1
|
Damme KSF, Han YC, Han Z, Reber PJ, Mittal VA. Motor precision deficits in clinical high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1427-1435. [PMID: 37458819 PMCID: PMC10792107 DOI: 10.1007/s00406-023-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
Motor deficits appear prior to psychosis onset, provide insight into vulnerability as well as mechanisms that give rise to emerging illness, and are predictive of conversion. However, to date, the extant literature has often targeted a complex abnormality (e.g., gesture dysfunction, dyskinesia), or a single fundamental domain (e.g., accuracy) but rarely provided critical information about several of the individual components that make up more complex behaviors (or deficits). This preliminary study applies a novel implicit motor task to assess domains of motor accuracy, speed, recognition, and precision in individuals at clinical high risk for psychosis (CHR-p). Sixty participants (29 CHR-p; 31 healthy volunteers) completed clinical symptom interviews and a novel Serial Interception Sequence Learning (SISL) task that assessed implicit motor sequence accuracy, speed, precision, and explicit sequence recognition. These metrics were examined in multilevel models that enabled the examination of overall effects and changes in motor domains over blocks of trials and by positive/negative symptom severity. Implicit motor sequence accuracy, speed, and explicit sequence recognition were not detected as impacted in CHR-p. When compared to healthy controls, individuals at CHR-p were less precise in motor responses both overall (d = 0.91) and particularly in early blocks which normalized over later blocks. Within the CHR-p group, these effects were related to positive symptom levels (t = - 2.22, p = 0.036), such that individuals with higher symptom levels did not improve in motor precision over time (r's = 0.01-0.05, p's > 0.54). CHR-p individuals showed preliminary evidence of motor precision deficits but no other motor domain deficits, particularly in early performance that normalized with practice.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA.
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA.
| | - Y Catherine Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ziyan Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Paul J Reber
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
3
|
Zarubin VC, Gupta T, Mittal VA. History of trauma is a critical treatment target for individuals at clinical high-risk for psychosis. Front Psychiatry 2023; 13:1102464. [PMID: 36683986 PMCID: PMC9846262 DOI: 10.3389/fpsyt.2022.1102464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
People meeting criteria for a clinical high-risk (CHR) for psychosis syndrome frequently represent a heterogeneous, help-seeking, and dynamic population. Among the numerous symptoms and risk factors for psychosis, exposure to trauma stands out as both highly prevalent and poorly understood. Indeed, while up to 80% of individuals meeting criteria for a CHR syndrome report trauma histories, there is currently limited research dedicated to this specific area. This is particularly problematic as trauma is tied to risk for conversion, leads to a range of clinical issues, and contributes to disability and poor quality of life. Fortunately, recent research in the general population has led to a significant evolution in the way trauma is assessed and understood, and further, some studies have indicated that targeted trauma interventions in formal psychotic disorders are highly effective. However, direct adoption is challenging as the CHR syndrome holds a number of unique concerns (e.g., clinical heterogeneity, developmental trauma), and characteristically, involves a developing pediatric or young adult population that also comes with specific considerations (e.g., living with caregivers, transitionary period in roles). In this "perspective" we frame the issues around understanding trauma in CHR individuals, discuss viable treatments and unique considerations, and provide suggestions for future steps in developing and incorporating trauma-focused interventions in this population.
Collapse
Affiliation(s)
- Vanessa C. Zarubin
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Chicago, IL, United States
| | - Tina Gupta
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Chicago, IL, United States
- Department of Psychiatry, Northwestern University, Chicago, IL, United States
- Medical Social Sciences, Northwestern University, Chicago, IL, United States
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Frosch IR, Damme KSF, Bernard JA, Mittal VA. Cerebellar correlates of social dysfunction among individuals at clinical high risk for psychosis. Front Psychiatry 2022; 13:1027470. [PMID: 36532176 PMCID: PMC9752902 DOI: 10.3389/fpsyt.2022.1027470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Social deficits are a significant feature among both individuals with psychosis and those at clinical high-risk (CHR) for developing psychosis. Critically, the psychosis risk syndrome emerges in adolescence and young adulthood, when social skill development is being fine-tuned. Yet, the underlying pathophysiology of social deficits in individuals at CHR for psychosis remains unclear. Literature suggests the cerebellum plays a critical role in social functioning. Cerebellar dysfunction in psychosis and CHR individuals is well-established, yet limited research has examined links between the cerebellum and social functioning deficits in this critical population. Method In the current study, 68 individuals at CHR for developing psychosis and 66 healthy controls (HCs) completed social processing measures (examining social interaction, social cognition, and global social functioning) and resting-state MRI scans. Seed-to-voxel resting-state connectivity analyses were employed to examine the relationship between social deficits and lobular cerebellar network connectivity. Results Analyses indicated that within the CHR group, each social domain variable was linked to reduced connectivity between social cerebellar subregions (e.g., Crus II, lobules VIIIa and VIIIb) and cortical regions (e.g., frontal pole and frontal gyrus), but a control cerebellar subregion (e.g., lobule X) and was unrelated to these social variables. Discussion These results indicate an association between several cerebellar lobules and specific deficits in social processing. The cerebellum, therefore, may be particularly salient to the social domain and future research is need to examine the role of the cerebellum in psychosis.
Collapse
Affiliation(s)
- Isabelle R. Frosch
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Katherine S. F. Damme
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, IL, United States
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Vijay A. Mittal
- Department of Psychology, Northwestern University, Evanston, IL, United States
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, IL, United States
- Department of Psychiatry, Northwestern University, Chicago, IL, United States
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States
- Institute for Policy Research, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Damme KSF, Gupta T, Ristanovic I, Kimhy D, Bryan AD, Mittal VA. Exercise Intervention in Individuals at Clinical High Risk for Psychosis: Benefits to Fitness, Symptoms, Hippocampal Volumes, and Functional Connectivity. Schizophr Bull 2022; 48:1394-1405. [PMID: 35810336 PMCID: PMC9673264 DOI: 10.1093/schbul/sbac084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Individuals at clinical high risk for psychosis (CHR-p) are less fit than nonclinical peers and show hippocampal abnormalities that relate to clinical symptoms. Exercise generates hippocampal neurogenesis that may ameliorate these hippocampal abnormalities and related cognitive/clinical symptoms. This study examines the impact of exercise on deficits in fitness, cognitive deficits, attenuated psychotic symptoms, hippocampal volumes, and hippocampal connectivity in individuals at CHR-p. STUDY DESIGN In a randomized controlled trial, 32 individuals at CHR-p participated in either an exercise (n = 17) or waitlist (no exercise) (n = 15) condition. All participants were sedentary at use and absent of current antipsychotic medication, psychosis diagnoses, or a substance use disorder. The participants completed a series of fitness, cognitive tasks, clinical assessments, and an MRI session preintervention and postintervention. The exercise intervention included a high-intensity interval exercise (80% of VO2max) with 1-minute high-intensity intervals (95% of VO2max) every 10 minutes) protocol twice a week over 3 months. STUDY RESULTS The exercise intervention was well tolerated (83.78% retention; 81.25% completion). The exercising CHR-p group showed that improved fitness (pre/post-d = 0.53), increased in cognitive performance (pre/post-d = 0.49), decrease in positive symptoms (pre/post-d = 1.12) compared with the waitlist group. Exercising individuals showed stable hippocampal volumes; waitlist CHR-p individuals showed 3.57% decreased hippocampal subfield volume. Exercising individuals showed that increased exercise-related hippocampal connectivity compared to the waitlist individuals. CONCLUSIONS The exercise intervention had excellent adherence, and there were clear signs of mechanism engagement. Taken together, evidence suggests that high-intensity exercise can be a beneficial therapeutic tool in the psychosis risk period.
Collapse
Affiliation(s)
- Katherine S F Damme
- To whom correspondence should be addressed; Department of Psychology, Northwestern University, 2029 Sheridan Rd.Evanston, IL 60208, USA; tel: 402-890-3606, e-mail:
| | - Tina Gupta
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Ivanka Ristanovic
- Department of Psychology, Northwestern University, Evanston, IL, USA,Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
| | - David Kimhy
- Department of Psychology, Northwestern University, Evanston, IL, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,MIRECC, The James J. Peters VA Medical Center, Bronx, NY, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA,Institute for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA,Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA,Institute for Cognitive Science, University of Colorado, Boulder, CO, USA,Department of Psychiatry, Northwestern University, Chicago, IL, USA,Medical Social Sciences, Northwestern University, Chicago, IL, USA,Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Rokita KI, Holleran L, Dauvermann MR, Mothersill D, Holland J, Costello L, Kane R, McKernan D, Morris DW, Kelly JP, Corvin A, Hallahan B, McDonald C, Donohoe G. Childhood trauma, brain structure and emotion recognition in patients with schizophrenia and healthy participants. Soc Cogn Affect Neurosci 2021; 15:1336-1350. [PMID: 33245126 PMCID: PMC7759212 DOI: 10.1093/scan/nsaa160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/25/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
Childhood trauma, and in particular physical neglect, has been repeatedly associated with lower performance on measures of social cognition (e.g. emotion recognition tasks) in both psychiatric and non-clinical populations. The neural mechanisms underpinning this association have remained unclear. Here, we investigated whether volumetric changes in three stress-sensitive regions—the amygdala, hippocampus and anterior cingulate cortex (ACC)—mediate the association between childhood trauma and emotion recognition in a healthy participant sample (N = 112) and a clinical sample of patients with schizophrenia (N = 46). Direct effects of childhood trauma, specifically physical neglect, on Emotion Recognition Task were observed in the whole sample. In healthy participants, reduced total and left ACC volumes were observed to fully mediate the association between both physical neglect and total childhood trauma score, and emotion recognition. No mediating effects of the hippocampus and amygdala volumes were observed for either group. These results suggest that reduced ACC volume may represent part of the mechanism by which early life adversity results in poorer social cognitive function. Confirmation of the causal basis of this association would highlight the importance of resilience-building interventions to mitigate the detrimental effects of childhood trauma on brain structure and function.
Collapse
Affiliation(s)
- Karolina I Rokita
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laurena Holleran
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Maria R Dauvermann
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT, Cambridge, MA 02135, USA
| | - David Mothersill
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,School of Business, National College of Ireland, Dublin, Ireland
| | - Jessica Holland
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Costello
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - Ruán Kane
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Declan McKernan
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Aiden Corvin
- Department of Psychiatry, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland.,Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- School of Psychology, National University of Ireland Galway, Galway, Ireland.,Centre for Neuroimaging, Cognition & Genomics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
7
|
Vargas T, Damme KSF, Ered A, Capizzi R, Frosch I, Ellman LM, Mittal VA. Neuroimaging Markers of Resiliency in Youth at Clinical High Risk for Psychosis: A Qualitative Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:166-177. [PMID: 32788085 PMCID: PMC7725930 DOI: 10.1016/j.bpsc.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Psychotic disorders are highly debilitating and constitute a major public health burden. Identifying markers of psychosis risk and resilience is a necessary step toward understanding etiology and informing prevention and treatment efforts in individuals at clinical high risk (CHR) for psychosis. In this context, it is important to consider that neural risk markers have been particularly useful in identifying mechanistic determinants along with predicting clinical outcomes. Notably, despite a growing body of supportive literature and the promise of recent findings identifying potential neural markers, the current work on CHR resilience markers has received little attention. The present review provides a brief overview of brain-based risk markers with a focus on predicting symptom course. Next, the review turns to protective markers, examining research from nonpsychiatric and schizophrenia fields to build an understanding of framing, priorities, and potential, applying these ideas to contextualizing a small but informative body of resiliency-relevant CHR research. Four domains (neurocognition, emotion regulation, allostatic load, and sensory and sensorimotor function) were identified and are discussed in terms of behavioral and neural markers. Taken together, the literature suggests significant predictive value for brain-based markers for individuals at CHR for psychosis, and the limited but compelling resiliency work highlights the critical importance of expanding this promising area of inquiry.
Collapse
Affiliation(s)
- Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois.
| | | | - Arielle Ered
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Riley Capizzi
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Isabelle Frosch
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Lauren M Ellman
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois; Department of Psychiatry, Northwestern University, Evanston, Illinois; Department of Medical Social Sciences, Northwestern University, Evanston, Illinois; Institute for Policy Research, Northwestern University, Evanston, Illinois; Institute for Innovations in Developmental Sciences, Northwestern University, Evanston, Illinois
| |
Collapse
|
8
|
Sasabayashi D, Yoshimura R, Takahashi T, Takayanagi Y, Nishiyama S, Higuchi Y, Mizukami Y, Furuichi A, Kido M, Nakamura M, Noguchi K, Suzuki M. Reduced Hippocampal Subfield Volume in Schizophrenia and Clinical High-Risk State for Psychosis. Front Psychiatry 2021; 12:642048. [PMID: 33828496 PMCID: PMC8019805 DOI: 10.3389/fpsyt.2021.642048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ryo Yoshimura
- Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Sasabayashi D, Takayanagi Y, Takahashi T, Katagiri N, Sakuma A, Obara C, Katsura M, Okada N, Koike S, Yamasue H, Nakamura M, Furuichi A, Kido M, Nishikawa Y, Noguchi K, Matsumoto K, Mizuno M, Kasai K, Suzuki M. Subcortical Brain Volume Abnormalities in Individuals With an At-risk Mental State. Schizophr Bull 2020; 46:834-845. [PMID: 32162659 PMCID: PMC7342178 DOI: 10.1093/schbul/sbaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous structural magnetic resonance imaging studies of psychotic disorders have demonstrated volumetric alterations in subcortical (ie, the basal ganglia, thalamus) and temporolimbic structures, which are involved in high-order cognition and emotional regulation. However, it remains unclear whether individuals at high risk for psychotic disorders with minimal confounding effects of medication exhibit volumetric changes in these regions. This multicenter magnetic resonance imaging study assessed regional volumes of the thalamus, caudate, putamen, nucleus accumbens, globus pallidus, hippocampus, and amygdala, as well as lateral ventricular volume using FreeSurfer software in 107 individuals with an at-risk mental state (ARMS) (of whom 21 [19.6%] later developed psychosis during clinical follow-up [mean = 4.9 years, SD = 2.6 years]) and 104 age- and gender-matched healthy controls recruited at 4 different sites. ARMS individuals as a whole demonstrated significantly larger volumes for the left caudate and bilateral lateral ventricles as well as a smaller volume for the right accumbens compared with controls. In male subjects only, the left globus pallidus was significantly larger in ARMS individuals. The ARMS group was also characterized by left-greater-than-right asymmetries of the lateral ventricle and caudate nucleus. There was no significant difference in the regional volumes between ARMS groups with and without later psychosis onset. The present study suggested that significant volume expansion of the lateral ventricle, caudate, and globus pallidus, as well as volume reduction of the accumbens, in ARMS subjects, which could not be explained only by medication effects, might be related to general vulnerability to psychopathology.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan,To whom correspondence should be addressed; Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan; tel: +81-76-434-7323, fax: +81-76-434-5030, e-mail:
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Atsushi Sakuma
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Chika Obara
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Masahiro Katsura
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kazunori Matsumoto
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan,Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
10
|
Timing of menarche and abnormal hippocampal connectivity in youth at clinical-high risk for psychosis. Psychoneuroendocrinology 2020; 117:104672. [PMID: 32388227 PMCID: PMC7305941 DOI: 10.1016/j.psyneuen.2020.104672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022]
Abstract
The "estrogen hypothesis" suggests that estrogen is a protective factor against psychotic disorders such as schizophrenia. Although the precise protective mechanisms are still unclear, one potential explanation lies in the role that increased estrogens play in mediating hippocampal plasticity, as this may reduce hippocampal dysconnectivity that is characteristically observed in psychosis. In support of this view, later age at menarche- less available estrogen during critical early adolescent development- is related to earlier onset of psychosis and increased symptom severity. Furthermore, if estrogens have protective effects, then we should see this effect in the psychosis risk period in those at clinical high-risk (CHR) for psychosis - i.e., individuals showing attenuated symptoms at imminent risk for transitioning to a psychotic diagnosis. This study examined whether earlier age at menarche would result in more normative hippocampal connectivity in CHR youth; menarche is an easily assessed, developmental marker associated with the availability of estrogens. Resting-state connectivity was examined in sixty female participants (26 CHR and 34 healthy control; age 12-21) using a cross-sectional approach; hippocampal connectivity was found to relate to age at menarche. Later age at menarche in the CHR group related to increased hippocampal dysconnectivity to the occipital cortex (a region with a neurotrophic response to estrogen) compared to the controls. Results suggest that earlier availability of estrogens may have neuroprotective effects on hippocampal plasticity. Findings have relevance for understanding sex differences and etiology, as well as guiding novel treatments.
Collapse
|
11
|
Volumetric and morphological characteristics of the hippocampus are associated with progression to schizophrenia in patients with first-episode psychosis. Eur Psychiatry 2020; 45:1-5. [DOI: 10.1016/j.eurpsy.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/06/2023] Open
Abstract
AbstractBackground:Abnormalities in the hippocampus have been implicated in the pathophysiology of psychosis. However, it is still unclear whether certain abnormalities are a pre-existing vulnerability factor, a sign of disease progression or a consequence of environmental factors. We hypothesized that first-episode psychosis patients who progress to schizophrenia after one year of follow up will display greater volumetric and morphological changes from the very beginning of the disorder.Methods:We studied the hippocampus of 41 patients with a first-episode psychosis and 41 matched healthy controls. MRI was performed at the time of the inclusion in the study. After one year, the whole sample was reevaluated and divided in two groups depending on the diagnoses (schizophrenia vs. non-schizophrenia).Results:Patients who progressed to schizophrenia showed a significantly smaller left hippocampus volume than control group and no-schizophrenia group (F = 3.54; df = 2, 77; P = 0.03). We also found significant differences in the morphology of the anterior hippocampus (CA1) of patients with first-episode psychosis who developed schizophrenia compared with patients who did not.Conclusions:These results are consistent with the assumption of hyperfunctioning dopaminergic cortico-subcortical circuits in schizophrenia, which might be related with an alteration of subcortical structures, such as the hippocampus, along the course of the disease. According with these results, hippocampus abnormalities may serve as a prognostic marker of clinical outcome in patients with a first-episode psychosis.
Collapse
|
12
|
Hinney B, Walter A, Aghlmandi S, Andreou C, Borgwardt S. Does Hippocampal Volume Predict Transition to Psychosis in a High-Risk Group? A Meta-Analysis. Front Psychiatry 2020; 11:614659. [PMID: 33519555 PMCID: PMC7840882 DOI: 10.3389/fpsyt.2020.614659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Schizophrenia has a prodromal phase of several years in most patients, making it possible to identify patients at clinical high risk (CHR) for developing the disorder. So far, these individuals are identified based on clinical criteria alone, and there is no reliable biomarker for predicting the transition to psychosis. It is well-established that reductions in brain volume, especially in the hippocampus, are associated with schizophrenia. Therefore, hippocampal volume may serve as a biomarker for psychosis. Several studies have already investigated hippocampal volume in CHR groups. Based on these studies, the present meta-analysis compares the baseline left and right hippocampal volume of CHR patients who developed a psychosis with that of CHR patients without such a transition. Our results show no statistically significant effect of the hippocampal volume on the transition risk for psychosis.
Collapse
Affiliation(s)
- Bernd Hinney
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Anna Walter
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland
| | - Christina Andreou
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Agrawal N, Mula M. Treatment of psychoses in patients with epilepsy: an update. Ther Adv Psychopharmacol 2019; 9:2045125319862968. [PMID: 31316747 PMCID: PMC6620723 DOI: 10.1177/2045125319862968] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Psychotic disorders represent a relatively rare but serious comorbidity in epilepsy. Current epidemiological studies are showing a point prevalence of 5.6% in unselected samples of people with epilepsy going up to 7% in patients with temporal lobe epilepsy, with a pooled odds ratio of 7.8 as compared with the general population. This is a narrative review of the most recent updates in the management of psychotic disorders in epilepsy, taking into account the clinical scenarios where psychotic symptoms occur in epilepsy, interactions with antiepileptic drugs (AEDs) and the risk of seizures with antipsychotics. Psychotic symptoms in epilepsy can arise in a number of different clinical scenarios from peri-ictal symptoms, to chronic interictal psychoses, comorbid schizophrenia and related disorders to the so-called forced normalization phenomenon. Data on the treatment of psychotic disorders in epilepsy are still limited and the management of these problems is still based on individual clinical experience. For this reason, guidelines of treatment outside epilepsy should be adopted taking into account epilepsy-related issues including interactions with AEDs and seizure risk. Second-generation antipsychotics, especially risperidone, can represent a reasonable first-line option because of the low propensity for drug-drug interactions and the low risk of seizures. Quetiapine is burdened by a clinically significant pharmacokinetic interaction with enzyme-inducing drugs leading to undetectable levels of the antipsychotic, even for dosages up to 700 mg per day.
Collapse
Affiliation(s)
- Niruj Agrawal
- Atkinson Morley Regional Neuroscience Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
- Institute of Medical and Biomedical Education, St George’s University of London, UK
- Department of Neuropsychiatry, South West London & St George’s Mental Health Trust, London, UK
| | - Marco Mula
- Institute of Medical and Biomedical Education, St George’s University of London, UK
| |
Collapse
|
14
|
Zhang Y, Gong X, Yin Z, Cui L, Yang J, Wang P, Zhou Y, Jiang X, Wei S, Wang F, Tang Y. Association between NRGN gene polymorphism and resting-state hippocampal functional connectivity in schizophrenia. BMC Psychiatry 2019; 19:108. [PMID: 30953482 PMCID: PMC6451258 DOI: 10.1186/s12888-019-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Based on genome-wide association studies, a single-nucleotide polymorphism in the NRGN gene (rs12807809) is considered associated with schizophrenia (SZ). Moreover, hippocampal dysfunction is associated with rs12807809. In addition, converging evidence suggests that hippocampal dysfunction is involved in SZ pathophysiology. However, the association among rs12807809, hippocampal dysfunction and SZ pathophysiology is unknown. Therefore, this study investigated the association between rs12807809 and hippocampal functional connectivity at rest in SZ. METHODS In total, 158 participants were studied, including a C-carrier group carrying the non-risk C allele (29 SZ patients and 46 healthy controls) and a TT homozygous group carrying the risk T allele (30 SZ patients and 53 healthy controls). All participants were scanned using resting-state functional magnetic resonance imaging. Hippocampal functional connectivity was computed and compared among the 4 groups. RESULTS Significant main effects of diagnosis were observed in the functional connectivity between the hippocampus and bilateral fusiform gyrus, bilateral lingual gyrus, left inferior temporal gyrus, left caudate nucleus, bilateral thalamus and bilateral anterior cingulate gyri. In contrast, no significant main effect of genotype was found. In addition, a significant genotype by diagnosis interaction in the functional connectivity between the hippocampus and left anterior cingulate gyrus, as well as bilateral middle cingulate gyri, was observed, with TT homozygotes with SZ showing less functional connectivity than C-carriers with SZ and healthy control TT homozygotes. CONCLUSIONS These findings are the first to suggest an association between rs12807809 and abnormal Papez circuit function in patients with SZ. This study also implicates NRGN variation and abnormal Papez circuit function in SZ pathophysiology.
Collapse
Affiliation(s)
- Yifan Zhang
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Xiaohong Gong
- 0000 0001 0125 2443grid.8547.eState Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Zhiyang Yin
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Lingling Cui
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Jian Yang
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Pengshuo Wang
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Yifang Zhou
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China ,grid.412636.4Department of Psychiatry and Gerontology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, He ping District, Shenyang, Liaoning 110001 People’s Republic of China
| | - Xiaowei Jiang
- grid.412636.4Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China ,grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Shengnan Wei
- grid.412636.4Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001 People’s Republic of China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China. .,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China. .,Brain Function Research Section and Department of Psychiatry and Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, He ping District, Shenyang, Liaoning, 110001, People's Republic of China.
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China. .,Department of Psychiatry and Gerontology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, He ping District, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
15
|
Asami T, Yoshida H, Takaishi M, Nakamura R, Yoshimi A, Whitford TJ, Hirayasu Y. Thalamic shape and volume abnormalities in female patients with panic disorder. PLoS One 2018; 13:e0208152. [PMID: 30566534 PMCID: PMC6300210 DOI: 10.1371/journal.pone.0208152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
The thalamus is believed to play crucial role in processing viscero-sensory information, and regulating the activity of amygdala in patients with panic disorder (PD). Previous functional neuroimaging studies have detected abnormal activation in the thalamus in patients with PD compared with healthy control subjects (HC). Very few studies, however, have investigated for volumetric abnormalities in the thalamus in patients with PD. Furthermore, to the best of our knowledge, no previous study has investigated for shape abnormalities in the thalamus in patients with PD. Twenty-five patients with PD and 25 HC participants (all female) were recruited for the study. A voxel-wise volume comparison analysis and a vertex-wise shape analysis were conducted to evaluate structural abnormalities in the PD patients compared to HC. The patients with PD demonstrated significant gray matter volume reductions in the thalamus bilaterally, relative to the HC. The shape analysis detected significant inward deformation in some thalamic regions in the PD patients, including the anterior nucleus, mediodorsal nucleus, and pulvinar nucleus. PD patients showed shape deformations in key thalamic regions that are believed to play a role in regulating emotional and cognitive functions.
Collapse
Affiliation(s)
- Takeshi Asami
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Haruhisa Yoshida
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masao Takaishi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryota Nakamura
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Asuka Yoshimi
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Thomas J. Whitford
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Heian Hospital, Urazoe, Japan
| |
Collapse
|
16
|
Hafizi S, Guma E, Koppel A, Da Silva T, Kiang M, Houle S, Wilson AA, Rusjan PM, Chakravarty MM, Mizrahi R. TSPO expression and brain structure in the psychosis spectrum. Brain Behav Immun 2018; 74:79-85. [PMID: 29906515 PMCID: PMC6289857 DOI: 10.1016/j.bbi.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023] Open
Abstract
Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18 kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic-naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [18F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [18F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [18F]FEPPA VT (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [18F]FEPPA VT and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis.
Collapse
Affiliation(s)
- Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Elisa Guma
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Alex Koppel
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Vargas T, Dean DJ, Osborne KJ, Gupta T, Ristanovic I, Ozturk S, Turner J, van Erp TGM, Mittal VA. Hippocampal Subregions Across the Psychosis Spectrum. Schizophr Bull 2018; 44:1091-1099. [PMID: 29272467 PMCID: PMC6101630 DOI: 10.1093/schbul/sbx160] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction Converging evidence suggests that hippocampal subregions subserve different functions, and are differentially affected by psychosis illness progression. Despite this fact, studies have not often studied subregions cross-sectionally across the psychosis spectrum. Furthermore, little is known about associations between subregion volumes and hippocampus-mediated cognition. Methods A total of 222 participants (61 ultra high risk [UHR], 91 schizophrenia [SCZ], and 70 healthy volunteers) underwent a 3T MRI scan, as well as structured clinical interviews and a cognitive battery. Hippocampal subfield analysis was conducted with Freesurfer. We compared subregion volumes across groups, controlling for age, gender, and intracranial volume. We also examined associations in the UHR and SCZ groups between hippocampal subregion volumes and verbal learning, visual learning, and working memory. Results We found a dose-dependent relationship such that the SCZ group showed significantly greater subfield volume reductions than the UHR group, which in turn showed significantly greater subfield volume reductions than the healthy volunteer group. We also found associations between subregion volume and cognitive performance in the visual memory, verbal memory, and working memory domains. Discussion Our study examined hippocampal subregion volumes cross-sectionally in a large sample across the psychosis spectrum, as well as links with hippocampus-mediated cognitive function. Our findings suggest that hippocampal abnormalities emerge before first psychosis episode onset, and may be etiologically informative.
Collapse
Affiliation(s)
- Teresa Vargas
- Department of Psychology, Northwestern University, IL
| | - Derek J Dean
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | | | - Tina Gupta
- Department of Psychology, Northwestern University, IL
| | | | - Sekine Ozturk
- Department of Psychology, Northwestern University, IL
| | | | - Theo G M van Erp
- Psychiatry & Human Behavior Department, University of California Irvine
| | | |
Collapse
|
18
|
Horne CM, Norbury R. Exploring the effect of chronotype on hippocampal volume and shape: A combined approach. Chronobiol Int 2018; 35:1027-1033. [DOI: 10.1080/07420528.2018.1455056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ray Norbury
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
19
|
Ruffle JK, Coen SJ, Giampietro V, Williams SC, Apkarian AV, Farmer AD, Aziz Q. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans. Hum Brain Mapp 2018; 39:381-392. [PMID: 29080228 PMCID: PMC6866383 DOI: 10.1002/hbm.23850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P < 0.05). In contrast, parasympathetic CVT negatively correlated with inward deformation of the right amygdala and pallidum (all thresholded to corrected P < 0.05). Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James K. Ruffle
- Centre for Neuroscience and TraumaBlizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 26 Ashfield StreetLondonE1 2AJUnited Kingdom
- Medical Acute Assessment Unit, Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, WhitechapelLondonE1 1BBUnited Kingdom
| | - Steven J. Coen
- Research Department of Clinical, Educational and Health PsychologyUniversity College London, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Vincent Giampietro
- Department of NeuroimagingKing's College London, Institute of Psychiatry, Psychology & NeuroscienceLondonSE5 8AFUnited Kingdom
| | - Steven C.R. Williams
- Department of NeuroimagingKing's College London, Institute of Psychiatry, Psychology & NeuroscienceLondonSE5 8AFUnited Kingdom
| | - A. Vania Apkarian
- Department of PhysiologyNorthwestern University, Feinberg School of MedicineChicagoIllinois60611
| | - Adam D. Farmer
- Centre for Neuroscience and TraumaBlizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 26 Ashfield StreetLondonE1 2AJUnited Kingdom
- Department of GastroenterologyUniversity Hospitals Midlands NHS Trust, Stoke on TrentStaffordshireST4 6QGUnited Kingdom
| | - Qasim Aziz
- Centre for Neuroscience and TraumaBlizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, 26 Ashfield StreetLondonE1 2AJUnited Kingdom
| |
Collapse
|
20
|
Dean DJ, Bryan AD, Newberry R, Gupta T, Carol E, Mittal VA. A Supervised Exercise Intervention for Youth at Risk for Psychosis: An Open-Label Pilot Study. J Clin Psychiatry 2017; 78:e1167-e1173. [PMID: 29178684 PMCID: PMC5995728 DOI: 10.4088/jcp.16m11365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/05/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A rapidly accumulating body of research suggests that exercise can improve symptoms and well-being in patients suffering from psychosis. Exercise may also promote neurogenesis in the hippocampus, a structure that plays an important role in the pathophysiology of psychosis. To date, there has not been an intervention focused on exercise prior to the onset of psychosis, a critical time for prevention of more serious illness. METHODS In this pilot study, 12 young adults at ultrahigh risk (UHR) for psychosis were enrolled in a 12-week open-label exercise intervention. Participants were randomly assigned to exercise 2 or 3 times each week and exercised between 65% and 85% of maximum oxygen capacity (Vo2max) for 30 minutes each session under the supervision of an exercise physiologist. Positive and negative symptoms, social and role functioning, performance on neurocognitive tests, cardiovascular fitness, and hippocampal structure and functional connectivity were evaluated before and after the trial. RESULTS A total of 9 participants completed the exercise intervention. Participants showed improved positive and negative symptoms and social and role functioning; improvement in multiple areas of cognition; and increased functional connectivity between the left hippocampus and occipital cortex after 12 weeks of exercise. CONCLUSIONS The results of this study suggest that exercise interventions are feasible in a UHR sample and may promote improvement in clinical, social, and cognitive domains as well as changes to brain function in regions impacted by the development of psychosis. These findings set the stage for an ongoing phase 2 randomized controlled trial. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02155699.
Collapse
Affiliation(s)
- Derek J Dean
- University of Colorado at Boulder, Department of Psychology and Neuroscience, Center for Neuroscience, 345 UCB, Boulder, CO 80309-0345.
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Raeana Newberry
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tina Gupta
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - Emily Carol
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
- Department of Psychiatry, Northwestern University, Chicago, Illinois, USA
- Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
- Department of Medical Social Sciences, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Roalf DR, Quarmley M, Calkins ME, Satterthwaite TD, Ruparel K, Elliott MA, Moore TM, Gur RC, Gur RE, Moberg PJ, Turetsky BI. Temporal Lobe Volume Decrements in Psychosis Spectrum Youths. Schizophr Bull 2017; 43:601-610. [PMID: 27559077 PMCID: PMC5463880 DOI: 10.1093/schbul/sbw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structural brain abnormalities have been amply demonstrated in schizophrenia. These include volume decrements in the perirhinal/entorhinal regions of the ventromedial temporal lobe, which comprise the primary olfactory cortex. Olfactory impairments, which are a hallmark of schizophrenia, precede the onset of illness, distinguish adolescents experiencing prodromal symptoms from healthy youths, and may predict the transition from the prodrome to frank psychosis. We therefore examined temporal lobe regional volumes in a large adolescent sample to determine if structural deficits in ventromedial temporal lobe areas were associated, not only with schizophrenia, but also with a heightened risk for psychosis. Seven temporal lobe regional volumes (amygdala [AM], hippocampus, inferior temporal gyrus, parahippocampal gyrus, superior temporal gyrus, temporal pole, and entorhinal cortex [EC]) were measured in 386 psychosis spectrum adolescents, 521 adolescents with other types of psychopathology, and 359 healthy adolescents from the Philadelphia Neurodevelopment Cohort. Total intracranial and left EC volumes, which were both smallest among the psychosis spectrum, were the only measures that distinguished all 3 groups. Left AM was also smaller in psychosis spectrum compared with healthy subjects. EC volume decrement was strongly correlated with impaired cognition and less robustly associated with heightened negative/disorganized symptoms. AM volume decrement correlated with positive symptoms (persecution/special abilities). Temporal lobe volumes classified psychosis spectrum youths with very high specificity but relatively low sensitivity. These MRI measures may therefore serve as important confirmatory biomarkers denoting a worrisome preclinical trajectory among at-risk youths, and the specific pattern of deficits may predict specific symptom profiles.
Collapse
Affiliation(s)
- David R. Roalf
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan Quarmley
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Monica E. Calkins
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kosha Ruparel
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark A. Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tyler M. Moore
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ruben C. Gur
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Raquel E. Gur
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul J. Moberg
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Smell and Taste Center, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bruce I. Turetsky
- Department of Psychiatry, Neuropsychiatry Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA;,Smell and Taste Center, Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Progressive Decline in Hippocampal CA1 Volume in Individuals at Ultra-High-Risk for Psychosis Who Do Not Remit: Findings from the Longitudinal Youth at Risk Study. Neuropsychopharmacology 2017; 42:1361-1370. [PMID: 28079061 PMCID: PMC5437892 DOI: 10.1038/npp.2017.5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
Most individuals identified as ultra-high-risk (UHR) for psychosis do not develop frank psychosis. They continue to exhibit subthreshold symptoms, or go on to fully remit. Prior work has shown that the volume of CA1, a subfield of the hippocampus, is selectively reduced in the early stages of schizophrenia. Here we aimed to determine whether patterns of volume change of CA1 are different in UHR individuals who do or do not achieve symptomatic remission. Structural MRI scans were acquired at baseline and at 1-2 follow-up time points (at 12-month intervals) from 147 UHR and healthy control subjects. An automated method (based on an ex vivo atlas of ultra-high-resolution hippocampal tissue) was used to delineate the hippocampal subfields. Over time, a greater decline in bilateral CA1 subfield volumes was found in the subgroup of UHR subjects whose subthreshold symptoms persisted (n=40) and also those who developed clinical psychosis (n=12), compared with UHR subjects who remitted (n=41) and healthy controls (n=54). No baseline differences in volumes of the overall hippocampus or its subfields were found among the groups. Moreover, the rate of volume decline of CA1, but not of other hippocampal subfields, in the non-remitters was associated with increasing symptom severity over time. Thus, these findings indicate that there is deterioration of CA1 volume in persistently symptomatic UHR individuals in proportion to symptomatic progression.
Collapse
|
23
|
Walter A, Suenderhauf C, Harrisberger F, Lenz C, Smieskova R, Chung Y, Cannon TD, Bearden CE, Rapp C, Bendfeldt K, Borgwardt S, Vogel T. Hippocampal volume in subjects at clinical high-risk for psychosis: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016; 71:680-690. [DOI: 10.1016/j.neubiorev.2016.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
|
24
|
Crum WR, Danckaers F, Huysmans T, Cotel MC, Natesan S, Modo MM, Sijbers J, Williams SCR, Kapur S, Vernon AC. Chronic exposure to haloperidol and olanzapine leads to common and divergent shape changes in the rat hippocampus in the absence of grey-matter volume loss. Psychol Med 2016; 46:3081-3093. [PMID: 27516217 PMCID: PMC5108303 DOI: 10.1017/s0033291716001768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the most consistently reported brain abnormalities in schizophrenia (SCZ) is decreased volume and shape deformation of the hippocampus. However, the potential contribution of chronic antipsychotic medication exposure to these phenomena remains unclear. METHOD We examined the effect of chronic exposure (8 weeks) to clinically relevant doses of either haloperidol (HAL) or olanzapine (OLZ) on adult rat hippocampal volume and shape using ex vivo structural MRI with the brain retained inside the cranium to prevent distortions due to dissection, followed by tensor-based morphometry (TBM) and elastic surface-based shape deformation analysis. The volume of the hippocampus was also measured post-mortem from brain tissue sections in each group. RESULTS Chronic exposure to either HAL or OLZ had no effect on the volume of the hippocampus, even at exploratory thresholds, which was confirmed post-mortem. In contrast, shape deformation analysis revealed that chronic HAL and OLZ exposure lead to both common and divergent shape deformations (q = 0.05, FDR-corrected) in the rat hippocampus. In particular, in the dorsal hippocampus, HAL exposure led to inward shape deformation, whereas OLZ exposure led to outward shape deformation. Interestingly, outward shape deformations that were common to both drugs occurred in the ventral hippocampus. These effects remained significant after controlling for hippocampal volume suggesting true shape changes. CONCLUSIONS Chronic exposure to either HAL or OLZ leads to both common and divergent effects on rat hippocampal shape in the absence of volume change. The implications of these findings for the clinic are discussed.
Collapse
Affiliation(s)
- W. R. Crum
- Department of Neuroimaging,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience,
Centre for Neuroimaging Sciences, De Crespigny
Park, London, UK
| | - F. Danckaers
- Department of Physics,
iMinds-Vision Laboratory, University of
Antwerp, Antwerp, Belgium
| | - T. Huysmans
- Department of Physics,
iMinds-Vision Laboratory, University of
Antwerp, Antwerp, Belgium
| | - M.-C. Cotel
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
| | - S. Natesan
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
| | - M. M. Modo
- Department of Basic and Clinical
Neuroscience, King's College London,
Institute of Psychiatry, Psychology and
Neuroscience, Maurice Wohl Institute for Clinical
Neuroscience, London, UK
| | - J. Sijbers
- Department of Physics,
iMinds-Vision Laboratory, University of
Antwerp, Antwerp, Belgium
| | - S. C. R. Williams
- Department of Neuroimaging,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience,
Centre for Neuroimaging Sciences, De Crespigny
Park, London, UK
| | - S. Kapur
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
| | - A. C. Vernon
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
- Department of Basic and Clinical
Neuroscience, King's College London,
Institute of Psychiatry, Psychology and
Neuroscience, Maurice Wohl Institute for Clinical
Neuroscience, London, UK
| |
Collapse
|
25
|
Carol EE, Spencer RL, Mittal VA. Sex differences in morning cortisol in youth at ultra-high-risk for psychosis. Psychoneuroendocrinology 2016; 72:87-93. [PMID: 27388688 PMCID: PMC4996727 DOI: 10.1016/j.psyneuen.2016.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022]
Abstract
Research suggests abnormalities in hypothalamic-pituitary-adrenal (HPA) axis function play an important role in the pathophysiology of psychosis. However, there is limited research on the biological stress system in young people at ultra high risk (UHR) for psychosis. Morning cortisol levels are particularly relevant to study in this context, as these markers reflect HPA regulation. This is the first examination of sex differences in morning cortisol levels in UHR individuals. Twenty-eight UHR and 22 matched healthy control participants were assessed in respect to symptoms and had home-based collection of salivary cortisol over three time points in the morning. It was predicted that the UHR participants would exhibit lower morning cortisol levels and lower cortisol would be associated with greater symptomatology (i.e. higher positive, negative, and depressive symptoms). Additionally, sex differences in morning cortisol levels were explored based on recent evidence suggesting that sex differences may play an important role in the exacerbation of psychosis. While there were no group differences in morning salivary cortisol secretion, there was a sex by time interaction among UHR individuals, such that only UHR males exhibited flat cortisol levels across two hours after awakening, whereas UHR females had a pattern of cortisol secretion similar to healthy controls, even among medication-free individuals (F=6.34, p=0.004). Cortisol AUC (area under the curve) across the three time points had a trend association (medium effect size; r=0.34, p=0.08) with depressive, but not positive or negative, symptom severity. These results stress the importance of considering sex differences in the psychosis-risk period, as they improve understanding of pathogenic processes.
Collapse
Affiliation(s)
- Emily E Carol
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO, 80309, United States; University of Colorado Boulder, Center for Neuroscience, Boulder, CO, 80309, United States.
| | - Robert L Spencer
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO, 80309, United States; University of Colorado Boulder, Center for Neuroscience, Boulder, CO, 80309, United States
| | - Vijay A Mittal
- Northwestern University, Department for Psychology, Evanston, Illinois, 60208, United States; Northwestern University, Department for Psychiatry, Chicago, Illinois, 60611, United States
| |
Collapse
|
26
|
Kraguljac NV, White DM, Hadley N, Hadley JA, ver Hoef L, Davis E, Lahti AC. Aberrant Hippocampal Connectivity in Unmedicated Patients With Schizophrenia and Effects of Antipsychotic Medication: A Longitudinal Resting State Functional MRI Study. Schizophr Bull 2016; 42:1046-55. [PMID: 26873890 PMCID: PMC4903060 DOI: 10.1093/schbul/sbv228] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To better characterize hippocampal pathophysiology in schizophrenia, we conducted a longitudinal study evaluating hippocampal functional connectivity during resting state, using seeds prescribed in its anterior and posterior regions. We enrolled 34 unmedicated patients with schizophrenia or schizoaffective disorder (SZ) and 34 matched healthy controls. SZ were scanned while off medication, then were treated with risperidone for 6 weeks and re-scanned (n = 22). Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. We found significant dysconnectivity with anterior and posterior hippocampal seeds in unmedicated SZ. Baseline connectivity between the hippocampus and anterior cingulate cortex, caudate nucleus, auditory cortex and calcarine sulcus in SZ predicted subsequent response to antipsychotic medications. These same regions demonstrated changes over the 6-week treatment trial that were correlated with symptomatic improvement. Our findings implicate several neural networks relevant to clinical improvement with antipsychotic medications.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - David Matthew White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Nathan Hadley
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer Ann Hadley
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL;,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Lawrence ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Ebony Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|
27
|
Cariaga-Martinez A, Saiz-Ruiz J, Alelú-Paz R. From Linkage Studies to Epigenetics: What We Know and What We Need to Know in the Neurobiology of Schizophrenia. Front Neurosci 2016; 10:202. [PMID: 27242407 PMCID: PMC4862989 DOI: 10.3389/fnins.2016.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.
Collapse
Affiliation(s)
- Ariel Cariaga-Martinez
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá University Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid, Spain
| | - Raúl Alelú-Paz
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá UniversityMadrid, Spain; Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain
| |
Collapse
|
28
|
Satterthwaite TD, Wolf DH, Calkins ME, Vandekar SN, Erus G, Ruparel K, Roalf DR, Linn KA, Elliott MA, Moore TM, Hakonarson H, Shinohara RT, Davatzikos C, Gur RC, Gur RE. Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms. JAMA Psychiatry 2016; 73:515-24. [PMID: 26982085 PMCID: PMC5048443 DOI: 10.1001/jamapsychiatry.2015.3463] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Structural brain abnormalities are prominent in psychotic disorders, including schizophrenia. However, it is unclear when aberrations emerge in the disease process and if such deficits are present in association with less severe psychosis spectrum (PS) symptoms in youth. OBJECTIVE To investigate the presence of structural brain abnormalities in youth with PS symptoms. DESIGN, SETTING, AND PARTICIPANTS The Philadelphia Neurodevelopmental Cohort is a prospectively accrued, community-based sample of 9498 youth who received a structured psychiatric evaluation. A subsample of 1601 individuals underwent neuroimaging, including structural magnetic resonance imaging, at an academic and children's hospital health care network between November 1, 2009, and November 30, 2011. MAIN OUTCOMES AND MEASURES Measures of brain volume derived from T1-weighted structural neuroimaging at 3 T. Analyses were conducted at global, regional, and voxelwise levels. Regional volumes were estimated with an advanced multiatlas regional segmentation procedure, and voxelwise volumetric analyses were conducted as well. Nonlinear developmental patterns were examined using penalized splines within a general additive model. Psychosis spectrum (PS) symptom severity was summarized using factor analysis and evaluated dimensionally. RESULTS Following exclusions due to comorbidity and image quality assurance, the final sample included 791 participants aged youth 8 to 22 years. Fifty percent (n = 393) were female. After structured interviews, 391 participants were identified as having PS features (PS group) and 400 participants were identified as typically developing comparison individuals without significant psychopathology (TD group). Compared with the TD group, the PS group had diminished whole-brain gray matter volume (P = 1.8 × 10-10) and expanded white matter volume (P = 2.8 × 10-11). Voxelwise analyses revealed significantly lower gray matter volume in the medial temporal lobe (maximum z score = 5.2 and cluster size of 1225 for the right and maximum z score = 4.5 and cluster size of 310 for the left) as well as in frontal, temporal, and parietal cortex. Volumetric reduction in the medial temporal lobe was correlated with PS symptom severity. CONCLUSIONS AND RELEVANCE Structural brain abnormalities that have been commonly reported in adults with psychosis are present early in life in youth with PS symptoms and are not due to medication effects. Future longitudinal studies could use the presence of such abnormalities in conjunction with clinical presentation, cognitive profile, and genomics to predict risk and aid in stratification to guide early interventions.
Collapse
Affiliation(s)
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Simon N Vandekar
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Kristin A Linn
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Russell T Shinohara
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | | | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia3Department of Radiology, University of Pennsylvania, Philadelphia
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia3Department of Radiology, University of Pennsylvania, Philadelphia
| |
Collapse
|