patient population. Given their immunomodulatory properties, MSC and MSC-EVs are especially interesting for this group of patients as a therapeutic option. Here, we were the first to compare the therapeutic efficacy of MSCs and MSC-EVs in a mild OA model taking these metabolic aspects into consideration. METHODS Male Wistar-Han rats (Crl:WI(Han) (n = 36) were fed a high fat diet for 24 weeks, with unilateral induction of OA by groove surgery after 12 weeks. Eight days after surgery rats were randomized in three treatment groups receiving MSCs, MSC-EVs or vehicle injection. Pain-associated behavior, joint degeneration, and local and systemic inflammation were measured. RESULTS We demonstrated that despite not having a significant therapeutic effect, MSC-EV treatment results in lower cartilage degeneration, less pain behaviour, osteophytosis and joint inflammation, than MSC treatment. Suggesting that MSC-EVs could be a more promising therapeutic strategy than MSCs in this mild metabolic OA model. CONCLUSION In summary, we find that MSC treatment has negative effects on the joint in metabolic mild OA. This is an essential finding for the significant group of patients with metabolic OA phenotype, and might help to understand why clinical translation of MSC treatment shows varying therapeutic efficacy thus far. Our results also suggest that MSC-EV-based treatment might be a promising option for these patients, however MSC-EV therapeutic efficacy will need improvement.
Collapse
Affiliation(s)
- Kelly Warmink
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jaqueline L Rios
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
- García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain
| | - Devin R van Valkengoed
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | - Harrie Weinans
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
- Department of Biomechanical Engineering, TU Delft, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Nicoline M Korthagen
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Magdalena J Lorenowicz
- Regenerative Medicine Center, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
28
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
29
|
Gheorghe RO, Grosu AV, Bica-Popi M, Ristoiu V. The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232012389. [PMID: 36293246 PMCID: PMC9603877 DOI: 10.3390/ijms232012389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Traumatic peripheral neuropathic pain is a complex syndrome caused by a primary lesion or dysfunction of the peripheral nervous system. Secondary to the lesion, resident or infiltrating macrophages proliferate and initiate a cross-talk with the sensory neurons, at the level of peripheral nerves and sensory ganglia. The neuron–macrophage interaction, which starts very early after the lesion, is very important for promoting pain development and for initiating changes that will facilitate the chronicization of pain, but it also has the potential to facilitate the resolution of injury-induced changes and, consequently, promote the reduction of pain. This review is an overview of the unique characteristics of nerve-associated macrophages in the peripheral nerves and sensory ganglia and of the molecules and signaling pathways involved in the neuro-immune cross-talk after a traumatic lesion, with the final aim of better understanding how the balance between pro- and anti-nociceptive dialogue between neurons and macrophages may be modulated for new therapeutic approaches.
Collapse
|
30
|
Wedel S, Mathoor P, Rauh O, Heymann T, Ciotu CI, Fuhrmann DC, Fischer MJM, Weigert A, de Bruin N, Hausch F, Geisslinger G, Sisignano M. SAFit2 reduces neuroinflammation and ameliorates nerve injury-induced neuropathic pain. J Neuroinflammation 2022; 19:254. [PMID: 36217203 PMCID: PMC9552419 DOI: 10.1186/s12974-022-02615-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2024] Open
Abstract
Background Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51. Methods In this study, we used the well-established and robust spared nerve injury model to analyze the effect of SAFit2 on nerve injury-induced neuropathic pain and to elucidate its pharmacodynamics profile. Therefore, the mice were treated with 10 mg/kg SAFit2 after surgery, the mice behavior was assessed over 21 days and biochemical analysis were performed after 14 and 21 days. Furthermore, the impact of SAFit2 on sensory neurons and macrophages was investigated in vitro. Results Here, we show that the FKBP51 inhibitor SAFit2 ameliorates nerve injury-induced neuropathic pain in vivo by reducing neuroinflammation. SAFit2 reduces the infiltration of immune cells into neuronal tissue and counteracts the increased NF-κB pathway activation which leads to reduced cytokine and chemokine levels in the DRGs and spinal cord. In addition, SAFit2 desensitizes the pain-relevant TRPV1 channel and subsequently reduces the release of pro-inflammatory neuropeptides from sensory neurons. Conclusions SAFit2 ameliorates neuroinflammation and counteracts enhanced neuronal activity after nerve injury leading to an amelioration of nerve injury-induced neuropathic pain. Based on these findings, SAFit2 constitutes as a novel and promising drug candidate for the treatment of nerve injury-induced neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02615-7.
Collapse
Affiliation(s)
- Saskia Wedel
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany
| | - Praveen Mathoor
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Tim Heymann
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Natasja de Bruin
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Kim HA, Park SY, Shin K. Implications of Persistent Pain in Patients With Rheumatoid Arthritis Despite Remission Status: Data From the KOBIO Registry. JOURNAL OF RHEUMATIC DISEASES 2022; 29:215-222. [PMID: 37476424 PMCID: PMC10351409 DOI: 10.4078/jrd.22.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 07/22/2023]
Abstract
Objective This study aimed to assess the prevalence of pain in patients with RA in clinical remission and analyze the demographic and clinical characteristics of those who experienced persistent pain despite remission status. Methods Data from 1,891 patients with RA registered on the Korean College of Rheumatology Biologics and Targeted Therapy registry were obtained. Remission was defined as a Disease Activity Score of 28 joints-erythrocyte sedimentation rate (ESR) <2.6. Pain intensity was classified as severe (pain visual analog scale [VAS] ≥7), moderate (4≤VAS<7), or mild (VAS <4). Results Our analysis showed that 52.6% of patients complained of severe pain at the start of or during switching biological disease-modifying anti-rheumatic drugs (bDMARDs) or targeted synthetic DMARDs (tsDMARDs). Despite having a 36.0% (n=680) remission rate after the use of bDMARDs or tsDMARDs at their 1-year follow-up, 21.5% (n=146) of these patients had moderate-to-severe pain, higher frequency of foot erosions, and comorbidities, such as mental illness, endocrine, renal, and neurological disorders, than patients with a milder degree of pain. The multivariable regression analysis showed that presence of foot erosions, neurological disorders, and use of corticosteroids were independently associated with moderate-to-severe pain in patients with RA despite being in remission. The level of ESR and use of Janus kinase inhibitors were inversely associated with moderate-to-severe pain. Conclusion Persistent pain and discomfort continue to be a problem for patients with RA in clinical remission. Continued research on insistent pain in patients with RA is warranted to better alleviate distress and improve the quality of life in patients.
Collapse
Affiliation(s)
- Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - So Young Park
- Divison of Rheumatology, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Kichul Shin
- Divison of Rheumatology, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
32
|
Differences in plasma lipoprotein profiles between patients with chronic peripheral neuropathic pain and healthy controls: an exploratory pilot study. Pain Rep 2022; 7:e1036. [PMID: 36203648 PMCID: PMC9529241 DOI: 10.1097/pr9.0000000000001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Lipoprotein profiles were significantly different between patients with chronic peripheral neuropathic pain and healthy controls, indicative of ongoing systemic low-grade inflammation among the patients. Introduction: Little is still known about the underlying mechanisms that drive and maintain neuropathic pain (NeuP). Recently, lipids have been implicated as endogenous proalgesic ligands affecting onset and maintenance of pain; however, in the case of NeuP, the relationship is largely unexplored. Objectives: The aim of this study was to investigate the lipoprotein profile in patients with chronic peripheral NeuP compared with healthy controls. Methods: The concentrations of 112 lipoprotein fractions in plasma from patients with NeuP (n = 16) and healthy controls (n = 13) were analyzed using proton nuclear magnetic resonance spectroscopy. A multiplex immunoassay based on an electrochemiluminescent detection method was used to measure the concentration of 71 cytokines in plasma from patients with NeuP (n = 10) and healthy controls (n = 11). Multivariate data analysis was used to identify patterns of protein intercorrelations and proteins significant for group discrimination. Results: We found 23 lipoproteins that were significantly upregulated in patients with NeuP compared with healthy controls. When the influence of cytokines was included in a regression model, 30 proteins (8 cytokines and 22 lipoprotein fractions) were significantly upregulated or downregulated in patients with NeuP. Both conditions presented lipoprotein profiles consistent with inflammation. Body mass index did not affect lipoprotein profiles in either group. No relationship between age and lipoprotein pattern was found in NeuP, but a significant relationship was found in healthy controls. Conclusion: Patients with NeuP presented a lipoprotein profile consistent with systemic low-grade inflammation, like that seen in autoimmune, cardiometabolic, and neuroprogressive diseases. These preliminary results emphasize the importance of chronic low-grade inflammation in NeuP.
Collapse
|
33
|
The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int J Mol Sci 2022; 23:ijms23169080. [PMID: 36012341 PMCID: PMC9409023 DOI: 10.3390/ijms23169080] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a relatively common disease in the general population. Besides its interaction with many comorbidities, it can also interact with potentially painful conditions and modulate its course. The association between OSA and pain modulation has recently been a topic of concern for many scientists. The mechanism underlying OSA-related pain connection has been linked with different pathophysiological changes in OSA and various pain mechanisms. Furthermore, it may cause both chronic and acute pain aggravation as well as potentially influencing the antinociceptive mechanism. Characteristic changes in OSA such as nocturnal hypoxemia, sleep fragmentation, and systemic inflammation are considered to have a curtailing impact on pain perception. Hypoxemia in OSA has been proven to have a significant impact on increased expression of proinflammatory cytokines influencing the hyperalgesic priming of nociceptors. Moreover, hypoxia markers by themselves are hypothesized to modulate intracellular signal transduction in neurons and have an impact on nociceptive sensitization. Pain management in patients with OSA may create problems arousing from alterations in neuropeptide systems and overexpression of opioid receptors in hypoxia conditions, leading to intensification of side effects, e.g., respiratory depression and increased opioid sensitivity for analgesic effects. In this paper, we summarize the current knowledge regarding pain and pain treatment in OSA with a focus on molecular mechanisms leading to nociceptive modulation.
Collapse
|
34
|
Gao D, Gao X, Yang F, Wang Q. Neuroimmune Crosstalk in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:8158. [PMID: 35897734 PMCID: PMC9332175 DOI: 10.3390/ijms23158158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022] Open
Abstract
Recent studies have demonstrated that immunological disease progression is closely related to abnormal function of the central nervous system (CNS). Rheumatoid arthritis (RA) is a chronic, inflammatory synovitis-based systemic immune disease of unknown etiology. In addition to joint pathological damage, RA has been linked to neuropsychiatric comorbidities, including depression, schizophrenia, and anxiety, increasing the risk of neurodegenerative diseases in life. Immune cells and their secreted immune factors will stimulate the peripheral and central neuronal systems that regulate innate and adaptive immunity. The understanding of autoimmune diseases has largely advanced insights into the molecular mechanisms of neuroimmune interaction. Here, we review our current understanding of CNS comorbidities and potential physiological mechanisms in patients with RA, with a focus on the complex and diverse regulation of mood and distinct patterns of peripheral immune activation in patients with rheumatoid arthritis. And in our review, we also discussed the role that has been played by peripheral neurons and CNS in terms of neuron mechanisms in RA immune challenges, and the related neuron-immune crosstalk.
Collapse
Affiliation(s)
- Dashuang Gao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Gao
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China;
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China;
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
35
|
Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. FRONTIERS IN PAIN RESEARCH 2022; 3:946846. [PMID: 35859655 PMCID: PMC9289261 DOI: 10.3389/fpain.2022.946846] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is a long-standing unpleasant sensory and emotional feeling that has a tremendous impact on the physiological functions of the body, manifesting itself as a dysfunction of the nervous system, which can occur with peripheral and central sensitization. Many recent studies have shown that a variety of common immune cells in the immune system are involved in chronic pain by acting on the peripheral or central nervous system, especially in the autoimmune diseases. This article reviews the mechanisms of regulation of the sensory nervous system by neutrophils, macrophages, mast cells, B cells, T cells, and central glial cells. In addition, we discuss in more detail the influence of each immune cell on the initiation, maintenance, and resolution of chronic pain. Neutrophils, macrophages, and mast cells as intrinsic immune cells can induce the transition from acute to chronic pain and its maintenance; B cells and T cells as adaptive immune cells are mainly involved in the initiation of chronic pain, and T cells also contribute to the resolution of it; the role of glial cells in the nervous system can be extended to the beginning and end of chronic pain. This article aims to promote the understanding of the neuroimmune mechanisms of chronic pain, and to provide new therapeutic ideas and strategies for the control of chronic pain at the immune cellular level.
Collapse
Affiliation(s)
- Jia-Xuan Yang
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Hong-Fei Wang
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Zhun Chen
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Han-Yu Li
- Second School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ji-Chen Hu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - An-An Yu
- First School of Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jun-Jun Wen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Si-Jia Chen
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Wei-Dong Lai
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Song Wang
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yan Jin
| | - Jie Yu
- Institute of Clinical Fundamentals of Traditional Chinese Medicine, School of Basic Medicine, Zhejiang Chinese Medicine University, Hangzhou, China
- Jie Yu
| |
Collapse
|
36
|
Merritt CR, Cisneros IE, Covarrubias-Zambrano O, Stutz SJ, Motamedi M, Bossmann SH, Cunningham KA. Liquid Biopsy-Based Biomarkers of Inflammatory Nociception Identified in Male Rats. Front Pharmacol 2022; 13:893828. [PMID: 35833018 PMCID: PMC9271856 DOI: 10.3389/fphar.2022.893828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Physicians are challenged in treating pain patients due to the lack of quantifiable, objective methods of measuring pain in the clinic; pain sensation is multifaceted and subjective to each individual. There is a critical need for point-of-care quantification of accessible biomarkers to provide objective analyses beyond the subjective pain scales currently employed in clinical care settings. In the present study, we employed an animal model to test the hypothesis that circulating regulators of the inflammatory response directly associate with an objective behavioral response to inflammatory pain. Upon induction of localized paw inflammation, we measured the systemic protein expression of cytokines, and activity levels of matrix metalloproteinases (MMPs) that are known to participate in the inflammatory response at the site of injury and investigated their relationship to the behavioral response across a 24 h period. Intraplantar injection with 1% λ-carrageenan induced a significant increase in paw thickness across this timespan with maximal effects observed at the 8 h timepoint when locomotor activity was also impaired. Expression of the chemokines C-X-C motif chemokine ligand 1 (CXCL1) and C-C motif chemokine ligand 2 (CCL2) positively correlated with paw inflammation and negatively correlated with locomotor activity at 8 h. The ratio of MMP9 to MMP2 activity negatively correlated with paw inflammation at the 8 h timepoint. We postulate that the CXCL1 and CCL2 as well as the ratio of MMP9 to MMP2 activity may serve as predictive biomarkers for the timecourse of inflammation-associated locomotor impairment. These data define opportunities for the future development of a point-of-care device to objectively quantify biomarkers for inflammatory pain states.
Collapse
Affiliation(s)
- Christina R. Merritt
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irma E. Cisneros
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Obdulia Covarrubias-Zambrano
- Department of Chemistry, Kansas State University, Manhattan, KS, United States
- Department of Cancer Biology, The University of Kansas Cancer Center, Kansas City, MO, United States
| | - Sonja J. Stutz
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Massoud Motamedi
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Stefan H. Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS, United States
- Department of Cancer Biology, The University of Kansas Cancer Center, Kansas City, MO, United States
| | - Kathryn A. Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Kathryn A. Cunningham,
| |
Collapse
|
37
|
Graham-Engeland J, DeMeo NN, Jones DR, Mathur A, Smyth JM, Sliwinski MJ, McGrady ME, Lipton RB, Katz MJ, Engeland CG. Individuals with both higher recent negative affect and physical pain have higher levels of C-reactive protein. Brain Behav Immun Health 2022; 21:100431. [PMID: 35243409 PMCID: PMC8881375 DOI: 10.1016/j.bbih.2022.100431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/02/2022] Open
Abstract
Conceptualizing physical pain and negative affect as potentially interactive, we hypothesized that higher levels of peripheral inflammatory markers would be observed consistently only among individuals with both higher negative affect and pain symptomatology. Participants were generally healthy midlife adults from the Bronx, NY (N = 212, Mage = 46.77; 60.8% Black, 25.5% Hispanic/Latina/o) recruited as part of a larger study. Key measures were: reported pain intensity and pain interference at baseline, recent negative affect averaged from self-reports 5x/day for 7 days, and peripheral inflammatory markers (C-reactive protein [CRP] and a composite cytokine measure based on seven cytokines). Controlling for age, BMI, gender, and education, recent negative affect significantly interacted with both pain variables to explain variance in CRP, with higher CRP levels observed only in individuals with both higher negative affect and either higher pain intensity or pain interference. These findings contribute to an emerging literature suggesting that negative affect, pain, and inflammation are related in important and complex ways.
Collapse
|
38
|
Van Der Heijden H, Fatou B, Sibai D, Hoyt K, Taylor M, Cheung K, Lemme J, Cay M, Goodlett B, Lo J, Hazen MM, Halyabar O, Meidan E, Schreiber R, Jaimes C, Ecklund K, Henderson LA, Chang MH, Nigrovic PA, Sundel RP, Steen H, Upadhyay J. Proteomics based markers of clinical pain severity in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2022; 20:3. [PMID: 35033099 PMCID: PMC8761318 DOI: 10.1186/s12969-022-00662-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Juvenile idiopathic arthritis (JIA) is a cluster of autoimmune rheumatic diseases occurring in children 16 years of age or less. While it is well-known that pain may be experienced during inflammatory and non-inflammatory states, much remains ambiguous regarding the molecular mechanisms that may drive JIA pain. Thus, in this pilot study, we explored the variability of the serum proteomes in relation to pain severity in a cohort of JIA patients. METHODS Serum samples from 15 JIA patients (male and female, 12.7 ± 2.8 years of age) were assessed using liquid chromatography/mass spectrometry (LC/MS). Correlation analyses were performed to determine the relationships among protein levels and self-reported clinical pain severity. Additionally, how the expression of pain-associated proteins related to markers of inflammation (Erythrocyte Sedimentation Rate (ESR)) or morphological properties of the central nervous system (subcortical volume and cortical thickness) implicated in JIA were also evaluated. RESULTS 306 proteins were identified in the JIA cohort of which 14 were significantly (p < 0.05) associated with clinical pain severity. Functional properties of the identified pain-associated proteins included but were not limited to humoral immunity (IGLV3.9), inflammatory response (PRG4) and angiogenesis (ANG). Associations among pain-associated proteins and ESR (IGHV3.9, PRG4, CST3, VWF, ALB), as well as caudate nucleus volume (BTD, AGT, IGHV3.74) and insular cortex thickness (BTD, LGALS3BP) were also observed. CONCLUSIONS The current proteomic findings suggest both inflammatory- and non-inflammatory mediated mechanisms as potential factors associated with JIA pain. Validation of these preliminary observations using larger patient cohorts and a longitudinal study design may further point to novel serologic markers of pain in JIA.
Collapse
Affiliation(s)
- Hanne Van Der Heijden
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.5012.60000 0001 0481 6099Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology Maastricht University, Maastricht, The Netherlands ,grid.7177.60000000084992262Faculty of Science, Biomedical Sciences Neurobiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Benoit Fatou
- grid.38142.3c000000041936754XDepartment of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Diana Sibai
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kacie Hoyt
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Maria Taylor
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kin Cheung
- BioSAS Consulting, Inc, Wellesley, MA USA
| | - Jordan Lemme
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Mariesa Cay
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Benjamin Goodlett
- grid.38142.3c000000041936754XDivision of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Jeffery Lo
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Melissa M. Hazen
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Olha Halyabar
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Esra Meidan
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Rudy Schreiber
- grid.5012.60000 0001 0481 6099Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology Maastricht University, Maastricht, The Netherlands
| | - Camilo Jaimes
- grid.38142.3c000000041936754XDepartment of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kirsten Ecklund
- grid.38142.3c000000041936754XDepartment of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Lauren A. Henderson
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Margaret H. Chang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Peter A. Nigrovic
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert P. Sundel
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Neurobiology Program, Boston Children's Hospital, Boston, MA, USA. .,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Psychiatry, McLean Hospital, Harvard Medical School, MA, Belmont, USA.
| |
Collapse
|
39
|
Wang Z, Martellucci S, Van Enoo A, Austin D, Gelber C, Campana WM. α1-Antitrypsin derived SP16 peptide demonstrates efficacy in rodent models of acute and neuropathic pain. FASEB J 2022; 36:e22093. [PMID: 34888951 PMCID: PMC8669735 DOI: 10.1096/fj.202101031rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
SP16 is an innovative peptide derived from the carboxyl-terminus of α1-Antitrypsin (AAT), corresponding to residues 364-380, and contains recognition sequences for the low-density lipoprotein receptor-related protein-1 (LRP1). LRP1 is an endocytic and cell-signaling receptor that regulates inflammation. Deletion of Lrp1 in Schwann cells increases neuropathic pain; however, the role of LRP1 activation in nociceptive and neuropathic pain regulation remains unknown. Herein, we show that SP16 is bioactive in sensory neurons in vitro. Neurite length and regenerative gene expression were increased by SP16. In PC12 cells, SP16 activated Akt and ERK1/2 cell-signaling in an LRP1-dependent manner. When formalin was injected into mouse hind paws, to model inflammatory pain, SP16 dose-dependently attenuated nociceptive pain behaviors in the early and late phases. In a second model of acute pain using capsaicin, SP16 significantly reduced paw licking in both male and female mice (p < .01) similarly to enzymatically inactive tissue plasminogen activator, a known LRP1 interactor. SP16 also prevented development of tactile allodynia after partial nerve ligation and this response was sustained for nine days (p < .01). Immunoblot analysis of the injured nerve revealed decreased CD11b (p < .01) and Toll-like receptor-4 (p < .005). In injured dorsal root ganglia SP16 reduced CD11b+ cells (p < .05) and GFAP (p < .005), indicating that inflammatory cell recruitment and satellite cell activation were inhibited. In conclusion, administration of SP16 blocked pain-related responses in three distinct pain models, suggesting efficacy against acute nociceptive, inflammatory, and neuropathic pain. SP16 also attenuated innate immunity in the PNS. These studies identify SP16 as a potentially effective treatment for pain.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA
| | - Stefano Martellucci
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA
| | - Alicia Van Enoo
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA;,Program in Neurosciences, University of California, San Diego, La Jolla CA 92093, USA
| | | | | | - Wendy M. Campana
- Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla CA, 92093-0629 USA;,Program in Neurosciences, University of California, San Diego, La Jolla CA 92093, USA;,San Diego Veterans Administration Health Care System, CA, 92161, USA
| |
Collapse
|
40
|
Vrouwe J, Burggraaf J, Kloppenburg M, Stuurman F. Challenges and opportunities of pharmacological interventions for osteoarthritis: A review of current clinical trials and developments. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100212. [PMID: 36474768 PMCID: PMC9718290 DOI: 10.1016/j.ocarto.2021.100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/17/2023] Open
Abstract
Objective Osteoarthritis (OA) is the most common cause of disability in older adults, and leads to a huge unmet medical need, as no registered disease modifying OA drugs (DMOADs), but only symptomatic treatments, are available. New targets and compounds for these targets, are currently under investigation. The objective of this paper is to provide an overview of compounds under investigation for OA in phase II and III. Design We performed a review of OA trials for pharmacological interventions registered on the National Library of Medicine ClinicalTrials.gov website with a completion date in 2017 or later. Results The database search yielded 255 results, of which 184 studies were included in this review. These were structured in compounds targeting pain, immunomodulators, stem cell therapy, platelet rich plasma and DMOADs with cartilage and/or bone resorption modifying properties. Conclusions The results provide an overview of the fields in development and may include future treatment options for OA, by which a registered DMOADs may become more than a utopic vista. Further knowledge on pathophysiology and new approaches of value-based drug development could be an opportunity for the optimization of drug development in OA.
Collapse
Affiliation(s)
- J.P.M. Vrouwe
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, the Netherlands
| | - J. Burggraaf
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Postbus 9502, 2300 RA, Leiden, the Netherlands
| | - M. Kloppenburg
- Leiden University Medical Center, Department of Rheumatology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
- Leiden University Medical Center, Department of Epidemiology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - F.E. Stuurman
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, the Netherlands
- Leiden University Medical Center, Department of Toxicology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
41
|
Lucarini E, Seguella L, Vincenzi M, Parisio C, Micheli L, Toti A, Corpetti C, Del Re A, Squillace S, Maftei D, Lattanzi R, Ghelardini C, Di Cesare Mannelli L, Esposito G. Role of Enteric Glia as Bridging Element between Gut Inflammation and Visceral Pain Consolidation during Acute Colitis in Rats. Biomedicines 2021; 9:biomedicines9111671. [PMID: 34829900 PMCID: PMC8616000 DOI: 10.3390/biomedicines9111671] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/30/2022] Open
Abstract
Acute inflammation is particularly relevant in the pathogenesis of visceral hypersensitivity associated with inflammatory bowel diseases. Glia within the enteric nervous system, as well as within the central nervous system, contributes to neuroplasticity during inflammation, but whether enteric glia has the potential to modify visceral sensitivity following colitis is still unknown. This work aimed to investigate the occurrence of changes in the neuron–glial networks controlling visceral perception along the gut–brain axis during colitis, and to assess the effects of peripheral glial manipulation. Enteric glia activity was altered by the poison fluorocitrate (FC; 10 µmol kg−1 i.p.) before inducing colitis in animals (2,4-dinitrobenzenesulfonic acid, DNBS; 30 mg in 0.25 mL EtOH 50%), and visceral sensitivity, colon damage, and glia activation along the pain pathway were studied. FC injection significantly reduced the visceral hyperalgesia, the histological damage, and the immune activation caused by DNBS. Intestinal inflammation is associated with a parallel overexpression of TRPV1 and S100β along the gut–brain axis (colonic myenteric plexuses, dorsal root ganglion, and periaqueductal grey area). This effect was prevented by FC. Peripheral glia activity modulation emerges as a promising strategy for counteracting visceral pain induced by colitis.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Chiara Corpetti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Daniela Maftei
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (A.T.); (C.G.)
- Correspondence:
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.V.); (C.C.); (A.D.R.); (D.M.); (R.L.); (G.E.)
| |
Collapse
|
42
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Raoof R, Martin Gil C, Lafeber FPJG, de Visser H, Prado J, Versteeg S, Pascha MN, Heinemans ALP, Adolfs Y, Pasterkamp J, Wood JN, Mastbergen SC, Eijkelkamp N. Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. J Neurosci 2021; 41:8249-8261. [PMID: 34400519 PMCID: PMC8482866 DOI: 10.1523/jneurosci.1787-20.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.SIGNIFICANCE STATEMENT In OA patients pain poorly correlates with joint tissue changes indicating mechanisms other than only tissue damage that cause pain in OA. We identified that DRG containing the somata of sensory neurons innervating the damaged knee are infiltrated with macrophages that are shaped into an M1-like phenotype by sensory neurons. We show that these DRG macrophages actively maintain OA pain remotely and independent of joint damage. The phenotype of these macrophages is crucial for a pain-promoting role. Targeting the phenotype of DRG macrophages with either M2-like macrophages or a cytokine fusion protein that skews macrophages into an M2-like phenotype resolves OA pain. Our work reveals a mechanism that contributes to the maintenance of OA pain distant from the affected knee joint and suggests that dorsal root ganglia macrophages are a target to treat osteoarthritis chronic pain.
Collapse
Affiliation(s)
- Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huub de Visser
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mirte N Pascha
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Anne L P Heinemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen Pasterkamp
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - John N Wood
- Molecular Nociception Group, Department of Biology, University College London, London WC1E 6BT, England
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
44
|
Lassen J, Stürner KH, Gierthmühlen J, Dargvainiene J, Kixmüller D, Leypoldt F, Baron R, Hüllemann P. Protective role of natural killer cells in neuropathic pain conditions. Pain 2021; 162:2366-2375. [PMID: 33769361 DOI: 10.1097/j.pain.0000000000002274] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT During the past few years, the research of chronic neuropathic pain has focused on neuroinflammation within the central nervous system and its impact on pain chronicity. As part of the ERA-Net NEURON consortium, we aimed to identify immune cell patterns in the cerebrospinal fluid (CSF) of patients with herpes zoster neuralgia and patients with polyneuropathy (PNP), which may contribute to pain chronicity in these neuropathic pain conditions. Cerebrospinal fluid of 41 patients (10 herpes zoster and 31 PNP) was analyzed by flow cytometry identifying lymphocyte subsets: CD4+ (T-helper cells), CD8+ (cytotoxic T cells), CD19+ (B cells), and CD56+ (natural killer [NK]) cells. At baseline and at follow-up, the somatosensory phenotype was assessed with quantitative sensory testing. In addition, the patients answered epidemiological questionnaires and the PainDETECT questionnaire. Immune cell profiles and somatosensory profiles, as well as painDETECT questionnaire scores, were analyzed and correlated to determine specific immune cell patterns, which contribute to chronic pain. We found a negative correlation (P = 0.004, r = -0.596) between the frequency of NK cells and mechanical pain sensitivity (MPS), one of the most relevant quantitative sensory testing markers for central sensitization; a high frequency of NK cells correlated with low MPS. The analysis of the individual follow-up showed a worsening of the pain condition if NK-cell frequency was low. Low NK-cell frequency is associated with signs of central sensitization (MPS), whereas high NK-cell frequency might prevent central sensitization. Therefore, NK cells seem to play a protective role within the neuroinflammatory cascade and may be used as a marker for pain chronicity.
Collapse
Affiliation(s)
- Josephine Lassen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Klarissa Hanja Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Janne Gierthmühlen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Dorthe Kixmüller
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Frank Leypoldt
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| |
Collapse
|
45
|
Chang CK, Chen PK, Chen CC, Chang SH, Chen CH, Chen DY. Increased Levels of Omega-3 Fatty Acids and DHA Are Linked to Pain Reduction in Rheumatoid Arthritis Patients Treated with Janus Kinase Inhibitors. Nutrients 2021; 13:nu13093050. [PMID: 34578928 PMCID: PMC8465317 DOI: 10.3390/nu13093050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/07/2023] Open
Abstract
Although Janus kinase inhibitors (JAKi) could reduce patient-reported pain in rheumatoid arthritis (RA), their mechanism remains unclear. Therefore, we examined lipid metabolites change in JAKi-treated patients and evaluate their association with pain reduction. We used 1H-NMR-based lipid/metabolomics to determine serum levels of lipid metabolites at baseline and week 24 of treatment. Serum levels of significant lipid metabolites were replicated by ELISA in 24 JAKi-treated and 12 tocilizumab-treated patients. Pain was evaluated with patients’ assessment on a 0–100 mm VAS, and disease activity assessed using DAS28. JAKi or tocilizumab therapy significantly reduced disease activity. Acceptable pain (VAS pain ≤20) at week 24 was observed in 66.7% of JAKi-treated patients, and pain decrement was greater than tocilizumab-treated patients (ΔVAS pain 70.0 vs. 52.5, p = 0.0595). Levels of omega-3 fatty acids and docosahexaenoic acid (DHA) were increased in JAKi-treated patients (median 0.55 mmol/L versus 0.71 mmol/L, p = 0.0005; 0.29 mmol/L versus 0.35 mmol/L, p = 0.0004; respectively), which were not observed in tocilizumab-treated patients. ELISA results showed increased DHA levels in JAKi-treated patients with acceptable pain (44.30 µg/mL versus 45.61 µg/mL, p = 0.028). A significant association of pain decrement with DHA change, not with DAS28 change, was seen in JAKi-treated patients. The pain reduction effect of JAKi probably links to increased levels of omega-3 fatty acids and DHA.
Collapse
Affiliation(s)
- Ching-Kun Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (S.-H.C.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan
| | - Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (S.-H.C.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chia-Ching Chen
- School of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan;
| | - Shih-Hsin Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (S.-H.C.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan;
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, New York, NY 11501, USA
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan; (C.-K.C.); (P.-K.C.); (S.-H.C.)
- Translational Medicine Laboratory, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 4666); Fax: 886-4-22073812
| |
Collapse
|
46
|
Bjurström MF, Bodelsson M, Irwin MR, Orbjörn C, Hansson O, Mattsson-Carlgren N. Decreased pain sensitivity and alterations of cerebrospinal fluid and plasma inflammatory mediators after total hip arthroplasty in patients with disabling osteoarthritis. Pain Pract 2021; 22:66-82. [PMID: 34143556 DOI: 10.1111/papr.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Proinflammatory mechanisms are implicated in pain states. Recent research indicates that patients with osteoarthritis (OA) with signs of central sensitization exhibit elevated cerebrospinal fluid (CSF) levels of interferon gamma-induced protein 10 (IP-10), Fms-related tyrosine kinase 1 (Flt-1), and monocyte chemoattractant protein 1 (MCP-1). METHODS The current prospective cohort study, including 15 patients with OA, primarily aimed to evaluate associations among alterations in CSF IP-10, Flt-1, MCP-1, and pain sensitization following total hip arthroplasty (THA). Participants provided CSF and blood samples for analysis of 10 proinflammatory mediators, and underwent detailed clinical examination and quantitative sensory testing, immediately preoperative and 18 months after surgery. RESULTS Neurophysiological measures of pain showed markedly reduced pain sensitivity long-term postoperative. Increases in remote site pressure pain detection thresholds (PPDTs) and decreased temporal summation indicated partial resolution of previous central sensitization. Compared to preoperative, CSF concentrations of IP-10 were increased (p = 0.041), whereas neither Flt-1 (p = 0.112) nor MCP-1 levels changed (p = 0.650). Compared to preoperative, plasma concentrations of IP-10 were increased (p = 0.006), whereas interleukin (IL)-8 was decreased (p = 0.023). Subjects who exhibited increases in arm PPDTs above median showed greater increases in CSF IP-10 compared to those with PPDT increases below median (p = 0.028). Analyses of plasma IP-10 and IL-8 indicated higher levels of peripheral inflammation were linked to decreased pressure pain thresholds (unadjusted β = -0.79, p = 0.006, and β = -118.1, p = 0.014, respectively). CONCLUSIONS THA leads to long-term decreases in pain sensitivity, indicative of resolution of sensitization processes. Changes in CSF and plasma levels of IP-10, and plasma IL-8, may be associated with altered pain phenotype.
Collapse
Affiliation(s)
- Martin F Bjurström
- Department of Anesthesiology and Intensive Care, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Mikael Bodelsson
- Department of Anesthesiology and Intensive Care, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Camilla Orbjörn
- Clinical Memory Research Unit, Faculty of Medicine, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
47
|
Abstract
In rheumatology, chronic pain most often sets in after a musculoskeletal injury. Its persistence is not always due to the progression of the initial injury, but in some cases to the onset of central sensitization. Much scientific data suggests that this central sensitization is caused by multiple complex interactions between the nervous system and immune system. Afferent nerve fibers carrying pain information are responsible for peripheral sensitization partly linked to inflammation molecules. These afferent fibers release neurotransmitters in the dorsal root ganglion and dorsal horn of the spinal cord, capable of activating microglia, which are the local immune cells. The activated microglia will produce pro-inflammatory cytokines, chemokines and neuropeptides capable of interacting with the second-order neuron, but also segmental and descending inhibitory neurons. This is referred to as neuroinflammation, which will amplify the hypersensitivity of second-order neurons, otherwise called central sensitization. This neuroinflammation will be able to reach the higher brain structures, which are involved in pain modulation and the emotional and cognitive aspects of pain. The aim of this update is to describe the pathophysiology of chronic pain, incorporating the latest scientific data on neuroplasticity and neuroinflammation.
Collapse
Affiliation(s)
- Pascale Vergne-Salle
- Service de rhumatologie, CHU de Dupuytren 2, 16, rue Bernard-Descottes, 87042 Limoges, France.
| | - Philippe Bertin
- Service de rhumatologie, CHU de Dupuytren 2, 16, rue Bernard-Descottes, 87042 Limoges, France
| |
Collapse
|
48
|
Differential expression of cerebrospinal fluid neuroinflammatory mediators depending on osteoarthritis pain phenotype. Pain 2021; 161:2142-2154. [PMID: 32384383 PMCID: PMC7431139 DOI: 10.1097/j.pain.0000000000001903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is Available in the Text. Distinct cerebrospinal fluid neuroinflammatory profiles may be associated with different objective characteristics of persistent pain in osteoarthritis patients undergoing total hip arthroplasty. Neuroinflammation is implicated in the development and maintenance of persistent pain states, but there are limited data linking cerebrospinal fluid (CSF) inflammatory mediators with neurophysiological pain processes in humans. In a prospective observational study, CSF inflammatory mediators were compared between patients with osteoarthritis (OA) who were undergoing total hip arthroplasty due to disabling pain symptoms (n = 52) and pain-free comparison controls (n = 30). In OA patients only, detailed clinical examination and quantitative sensory testing were completed. Cerebrospinal fluid samples were analyzed for 10 proinflammatory mediators using Meso Scale Discovery platform. Compared to controls, OA patients had higher CSF levels of interleukin 8 (IL-8) (P = 0.002), intercellular adhesion molecule 1 (P = 0.007), and vascular cell adhesion molecule 1 (P = 0.006). Osteoarthritis patients with central sensitization possibly indicated by arm pressure pain detection threshold <250 kPa showed significantly higher CSF levels of Fms-related tyrosine kinase 1 (Flt-1) (P = 0.044) and interferon gamma-induced protein 10 (IP-10) (P = 0.024), as compared to subjects with PPDT above that threshold. In patients reporting pain numerical rating scale score ≥3/10 during peripheral venous cannulation, Flt-1 was elevated (P = 0.025), and in patients with punctate stimulus wind-up ratio ≥2, CSF monocyte chemoattractant protein 1 was higher (P = 0.011). Multiple logistic regression models showed that increased Flt-1 was associated with central sensitization, assessed by remote-site PPDT and peripheral venous cannulation pain, and monocyte chemoattractant protein-1 with temporal summation in the area of maximum pain. Multiple proinflammatory mediators measured in CSF are associated with persistent hip OA-related pain. Pain phenotype may be influenced by specific CSF neuroinflammatory profiles.
Collapse
|
49
|
Jean-Toussaint R, Lin Z, Tian Y, Gupta R, Pande R, Luo X, Hu H, Sacan A, Ajit SK. Therapeutic and prophylactic effects of macrophage-derived small extracellular vesicles in the attenuation of inflammatory pain. Brain Behav Immun 2021; 94:210-224. [PMID: 33607232 PMCID: PMC8058272 DOI: 10.1016/j.bbi.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 01/14/2023] Open
Abstract
Small extracellular vesicles (sEVs) derived from antigen-presenting cells such as macrophages can induce therapeutically relevant immune responses. Anti-inflammatory miRNAs are elevated in sEVs secreted by RAW 264.7 mouse macrophages after lipopolysaccharide (LPS) stimulation. We observed uptake of these sEVs by primary mouse cortical neurons, microglia and astrocytes followed by downregulation of proinflammatory miRNA target genes in recipient cells. Pre-treating primary microglia with these sEVs decreased pro-inflammatory gene expression. A single intrathecal injection of sEVs derived from LPS stimulated RAW 264.7 cells attenuated mechanical hyperalgesia in the complete Freund's adjuvant (CFA) mouse model of inflammatory pain and formalin induced acute pain. Importantly, sEVs did not alter the normal pain threshold in control mice. RNA sequencing of dorsal horn of the spinal cord showed sEVs-induced modulation of immune regulatory pathways. Further, a single prophylactic intrathecal injection of sEVs two weeks prior, attenuated CFA-induced pain hypersensitivity and was ineffective in formalin model. This indicates that prophylactic sEVs administration can be beneficial in attenuating chronic pain without impacting responses to the protective physiological and acute inflammatory pain. Prophylactic administration of sEVs could form the basis for a safe and novel vaccine-like therapy for chronic pain or as an adjuvant, potentially reducing the dose of drugs needed for pain relief.
Collapse
Affiliation(s)
- Renée Jean-Toussaint
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richa Gupta
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
50
|
Vacca V, Marinelli S, De Angelis F, Angelini DF, Piras E, Battistini L, Pavone F, Coccurello R. Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. Int J Mol Sci 2021; 22:ijms22094397. [PMID: 33922372 PMCID: PMC8122838 DOI: 10.3390/ijms22094397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Neuropathic pain (NeP) in humans is often a life-long condition with no effective therapy available. The higher incidence of female gender in NeP onset is worldwide reported, and although the cause is generally attributed to sex hormones, the actual mechanisms and the players involved are still unclear. Glial and immune cells take part in NeP development, and orchestrate the neuroimmune and inflammatory response, releasing pro-inflammatory factors with chemoattractant properties that activate resident immune cells and recruit immune cells from circulation. The neuro-immune crosstalk is a key contributor to pain hypersensitivity following peripheral nervous system injury. Our previous works showed that in spite of the fact that female mice had an earlier analgesic response than males following nerve lesion, the recovery from NeP was never complete, suggesting that this difference could occur in the very early stages after injury. To further investigate gender differences in immune and neuroimmune responses to NeP, we studied the main immune cells and mediators elicited both in plasma and sciatic nerves by peripheral nerve lesion. After injury, we found a different pattern of distribution of immune cell populations showing either a higher infiltration of T cells in nerves from females or a higher infiltration of macrophages in nerves from males. Moreover, in comparison to male mice, the levels of cytokines and chemokines were differently up- and down-regulated in blood and nerve lysates from female mice. Our study provides some novel insights for the understanding of gender-associated differences in the generation and perseveration of NeP as well as for the isolation of specific neurodegenerative mechanisms underlying NeP. The identification of gender-associated inflammatory profiles in neuropathy is of key importance for the development of differential biomarkers and gender-specific personalized medicine.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Sara Marinelli
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Federica De Angelis
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | | | - Eleonora Piras
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Luca Battistini
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Flaminia Pavone
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- Correspondence: (F.P.); (R.C.)
| | - Roberto Coccurello
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- CNR-National Research Council, CNR, Institute for Complex System (ISC), via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (F.P.); (R.C.)
| |
Collapse
|