1
|
Ye H, Zalesky A, Lv J, Loi SM, Cetin-Karayumak S, Rathi Y, Tian Y, Pantelis C, Di Biase MA. Network Analysis of Symptom Comorbidity in Schizophrenia: Relationship to Illness Course and Brain White Matter Microstructure. Schizophr Bull 2021; 47:1156-1167. [PMID: 33693887 PMCID: PMC8266579 DOI: 10.1093/schbul/sbab015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Recent network-based analyses suggest that schizophrenia symptoms are intricately connected and interdependent, such that central symptoms can activate adjacent symptoms and increase global symptom burden. Here, we sought to identify key clinical and neurobiological factors that relate to symptom organization in established schizophrenia. METHODS A symptom comorbidity network was mapped for a broad constellation of symptoms measured in 642 individuals with a schizophrenia-spectrum disorder. Centrality analyses were used to identify hub symptoms. The extent to which each patient's symptoms formed clusters in the comorbidity network was quantified with cluster analysis and used to predict (1) clinical features, including illness duration and psychosis (positive symptom) severity and (2) brain white matter microstructure, indexed by the fractional anisotropy (FA), in a subset (n = 296) of individuals with diffusion-weighted imaging (DWI) data. RESULTS Global functioning, substance use, and blunted affect were the most central symptoms within the symptom comorbidity network. Symptom profiles for some patients formed highly interconnected clusters, whereas other patients displayed unrelated and disconnected symptoms. Stronger clustering among an individual's symptoms was significantly associated with shorter illness duration (t = 2.7; P = .0074), greater psychosis severity (ie, positive symptoms expression) (t = -5.5; P < 0.0001) and lower fractional anisotropy in fibers traversing the cortico-cerebellar-thalamic-cortical circuit (r = .59, P < 0.05). CONCLUSION Symptom network structure varies over the course of schizophrenia: symptom interactions weaken with increasing illness duration and strengthen during periods of high positive symptom expression. Reduced white matter coherence relates to stronger symptom clustering, and thus, may underlie symptom cascades and global symptomatic burden in individuals with schizophrenia.
Collapse
Affiliation(s)
- Hua Ye
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Jinglei Lv
- School of Biomedical Engineering & Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Samantha M Loi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | | | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Ye Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Polarity- and Intensity-Independent Modulation of Timing During Delay Eyeblink Conditioning Using Cerebellar Transcranial Direct Current Stimulation. THE CEREBELLUM 2021; 19:383-391. [PMID: 32036562 DOI: 10.1007/s12311-020-01114-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Delay eyeblink conditioning (dEBC) is widely used to assess cerebellar-dependent associative motor learning, including precise timing processes. Transcranial direct current stimulation (tDCS), noninvasive brain stimulation used to indirectly excite and inhibit select brain regions, may be a promising tool for understanding how functional integrity of the cerebellum influences dEBC behavior. The aim of this study was to assess whether tDCS-induced inhibition (cathodal) and excitation (anodal) of the cerebellum differentially impact timing of dEBC. A standard 10-block dEBC paradigm was administered to 102 healthy participants. Participants were randomized to stimulation conditions in a double-blind, between-subjects sham-controlled design. Participants received 20-min active (anodal or cathodal) stimulation at 1.5 mA (n = 20 anodal, n = 22 cathodal) or 2 mA (n = 19 anodal, n = 21 cathodal) or sham stimulation (n = 20) concurrently with dEBC training. Stimulation intensity and polarity effects on percent conditioned responses (CRs) and CR peak and onset latency were examined using repeated-measures analyses of variance. Acquisition of CRs increased over time at a similar rate across sham and all active stimulation groups. CR peak and onset latencies were later, i.e., closer to air puff onset, in all active stimulation groups compared to the sham group. Thus, tDCS facilitated cerebellar-dependent timing of dEBC, irrespective of stimulation intensity and polarity. These findings highlight the feasibility of using tDCS to modify cerebellar-dependent functions and provide further support for cerebellar contributions to human eyeblink conditioning and for exploring therapeutic tDCS interventions for cerebellar dysfunction.
Collapse
|
3
|
Lundin NB, Kim DJ, Tullar RL, Moussa-Tooks AB, Kent JS, Newman SD, Purcell JR, Bolbecker AR, O’Donnell BF, Hetrick WP. Cerebellar Activation Deficits in Schizophrenia During an Eyeblink Conditioning Task. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab040. [PMID: 34541537 PMCID: PMC8443466 DOI: 10.1093/schizbullopen/sgab040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cognitive dysmetria theory of psychotic disorders posits that cerebellar circuit abnormalities give rise to difficulties coordinating motor and cognitive functions. However, brain activation during cerebellar-mediated tasks is understudied in schizophrenia. Accordingly, this study examined whether individuals with schizophrenia have diminished neural activation compared to controls in key regions of the delay eyeblink conditioning (dEBC) cerebellar circuit (eg, lobule VI) and cerebellar regions associated with cognition (eg, Crus I). Participants with schizophrenia-spectrum disorders (n = 31) and healthy controls (n = 43) underwent dEBC during functional magnetic resonance imaging (fMRI). Images were normalized using the Spatially Unbiased Infratentorial Template (SUIT) of the cerebellum and brainstem. Activation contrasts of interest were "early" and "late" stages of paired tone and air puff trials minus unpaired trials. Preliminary whole brain analyses were conducted, followed by cerebellar-specific SUIT and region of interest (ROI) analyses of lobule VI and Crus I. Correlation analyses were conducted between cerebellar activation, neuropsychological test scores, and psychotic symptom scores. In controls, the largest clusters of cerebellar activation peaked in lobule VI during early dEBC and Crus I during late dEBC. The schizophrenia group showed robust cortical activation to unpaired trials but no significant conditioning-related cerebellar activation. Crus I ROI activation during late dEBC was greater in the control than schizophrenia group. Greater Crus I activation correlated with higher working memory scores in the full sample and lower positive psychotic symptom severity in schizophrenia. Findings indicate functional cerebellar abnormalities in schizophrenia which relate to psychotic symptoms, lending direct support to the cognitive dysmetria framework.
Collapse
Affiliation(s)
- Nancy B Lundin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Rachel L Tullar
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandra B Moussa-Tooks
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerillyn S Kent
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sharlene D Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA
| | - John R Purcell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian F O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Schizotypy and individual differences in peripersonal space plasticity. Neuropsychologia 2020; 147:107579. [PMID: 32758552 DOI: 10.1016/j.neuropsychologia.2020.107579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
The space surrounding our body, defined as peripersonal space (PPS), is dynamically shaped by our motor experiences. For instance, PPS extends after using a tool to reach far objects. Several studies have demonstrated how PPS size varies across people, depending on different individual characteristics, including schizotypy. Coherently, narrower PPS boundaries have been reported among high schizotypal individuals and schizophrenia patients. However, little is known about the relationship between PPS plasticity and personality traits like schizotypy. To this purpose, the present study has investigated the individual PPS plasticity, after two different motor trainings, along the schizotypal continuum. Specifically, PPS plasticity was tested after using a tool (Experiment 1) and after the mere observation of another person using the same tool (Experiment 2). Indeed, previous evidence has shown that tool-use observation influences visual distance judgments, extending the representation of PPS. To date, however, there is no study investigating whether observation of tools action could also affect multisensory PPS tasks. Experiment 1 has shown that PPS boundaries extended after using the tool; on the other hand, Experiment 2 has revealed the absence of PPS expansion. Moreover, greater PPS expansion emerged in the relatively-low schizotypal group than in the relatively-high one, regardless of the type of motor training performed. The absence of PPS modulation after the observation task is discussed in relation to recent findings showing that intentional action and/or the goal of the action represent potentially crucial elements to trigger PPS plasticity. Finally, these new results extend previous evidence underlining a potential general functional alteration of PPS with the increase of schizotypal level.
Collapse
|
5
|
Optogenetic inhibition of ventral hippocampal neurons alleviates associative motor learning dysfunction in a rodent model of schizophrenia. PLoS One 2019; 14:e0227200. [PMID: 31891640 PMCID: PMC6938361 DOI: 10.1371/journal.pone.0227200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/14/2019] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a serious and incurable mental disorder characterized by clinical manifestations of positive and negative symptoms and cognitive dysfunction. High-frequency deep brain stimulation (DBS) of the ventral hippocampus (VHP) has been recently applied as a therapeutic approach for SZ in both experimental and clinical studies. However, little is known about the precise mechanism of VHP-DBS treatment for SZ and the role of hippocampal cell activation in the pathogenesis of SZ. With optogenetic technology in this study, we tried to inhibit neuronal activity in the VHP which has dense projections to the prefrontal cortex, before measuring long stumulus-induced delay eyeblink conditioning (long-dEBC) in a rodent model of SZ. Rats were administrated with phencyclidine (PCP, 3 mg/kg, 1/d, ip) for successive 7 days before optogenetic intervention. The current data show that PCP administration causes significant impairment in the acquisition and timing of long-dEBC; the inhibition of bilateral VHP neurons alleviates the decreased acquisition and impaired timing of longd-dEBC in PCP-administered rats. The results provide direct evidence at the cellular level that the inhibition of VHP neuronal cells may be a prominent effect of hippocampal DBS intervention, and increased activity in the hippocampal network play a pivotal role in SZ.
Collapse
|
6
|
Moberget T, Alnæs D, Kaufmann T, Doan NT, Córdova-Palomera A, Norbom LB, Rokicki J, van der Meer D, Andreassen OA, Westlye LT. Cerebellar Gray Matter Volume Is Associated With Cognitive Function and Psychopathology in Adolescence. Biol Psychiatry 2019; 86:65-75. [PMID: 30850129 DOI: 10.1016/j.biopsych.2019.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulating evidence supports cerebellar involvement in mental disorders, such as schizophrenia, bipolar disorder, depression, anxiety disorders, and attention-deficit/hyperactivity disorder. However, little is known about the cerebellum in developmental stages of these disorders. In particular, whether cerebellar morphology is associated with early expression of specific symptom domains remains unclear. METHODS We used machine learning to test whether cerebellar morphometric features could robustly predict general cognitive function and psychiatric symptoms in a large and well-characterized developmental community sample centered on adolescence (Philadelphia Neurodevelopmental Cohort, n = 1401, age 8-23 years). RESULTS Cerebellar morphology was associated with both general cognitive function and general psychopathology (mean correlations between predicted and observed values: r = .20 and r = .13; p < .001). Analyses of specific symptom domains revealed significant associations with rates of norm-violating behavior (r = .17; p < .001) as well as psychosis (r = .12; p < .001) and anxiety (r = .09; p = .012) symptoms. In contrast, we observed no associations with attention deficits or depressive, manic, or obsessive-compulsive symptoms. Crucially, across 52 brain-wide anatomical features, cerebellar features emerged as the most important for prediction of general psychopathology, psychotic symptoms, and norm-violating behavior. Moreover, the association between cerebellar volume and psychotic symptoms and, to a lesser extent, norm-violating behavior remained significant when adjusting for several potentially confounding factors. CONCLUSIONS The robust associations with psychiatric symptoms in the age range when these typically emerge highlight the cerebellum as a key brain structure in the development of severe mental disorders.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aldo Córdova-Palomera
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Bonaventure Norbom
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Prediction, Psychosis, and the Cerebellum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:820-831. [PMID: 31495402 DOI: 10.1016/j.bpsc.2019.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
Abstract
An increasingly influential hypothesis posits that many of the diverse symptoms of psychosis can be viewed as reflecting dysfunctional predictive mechanisms. Indeed, to perceive something is to take a sensory input and make a prediction of the external source of that signal; thus, prediction is perhaps the most fundamental neural computation. Given the ubiquity of prediction, a more challenging problem is to specify the unique predictive role or capability of a particular brain structure. This question is relevant when considering recent claims that one aspect of the predictive deficits observed in psychotic disorders might be related to cerebellar dysfunction, a subcortical structure known to play a critical role in predictive sensorimotor control and perhaps higher-level cognitive function. Here, we review evidence bearing on this question. We first focus on clinical, behavioral, and neuroimaging findings suggesting cerebellar involvement in psychosis and, specifically, schizophrenia. We then review a relatively novel line of research exploring whether computational models of cerebellar motor function can also account for cerebellar involvement in higher-order human cognition, and in particular, language function. We end the review by highlighting some key gaps in these literatures, limitations that currently preclude strong conclusions regarding cerebellar involvement in psychosis.
Collapse
|
8
|
Allen M, Handy J, Miller D, Servatius R. Avoidance learning and classical eyeblink conditioning as model systems to explore a learning diathesis model of PTSD. Neurosci Biobehav Rev 2019; 100:370-386. [DOI: 10.1016/j.neubiorev.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/09/2023]
|
9
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Apthorp D, Bolbecker AR, Bartolomeo LA, O’Donnell BF, Hetrick WP. Postural Sway Abnormalities in Schizotypal Personality Disorder. Schizophr Bull 2019; 45:512-521. [PMID: 30376125 PMCID: PMC6483590 DOI: 10.1093/schbul/sby141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Motor abnormalities are among the most robust findings in schizophrenia, and increasing evidence suggests they are a core feature of the disorder. Postural sway during balance tasks is a highly sensitive probe of sensorimotor systems including the cerebellum, basal ganglia, and motor cortices. Postural sway deficits are present in schizophrenia as well as groups at high risk for psychosis, suggesting altered postural control may be sensitive to the pathophysiological processes associated with risk and expression of schizophrenia spectrum disorders. This study examined postural sway performance in schizotypal personality disorder (SPD). Individuals with SPD have attenuated psychotic symptoms and share genetic risk with schizophrenia but are usually free from antipsychotic medication and other illness confounds, making SPD useful for assessing candidate biomarkers. We measured postural sway using force plates in 27 individuals with SPD, 27 carefully matched controls, and 27 matched patients with schizophrenia. It was predicted that postural sway in the SPD group would fall intermediate to schizophrenia and controls. In all conditions (eyes open and closed, with feet together or apart), the SPD group swayed significantly more than the controls, as measured by path length and sway area. Moreover, the magnitude of the sway deficit was comparable in the SPD and schizophrenia groups. These findings suggest that postural sway measures may represent a sensorimotor biomarker of schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Deborah Apthorp
- School of Psychology and Behavioural Science, Faculty of Medicine and Health, University of New England, Armidale, NSW, Australia,To whom correspondence should be addressed; tel: 61 2 6773 4316, fax: 61 2 6773 3820, e-mail:
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | - Brian F O’Donnell
- Department of Psychiatry, Indiana University Medical Centre, Bloomington, IN,Program in Neuroscience, Indiana University, Bloomington, IN
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Program in Neuroscience, Indiana University, Bloomington, IN
| |
Collapse
|
11
|
Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol Psychiatry 2018; 23:1512-1520. [PMID: 28507318 DOI: 10.1038/mp.2017.106] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 02/20/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Although cerebellar involvement across a wide range of cognitive and neuropsychiatric phenotypes is increasingly being recognized, previous large-scale studies in schizophrenia (SZ) have primarily focused on supratentorial structures. Hence, the across-sample reproducibility, regional distribution, associations with cerebrocortical morphology and effect sizes of cerebellar relative to cerebral morphological differences in SZ are unknown. We addressed these questions in 983 patients with SZ spectrum disorders and 1349 healthy controls (HCs) from 14 international samples, using state-of-the-art image analysis pipelines optimized for both the cerebellum and the cerebrum. Results showed that total cerebellar grey matter volume was robustly reduced in SZ relative to HCs (Cohens's d=-0.35), with the strongest effects in cerebellar regions showing functional connectivity with frontoparietal cortices (d=-0.40). Effect sizes for cerebellar volumes were similar to the most consistently reported cerebral structural changes in SZ (e.g., hippocampus volume and frontotemporal cortical thickness), and were highly consistent across samples. Within groups, we further observed positive correlations between cerebellar volume and cerebral cortical thickness in frontotemporal regions (i.e., overlapping with areas that also showed reductions in SZ). This cerebellocerebral structural covariance was strongest in SZ, suggesting common underlying disease processes jointly affecting the cerebellum and the cerebrum. Finally, cerebellar volume reduction in SZ was highly consistent across the included age span (16-66 years) and present already in the youngest patients, a finding that is more consistent with neurodevelopmental than neurodegenerative etiology. Taken together, these novel findings establish the cerebellum as a key node in the distributed brain networks underlying SZ.
Collapse
|
12
|
Geminiani A, Casellato C, Antonietti A, D’Angelo E, Pedrocchi A. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Int J Neural Syst 2018; 28:1750017. [DOI: 10.1142/s0129065717500174] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
Collapse
Affiliation(s)
- Alice Geminiani
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Claudia Casellato
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Alberto Antonietti
- NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy
- Brain Connectivity Center, Istituto Neurologico, IRCCS Fondazione C. Mondino Via, Mondino 2, I-27100, Pavia, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, P.zza Leonardo Da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
13
|
Abstract
The timing of thoughts and perceptions plays an essential role in belief formation. Just as people can experience in-the-moment perceptual illusions, however, they can also be deceived about how events unfold in time. Here, we consider how a particular type of temporal distortion, in which the apparent future influences "earlier" events in conscious awareness, might affect people's most fundamental beliefs about themselves and the world. Making use of a task that has been shown to elicit such reversals in the temporal experience of prediction and observation, we find that people who are more prone to think that they predicted an event that they actually already observed are also more likely to report holding delusion-like beliefs. Moreover, this relationship appears to be specific to how people experience prediction and is not explained by domain-general deficits in temporal discrimination. These findings may help uncover low-level perceptual mechanisms underlying delusional belief or schizotypy more broadly and may ultimately prove useful as a tool for identifying those at risk for psychotic illness.
Collapse
|
14
|
Osborne KJ, Bernard JA, Gupta T, Dean DJ, Millman Z, Vargas T, Ristanovic I, Schiffman J, Mittal VA. Beat gestures and postural control in youth at ultrahigh risk for psychosis. Schizophr Res 2017; 185:197-199. [PMID: 27914727 PMCID: PMC5449260 DOI: 10.1016/j.schres.2016.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022]
Abstract
Beat gestures, rhythmic hand movements that co-occur with speech, appear to be uniquely associated with the cerebellum in healthy individuals. This behavior may also have relevance for psychosis-risk youth, a group characterized by cerebellar dysfunction. This study examined beat gesture frequency and postural sway (a sensitive index of cerebellar functioning) in youth at ultrahigh risk (UHR) for psychosis. Results indicated that decreased beat gesture frequency, but not self-regulatory movement, is associated with elevated postural sway, suggesting that beat gestures may be an important biomarker in this critical population.
Collapse
Affiliation(s)
- K Juston Osborne
- Northwestern University, Department of Psychology, Evanston, Chicago, IL, USA.
| | - Jessica A Bernard
- Texas A&M University, Department of Psychology, College Station, TX, USA; Texas A&M Institute for Neuroscience, College Station, TX, USA
| | - Tina Gupta
- Northwestern University, Department of Psychology, Evanston, Chicago, IL, USA
| | - Derek J Dean
- University of Colorado Boulder, Department of Psychology, Boulder, CO, USA; University of Colorado Boulder, Center for Neuroscience, Boulder, CO, USA
| | - Zachary Millman
- University of Maryland Baltimore, Department of Psychology, Baltimore, MD, USA
| | - Teresa Vargas
- Northwestern University, Department of Psychology, Evanston, Chicago, IL, USA
| | - Ivanka Ristanovic
- Northwestern University, Department of Psychology, Evanston, Chicago, IL, USA
| | - Jason Schiffman
- University of Maryland Baltimore, Department of Psychology, Baltimore, MD, USA
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Evanston, Chicago, IL, USA
| |
Collapse
|
15
|
Bernard JA, Goen JRM, Maldonado T. A case for motor network contributions to schizophrenia symptoms: Evidence from resting-state connectivity. Hum Brain Mapp 2017; 38:4535-4545. [PMID: 28603856 DOI: 10.1002/hbm.23680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Though schizophrenia (SCZ) is classically defined based on positive symptoms and the negative symptoms of the disease prove to be debilitating for many patients, motor deficits are often present as well. A growing literature highlights the importance of motor systems and networks in the disease, and it may be the case that dysfunction in motor networks relates to the pathophysiology and etiology of SCZ. To test this and build upon recent work in SCZ and in at-risk populations, we investigated cortical and cerebellar motor functional networks at rest in SCZ and controls using publically available data. We analyzed data from 82 patients and 88 controls. We found key group differences in resting-state connectivity patterns that highlight dysfunction in motor circuits and also implicate the thalamus. Furthermore, we demonstrated that in SCZ, these resting-state networks are related to both positive and negative symptom severity. Though the ventral prefrontal cortex and corticostriatal pathways more broadly have been implicated in negative symptom severity, here we extend these findings to include motor-striatal connections, as increased connectivity between the primary motor cortex and basal ganglia was associated with more severe negative symptoms. Together, these findings implicate motor networks in the symptomatology of psychosis, and we speculate that these networks may be contributing to the etiology of the disease. Overt motor deficits in SCZ may signal underlying network dysfunction that contributes to the overall disease state. Hum Brain Mapp 38:4535-4545, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychology, Texas A&M University, Texas.,Texas A&M University Institute for Neuroscience, Texas A&M University, Texas
| | | | - Ted Maldonado
- Department of Psychology, Texas A&M University, Texas
| |
Collapse
|
16
|
Giersch A, Lalanne L, Isope P. Implicit Timing as the Missing Link between Neurobiological and Self Disorders in Schizophrenia? Front Hum Neurosci 2016; 10:303. [PMID: 27378893 PMCID: PMC4913093 DOI: 10.3389/fnhum.2016.00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/03/2016] [Indexed: 12/29/2022] Open
Abstract
Disorders of consciousness and the self are at the forefront of schizophrenia symptomatology. Patients are impaired in feeling themselves as the authors of their thoughts and actions. In addition, their flow of consciousness is disrupted, and thought fragmentation has been suggested to be involved in the patients' difficulties in feeling as being one unique, unchanging self across time. Both impairments are related to self disorders, and both have been investigated at the experimental level. Here we review evidence that both mechanisms of motor control and the temporal structure of signal processing are impaired in schizophrenia patients. Based on this review, we propose that the sequencing of action and perception plays a key role in the patients' impairments. Furthermore, the millisecond time scale of the disorders, as well as the impaired sequencing, highlights the cooperation between brain networks including the cerebellum, as proposed by Andreasen (1999). We examine this possibility in the light of recent knowledge on the anatomical and physiological properties of the cerebellum, its role in timing, and its involvement in known physiological impairments in patients with schizophrenia, e.g., resting states and brain dynamics. A disruption in communication between networks involving the cerebellum, related to known impairments in dopamine, glutamate and GABA transmission, may help to better explain why patients experience reduced attunement with the external world and possibly with themselves.
Collapse
Affiliation(s)
- Anne Giersch
- Department of Psychiatry, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University Hospital Strasbourg, France
| | - Laurence Lalanne
- Department of Psychiatry, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University Hospital Strasbourg, France
| | - Philippe Isope
- Institute of Cellular and Integrative Neurosciences (INCI), CNRS UPR 3212, Strasbourg University Strasbourg, France
| |
Collapse
|
17
|
Bolbecker AR, Petersen IT, Kent JS, Howell JM, O'Donnell BF, Hetrick WP. New Insights into the Nature of Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia: A Hierarchical Linear Modeling Approach. Front Psychiatry 2016; 7:4. [PMID: 26834653 PMCID: PMC4725217 DOI: 10.3389/fpsyt.2016.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several decades, emerging from neuroimaging, neuropathological, and behavioral studies. Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been identified in schizophrenia. While repeated-measures analysis of variance is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM) more reliably describes change over time by accounting for the dependence in repeated-measures data. This analysis approach is well suited to dEBC data analysis because it has less restrictive assumptions and allows unequal variances. The current study examined dEBC measured with electromyography in a single-cue tone paradigm in an age-matched sample of schizophrenia participants and healthy controls (N = 56 per group) using HLM. Subjects participated in 90 trials (10 blocks) of dEBC, during which a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted to a three-parameter logistic model in HLM, revealing significant differences between schizophrenia and control groups on asymptote and inflection point, but not slope. These findings suggest that while the learning rate is not significantly different compared to controls, associative learning begins to level off later and a lower ultimate level of associative learning is achieved in schizophrenia. Given the large sample size in the present study, HLM may provide a more nuanced and definitive analysis of differences between schizophrenia and controls on dEBC.
Collapse
Affiliation(s)
- Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Isaac T Petersen
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Josselyn M Howell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University , Bloomington, IN , USA
| |
Collapse
|
18
|
Cicchese JJ, Berry SD. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction. Front Psychiatry 2016; 7:1. [PMID: 26903886 PMCID: PMC4751249 DOI: 10.3389/fpsyt.2016.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3-7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric pathology.
Collapse
Affiliation(s)
- Joseph J Cicchese
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| | - Stephen D Berry
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| |
Collapse
|
19
|
Reeb-Sutherland BC, Fox NA. Eyeblink conditioning: a non-invasive biomarker for neurodevelopmental disorders. J Autism Dev Disord 2015; 45:376-94. [PMID: 23942847 DOI: 10.1007/s10803-013-1905-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition, abnormalities in the cerebellum, a region of the brain highly involved in EBC, have been implicated in a number of neurodevelopmental disorders including autism spectrum disorders (ASDs). In the current paper, we review studies that have employed EBC as a biomarker for several neurodevelopmental disorders including fetal alcohol syndrome, Down syndrome, fragile X syndrome, attention deficit/hyperactivity disorder, dyslexia, specific language impairment, and schizophrenia. In addition, we discuss the benefits of using such a tool in individuals with ASD.
Collapse
Affiliation(s)
- Bethany C Reeb-Sutherland
- Department of Psychology, DM 256, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA,
| | | |
Collapse
|
20
|
Modeling possible effects of atypical cerebellar processing on eyeblink conditioning in autism. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:1142-64. [PMID: 24590391 DOI: 10.3758/s13415-014-0263-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autism is unique among other disorders in that acquisition of conditioned eyeblink responses is enhanced in children, occurring in a fraction of the trials required for control participants. The timing of learned responses is, however, atypical. Two animal models of autism display a similar phenotype. Researchers have hypothesized that these differences in conditioning reflect cerebellar abnormalities. The present study used computer simulations of the cerebellar cortex, including inhibition by the molecular layer interneurons, to more closely examine whether atypical cerebellar processing can account for faster conditioning in individuals with autism. In particular, the effects of inhibitory levels on delay eyeblink conditioning were simulated, as were the effects of learning-related synaptic changes at either parallel fibers or ascending branch synapses from granule cells to Purkinje cells. Results from these simulations predict that whether molecular layer inhibition results in an enhancement or an impairment of acquisition, or changes in timing, may depend on (1) the sources of inhibition, (2) the levels of inhibition, and (3) the locations of learning-related changes (parallel vs. ascending branch synapses). Overall, the simulations predict that a disruption in the balance or an overall increase of inhibition within the cerebellar cortex may contribute to atypical eyeblink conditioning in children with autism and in animal models of autism.
Collapse
|
21
|
Trikamji B, Singh P, Mishra S. Spinocerebellar ataxia-10 with paranoid schizophrenia. Ann Indian Acad Neurol 2015; 18:93-5. [PMID: 25745322 PMCID: PMC4350226 DOI: 10.4103/0972-2327.144285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/17/2014] [Accepted: 08/18/2014] [Indexed: 11/12/2022] Open
Abstract
Spino-cerebellar ataxia type 10 (SCA10) is an autosomal dominant disorder that is characterized by cerebellar ataxia, seizures and nystagmus with a fragmented pursuit. Schizophrenia has been reported with SCAs 1 and 2 yet in SCA 10, psychiatric manifestations are uncommon. We report a Hispanic family involving a father and his four children with SCA10 genetic mutation. Two of his children, a 20-year-old female and a 23-year-old male, presented with gradually progressive spino-cerebellar ataxia and paranoid schizophrenia. Neurological examination revealed ocular dysmetria, dysdiadokinesia, impaired finger-to-nose exam, gait ataxia and hyperreflexia in both the cases. Additionally, they had a history of psychosis with destructive behavior, depression and paranoid delusions with auditory hallucinations. Serology and CSF studies were unremarkable and MRI brain revealed cerebellar volume loss. Ultimately, a test for ATAXIN-10 mutation was positive thus confirming the diagnosis of SCA10 in father and his four children. We now endeavor to investigate the association between schizophrenia and SCA10.
Collapse
Affiliation(s)
| | | | - Shrikant Mishra
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
22
|
Dean DJ, Kent JS, Bernard JA, Orr JM, Gupta T, Pelletier-Baldelli A, Carol EE, Mittal VA. Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophr Res 2015; 162:86-9. [PMID: 25601361 PMCID: PMC4339540 DOI: 10.1016/j.schres.2014.12.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 12/29/2022]
Abstract
Impaired ability to maintain an upright posture may reflect impairment in the cerebellum, a critical structure for the fluid coordination of neural information, thought to be disrupted in psychosis. The current study utilized an instrumental measure of posture in individuals at ultrahigh risk (UHR) for psychosis (n=43) and healthy controls (n=44). Positive and negative symptoms were assessed twice over 12months. Results showed that increased postural sway in the UHR group predicted changes in negative symptoms. This study provides an important prospective view on the relationship between cerebellar-sensitive behavior and integral symptoms, which until now has received limited biomarker research.
Collapse
Affiliation(s)
- Derek J Dean
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Jessica A Bernard
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph M Orr
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Tina Gupta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Andrea Pelletier-Baldelli
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Emily E Carol
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Vijay A Mittal
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
23
|
Parker KL. Timing Tasks Synchronize Cerebellar and Frontal Ramping Activity and Theta Oscillations: Implications for Cerebellar Stimulation in Diseases of Impaired Cognition. Front Psychiatry 2015; 6:190. [PMID: 26834650 PMCID: PMC4716138 DOI: 10.3389/fpsyt.2015.00190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 12/30/2015] [Indexed: 11/13/2022] Open
Abstract
Timing is a fundamental and highly conserved mammalian capability, yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning, which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here, we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson's disease, autism, and schizophrenia. Lastly, we hypothesize that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. This hypothesis could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic potential of the cerebellum in diseases of impaired cognition.
Collapse
Affiliation(s)
- Krystal L Parker
- Department of Neurology, Carver College of Medicine, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
24
|
Wang Z, Meda SA, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA, Schretlen DJ, Calhoun VD, Lui S, Pearlson GD. Large-Scale Fusion of Gray Matter and Resting-State Functional MRI Reveals Common and Distinct Biological Markers across the Psychosis Spectrum in the B-SNIP Cohort. Front Psychiatry 2015; 6:174. [PMID: 26732139 PMCID: PMC4685049 DOI: 10.3389/fpsyt.2015.00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/27/2015] [Indexed: 02/05/2023] Open
Abstract
To investigate whether aberrant interactions between brain structure and function present similarly or differently across probands with psychotic illnesses [schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar I disorder with psychosis (BP)] and whether these deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subjects were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relatives of SZ, 126 SAD relatives, 134 BP relatives, and 242 healthy controls (1). All subjects underwent structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) scanning. Joint-independent component analysis (jICA) was used to fuse sMRI gray matter and rs-fMRI amplitude of low-frequency fluctuations data to identify the relationship between the two modalities. jICA revealed two significantly fused components. The association between functional brain alteration in a prefrontal-striatal-thalamic-cerebellar network and structural abnormalities in the default mode network was found to be common across psychotic diagnoses and correlated with cognitive function, social function, and schizo-bipolar scale scores. The fused alteration in the temporal lobe was unique to SZ and SAD. The above effects were not seen in any relative group (including those with cluster-A personality). Using a multivariate-fused approach involving two widely used imaging markers, we demonstrate both shared and distinct biological traits across the psychosis spectrum. Furthermore, our results suggest that the above traits are psychosis biomarkers rather than endophenotypes.
Collapse
Affiliation(s)
- Zheng Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University , Changsha , China
| | - Shashwath A Meda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital , Hartford, CT , USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School , Boston, MA , USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia , Athens, GA , USA
| | - David J Schretlen
- Department of Psychiatry, Johns Hopkins University , Baltimore, MD , USA
| | - Vince D Calhoun
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA; The Mind Research Network, Albuquerque, NM, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University , Chengdu , China
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Kent JS, Bolbecker AR, O'Donnell BF, Hetrick WP. Eyeblink Conditioning in Schizophrenia: A Critical Review. Front Psychiatry 2015; 6:146. [PMID: 26733890 PMCID: PMC4683521 DOI: 10.3389/fpsyt.2015.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
There is accruing evidence of cerebellar abnormalities in schizophrenia. The theory of cognitive dysmetria considers cerebellar dysfunction a key component of schizophrenia. Delay eyeblink conditioning (EBC), a cerebellar-dependent translational probe, is a behavioral index of cerebellar integrity. The circuitry underlying EBC has been well characterized by non-human animal research, revealing the cerebellum as the essential circuitry for the associative learning instantiated by this task. However, there have been persistent inconsistencies in EBC findings in schizophrenia. This article thoroughly reviews published studies investigating EBC in schizophrenia, with an emphasis on possible effects of antipsychotic medication and stimulus and analysis parameters on reports of EBC performance in schizophrenia. Results indicate a consistent finding of impaired EBC performance in schizophrenia, as measured by decreased rates of conditioning, and that medication or study design confounds do not account for this impairment. Results are discussed within the context of theoretical and neurochemical models of schizophrenia.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| |
Collapse
|
26
|
Weiss C, Disterhoft JF. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Front Psychiatry 2015; 6:142. [PMID: 26500564 PMCID: PMC4595794 DOI: 10.3389/fpsyt.2015.00142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer's disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially cognitive impairments associated with schizophrenia and AD, and object recognition provides a simple test of memory that can corroborate the results of EBC.
Collapse
Affiliation(s)
- Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| |
Collapse
|
27
|
Zhang Q, Shen J, Wu J, Yu X, Lou W, Fan H, Shi L, Wang D. Altered default mode network functional connectivity in schizotypal personality disorder. Schizophr Res 2014; 160:51-6. [PMID: 25458858 DOI: 10.1016/j.schres.2014.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/17/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
The default mode network (DMN) has been identified to play a critical role in many mental disorders, but such abnormalities have not yet been determined in patients with schizotypal personality disorder (SPD). The purpose of this study was to analyze the alteration of the DMN functional connectivity in subjects with (SPD) and compared it to healthy control subjects. Eighteen DSM-IV diagnosed SPD subjects (all male, average age: 19.7±0.9) from a pool of 3000 first year college students, and eighteen age and gender matched healthy control subjects were recruited (all male, average age: 20.3±0.9). Independent component analysis (ICA) was used to analyze the DMN functional connectivity alteration. Compared to the healthy control group, SPD subjects had significantly decreased functional connectivity in the frontal areas, including the superior and medial frontal gyrus, and greater functional connectivity in the bilateral superior temporal gyrus and sub-lobar regions, including the bilateral putamen and caudate. Compared to subjects with SPD, the healthy control group showed decreased functional connectivity in the bilateral posterior cingulate gyrus, but showed greater functional connectivity in the right transverse temporal gyrus and left middle temporal gyrus. The healthy control group also showed greater activation in the cerebellum compared to the SPD group. These findings suggest that DMN functional connectivity, particularly that involving cognitive or emotional regulation, is altered in SPD subjects, and thus may be helpful in studying schizophrenia.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China; Tianjin Medical University, Tianjin, China
| | - Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China; Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China; Tianjin Medical University, Tianjin, China.
| | - Xiao Yu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wutao Lou
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Hongyu Fan
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Lin Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Defeng Wang
- Research Center for Medical Image Computing, Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region; Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
28
|
Affiliation(s)
- Deanna M. Barch
- *To whom correspondence should be addressed; Departments of Psychology, Psychiatry, and Radiology, Washington University in St. Louis, Box 1125, One Brookings Drive, St. Louis, MO 63130, US; tel: 314-935-8729 or 314-362-2608, fax: 314-935-8790, e-mail:
| |
Collapse
|
29
|
Kim DJ, Kent JS, Bolbecker AR, Sporns O, Cheng H, Newman SD, Puce A, O’Donnell BF, Hetrick WP. Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis. Schizophr Bull 2014; 40:1216-26. [PMID: 24782561 PMCID: PMC4193723 DOI: 10.1093/schbul/sbu059] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies of schizophrenia have revealed cognitive and memory deficits that are accompanied by disruptions of neuronal connectivity in cortical and subcortical brain regions. More recently, alterations of topological organization of structural networks in schizophrenia are also being identified using graph theoretical analysis. However, the role of the cerebellum in this network structure remains largely unknown. In this study, global network measures obtained from diffusion tensor imaging were computed in the cerebella of 25 patients with schizophrenia and 36 healthy volunteers. While cerebellar global network characteristics were slightly altered in schizophrenia patients compared with healthy controls, the patients showed a retained small-world network organization. The modular architecture, however, was changed mainly in crus II. Furthermore, schizophrenia patients had reduced correlations between modularity and microstructural integrity, as measured by fractional anisotropy (FA) in lobules I-IV and X. Finally, FA alterations were significantly correlated with the Positive and Negative Syndrome Scale symptom scores in schizophrenia patients. Taken together, our data suggest that schizophrenia patients have altered network architecture in the cerebellum with reduced local microstructural connectivity and that cerebellar structural abnormalities are associated symptoms of the disorder.
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Jerillyn S. Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN;,Imaging Research Facility, Indiana University, Bloomington, IN
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN;,Imaging Research Facility, Indiana University, Bloomington, IN
| | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN;,Imaging Research Facility, Indiana University, Bloomington, IN
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - William P. Hetrick
- *To whom correspondence should be addressed; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, US; tel: 812-855-2620, fax: 812-856-4544, e-mail:
| |
Collapse
|
30
|
Parker KL, Narayanan NS, Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci 2014; 8:163. [PMID: 25309350 PMCID: PMC4163988 DOI: 10.3389/fnsys.2014.00163] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
The cognitive role of the cerebellum is critically tied to its distributed connections throughout the brain. Accumulating evidence from anatomical, structural and functional imaging, and lesion studies advocate a cognitive network involving indirect connections between the cerebellum and non-motor areas in the prefrontal cortex. Cerebellar stimulation dynamically influences activity in several regions of the frontal cortex and effectively improves cognition in schizophrenia. In this manuscript, we summarize current literature on the cingulocerebellar circuit and we introduce a method to interrogate this circuit combining opotogenetics, neuropharmacology, and electrophysiology in awake-behaving animals while minimizing incidental stimulation of neighboring cerebellar nuclei. We propose the novel hypothesis that optogenetic cerebellar stimulation can restore aberrant frontal activity and rescue impaired cognition in schizophrenia. We focus on how a known cognitive region in the frontal cortex, the anterior cingulate, is influenced by the cerebellum. This circuit is of particular interest because it has been confirmed using tracing studies, neuroimaging reveals its role in cognitive tasks, it is conserved from rodents to humans, and diseases such as schizophrenia and autism appear in its aberrancy. Novel tract tracing results presented here provide support for how these two areas communicate. The primary pathway involves a disynaptic connection between the cerebellar dentate nuclei (DN) and the anterior cingulate cortex. Secondarily, the pathway from cerebellar fastigial nuclei (FN) to the ventral tegmental area, which supplies dopamine to the prefrontal cortex, may play a role as schizophrenia characteristically involves dopamine deficiencies. We hope that the hypothesis described here will inspire new therapeutic strategies targeting currently untreatable cognitive impairments in schizophrenia.
Collapse
|
31
|
Bolbecker AR, Kent JS, Petersen IT, Klaunig MJ, Forsyth JK, Howell JM, Westfall DR, O’Donnell BF, Hetrick WP. Impaired cerebellar-dependent eyeblink conditioning in first-degree relatives of individuals with schizophrenia. Schizophr Bull 2014; 40:1001-10. [PMID: 23962891 PMCID: PMC4133656 DOI: 10.1093/schbul/sbt112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.
Collapse
Affiliation(s)
| | - Jerillyn S. Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Isaac T. Petersen
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | | | | | | | | | - William P. Hetrick
- *To whom correspondence should be addressed; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, US; tel: 812-855-2620, fax: 812-856-4544, e-mail:
| |
Collapse
|
32
|
Bernard JA, Mittal VA. Cerebellar-motor dysfunction in schizophrenia and psychosis-risk: the importance of regional cerebellar analysis approaches. Front Psychiatry 2014; 5:160. [PMID: 25505424 PMCID: PMC4243486 DOI: 10.3389/fpsyt.2014.00160] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/25/2014] [Indexed: 12/21/2022] Open
Abstract
Motor abnormalities in individuals with schizophrenia and those at-risk for psychosis are well documented. An accumulating body of work has also highlighted motor abnormalities related to cerebellar dysfunction in schizophrenia including eye-blink conditioning, timing, postural control, and motor learning. We have also recently found evidence for motor dysfunction in individuals at ultra high-risk for psychosis (1-3). This is particularly relevant as the cerebellum is thought to be central to the cognitive dysmetria model of schizophrenia, and these overt motor signs may point to more general cerebellar dysfunction in the etiology of psychotic disorders. While studies have provided evidence indicative of motor cerebellar dysfunction in at-risk populations and in schizophrenia, findings with respect to the cerebellum have been mixed. One factor potentially contributing to these mixed results is the whole-structure approach taken when investigating the cerebellum. In non-human primates, there are distinct closed-loop circuits between the cerebellum, thalamus, and brain with motor and non-motor cortical regions. Recent human neuroimaging has supported this finding and indicates that there is a cerebellar functional topography (4), and this information is being missed with whole-structure approaches. Here, we review cerebellar-motor dysfunction in individuals with schizophrenia and those at-risk for psychosis. We also discuss cerebellar abnormalities in psychosis, and the cerebellar functional topography. Because of the segregated functional regions of the cerebellum, we propose that it is important to look at the structure regionally in order to better understand its role in motor dysfunction in these populations. This is analogous to approaches taken with the basal ganglia, where each region is considered separately. Such an approach is necessary to better understand cerebellar pathophysiology on a macro-structural level with respect to the pathogenesis of psychosis.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychology and Neuroscience, University of Colorado Boulder , Boulder, CO , USA
| | - Vijay A Mittal
- Department of Psychology and Neuroscience, University of Colorado Boulder , Boulder, CO , USA ; Center for Neuroscience, University of Colorado Boulder , Boulder, CO , USA
| |
Collapse
|
33
|
Kent JS, Michael Bailey D, Vollmer JM, Newman SD, Bolbecker AR, O'Donnell BF, Hetrick WP. A magnetic resonance imaging-safe method for the study of human eyeblink conditioning. J Neurosci Methods 2013; 216:16-21. [PMID: 23500969 DOI: 10.1016/j.jneumeth.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/24/2022]
Abstract
Eyeblink conditioning (EBC) is a widely used translational probe of cerebellar function in both humans and non-human animals. Decades of animal research have identified the cerebellum as critical for EBC. While there is evidence for the involvement of the cerebellum in human EBC, the neural circuitry of EBC in healthy humans has yet to be fully elucidated. The purpose of this study was to design and validate a highly customisable system for EBC stimulus presentation and response recording using infrared (IR) reflectance suitable for use in magnetic resonance imaging (MRI) environments; in this way, the neural activity of EBC could be investigated using fMRI in humans. Four participants underwent delay EBC and simultaneous fMRI. The results indicate (1) a high signal-to-noise ratio in the IR reflectance data that effectively quantifies the eyeblink morphology and timing and (2) evidence of conditioning in the fMRI environment. The quality of the data, the feasibility of conducting EBC experiments in the fMRI environment, and the customisability of the current system to fit a variety of EBC experimental design parameters are discussed.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 East 10th Street, Bloomington, IN 47405, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Villanueva R. The cerebellum and neuropsychiatric disorders. Psychiatry Res 2012; 198:527-32. [PMID: 22436353 DOI: 10.1016/j.psychres.2012.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/07/2011] [Accepted: 02/22/2012] [Indexed: 01/09/2023]
Abstract
Relative to non-human primates, in humans the cerebellum, and prefrontal cortex are brain regions which have undergone major evolutionary changes. In recent decades, progress in molecular biology and advances in the development of functional neuroimaging analysis have shown that the evolution of the human cerebellum was accompanied by the acquisition of more functions than were previously deduced from human post-mortem studies and animal experimentation. These new cerebellar functions included the control of attention and other cognitive functions, emotions and mood, and social behavior, which were all thought to represent cortical functions. The importance of this new view of cerebellar physiology has been confirmed by the frequency of neuropsychiatric disorders in individuals with cerebellar abnormalities. The information collected in this review emphasizes the importance of cerebellar studies in establishing the physiological substrate of mental diseases.
Collapse
Affiliation(s)
- Rosa Villanueva
- Servicio de Psiquiatria, Hospital Universitario La Paz, Paseo de Castellana 261, 28046 Madrid, Spain.
| |
Collapse
|
35
|
Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. CEREBELLUM (LONDON, ENGLAND) 2012; 11:457-87. [PMID: 22161499 PMCID: PMC4347949 DOI: 10.1007/s12311-011-0331-9] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS, ULB Erasme, 808 Route de Lennik, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|