1
|
Wei L, Liu W, Li X, Zhang Y, Luo Y, Xie Y, Lin L, Chang Z, Du X, Wei X, Ji Y, Zhao Z, Liang M, Ding H, Liu L, Wang X, Wang L, Tian H, Wang G, Zhang B, Ren J, Zhang C, Yu C, Qin W. Deciphering the Heterogeneity of Schizophrenia: A Multimodal and Multivariate Neuroimaging Framework for Unveiling Brain-Symptom Relationships and Underlying Subtypes. Schizophr Bull 2025:sbaf037. [PMID: 40289468 DOI: 10.1093/schbul/sbaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia manifests large heterogeneities in either symptoms or brain abnormalities. However, the neurobiological basis of symptomatic diversity remains poorly understood. We hypothesized that schizophrenia's diverse symptoms arise from the interplay of structural and functional alterations across multiple brain regions, rather than isolated abnormalities in a single area. STUDY DESIGN A total of 495 schizophrenia patients and 507 healthy controls from 8 sites were recruited. Five symptomatic dimensions of schizophrenia patients were derived from the Positive and Negative Syndrome Scale. Multivariate canonical correlation analysis was introduced to identify symptom-related multimodal magnetic resonance imaging composite indicators (MRICIs) derived from gray matter volume, functional connectivity strength, and white matter fractional anisotropy. The intergroup differences in MRICIs were compared, and the paired-wise correlations between symptom dimensions and MRICIs were resolved. Finally, K-means clustering was used to identify the underlying biological subtypes of schizophrenia based on MRICIs. STUDY RESULTS Canonical correlation analysis identified 15 MRICIs in schizophrenia that were specifically contributed by the neuroimaging measures of multiple regions, respectively. These MRICIs can effectively characterize the complexity of symptoms, showing correlations within and across symptom dimensions, and were consistent across both first-episode and chronic patients. Additionally, some of these indicators could moderately differentiate schizophrenia patients from healthy controls. K-means clustering identified 2 schizophrenia subtypes with distinct MRICI profiles and symptom severity. CONCLUSIONS Symptom-guided multimodal and multivariate MRICIs could decode the symptom heterogeneity of schizophrenia patients and might be considered as potential biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Luli Wei
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin Li
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yun Luo
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Liyuan Lin
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhongyu Chang
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaotong Du
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaotong Wei
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Ji
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Zhao
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Hao Ding
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Liping Liu
- Psychiatric Clinical Laboratory, The First Psychiatric Hospital of Harbin, Harbin 150056, Heilongjiang Province, China
| | - Xijin Wang
- Psychiatric Clinical Laboratory, The First Psychiatric Hospital of Harbin, Harbin 150056, Heilongjiang Province, China
| | - Lina Wang
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin 300140, China
| | - Hongjun Tian
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin 300140, China
| | - Gang Wang
- Wuhan Mental Health Center, The Ninth Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bin Zhang
- Department of Psychiatry, Tianjin Fourth Center Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin 300140, China
| | - Juanjuan Ren
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai 200030, China
| | - Chen Zhang
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai 200030, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Lab of Functional Imaging, Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Liu S, Fan D, He C, Liu X, Zhang H, Zhang H, Zhang Z, Xie C, Pan P. Neural effect of childhood maltreatment on neurovascular coupling in adolescent depression. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02708-7. [PMID: 40178663 DOI: 10.1007/s00787-025-02708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Childhood maltreatment (CM) is a pivotal risk factor for depression, yet its potential contribution to major depressive disorder (MDD) in adolescents requires further investigation. This study aims to scrutinize the specific impact of CM on neurovascular coupling (NVC) in adolescents with MDD. A cohort of 189 adolescents, comprising 54 MDD with CM, 45 MDD without CM, 33 healthy controls (HC) with CM, and 57 HC without CM, underwent multimodal MRI scans. Cerebral blood flow (CBF) was computed to evaluate vascular responses, while functional connectivity strength (FCS) and amplitude of low-frequency fluctuation (ALFF) were measured to assess neuronal activity. NVC was calculated using whole gray matter CBF-neuronal activity correlation coefficients and regional CBF/neuronal activity ratios. MDD×CM interactions on NVC, CBF, and neuronal activity were analyzed, with further exploration of the associations between these abnormal NVC ratios and CM experience. Support vector machine classifiers were employed to differentiate MDD adolescents. Results revealed a significant MDD×CM interactive effect on CBF-FCS coefficients at whole gray matter level. Regionally, these interactions on NVC ratios primarily occurred in the reward systems, including bilateral anterior cingulate/orbitofrontal cortex, thalamus/mesial temporal lobe, and left occipitotemporal lobe, correlating with CM measurements. Notably, the integration of NVC ratio, CBF, and neuronal activity yielded robust classification performance in distinguishing MDD adolescents. These findings reinforce the importance of reward system for MDD adolescents related to CM, proposing a novel neuroimaging biomarker for early recognition of adolescent depression.
Collapse
Affiliation(s)
- Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haisan Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
- Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongxing Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
- Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China.
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| | - PingLei Pan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China.
| |
Collapse
|
3
|
Ma L, Jiang S, Tang W. Altered coupling relationships across resting-state functional connectivity measures in schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder. Psychiatry Res Neuroimaging 2025; 347:111943. [PMID: 39709676 DOI: 10.1016/j.pscychresns.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Resting-state functional connectivity (rsFC) measures have enjoyed significant success in discovering the neuropathological characteristics of schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). However, it is unknown whether and how the spatial and temporal coupling relationships across rsFC measures would be altered in these psychiatric disorders. Here, resting-state fMRI data were obtained from a transdiagnostic sample of healthy controls (HC) and individuals with SZ, BD, and ADHD. We used Kendall's W to compute volume-wise and voxel-wise concordance across rsFC measures, followed by group comparisons. In terms of the spatial coupling, both SZ and BD individuals exhibited decreased volume-wise concordance compared with HC. Regarding the temporal coupling, SZ individuals showed decreased voxel-wise concordance in the right lateral occipital cortex relative to HC. BD individuals exhibited decreased voxel-wise concordance in the bilateral basal forebrain and bilateral superior/middle temporal gyrus compared to HC. Additionally, correlation analyses demonstrated positive associations of voxel-wise concordance in the left basal forebrain with negative symptoms including alogia and affective flattening in pooled SZ and BD individuals. Our findings of distinct patterns of spatial and temporal decoupling across rsFC measures among SZ, BD, and ADHD may provide unique insights into the neuropathological mechanisms of these psychiatric disorders.
Collapse
Affiliation(s)
- Lu Ma
- Department of Radiology, Tsinghua University Hospital, Beijing 100084, China
| | - Shanshan Jiang
- Department of Radiology, Tsinghua University Hospital, Beijing 100084, China
| | - Wei Tang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
4
|
Fan S, Qian R, Duan N, Wang H, Yu Y, Ji Y, Xie X, Wu Y, Tian Y. Abnormal Brain State in Major Depressive Disorder: A Resting-State Magnetic Resonance Study. Brain Connect 2025; 15:84-97. [PMID: 39899030 DOI: 10.1089/brain.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background: Respective changes in resting-state linear and nonlinear measures in major depressive disorder (MDD) have been reported. However, few studies have used integrated measures of linear and nonlinear brain dynamics to explore the pathological mechanisms underlying MDD. Method: Forty-two patients with MDD and 42 sex- and age-matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging to calculate multiscale entropy (MSE) and regional homogeneity (ReHo). The MSE-ReHo coupling of the whole gray matter and the MSE/ReHo ratio (the complexity of intensity homogeneity per unit time series) of each voxel were compared between the two groups. To evaluate the discriminative capacity of ratio features between patients with MDD and HC, we employed the support vector machine (SVM) learning method. Results: We observed that patients with MDD displayed increased MSE/ReHo ratio mainly in the orbitofrontal cortex, sensorimotor areas, and visual cortex. Moreover, significant correlations were observed between MSE/ReHo ratio and clinical indicators, including depression severity and cognitive function tests. The SVM model demonstrated high accuracy in differentiating patients with MDD from HC, highlighting the potential of the MSE/ReHo ratio as a diagnostic and prognostic tool. Conclusions: The aberrant MSE/ReHo ratio implicated the underlying mechanisms of depressive symptoms and cognitive impairment in patients with MDD. It may represent a critical state of the brain region, reflecting the degree of chaos and order in the brain region. Integrating linear and nonlinear combinations of brain signals holds promise for diagnosing psychiatric disorders.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Qian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nanxue Duan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongping Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Xie
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
5
|
Bodnár AL, Stevens DA, Paez AG, Ultz K, Ross CA, Hua J, Margolis RL. Abnormal arteriolar blood volume measured by 3D inflow-based vascular-space-occupancy (iVASO) MRI and resting-state BOLD fluctuations at 7 T in individuals with recent-onset schizophrenia. PSYCHORADIOLOGY 2025; 5:kkaf001. [PMID: 40182309 PMCID: PMC11966104 DOI: 10.1093/psyrad/kkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Background We previously reported lower baseline arteriolar cerebral blood volumes (CBVa) in almost all gray matter regions in a cohort of individuals with schizophrenia of varying ages and disease duration. The extent to which decreased CBVa is also present in recent-onset schizophrenia, and how this impacts neurovascular coupling, remains to be determined. In this study, we sought to determine the extent of CBVa deficits in recent-onset schizophrenia and the relationship of CBVa to region-specific resting-state neural activity. Methods Using 7 T MRI, CBVa was measured in 90 regions using 3D inflow-based vascular-space-occupancy (iVASO) imaging in 16 individuals with recent-onset schizophrenia (disease duration: x̄ = 1.18 ± 1.4 years) and 12 age-matched controls. Resting-state functional MRI (rs-fMRI) was used to determine fractional amplitudes of low-frequency fluctuations (fALFF) and intrinsic connectivity (ICC) in spontaneous blood oxygen level-dependent (BOLD) signal. The region-specific relationship between CBVa and fALFF was determined as an index of neurovascular coupling. Results Compared with healthy participants, CBVa was lower in individuals with schizophrenia in almost all brain regions, with a global effect size of 0.23 and regional effect sizes up to 0.41. Individuals with schizophrenia also exhibited lower fALFF diffusely across cortical and subcortical gray matter regions. Ratios of mean regional CBVa to fALFF and ICC were significantly lower in patients in numerous brain regions. Conclusion These findings indicate that early-stage schizophrenia is characterized by widespread microvascular abnormalities and associated resting-state deficits in neural activity, suggesting that abnormalities in neurovascular coupling may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Andor L Bodnár
- Schizoaffective Disorder Precision Medicine Center of Excellence, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel A Stevens
- Schizoaffective Disorder Precision Medicine Center of Excellence, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adrian G Paez
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Kia Ultz
- Institutional Review Board, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Ross
- Schizoaffective Disorder Precision Medicine Center of Excellence, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Russell L Margolis
- Schizoaffective Disorder Precision Medicine Center of Excellence, Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Zhao H, Zhou X, Song Y, Zhao W, Sun Z, Zhu J, Yu Y. Multi-omics analyses identify gut microbiota-fecal metabolites-brain-cognition pathways in the Alzheimer's disease continuum. Alzheimers Res Ther 2025; 17:36. [PMID: 39893498 PMCID: PMC11786436 DOI: 10.1186/s13195-025-01683-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Gut microbiota dysbiosis is linked to Alzheimer's disease (AD), but our understanding of the molecular and neuropathological bases underlying such association remains fragmentary. METHODS Using 16S rDNA amplicon sequencing, untargeted metabolomics, and multi-modal magnetic resonance imaging, we examined group differences in gut microbiome, fecal metabolome, neuroimaging measures, and cognitive variables across 30 patients with AD, 75 individuals with mild cognitive impairment (MCI), and 61 healthy controls (HC). Furthermore, we assessed the associations between these multi-omics changes using correlation and mediation analyses. RESULTS There were significant group differences in gut microbial composition, which were driven by 8 microbial taxa (e.g., Staphylococcus and Bacillus) exhibiting a progressive increase in relative abundance from HC to MCI to AD, and 2 taxa (e.g., Anaerostipes) showing a gradual decrease. 26 fecal metabolites (e.g., Arachidonic, Adrenic, and Lithocholic acids) exhibited a progressive increase from HC to MCI to AD. We also observed progressive gray matter atrophy in broadly distributed gray matter regions and gradual micro-structural integrity damage in widespread white matter tracts along the AD continuum. Integration of these multi-omics changes revealed significant associations between microbiota, metabolites, neuroimaging, and cognition. More importantly, we identified two potential mediation pathways: (1) microbiota → metabolites → neuroimaging → cognition, and (2) microbiota → metabolites → cognition. CONCLUSION Aside from elucidating the underlying mechanism whereby gut microbiota dysbiosis is linked to AD, our findings may contribute to groundwork for future interventions targeting the microbiota-metabolites-brain-cognition pathways as a therapeutic strategy in the AD continuum.
Collapse
Affiliation(s)
- Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
7
|
Jacob MS, Roach BJ, Mathalon DH, Ford JM. Noncanonical EEG-BOLD coupling by default and in schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320216. [PMID: 39867401 PMCID: PMC11759611 DOI: 10.1101/2025.01.14.25320216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Neuroimaging methods rely on models of neurovascular coupling that assume hemodynamic responses evolve seconds after changes in neural activity. However, emerging evidence reveals noncanonical BOLD (blood oxygen level dependent) responses that are delayed under stress and aberrant in neuropsychiatric conditions. To investigate BOLD coupling to resting-state fluctuations in neural activity, we simultaneously recorded EEG and fMRI in people with schizophrenia and psychiatrically unaffected participants. We focus on alpha band power to examine voxelwise, time-lagged BOLD correlations. Principally, we find diversity in the temporal profile of alpha-BOLD coupling within regions of the default mode network (DMN). This includes early coupling (0-2 seconds BOLD lag) for more posterior regions, thalamus and brainstem. Anterior regions of the DMN show coupling at canonical lags (4-6 seconds), with greater lag scores associated with self-reported measures of stress and greater lag scores in participants with schizophrenia. Overall, noncanonical alpha-BOLD coupling is widespread across the DMN and other non-cortical regions, and is delayed in people with schizophrenia. These findings are consistent with a "hemo-neural" hypothesis, that blood flow and/or metabolism can regulate ongoing neural activity, and further, that the hemo-neural lag may be associated with subjective arousal or stress. Our work highlights the need for more studies of neurovascular coupling in psychiatric conditions.
Collapse
Affiliation(s)
- Michael S Jacob
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States
| | - Brian J Roach
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
| | - Daniel H Mathalon
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States
| | - Judith M Ford
- San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA, 94121, United States
- University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, United States
| |
Collapse
|
8
|
Chao X, Fang Y, Wang J, Wang P, Dong Y, Lu Z, Yin D, Shi R, Liu X, Sun W. Abnormal intrinsic brain functional network dynamics in stroke and correlation with neuropsychiatric symptoms revealed based on lesion and cerebral blood flow. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111181. [PMID: 39490916 DOI: 10.1016/j.pnpbp.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
There has been a lack of clarity about the mechanisms of widespread network dysfunctions after stroke. This study aimed to reveal dynamic functional network alternations following stroke based on lesion and brain perfusion. We prospectively enrolled 125 acute ischaemic stroke patients (25 were transient ischemic attack (TIA) patients) and 49 healthy controls with assessed the severity of their depression, anxiety, fatigue, and apathy. We performed dynamic functional network connectivity (DFNC) analysis using the sliding window method. The common static FC biomarkers of stroke were used to define functional states and calculated stroke-specific changes in dynamic indicators. Next, ridge regression (RR) analyses were performed on the dynamic indicators using voxel-wise lesion maps, cerebral blood flow (CBF) difference maps (removal of voxels overlapping lesions) and a combination of both. Mediation analyses were used to characterize the effect of dynamic networks changes on the relationship between lesion, CBF, and neuropsychological scores. Our results showed that DFNC identified three functional states with three dynamic metrics extracted for subsequent analyses. RR analyses show that both CBF and lesions partially explain post-stroke dysfunction (CBF: dynamic indicator1: R2 = 0.110, p = 0.163; dynamic indicator2: R2 = 0.277, p = 0.006; dynamic indicator3: R2 = 0.125, p = 0.121; lesion: dynamic indicator1: R2 = 0.132, p = 0.109; dynamic indicator2: R2 = 0.238, p = 0.015; dynamic indicator3: R2 = 0.131, p = 0.110). In addition, combining the two can improve the efficacy of explanations. Finally, exploratory mediation analyses identified that dynamic functional network changes can mediate between CBF, lesion and neuropsychiatric disorders. Our results suggest that CBF and lesion can be combined to improve the interpretation of dynamic network dysfunction after stroke.
Collapse
Affiliation(s)
- Xian Chao
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yirong Fang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinjing Wang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yiran Dong
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zeyu Lu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dawei Yin
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ran Shi
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinfeng Liu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wen Sun
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
9
|
Chao X, Fang Y, Lu Z, Wang J, Yin D, Shi R, Wang P, Liu X, Sun W. Impairments of neurovascular coupling after stroke lower glymphatic system function and lead to depressive symptom: A longitudinal cohort study. J Affect Disord 2024; 367:255-262. [PMID: 39236880 DOI: 10.1016/j.jad.2024.08.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Respective changes in neurovascular coupling (NVC) and glymphatic function have been reported in post-stroke depression (PSD). Recent studies have found a link between NVC and waste clearance by the glymphatic system, which has not been illustrated in PSD. METHOD We prospectively recruited ninety-six stroke patients and forty-four healthy controls (HC), with fifty-nine patients undergoing a second MRI scan. NVC metrics were investigated by exploring Pearson correlation coefficients and ratios between cerebral blood flow (CBF) and BOLD-derived quantitative maps (ALFF, fALFF, REHO maps). Diffusion tensor imaging along the perivascular (DTI-ALPS) index was used to reflect glymphatic function. We first analyzed the altered NVC metrics in stroke patients relative to the HC group. Then, we explored the relationship between NVC metrics, ALPS index and depressive symptoms at baseline and during the follow-up period through correlation and mediation analyses. RESULTS Stroke patients exhibited significantly lower global CBF-fALFF coupling and ALPS index. At the regional level, abnormal NVC alterations in brain regions involved in cognition, emotion, and sensorimotor function in PSD. Baseline analyses showed that ALPS index exhibited positive associations with both global and local NVC and abnormal regional NVC may contribute to generation of PSD by reducing glymphatic function (β = -0.075, p < 0.05, CI = [-0.169 to -0.012]). Longitudinal analyses similarly showed that ALPS index changes were positively associated with changes in NVC and mediated improvements in depressive symptoms. CONCLUSION Our findings suggest that NVC abnormalities leading to impaired glymphatic system function may be a potential neurobiological mechanism of PSD.
Collapse
Affiliation(s)
- Xian Chao
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yirong Fang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zeyu Lu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinjing Wang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dawei Yin
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ran Shi
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinfeng Liu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wen Sun
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
10
|
Zhang Y, Ji C, Meng Y, He Y, Su X, Qin W, Zhang N. Altered neurovascular coupling in semantic variant primary progressive aphasia. J Alzheimers Dis 2024; 102:830-840. [PMID: 39670737 DOI: 10.1177/13872877241291245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BACKGROUND Semantic variant primary progressive aphasia (svPPA) is one of the main clinical phenotypes of frontotemporal lobar degeneration. Changes in both neuronal activity and cerebral perfusion have been observed in svPPA, suggesting a possible breakdown of neurovascular coupling (NVC). OBJECTIVE To investigate alterations in NVC and their correlations with clinical manifestations in svPPA patients. METHODS In this study, a cohort consisting of 19 subjects diagnosed with svPPA and 36 cognitively unimpaired controls (CUCs) have been enrolled for analysis. All participants underwent multimodal magnetic resonance imaging (MRI) scans, resting-state functional MRI and arterial spin labelling, and neuropsychological assessments. The amplitude of low-frequency fluctuations (ALFF) and cerebral blood flow (CBF) were obtained to measure neural activity and perfusion, respectively. The calculation of voxel CBF-ALFF correlation and CBF/ALFF ratio enables the assessment of global NVC and regional NVC, respectively. Correlations between the CBF/ALFF ratios and cognitive scores of the svPPA patients were analyzed. The relationships between the CBF/ALFF ratios and the cognitive performance of the svPPA patients were investigated through correlational analyses. RESULTS Compared with CUCs, svPPA patients had decreased global CBF-ALFF correlation coefficients (p < 0.001) and lower CBF/ALFF ratios in bilateral inferior temporal gyrus, fusiform gyrus, left temporal pole and middle temporal gyrus (p < 0.05). In svPPA patients, the CBF/ALFF ratios in the left inferior and middle temporal gyrus correlated positively with naming ability and general cognition, respectively. CONCLUSIONS The study indicate that NVC is disrupted in svPPA patients and is relevant to cognitive and language function.
Collapse
Affiliation(s)
- Yanxin Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunxue Ji
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department Two of Neurology, Cangzhou Central Hospital, Yunhe District, Cangzhou, Hebei, China
| | - Yaping Meng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong He
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Su
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Zhang Y, Hu M, Fan S, Cao S, Du B, Yin S, Zhang L, Tian Y, Wang K, Wei Q. Altered Resting-State Brain Entropy in Cerebral Small Vessel Disease Patients with Cognitive Impairment. Brain Connect 2024; 14:418-429. [PMID: 39001835 DOI: 10.1089/brain.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
Objective: Cerebral small vessel disease (CSVD) is a primary vascular disease of cognitive impairment. Previous studies have predominantly focused on brain linear features. However, the nonlinear measure, brain entropy (BEN), has not been elaborated. Thus, this study aims to investigate if BEN abnormalities could manifest in CSVD patients with cognitive impairment. Methods: Thirty-four CSVD patients with cognitive impairment and 37 healthy controls (HCs) were recruited. Analysis of gray matter approximate entropy (ApEn) and sample entropy (SampEn) which are two indices of BEN was calculated. To explore whether BEN can provide unique information, we further performed brain linear methods, namely, amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo), to observe their differences. The ratios of BEN/ALFF and BEN/ReHo which represent the coupling of nonlinear and linear features were introduced. Correlation analysis was conducted between imaging indices and cognition. Subsequently, the linear support vector machine (SVM) was used to assess their discriminative ability. Results: CSVD patients exhibited lower ApEn and SamEn values in sensorimotor areas, which were correlated with worse memory and executive function. In addition, the results of BEN showed little overlap with ALFF and ReHo in brain regions. Correlation analysis also revealed a relationship between the two ratios and cognition. SVM analysis using BEN and its ratios as features achieved an accuracy of 74.64% (sensitivity: 86.49%, specificity: 61.76%, and AUC: 0.82439). Conclusion: Our study reveals that the reduction of sensorimotor system complexity is correlated with cognition. BEN exhibits distinctive characteristics in brain activity. Combining BEN and the ratios can be new biomarkers to diagnose CSVD with cognitive impairment. Impact Statement Cerebral small vessel disease (CSVD) is regarded as the most important vascular disease of cognitive impairment. However, conventional brain imaging fails to adequately elucidate the pathogenesis of cognitive disorder related to CSVD. In this regard, exploring brain entropy (BEN) based on resting-state functional magnetic resonance imaging (rs-fMRI) represents a relatively novel and unexplored approach in the context of CSVD. This approach provides novel insights into the pathogenesis, diagnosis, and rehabilitation of cognitive disorder associated with CSVD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Minglu Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Siyu Fan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Baogen Du
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Long Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, China
| |
Collapse
|
12
|
Zhu J, Chen X, Lu B, Li XY, Wang ZH, Cao LP, Chen GM, Chen JS, Chen T, Chen TL, Cheng YQ, Chu ZS, Cui SX, Cui XL, Deng ZY, Gong QY, Guo WB, He CC, Hu ZJY, Huang Q, Ji XL, Jia FN, Kuang L, Li BJ, Li F, Li HX, Li T, Lian T, Liao YF, Liu XY, Liu YS, Liu ZN, Long YC, Lu JP, Qiu J, Shan XX, Si TM, Sun PF, Wang CY, Wang HN, Wang X, Wang Y, Wang YW, Wu XP, Wu XR, Wu YK, Xie CM, Xie GR, Xie P, Xu XF, Xue ZP, Yang H, Yu H, Yuan ML, Yuan YG, Zhang AX, Zhao JP, Zhang KR, Zhang W, Zhang ZJ, Yan CG, Yu Y. Transcriptomic decoding of regional cortical vulnerability to major depressive disorder. Commun Biol 2024; 7:960. [PMID: 39117859 PMCID: PMC11310478 DOI: 10.1038/s42003-024-06665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Previous studies in small samples have identified inconsistent cortical abnormalities in major depressive disorder (MDD). Despite genetic influences on MDD and the brain, it is unclear how genetic risk for MDD is translated into spatially patterned cortical vulnerability. Here, we initially examined voxel-wise differences in cortical function and structure using the largest multi-modal MRI data from 1660 MDD patients and 1341 controls. Combined with the Allen Human Brain Atlas, we then adopted transcription-neuroimaging spatial correlation and the newly developed ensemble-based gene category enrichment analysis to identify gene categories with expression related to cortical changes in MDD. Results showed that patients had relatively circumscribed impairments in local functional properties and broadly distributed disruptions in global functional connectivity, consistently characterized by hyper-function in associative areas and hypo-function in primary regions. Moreover, the local functional alterations were correlated with genes enriched for biological functions related to MDD in general (e.g., endoplasmic reticulum stress, mitogen-activated protein kinase, histone acetylation, and DNA methylation); and the global functional connectivity changes were associated with not only MDD-general, but also brain-relevant genes (e.g., neuron, synapse, axon, glial cell, and neurotransmitters). Our findings may provide important insights into the transcriptomic signatures of regional cortical vulnerability to MDD.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Han Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Jian-Shan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Tao Chen
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tao-Lin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhao-Song Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shi-Xian Cui
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xi-Long Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhao-Yu Deng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610052, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Can-Can He
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zheng-Jia-Yi Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xin-Lei Ji
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng-Nan Jia
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Bao-Juan Li
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hui-Xian Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Tao Lian
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Fan Liao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Yun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215003, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yi-Cheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian-Ping Lu
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiao-Xiao Shan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Peng-Feng Sun
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University, Beijing, 100120, China
| | - Hua-Ning Wang
- Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 250024, China
| | - Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ping Wu
- Xi'an Central Hospital, Xi'an, Shaanxi, 710004, China
| | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yan-Kun Wu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400000, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhen-Peng Xue
- Shenzhen Kangning Hospital Shenzhen, Guangzhou, 518020, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Min-Lan Yuan
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ai-Xia Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Wei Zhang
- West China Hospital of Sichuan University, Chengdu, Sichuan, 610044, China
| | - Zi-Jing Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing, 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
13
|
Zhong YL, Hu RY, Huang X. Aberrant Neurovascular Coupling in Diabetic Retinopathy Using Arterial Spin Labeling (ASL) and Functional Magnetic Resonance Imaging (fMRI) methods. Diabetes Metab Syndr Obes 2024; 17:2809-2822. [PMID: 39081370 PMCID: PMC11288319 DOI: 10.2147/dmso.s465103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
Background Previous imaging studies have demonstrated that diabetic retinopathy (DR) is linked to structural and functional abnormalities in the brain. However, the extent to which DR patients exhibit abnormal neurovascular coupling remains largely unknown. Methods Thirty-one patients with DR and 31 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) to calculate functional connectivity strength (FCS) and arterial spin-labeling imaging (ASL) to calculate cerebral blood flow (CBF). The study compared CBF-FCS coupling across the entire grey matter and CBF/FCS ratios (representing blood supply per unit of connectivity strength) per voxel between the two groups. Additionally, a support vector machine (SVM) method was employed to differentiate between diabetic retinopathy (DR) patients and healthy controls (HC). Results In DRpatients compared to healthy controls, there was a reduction in CBF-FCS coupling across the entire grey matter. Specifically, DR patients exhibited elevated CBF/FCS ratios primarily in the primary visual cortex, including the right calcarine fissure and surrounding cortex. On the other hand, reduced CBF/FCS ratios were mainly observed in premotor and supplementary motor areas, including the left middle frontal gyrus. Conclusion An elevated CBF/FCS ratio suggests that patients with DR may have a reduced volume of gray matter in the brain. A decrease in its ratio indicates a decrease in regional CBF in patients with DR. These findings suggest that neurovascular decoupling in the visual cortex, as well as in the supplementary motor and frontal gyrus, may represent a neuropathological mechanism in diabetic retinopathy.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Rui-Yang Hu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
14
|
Ferreira R, Bastos-Leite AJ. Arterial spin labelling magnetic resonance imaging and perfusion patterns in neurocognitive and other mental disorders: a systematic review. Neuroradiology 2024; 66:1065-1081. [PMID: 38536448 PMCID: PMC11150205 DOI: 10.1007/s00234-024-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/24/2024] [Indexed: 04/18/2024]
Abstract
We reviewed 33 original research studies assessing brain perfusion, using consensus guidelines from a "white paper" issued by the International Society for Magnetic Resonance in Medicine Perfusion Study Group and the European Cooperation in Science and Technology Action BM1103 ("Arterial Spin Labelling Initiative in Dementia"; https://www.cost.eu/actions/BM1103/ ). The studies were published between 2011 and 2023 and included participants with subjective cognitive decline plus; neurocognitive disorders, including mild cognitive impairment (MCI), Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), dementia with Lewy bodies (DLB) and vascular cognitive impairment (VCI); as well as schizophrenia spectrum disorders, bipolar and major depressive disorders, autism spectrum disorder, attention-deficit/hyperactivity disorder, panic disorder and alcohol use disorder. Hypoperfusion associated with cognitive impairment was the major finding across the spectrum of cognitive decline. Regional hyperperfusion also was reported in MCI, AD, frontotemporal dementia phenocopy syndrome and VCI. Hypoperfused structures found to aid in diagnosing AD included the precunei and adjacent posterior cingulate cortices. Hypoperfused structures found to better diagnose patients with FTLD were the anterior cingulate cortices and frontal regions. Hypoperfusion in patients with DLB was found to relatively spare the temporal lobes, even after correction for partial volume effects. Hyperperfusion in the temporal cortices and hypoperfusion in the prefrontal and anterior cingulate cortices were found in patients with schizophrenia, most of whom were on medication and at the chronic stage of illness. Infratentorial structures were found to be abnormally perfused in patients with bipolar or major depressive disorders. Brain perfusion abnormalities were helpful in diagnosing most neurocognitive disorders. Abnormalities reported in VCI and the remaining mental disorders were heterogeneous and not generalisable.
Collapse
Affiliation(s)
- Rita Ferreira
- Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
15
|
Hu Y, Zhang K, Liu R. The effect of post-labeling delay on cerebral blood flow is influenced by age and sex: a study based on arterial spin-labeling magnetic resonance imaging. Quant Imaging Med Surg 2024; 14:4388-4402. [PMID: 39022245 PMCID: PMC11250344 DOI: 10.21037/qims-23-1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Background Whether the effect of post-labeling delay (PLD) on cerebral blood flow (CBF) is influenced by age and sex in adults is unknown. In this study, we mainly aimed to explore the potential influence of age and sex on the effect of PLD on CBF. Methods This prospective study enrolled 90 healthy adult volunteers (49.47±15.63 years of age; age range, 20-77 years; 47 female; 43 male). All participants underwent 3-dimensional (3D) pseudo-continuous arterial spin labeling (ASL) imaging with 3 different PLDs (1,525, 2,025, and 2,525 ms). The CBF values for each PLD, the arterial transit time (ATT), and the spatial coefficient of variation (spatial CoV) were computed for 21 regions of interest (ROIs) in every participant. Multivariate regression analysis was conducted to assess the potential influence of age and sex on the effect of PLD on CBF and the relationships among CBF, ATT, PLD, age, sex, and spatial CoV. Results The CBF increased for 7.32 to 9.87 mL/100 g/min as the PLD increased per 1 second in the global gray matter, bilateral frontal, temporal lobes, the vascular territories of bilateral anterior and middle carotid artery. When the age increased per 1 year, the speed of the changes for CBF decreased for 0.26 to 0.3 mL/100 g/min/s in these regions. However, the CBF decreased for 12 to 17 mL/100 g/min as the PLD increased per 1 second in the bilateral limbic lobes, insula, and deep gray matter. In these regions, the speed of the changes for CBF increased for 0.2 to 0.28 mL/100 g/min/s as the age increased per 1 year. Furthermore, compared to the female, the speed of the changes for CBF decreased for 3.58 to 4.6 mL/100 g/min/s for the male in global gray matter, bilateral frontal, limbic lobes, and the vascular territories of bilateral anterior carotid artery, and the speed increased 4.49 to 5.09 mL/100 g/min/s for the male in the limbic lobes. In addition, the CBF decreased with aging and the CBF tended to be higher in females compared to males. At the same time, we found that the ATT of all ROIs increased with age and manifested higher in males than females. Moreover, we found that CBF decreased with the increase of ATT, and the effect of ATT on CBF was less influenced by PLD. Finally, we found that the spatial CoV of ASL in certain regions increased with the increase of ATT and age, and was greater in males. Conclusions The effect of PLD on CBF can be influenced by age and sex. The relationships among CBF, ATT, PLD, age, sex, and spatial CoV found in this study may have certain significance for the study of ASL imaging in the future.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Kyrou A, Grünert E, Wüthrich F, Nadesalingam N, Chapellier V, Nuoffer MG, Pavlidou A, Lefebvre S, Walther S. Test-retest reliability of resting-state cerebral blood flow quantification using pulsed Arterial Spin Labeling (PASL) over 3 weeks vs 8 weeks in healthy controls. Psychiatry Res Neuroimaging 2024; 341:111823. [PMID: 38735229 DOI: 10.1016/j.pscychresns.2024.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Arterial Spin Labeling is a valuable functional imaging tool for both clinical and research purposes. However, little is known about the test-retest reliability of cerebral blood flow measurements over longer periods. In this study, we investigated the reliability of pulsed Arterial Spin Labeling in assessing cerebral blood flow over a 3 (n = 28) vs 8 (n = 19) weeks interscan interval in 47 healthy participants. As a measure of cerebral blood flow reliability, we calculated voxel-wise, whole-brain, and regions of interest intraclass correlation coefficients. The whole-brain mean resting-state cerebral blood flow showed good to excellent reliability over time for both periods (intraclass correlation coefficients = 0.85 for the 3-week delay, intraclass correlation coefficients = 0.53 for the 8-week delay). However, the voxel-wise and regions of interest intraclass correlation coefficients fluctuated at 8-week compared to the 3-week interval, especially within cortical areas. These results confirmed previous findings that Arterial Spin Labeling could be used as a reliable method to assess brain perfusion. However, as the reliability seemed to decrease over time, caution is warranted when performing correlations with other variables, especially in clinical populations.
Collapse
Affiliation(s)
- Alexandra Kyrou
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Elina Grünert
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Florian Wüthrich
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Victoria Chapellier
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Melanie G Nuoffer
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland.
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy Bern, Translational Research Center, University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Bern, Switzerland
| |
Collapse
|
17
|
Wang X, Wang L, Wu Y, Lv X, Xu Y, Dou W, Zhang H, Wu J, Shang S. Intracerebral hemodynamic abnormalities in patients with Parkinson's disease: Comparison between multi-delay arterial spin labelling and conventional single-delay arterial spin labelling. Diagn Interv Imaging 2024; 105:281-291. [PMID: 38310001 DOI: 10.1016/j.diii.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE The purpose of this study was to analyze the intracerebral abnormalities of hemodynamics in patients with Parkinson's disease (PD) through arterial spin labelling (ASL) technique with multi-delay ASL (MDASL) and conventional single-delay ASL (SDASL) protocols and to verify the potential clinical application of these features for the diagnosis of PD. MATERIALS AND METHODS Perfusion data of the brain obtained using MDASL and SDASL in patients with PD were compared to those obtained in healthy control (HC) subjects. Intergroup comparisons of z-scored cerebral blood flow (zCBF), arterial transit time (zATT) and cerebral blood volume (zCBV) were performed via voxel-based analysis. Performance of these perfusion metrics were estimated using area under the receiver operating characteristic curve (AUC) and compared using Delong test. RESULTS A total of 47 patients with PD (29 men; 18 women; mean age, 69.0 ± 7.6 (standard deviation, [SD]) years; range: 50.0-84.0 years) and 50 HC subjects (28 men; 22 women; mean age, 70.1 ± 6.2 [SD] years; range: 50.0-93.0 years) were included. Relative to the uncorrected-zCBF map, the corrected-zCBF map further refined the distributed brain regions in the PD group versus the HC group, manifested as the extension of motor-related regions (PFWE < 0.001). Compared to the HC subjects, patients with PD had elevated zATT and zCBV in the right putamen, a shortened zATT in the superior frontal gyrus, and specific zCBV variations in the left precuneus and the right supplementary motor area (PFWE < 0.001). The corrected-zCBF (AUC, 0.90; 95% confidence interval [CI]: 0.84-0.96) showed better classification performance than uncorrected-zCBF (AUC, 0.84; 95% CI: 0.75-0.92) (P = 0.035). zCBV achieved an AUC of 0.89 (95% CI: 0.82-0.96) and zATT achieved an AUC of 0.66 (95% CI: 0.55-0.77). The integration model of hemodynamic features from MDASL provided improved performance (AUC, 0.97; 95% CI: 0.95-0.98) for the diagnosis of PD by comparison with each perfusion model (P < 0.001). CONCLUSION ASL identifies impaired hemodynamics in patients with PD including regional abnormalities of CBF, CBV and ATT, which can better be mapped with MDASL compared to SDASL. These findings provide complementary depictions of perfusion abnormalities in patients with PD and highlight the clinical feasibility of MDASL.
Collapse
Affiliation(s)
- Xue Wang
- Graduate school of Dalian Medical University, Dalian 116000, China; Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Lijuan Wang
- Department of Radiology, Jintang First People's Hospital, Sichuan University, Chengdu 610499, China
| | - Yating Wu
- Graduate school of Dalian Medical University, Dalian 116000, China; Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Xiang Lv
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing 100176, China
| | - Hongying Zhang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jingtao Wu
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Song'an Shang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
18
|
Xing C, Feng J, Yao J, Xu XM, Wu Y, Yin X, Salvi R, Chen YC, Fang X. Neurovascular coupling dysfunction associated with cognitive impairment in presbycusis. Brain Commun 2024; 6:fcae215. [PMID: 38961873 PMCID: PMC11220505 DOI: 10.1093/braincomms/fcae215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
The neuropathological mechanism underlying presbycusis remains unclear. This study aimed to illustrate the mechanism of neurovascular coupling associated with cognitive impairment in patients with presbycusis. We assessed the coupling of cerebral blood perfusion with spontaneous neuronal activity by calculating the correlation coefficients between cerebral blood flow and blood oxygen level-dependent-derived quantitative maps (amplitude of low-frequency fluctuation, fractional amplitude of low-frequency fluctuation, regional homogeneity, degree centrality). Four neurovascular coupling metrics (cerebral blood flow-amplitude of low-frequency fluctuation, cerebral blood flow-fractional amplitude of low-frequency fluctuation, cerebral blood flow-regional homogeneity and cerebral blood flow-degree centrality) were compared at the global and regional levels between the presbycusis group and the healthy control group, and the intrinsic association between the altered neurovascular coupling metrics and the neuropsychological scale was further analysed in the presbycusis group. At the global level, neurovascular coupling was significantly lower in the presbycusis group than in the control group and partially related to cognitive level. At the regional level, neurovascular biomarkers were significantly elevated in three brain regions and significantly decreased in one brain region, all of which involved the Papez circuit. Regional neurovascular coupling provides more information than global neurovascular coupling, and neurovascular coupling dysfunction within the Papez circuit has been shown to reveal the causes of poor cognitive and emotional responses in age-related hearing loss patients.
Collapse
Affiliation(s)
- Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jianhua Feng
- Department of Rehabilitation, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing 210012, China
| | - Jun Yao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiao-Min Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo 14215, USA
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiangming Fang
- Department of Medical Imaging, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
19
|
Li F, Zhang D, Ren J, Xing C, Hu L, Miao Z, Lu L, Wu X. Connectivity of the insular subdivisions differentiates posttraumatic headache-associated from nonheadache-associated mild traumatic brain injury: an arterial spin labelling study. J Headache Pain 2024; 25:103. [PMID: 38898386 PMCID: PMC11186101 DOI: 10.1186/s10194-024-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The insula is an important part of the posttraumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) neuropathological activity pattern. It is composed of functionally different subdivisions and each of which plays different role in PTH neuropathology. METHODS Ninety-four mTBI patients were included in this study. Based on perfusion imaging data obtained from arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI), this study evaluated the insular subregion perfusion-based functional connectivity (FC) and its correlation with clinical characteristic parameters in patients with PTH after mTBI and non-headache mTBI patients. RESULTS The insular subregions of mTBI + PTH (mTBI patients with PTH) and mTBI-PTH (mTBI patients without PTH) group had positive perfusion-based functional connections with other insular nuclei and adjacent discrete cortical regions. Compared with mTBI-PTH group, significantly increased resting-state perfusion-based FC between the anterior insula (AI) and middle cingulate cortex (MCC)/Rolandic operculum (ROL), between posterior insula (PI) and supplementary motor area (SMA), and decreased perfusion-based FC between PI and thalamus were found in mTBI + PTH group. Changes in the perfusion-based FC of the left posterior insula/dorsal anterior insula with the thalamus/MCC were significant correlated with headache characteristics. CONCLUSIONS Our findings provide new ASL-based evidence for changes in the perfusion-based FC of the insular subregion in PTH patients attributed to mTBI and the association with headache features, revealing the possibility of potential neuroplasticity after PTH. These findings may contribute to early diagnosis of the disease and follow-up of disease progression.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jun Ren
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Lanyue Hu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
20
|
Sun W, Li C, Jiao Z, Liu T, Shi H. Multiparameter neuroimaging study of neurovascular coupling changes in patients with end-stage renal disease. Brain Behav 2024; 14:e3598. [PMID: 38923330 PMCID: PMC11196241 DOI: 10.1002/brb3.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE To assess changes in neurovascular coupling (NVC) by evaluating the relationship between cerebral perfusion and brain connectivity in patients with end-stage renal disease (ESRD) undergoing hemodialysis versus in healthy control participants. And by exploring brain regions with abnormal NVC associated with cognitive deficits in patients, we aim to provide new insights into potential preventive and therapeutic interventions. MATERIALS AND METHODS A total of 45 patients and 40 matched healthy controls were prospectively enrolled in our study. Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Arterial spin labeling (ASL) was used to calculate cerebral blood flow (CBF), and graph theory-based analysis of results from resting-state functional magnetic resonance imaging (rs-fMRI) was used to calculate brain network topological parameters (node betweenness centrality [BC], node efficiency [Ne], and node degree centrality [DC]). Three NVC biomarkers (CBF-BC, CBF-Ne, and CBF-DC coefficients) at the whole brain level and 3 NVC biomarkers (CBF/BC, CBF/Ne, and CBF/DC ratios) at the local brain region level were used to assess NVC. Mann-Whitney U tests were used to compare the intergroup differences in NVC parameters. Spearman's correlation analysis was used to evaluate the relationship among NVC dysfunctional pattern, cognitive impairment, and clinical characteristics multiple comparisons were corrected using a voxel-wise false-discovery rate (FDR) method (p < .05). RESULTS Patients showed significantly reduced global coupling coefficients for CBF-Ne (p = .023) and CBF-BC (p = .035) compared to healthy controls. Coupling ratios at the local brain region level were significantly higher in patients in 33 brain regions (all p values < .05). Coupling ratio changes alone or accompanied by changes in CBF, node properties, or both CBF and node properties were identified. In patients, negative correlations were seen between coupling ratios and MoCA scores in many brain regions, including the left dorsolateral superior frontal gyrus, the bilateral median cingulate and paracingulate gyri, and the right superior parietal gyrus. The correlations remained even after adjusting for hemoglobin and hematocrit levels. CONCLUSION Disrupted NVC may be one mechanism underlying cognitive impairment in dialysis patients.
Collapse
Affiliation(s)
- Wei Sun
- Department of RadiologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
- Graduate College, Dalian Medical UniversityDalianChina
| | - Chen Li
- Graduate College, Dalian Medical UniversityDalianChina
- Department of NephrologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Zhuqing Jiao
- School of Computer Science and Artificial IntelligenceChangzhou UniversityChangzhouJiangsuChina
| | - Tongqiang Liu
- Department of NephrologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| | - Haifeng Shi
- Department of RadiologyThe Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
21
|
Su S, Zhao J, Dai Y, Lin L, Zhou Q, Yan Z, Qian L, Cui W, Liu M, Zhang H, Yang Z, Chen Y. Altered neurovascular coupling in the children with attention-deficit/hyperactivity disorder: a comprehensive fMRI analysis. Eur Child Adolesc Psychiatry 2024; 33:1081-1091. [PMID: 37222790 DOI: 10.1007/s00787-023-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The coupling between resting-state cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signals reflects the mechanism of neurovascular coupling (NVC), which have not been illustrated in attention-deficit/hyperactivity disorder (ADHD). Fifty ADHD and 42 age- and gender-matched typically developing controls (TDs) were enrolled. The NVC imaging metrics were investigated by exploring the Pearson correlation coefficients between CBF and BOLD-derived quantitative maps (ALFF, fALFF, DCP maps). Three types of NVC metrics (CBF-ALFF, CBF-fALFF, CBF-DCP coupling) were compared between ADHD and TDs group, and the inner association between altered NVC metrics and clinical variables in ADHD group was further analyzed. Compared to TDs, ADHD showed significantly reduced whole-brain CBF-ALFF coupling (P < 0.001). Among regional level (all PFDR < 0.05), ADHD showed significantly lower CBF-ALFF coupling in bilateral thalamus, default-mode network (DMN) involving left anterior cingulate (ACG.L) and right parahippocampal gyrus (PHG.R), execution control network (ECN) involving right middle orbital frontal gyrus (ORBmid.R) and right inferior frontal triangular gyrus (IFGtriang.R), and increased CBF-ALFF coupling in attention network (AN)-related left superior temporal gyrus (STG.L) and somatosensory network (SSN))-related left rolandic operculum (ROL.L). Furthermore, increased CBF-fALFF coupling was found in the visual network (VN)-related left cuneus and negatively correlated with the concentration index of ADHD (R = - 0.299, PFDR = 0.035). Abnormal regional NVC metrics were at widespread neural networks in ADHD, mainly involved in DMN, ECN, SSN, AN, VN and bilateral thalamus. Notably, this study reinforced the insights into the neural basis and pathophysiological mechanism underlying ADHD.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
22
|
Miao A, Wang K. Contribution of cerebrospinal fluid antibody titers and sex to acute cerebral blood flow in patients with anti-NMDAR autoimmune encephalitis. Front Immunol 2024; 15:1299898. [PMID: 38495877 PMCID: PMC10940436 DOI: 10.3389/fimmu.2024.1299898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Objective The objective of this study was to elucidate the contribution of cerebrospinal fluid (CSF) antibody titers (AT) and sex to acute cerebral blood flow (CBF) in patients diagnosed with anti-N-methyl-d-aspartate receptor autoimmune encephalitis (NMDAR AE). Methods Forty-five patients diagnosed with NMDAR AE were recruited from December 2016 to January 2023. The acute CBF in patients with NMDAR AE at the early stage of the disease was analyzed using arterial spin labeling. The groups were compared based on CSF AT and sex. The connectivity of the CBF in the region of interest was also compared between groups. Results The patients with different CSF AT exhibited varied brain regions with CBF abnormalities compared to the healthy subjects (p = 0.001, cluster-level FWE corrected). High antibody titers (HAT) in CSF contributed to more brain regions with CBF alterations in female patients than in female patients with low antibody titers (LAT) in CSF (p = 0.001, cluster-level FWE corrected). Female patients with HAT in CSF displayed more decreased CBF in the left post cingulum gyrus, left precuneus, left calcarine, and left middle cingulum gyrus than the male patients with the same AT in CSF (p = 0.001, cluster-level FWE corrected). All patients with NMDAR AE showed increased CBF in the left putamen (Putamen_L) and left amygdala (Amygdala_L) and decreased CBF in the right precuneus (Precuneus_R), which suggests that these are diagnostic CBF markers for NMDAR AE. Conclusion CSF AT and sex contributed to CBF abnormalities in the patients diagnosed with NMDAR AE. Altered CBF might potentially serve as the diagnostic marker for NMDAR AE.
Collapse
Affiliation(s)
- Ailiang Miao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Jiangsu, Nanjing, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Hu R, Gao L, Chen P, Wei X, Wu X, Xu H. Macroscale neurovascular coupling and functional integration in end-stage renal disease patients with cognitive impairment: A multimodal MRI study. J Neurosci Res 2024; 102:e25277. [PMID: 38284834 DOI: 10.1002/jnr.25277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
End-stage renal disease (ESRD) is associated with vascular and neuronal dysfunction, causing neurovascular coupling (NVC) dysfunction, but how NVC dysfunction acts on the mechanism of cognitive impairment in ESRD patients from local to remote is still poorly understood. We recruited 48 ESRD patients and 35 demographically matched healthy controls to scan resting-state functional MRI and arterial spin labeling, then investigated the four types of NVC between amplitude of low-frequency fluctuation (ALFF), fractional ALFF, regional homogeneity, degree centrality, and cerebral blood perfusion (CBF), and associated functional networks. Our results indicated that ESRD patients showed NVC dysfunction in global gray matter and multiple brain regions due to the mismatch between CBF and neural activity, and associated disrupted functional connectivity (FC) within sensorimotor network (SMN), visual network (VN), default mode network (DMN), salience network (SN), and disrupted FC between them with limbic network (LN), while increased FC between SMN and DMN. Anemia may affect the NVC of middle occipital gyrus and precuneus, and increased pulse pressure may result in disrupted FC with SMN. The NVC dysfunction of the right precuneus, middle frontal gyrus, and parahippocampal gyrus and the FC between the right angular gyrus and the right anterior cingulate gyrus may reflect cognitive impairment in ESRD patients. Our study confirmed that ESRD patients may exist NVC dysfunction and disrupted functional integration in SMN, VN, DMN, SN and LN, serving as one of the mechanisms of cognitive impairment. Anemia and increased pulse pressure may be related risk factors.
Collapse
Affiliation(s)
- Runyue Hu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peina Chen
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Xiaobao Wei
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Lianyungang No 1 People's Hospital, Lianyungang, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Liu S, Zhong H, Qian Y, Cai H, Jia YB, Zhu J. Neural mechanism underlying the beneficial effect of Theory of Mind psychotherapy on early-onset schizophrenia: a randomized controlled trial. J Psychiatry Neurosci 2023; 48:E421-E430. [PMID: 37935475 PMCID: PMC10635708 DOI: 10.1503/jpn.230049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Psychosocial interventions have emerged as an important component of a comprehensive therapeutic approach in early-onset schizophrenia, typically representing a more severe form of the disorder. Despite the feasibility and efficacy of Theory of Mind (ToM) psychotherapy for schizophrenia, relatively little is known regarding the neural mechanism underlying its effect on early-onset schizophrenia. METHODS We performed a randomized, active controlled trial in patients with early-onset schizophrenia, who were randomly allocated into either an intervention (ToM psychotherapy) or an active control (health education) group. Diffusion tensor imaging data were collected to construct brain structural networks, with both global and regional topological properties measured using graph theory. RESULTS We enrolled 28 patients with early-onset schizophrenia in our study. After 5 weeks of treatment, both the intervention and active control groups showed significant improvement in psychotic symptoms, yet the improvement was greater in the intervention group. Importantly, in contrast with no brain structural network change after treatment in the active control group, the intervention group showed increased nodal centrality of the left insula that was associated with psychotic symptom improvement. LIMITATIONS We did not collect important information concerning the participants' cognitive abilities, particularly ToM performance. CONCLUSION These findings suggest a potential neural mechanism by which ToM psychotherapy exerts a beneficial effect on early-onset schizophrenia via strengthening the coordination capacity of the insula in brain structural networks, which may provide a clinically translatable biomarker for monitoring or predicting responses to ToM psychotherapy.Clinical trial registration: NCT05577338; ClinicalTrials.gov.
Collapse
Affiliation(s)
- Siyu Liu
- From the Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Liu, Qian, Cai, Zhu); the Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China (Liu, Qian, Cai, Zhu); the Anhui Provincial Institute of Translational Medicine, Hefei, China (Liu, Qian, Cai, Zhu); the Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China (Zhong, Jia); the Department of Child and Adolescent Psychology, Anhui Mental Health Center, Hefei, China (Zhong); and the Hefei Fourth People's Hospital, Hefei, China (Zhong)
| | - Hui Zhong
- From the Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Liu, Qian, Cai, Zhu); the Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China (Liu, Qian, Cai, Zhu); the Anhui Provincial Institute of Translational Medicine, Hefei, China (Liu, Qian, Cai, Zhu); the Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China (Zhong, Jia); the Department of Child and Adolescent Psychology, Anhui Mental Health Center, Hefei, China (Zhong); and the Hefei Fourth People's Hospital, Hefei, China (Zhong)
| | - Yinfeng Qian
- From the Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Liu, Qian, Cai, Zhu); the Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China (Liu, Qian, Cai, Zhu); the Anhui Provincial Institute of Translational Medicine, Hefei, China (Liu, Qian, Cai, Zhu); the Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China (Zhong, Jia); the Department of Child and Adolescent Psychology, Anhui Mental Health Center, Hefei, China (Zhong); and the Hefei Fourth People's Hospital, Hefei, China (Zhong)
| | - Huanhuan Cai
- From the Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Liu, Qian, Cai, Zhu); the Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China (Liu, Qian, Cai, Zhu); the Anhui Provincial Institute of Translational Medicine, Hefei, China (Liu, Qian, Cai, Zhu); the Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China (Zhong, Jia); the Department of Child and Adolescent Psychology, Anhui Mental Health Center, Hefei, China (Zhong); and the Hefei Fourth People's Hospital, Hefei, China (Zhong)
| | - Yan-Bin Jia
- From the Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Liu, Qian, Cai, Zhu); the Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China (Liu, Qian, Cai, Zhu); the Anhui Provincial Institute of Translational Medicine, Hefei, China (Liu, Qian, Cai, Zhu); the Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China (Zhong, Jia); the Department of Child and Adolescent Psychology, Anhui Mental Health Center, Hefei, China (Zhong); and the Hefei Fourth People's Hospital, Hefei, China (Zhong)
| | - Jiajia Zhu
- From the Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China (Liu, Qian, Cai, Zhu); the Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China (Liu, Qian, Cai, Zhu); the Anhui Provincial Institute of Translational Medicine, Hefei, China (Liu, Qian, Cai, Zhu); the Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China (Zhong, Jia); the Department of Child and Adolescent Psychology, Anhui Mental Health Center, Hefei, China (Zhong); and the Hefei Fourth People's Hospital, Hefei, China (Zhong)
| |
Collapse
|
25
|
Li T, Liu T, Zhang J, Ma Y, Wang G, Suo D, Yang B, Wang X, Funahashi S, Zhang K, Fang B, Yan T. Neurovascular coupling dysfunction of visual network organization in Parkinson's disease. Neurobiol Dis 2023; 188:106323. [PMID: 37838006 DOI: 10.1016/j.nbd.2023.106323] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Parkinson's disease (PD) has been showed perfusion and neural activity alterations in specific regions, such as the motor and visual networks; however, the clinical significance of coupling changes is still unknown. To identify how neurovascular coupling changes during the pathophysiology of PD, patients and healthy controls underwent multiparametric magnetic resonance imaging to measure neural activity organization of segregation and integration using amplitude of low-frequency fluctuation (ALFF) and functional connectivity strength (FCS), and measure vascular responses using cerebral blood flow (CBF). Neurovascular coupling was calculated as the global CBF-ALFF and CBF-FCS coupling and the regional CBF/ALFF and CBF/FCS ratio. Correlations and dynamic causal modeling was then used to evaluate relationships with disease-alterations to clinical variables and information flow. Neurovascular coupling was impaired in PD with decreased global CBF-ALFF and CBF-FCS coupling, as well as decreased CBF/ALFF in the parieto-occipital cortex (dorsal visual stream) and CBF/FCS in the temporo-occipital cortex (ventral visual stream); these decouplings were associated with motor and non-motor impairments. The distinctive patterns of neurovascular coupling alterations within the dorsal and ventral visual streams of the visual system could potentially provide additional understanding into the pathophysiological mechanisms of PD.
Collapse
Affiliation(s)
- Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yunxiao Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
26
|
Xue H, Xu X, Yan Z, Cheng J, Zhang L, Zhu W, Cui G, Zhang Q, Qiu S, Yao Z, Qin W, Liu F, Liang M, Fu J, Xu Q, Xu J, Xie Y, Zhang P, Li W, Wang C, Shen W, Zhang X, Xu K, Zuo XN, Ye Z, Yu Y, Xian J, Yu C, the CHIMGEN Consortium. Genome-wide association study of hippocampal blood-oxygen-level-dependent-cerebral blood flow correlation in Chinese Han population. iScience 2023; 26:108005. [PMID: 37822511 PMCID: PMC10562876 DOI: 10.1016/j.isci.2023.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Correlation between blood-oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) has been used as an index of neurovascular coupling. Hippocampal BOLD-CBF correlation is associated with neurocognition, and the reduced correlation is associated with neuropsychiatric disorders. We conducted the first genome-wide association study of the hippocampal BOLD-CBF correlation in 4,832 Chinese Han subjects. The hippocampal BOLD-CBF correlation had an estimated heritability of 16.2-23.9% and showed reliable genome-wide significant association with a locus at 3q28, in which many variants have been linked to neuroimaging and cerebrospinal fluid markers of Alzheimer's disease. Gene-based association analyses showed four significant genes (GMNC, CRTC2, DENND4B, and GATAD2B) and revealed enrichment for mast cell calcium mobilization, microglial cell proliferation, and ubiquitin-related proteolysis pathways that regulate different cellular components of the neurovascular unit. This is the first unbiased identification of the association of hippocampal BOLD-CBF correlation, providing fresh insights into the genetic architecture of hippocampal neurovascular coupling.
Collapse
Affiliation(s)
- Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Shijun Qiu
- Department of Medical Imaging, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei 230027, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
27
|
Sun X, Huang W, Wang J, Xu R, Zhang X, Zhou J, Zhu J, Qian Y. Cerebral blood flow changes and their genetic mechanisms in major depressive disorder: a combined neuroimaging and transcriptome study. Psychol Med 2023; 53:6468-6480. [PMID: 36601814 DOI: 10.1017/s0033291722003750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD. METHODS To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses. RESULTS We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance. CONCLUSIONS Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.
Collapse
Affiliation(s)
- Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Weisheng Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jianhui Zhou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
28
|
Li F, Lu L, Li H, Liu Y, Chen H, Yuan F, Jiang H, Yin X, Chen YC. Disrupted resting-state functional connectivity and network topology in mild traumatic brain injury: an arterial spin labelling study. Brain Commun 2023; 5:fcad254. [PMID: 37829696 PMCID: PMC10567062 DOI: 10.1093/braincomms/fcad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Mild traumatic brain injury can cause different degrees of cognitive impairment and abnormal brain structure and functional connectivity, but there is still a lack of research on the functional connectivity and topological organization of cerebral blood flow fluctuations. This study explored the cerebral blood flow, functional connectivity and topological organization of the cerebral blood flow network in acute mild traumatic brain injury patients. In total, 48 mild traumatic brain injury patients and 46 well-matched healthy controls underwent resting-state arterial spin labelling perfusion MRI and neuropsychological assessments. The functional connectivity and topological organization of the cerebral blood flow network were analysed. Then, the correlation between the changes in cerebral blood flow network characteristics and cognitive function was explored. Acute mild traumatic brain injury patients showed decreased cerebral blood flow in the right insula and increased cerebral blood flow in the right inferior temporal gyrus and left superior temporal gyrus. Abnormal cerebral blood flow network connection patterns mainly occur in sensorimotor network, default mode network, cingulo-opercular network and occipital network-related regions. Furthermore, mild traumatic brain injury disrupted the topological organization of the whole brain, which manifested as (i) reduced global efficiency; (ii) abnormal degree centrality, betweenness centrality, nodal clustering coefficient and nodal efficiency; and (iii) decreased intermodular connectivity between the occipital network and sensorimotor network. Finally, the change in network topology was correlated with the cognitive score of the mild traumatic brain injury. This study provided evidence of abnormal functional connectivity and network topology based on cerebral blood flow in acute mild traumatic brain injury patients, revealing their potential use as early markers for mild traumatic brain injury, which may contribute to both disease diagnosis and assessment.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hui Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Hailong Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
29
|
Wu Y, Wang H, Li C, Zhang C, Li Q, Shao Y, Yang Z, Li C, Fan Q. Deficits in Key Brain Network for Social Interaction in Individuals with Schizophrenia. Brain Sci 2023; 13:1403. [PMID: 37891773 PMCID: PMC10605178 DOI: 10.3390/brainsci13101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Individuals with schizophrenia (SZ) show impairment in social functioning. The reward network and the emotional salience network are considered to play important roles in social interaction. The current study investigated alterations in the resting-state (rs-) amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and functional connectivity (fc) in the reward network and the emotional salience network in SZ patients. MRI scans were collected from 60 subjects, including 30 SZ patients and 30 matched healthy controls. SZ symptoms were measured using the Positive and Negative Syndrome Scale (PANSS). We analyzed the ALFF, fALFF and ReHo in key brain regions in the reward network and emotional salience network as well as rs-fc among the bilateral amygdala, lateral orbitofrontal cortex (OFC), medial OFC and insula between groups. The SZ patients demonstrated increased ALFF in the right caudate and right putamen, increased fALFF and ReHo in the bilateral caudate, putamen and pallidum, along with decreased fALFF in the bilateral insula. Additionally, reduced rs-fc was found between the right lateral OFC and the left amygdala, which simultaneously belong to the reward network and the emotional salience network. These findings highlight the association between impaired social functioning in SZ patients and aberrant resting-state ALFF, fALFF, ReHo and fc. Future studies are needed to conduct network-based statistical analysis and task-state fMRI, reflecting live social interaction to advance our understanding of the mechanism of social interaction deficits in SZ.
Collapse
Affiliation(s)
- Yiwen Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongyan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chuoran Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qingfeng Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Shao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
30
|
Panigrahy A, Schmithorst V, Ceschin R, Lee V, Beluk N, Wallace J, Wheaton O, Chenevert T, Qiu D, Lee JN, Nencka A, Gagoski B, Berman JI, Yuan W, Macgowan C, Coatsworth J, Fleysher L, Cannistraci C, Sleeper LA, Hoskoppal A, Silversides C, Radhakrishnan R, Markham L, Rhodes JF, Dugan LM, Brown N, Ermis P, Fuller S, Cotts TB, Rodriguez FH, Lindsay I, Beers S, Aizenstein H, Bellinger DC, Newburger JW, Umfleet LG, Cohen S, Zaidi A, Gurvitz M. Design and Harmonization Approach for the Multi-Institutional Neurocognitive Discovery Study (MINDS) of Adult Congenital Heart Disease (ACHD) Neuroimaging Ancillary Study: A Technical Note. J Cardiovasc Dev Dis 2023; 10:381. [PMID: 37754810 PMCID: PMC10532244 DOI: 10.3390/jcdd10090381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Dramatic advances in the management of congenital heart disease (CHD) have improved survival to adulthood from less than 10% in the 1960s to over 90% in the current era, such that adult CHD (ACHD) patients now outnumber their pediatric counterparts. ACHD patients demonstrate domain-specific neurocognitive deficits associated with reduced quality of life that include deficits in educational attainment and social interaction. Our hypothesis is that ACHD patients exhibit vascular brain injury and structural/physiological brain alterations that are predictive of specific neurocognitive deficits modified by behavioral and environmental enrichment proxies of cognitive reserve (e.g., level of education and lifestyle/social habits). This technical note describes an ancillary study to the National Heart, Lung, and Blood Institute (NHLBI)-funded Pediatric Heart Network (PHN) "Multi-Institutional Neurocognitive Discovery Study (MINDS) in Adult Congenital Heart Disease (ACHD)". Leveraging clinical, neuropsychological, and biospecimen data from the parent study, our study will provide structural-physiological correlates of neurocognitive outcomes, representing the first multi-center neuroimaging initiative to be performed in ACHD patients. Limitations of the study include recruitment challenges inherent to an ancillary study, implantable cardiac devices, and harmonization of neuroimaging biomarkers. Results from this research will help shape the care of ACHD patients and further our understanding of the interplay between brain injury and cognitive reserve.
Collapse
Affiliation(s)
- Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, 45th Str., Penn Ave., Pittsburgh, PA 15201, USA
| | - Vanessa Schmithorst
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Rafael Ceschin
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Vince Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Nancy Beluk
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Julia Wallace
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Olivia Wheaton
- HealthCore Inc., 480 Pleasant Str., Watertown, MA 02472, USA;
| | - Thomas Chenevert
- Department of Radiology, Michigan Medicine University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA;
- Congenital Heart Center, C. S. Mott Children’s Hospital, 1540 E Hospital Dr., Ann Arbor, MI 48109, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory School of Medicine, 1364 Clifton Rd., Atlanta, GA 30322, USA;
| | - James N Lee
- Department of Radiology, The University of Utah, 50 2030 E, Salt Lake City, UT 84112, USA;
| | - Andrew Nencka
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave., Milwaukee, WI 53226, USA;
| | - Borjan Gagoski
- Department of Radiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA;
| | - Jeffrey I. Berman
- Department of Radiology, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA;
| | - Weihong Yuan
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave., Cincinnati, OH 45267, USA
| | - Christopher Macgowan
- Department of Medical Biophysics, University of Toronto, 101 College Str. Suite 15-701, Toronto, ON M5G 1L7, Canada;
- The Hospital for Sick Children Division of Translational Medicine, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - James Coatsworth
- Department of Radiology, Medical University of South Carolina, 171 Ashley Ave., Room 372, Charleston, SC 29425, USA;
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY 10029, USA; (L.F.); (C.C.); (A.Z.)
| | - Christopher Cannistraci
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY 10029, USA; (L.F.); (C.C.); (A.Z.)
| | - Lynn A. Sleeper
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA; (L.A.S.); (J.W.N.); (M.G.)
| | - Arvind Hoskoppal
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Floor 2, Pittsburgh, PA 15224, USA; (V.S.); (R.C.); (V.L.); (N.B.); (J.W.); (A.H.)
| | - Candice Silversides
- Department of Cardiology, University of Toronto, C. David Naylor Building, 6 Queen’s Park Crescent West, Third Floor, Toronto, ON M5S 3H2, Canada;
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd., Indianapolis, IN 46202, USA;
| | - Larry Markham
- Department of Cardiology, University of Indiana School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA;
| | - John F. Rhodes
- Department of Cardiology, Medical University of South Carolina, 96 Jonathan Lucas Str. Ste. 601, MSC 617, Charleston, SC 29425, USA;
| | - Lauryn M. Dugan
- Department of Cardiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA; (L.M.D.); (N.B.)
| | - Nicole Brown
- Department of Cardiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA; (L.M.D.); (N.B.)
| | - Peter Ermis
- Department of Radiology, Texas Children’s Hospital, Houston, TX 77030, USA; (P.E.); (S.F.)
| | - Stephanie Fuller
- Department of Radiology, Texas Children’s Hospital, Houston, TX 77030, USA; (P.E.); (S.F.)
| | - Timothy Brett Cotts
- Departments of Internal Medicine and Pediatrics, Michigan Medicine University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA;
| | - Fred Henry Rodriguez
- Department of Cardiology, Emory School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA;
| | - Ian Lindsay
- Department of Cardiology, The University of Utah, 95 S 2000 E, Salt Lake City, UT 84112, USA;
| | - Sue Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara Str., Pittsburgh, PA 15213, USA; (S.B.); (H.A.)
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara Str., Pittsburgh, PA 15213, USA; (S.B.); (H.A.)
| | - David C. Bellinger
- Cardiac Neurodevelopmental Program, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA;
| | - Jane W. Newburger
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA; (L.A.S.); (J.W.N.); (M.G.)
| | - Laura Glass Umfleet
- Department of Neuropsychology, Medical College of Wisconsin, 9200 W Wisconsin Ave., Milwaukee, WI 53226, USA;
| | - Scott Cohen
- Heart and Vascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Ali Zaidi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY 10029, USA; (L.F.); (C.C.); (A.Z.)
| | - Michelle Gurvitz
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA; (L.A.S.); (J.W.N.); (M.G.)
| |
Collapse
|
31
|
Wang H, Liu X, Song L, Yang W, Li M, Chen Q, Lv H, Zhao P, Yang Z, Liu W, Wang ZC. Dysfunctional Coupling of Cerebral Blood Flow and Susceptibility Value in the Bilateral Hippocampus is Associated with Cognitive Decline in Nondialysis Patients with CKD. J Am Soc Nephrol 2023; 34:1574-1588. [PMID: 37476849 PMCID: PMC10482064 DOI: 10.1681/asn.0000000000000185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Patients with end stage CKD often develop cognitive decline, but whether this is related to the underlying disease or to hemodialysis remains unclear. We performed three-dimensional pseudocontinuous arterial spin labeling and quantitative susceptibility mapping prospectively in 40 patients with stage 1-4 CKD, 47 nondialysis patients with stage 5 CKD, and 44 healthy controls. Our magnetic resonance imaging data demonstrate that changes in cerebral blood flow-susceptibility coupling might underlie this cognitive decline, perhaps in the hippocampus and thalamus. These results suggest that magnetic resonance imaging parameters are potential biomarkers of cognitive decline in patients with CKD. Moreover, our findings may lead to discovery of novel therapeutic targets to prevent cognitive decline in patients with CKD. BACKGROUND Cerebral blood flow (CBF) and susceptibility values reflect vascular and iron metabolism, providing mechanistic insights into conditions of health and disease. Nondialysis patients with CKD show a cognitive decline, but the pathophysiological mechanisms underlying this remain unclear. METHODS Three-dimensional pseudocontinuous arterial spin labeling and quantitative susceptibility mapping were prospectively performed in 40 patients with stage 1-4 CKD (CKD 1-4), 47 nondialysis patients with stage 5 CKD (CKD 5ND), and 44 healthy controls (HCs). Voxel-based global and regional analyses of CBF, susceptibility values, and vascular-susceptibility coupling were performed. Furthermore, the association between clinical performance and cerebral perfusion and iron deposition was analyzed. RESULTS For CBF, patients with CKD 5ND had higher normalized CBF in the hippocampus and thalamus than HCs. Patients with CKD 5ND had higher normalized CBF in the hippocampus and thalamus than those with CKD 1-4. The susceptibility values in the hippocampus and thalamus were lower in patients with CKD 5ND than in HCs. Patients with CKD 5ND had higher susceptibility value in the caudate nucleus than those with CKD 1-4. More importantly, patients with CKD 5ND had lower CBF-susceptibility coupling than HCs. In addition, CBF and susceptibility values were significantly associated with clinical performance. CONCLUSIONS Our findings demonstrate a new neuropathological mechanism in patients with CKD, which leads to regional changes in CBF-susceptibility coupling. These changes are related to cognitive decline, providing potential imaging markers for assessing clinical disability and cognitive decline in these patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, Zelaya F, Turkheimer FE, Mehta MA, Howes OD. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med 2023; 53:5235-5245. [PMID: 36004510 PMCID: PMC10476071 DOI: 10.1017/s0033291722002288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Foundation Trust, London, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
33
|
Ruan Z, Sun D, Zhou X, Yu M, Li S, Sun W, Li Y, Gao L, Xu H. Altered neurovascular coupling in patients with vascular cognitive impairment: a combined ASL-fMRI analysis. Front Aging Neurosci 2023; 15:1224525. [PMID: 37416325 PMCID: PMC10320594 DOI: 10.3389/fnagi.2023.1224525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Background and objective This study aims to examine the role of neurovascular coupling (NVC) in vascular cognitive impairment (VCI) by investigating the relationship between white matter lesion (WML) burden, NVC, and cognitive deficits. Additionally, we aim to explore the potential of NVC as a tool for understanding the neural mechanisms underlying VCI. Methods This study included thirty-eight small vessel disease cognitive impairment (SVCI) patients, 34 post-stroke cognitive impairment (PSCI) patients, and 43 healthy controls (HC). Comprehensive assessments, including neuroimaging and neuropsychological testing, were conducted to evaluate cognitive function. WML burden was measured and correlated with NVC coefficients to examine the relationship between white matter pathology and NVC. Mediation analysis was employed to explore the link relationship between NVC, WML burden, and cognitive function. Results The present study showed that NVC was significantly reduced in the SVCI and PSCI groups compared with HCs at both whole-brain and brain region level. The analysis revealed notable findings regarding NVC in relation to WML burden and cognitive function in VCI patients. Specifically, reduced NVC coefficients were observed within higher order brain systems responsible for cognitive control and emotion regulation. Mediation analysis demonstrated that NVC played a mediating role in the relationship between WML burden and cognitive impairment. Conclusion This study reveals the mediating role of NVC in the relationship between WML burden and cognitive function in VCI patients. The results demonstrate the potential of the NVC as an accurate measure of cognitive impairment and its ability to identify specific neural circuits affected by WML burden.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Yang A, Liu B, Lv K, Luan J, Hu P, Yu H, Shmuel A, Li S, Tian H, Ma G, Zhang B. Altered coupling of resting-state cerebral blood flow and functional connectivity in Meige syndrome. Front Neurosci 2023; 17:1152161. [PMID: 37207180 PMCID: PMC10188939 DOI: 10.3389/fnins.2023.1152161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION Meige syndrome (MS) is an adult-onset segmental dystonia disease, mainly manifested as blepharospasm and involuntary movement caused by dystonic dysfunction of the oromandibular muscles. The changes of brain activity, perfusion and neurovascular coupling in patients with Meige syndrome are hitherto unknown. METHODS Twenty-five MS patients and thirty age- and sex-matched healthy controls (HC) were prospectively recruited in this study. All the participants underwent resting-state arterial spin labeling and blood oxygen level-dependent examinations on a 3.0 T MR scanner. The measurement of neurovascular coupling was calculated using cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations across the voxels of whole gray matter. Also, voxel-wised analyses of CBF, FCS, and CBF/FCS ratio images between MS and HC were conducted. Additionally, CBF and FCS values were compared between these two groups in selected motion-related brain regions. RESULTS MS patients showed increased whole gray matter CBF-FCS coupling relative to HC (t = 2.262, p = 0.028). In addition, MS patients showed significantly increased CBF value in middle frontal gyrus and bilateral precentral gyrus. CONCLUSION The abnormal elevated neurovascular coupling of MS may indicate a compensated blood perfusion in motor-related brain regions and reorganized the balance between neuronal activity and brain blood supply. Our results provide a new insight into the neural mechanism underlying MS from the perspective of neurovascular coupling and cerebral perfusion.
Collapse
Affiliation(s)
- Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Shijun Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong Tian
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Beijing, China
| |
Collapse
|
35
|
Zhang S, Cai H, Wang C, Zhu J, Yu Y. Sex-dependent gut microbiota-brain-cognition associations: a multimodal MRI study. BMC Neurol 2023; 23:169. [PMID: 37106317 PMCID: PMC10134644 DOI: 10.1186/s12883-023-03217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND There is bidirectional communication between the gut microbiota and the brain. Empirical evidence has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut microbiota on brain and cognition. METHODS One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and diffusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the gut microbiota-brain-cognition relationship. RESULTS We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association between gut microbial diversity and behavioral inhibition in males. CONCLUSIONS These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for mental disorders with abnormal behavioral inhibition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, 272007, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
36
|
Jacob M, Ford J, Deacon T. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Front Hum Neurosci 2023; 17:976036. [PMID: 37113322 PMCID: PMC10126302 DOI: 10.3389/fnhum.2023.976036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a living organ with distinct metabolic constraints. However, these constraints are typically considered as secondary or supportive of information processing which is primarily performed by neurons. The default operational definition of neural information processing is that (1) it is ultimately encoded as a change in individual neuronal firing rate as this correlates with the presentation of a peripheral stimulus, motor action or cognitive task. Two additional assumptions are associated with this default interpretation: (2) that the incessant background firing activity against which changes in activity are measured plays no role in assigning significance to the extrinsically evoked change in neural firing, and (3) that the metabolic energy that sustains this background activity and which correlates with differences in neuronal firing rate is merely a response to an evoked change in neuronal activity. These assumptions underlie the design, implementation, and interpretation of neuroimaging studies, particularly fMRI, which relies on changes in blood oxygen as an indirect measure of neural activity. In this article we reconsider all three of these assumptions in light of recent evidence. We suggest that by combining EEG with fMRI, new experimental work can reconcile emerging controversies in neurovascular coupling and the significance of ongoing, background activity during resting-state paradigms. A new conceptual framework for neuroimaging paradigms is developed to investigate how ongoing neural activity is "entangled" with metabolism. That is, in addition to being recruited to support locally evoked neuronal activity (the traditional hemodynamic response), changes in metabolic support may be independently "invoked" by non-local brain regions, yielding flexible neurovascular coupling dynamics that inform the cognitive context. This framework demonstrates how multimodal neuroimaging is necessary to probe the neurometabolic foundations of cognition, with implications for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Jacob
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith Ford
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terrence Deacon
- Department of Anthropology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
37
|
Percie du Sert O, Unrau J, Gauthier CJ, Chakravarty M, Malla A, Lepage M, Raucher-Chéné D. Cerebral blood flow in schizophrenia: A systematic review and meta-analysis of MRI-based studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110669. [PMID: 36341843 DOI: 10.1016/j.pnpbp.2022.110669] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies. In addition, we conducted a focused meta-analysis of whole brain studies to provide a complete picture of the literature on the topic. METHODS A systematic OVID search was performed in Embase, MEDLINEOvid, and PsycINFO. Studies eligible for inclusion in the review involved: 1) individuals with SSD, first-episode psychosis or clinical-high risk for psychosis, or; 2) had healthy controls for comparison; 3) involved MRI-based perfusion imaging methods; and 4) reported CBF findings. No time span was specified for the database queries (last search: 08/2022). Information related to participants, MRI techniques, CBF analyses, and results were systematically extracted. Whole-brain studies were then selected for the meta-analysis procedure. The methodological quality of each included studies was assessed. RESULTS For the systematic review, the initial Ovid search yielded 648 publications of which 42 articles were included, representing 3480 SSD patients and controls. The most consistent finding was that negative symptoms were linked to cortical fronto-limbic hypoperfusion while positive symptoms seemed to be associated with hyperperfusion, notably in subcortical structures. The meta-analysis integrated results from 13 whole-brain studies, across 426 patients and 401 controls, and confirmed the robustness of the hypoperfusion in the left superior and middle frontal gyri and right middle occipital gyrus while hyperperfusion was found in the left putamen. CONCLUSION This updated review of the literature supports the implication of hemodynamic correlates in the pathophysiology of psychosis symptoms and disorders. A more systematic exploration of brain perfusion could complete the search of a multimodal biomarker of SSD.
Collapse
Affiliation(s)
- Olivier Percie du Sert
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Joshua Unrau
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Concordia University, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Delphine Raucher-Chéné
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada; University of Reims Champagne-Ardenne, Cognition, Health, and Society Laboratory (EA 6291), Reims, France; Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| |
Collapse
|
38
|
Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y. Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:13. [PMID: 36841861 PMCID: PMC9968350 DOI: 10.1038/s41537-023-00338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.
Collapse
Affiliation(s)
- Qian Li
- grid.459419.4Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000 Hefei, China ,grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Xiaotao Xu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Yinfeng Qian
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Huanhuan Cai
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Wenming Zhao
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
39
|
Li T, Wang L, Piao Z, Chen K, Yu X, Wen Q, Suo D, Zhang C, Funahashi S, Pei G, Fang B, Yan T. Altered Neurovascular Coupling for Multidisciplinary Intensive Rehabilitation in Parkinson's Disease. J Neurosci 2023; 43:1256-1266. [PMID: 36609454 PMCID: PMC9962778 DOI: 10.1523/jneurosci.1204-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Effective rehabilitation in Parkinson's disease (PD) is related to brain reorganization with restoration of cortico-subcortical networks and compensation of frontoparietal networks; however, further neural rehabilitation evidence from a multidimensional perspective is needed. To investigate how multidisciplinary intensive rehabilitation treatment affects neurovascular coupling, 31 PD patients (20 female) before and after treatment and 30 healthy controls (17 female) underwent blood oxygenation level-dependent functional magnetic resonance imaging and arterial spin labeling scans. Cerebral blood flow (CBF) was used to measure perfusion, and fractional amplitude of low-frequency fluctuation (fALFF) was used to measure neural activity. The global CBF-fALFF correlation and regional CBF/fALFF ratio were calculated as neurovascular coupling. Dynamic causal modeling (DCM) was used to evaluate treatment-related alterations in the strength and directionality of information flow. Treatment reduced CBF-fALFF correlations. The altered CBF/fALFF exhibited increases in the left angular gyrus and the right inferior parietal gyrus and decreases in the bilateral thalamus and the right superior frontal gyrus. The CBF/fALFF alteration in right superior frontal gyrus showed correlations with motor improvement. Further, DCM indicated increases in connectivity from the superior frontal gyrus and decreases from the thalamus to the inferior parietal gyrus. The benefits of rehabilitation were reflected in the dual mechanism, with restoration of executive control occurring in the initial phase of motor learning and compensation of information integration occurring in the latter phase. These findings may yield multimodal insights into the role of rehabilitation in disease modification and identify the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD.SIGNIFICANCE STATEMENT Although rehabilitation has been proposed as a promising supplemental treatment for PD as it results in brain reorganization, restoring cortico-subcortical networks and eliciting compensatory activation of frontoparietal networks, further multimodal evidence of the neural mechanisms underlying rehabilitation is needed. We measured the ratio of perfusion and neural activity derived from arterial spin labeling and blood oxygenation level-dependent fMRI data and found that benefits of rehabilitation seem to be related to the dual mechanism, restoring executive control in the initial phase of motor learning and compensating for information integration in the latter phase. We also identified the dorsolateral superior frontal gyrus as a potential target for noninvasive neuromodulation in PD patients.
Collapse
Affiliation(s)
- Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhixin Piao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Keke Chen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xin Yu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiping Wen
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunyu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
40
|
Li H, Huang Z, Gao Z, Zhu W, Li Y, Zhou S, Li X, Yu Y. Sex Difference in General Cognition Associated with Coupling of Whole-brain Functional Connectivity Strength to Cerebral Blood Flow Changes During Alzheimer's Disease Progression. Neuroscience 2023; 509:187-200. [PMID: 36496188 DOI: 10.1016/j.neuroscience.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disorder that results in irreversible cognitive impairments. Nonetheless, there are numerous sex-dependent differences in clinical course. We examined potential contributions of neurovascular coupling deficits to sex differences in AD progression. T1-weighted three-dimensional structural magnetic resonance images, functional blood oxygen level dependent and arterial spin labeling images were acquired from 50 AD patients (28 females), 52 amnesic mild cognitive impairment patients (31 females), and 59 healthy controls (36 females). Short- and long-range functional connectivity strength (FCS) and cerebral blood flow (CBF) values were calculated for all participants. Then, the CBF/FCS coupling ratio, which represented the amount of blood supply per unit of connectivity strength, was calculated for each voxel. Two-way ANOVA was performed to identify group × sex interactions and main effects of group. Correlation analysis was used to assess associations between CBF/FCS ratios and Mini-Mental State Examination (MMSE). There were significant group × sex interaction effects on short-range coupling ratios of right middle temporal gyrus, left angular gyrus, left inferior orbital frontal gyrus, and left superior frontal gyrus as well as on the long-range coupling ratios of right middle temporal gyrus, left precuneus, left posterior cingulate cortex, and left angular gyrus. There were significant negative correlations between MMSE scores and CBF/FCS ratios for all regions with significant group × sex interactions among female patients, while positive correlations were found among male patients. Our results demonstrate significant sex differences in neurovascular coupling mechanisms associated with cognitive function during the course of AD.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ziang Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ziwen Gao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wanqiu Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuqing Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
41
|
Ji Y, Wang L, Ding H, Tian Q, Fan K, Shi D, Yu C, Qin W. Aberrant neurovascular coupling in Leber's hereditary optic neuropathy: Evidence from a multi-model MRI analysis. Front Neurosci 2023; 16:1050772. [PMID: 36703998 PMCID: PMC9871937 DOI: 10.3389/fnins.2022.1050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The study aimed to investigate the neurovascular coupling abnormalities in Leber's hereditary optic neuropathy (LHON) and their associations with clinical manifestations. Twenty qualified acute Leber's hereditary optic neuropathy (A-LHON, disease duration ≤ 1 year), 29 chronic Leber's hereditary optic neuropathy (C-LHON, disease duration > 1 year), as well as 37 healthy controls (HCs) were recruited. The neurovascular coupling strength was quantified as the ratio between regional homogeneity (ReHo), which represents intrinsic neuronal activity and relative cerebral blood flow (CBF), representing microcirculatory blood supply. A one-way analysis of variance was used to compare intergroup differences in ReHo/CBF ratio with gender and age as co-variables. Pearson's Correlation was used to clarify the association between ReHo, CBF, and neurovascular coupling strength. Furthermore, we applied linear and exponential non-linear regression models to explore the associations among ReHo/CBF, disease duration, and neuro-ophthalmological metrics. Compared with HCs, A_LHON, and C_LHON patients demonstrated a higher ReHo/CBF ratio than the HCs in the bilateral primary visual cortex (B_CAL), which was accompanied by reduced CBF while preserved ReHo. Besides, only C_LHON had a higher ReHo/CBF ratio and reduced CBF in the left middle temporal gyrus (L_MTG) and left sensorimotor cortex (L_SMC) than the HCs, which was accompanied by increased ReHo in L_MTG (p < 1.85e-3, Bonferroni correction). A-LHON and C-LHON showed a negative Pearson correlation between ReHo/CBF ratio and CBF in B_CAL, L_SMC, and L_MTG. Only C_LHON showed a weak positive correlation between ReHo/CBF ratio and ReHo in L_SMC and L_MTG (p < 0.05, uncorrected). Finally, disease duration was positively correlated with ReHo/CBF ratio of L_SMC (Exponential: Radj2 = 0.23, p = 8.66e-4, Bonferroni correction). No statistical correlation was found between ReHo/CBF ratio and neuro-ophthalmological metrics (p > 0.05, Bonferroni correction). Brain neurovascular "dyscoupling" within and outside the visual system might be an important neurological mechanism of LHON.
Collapse
Affiliation(s)
- Yi Ji
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Wang
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hao Ding
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China,*Correspondence: Dapeng Shi,
| | - Chunshui Yu
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Chunshui Yu,
| | - Wen Qin
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Wen Qin,
| |
Collapse
|
42
|
Chen W, Hu H, Chen HH, Liu H, Wu Q, Chen L, Zhou J, Jiang WH, Xu XQ, Wu FY. Altered neurovascular coupling in thyroid-associated ophthalmopathy: A combined resting-state fMRI and arterial spin labeling study. J Neurosci Res 2023; 101:34-47. [PMID: 36134557 DOI: 10.1002/jnr.25126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022]
Abstract
Besides the well-documented ophthalmic manifestations, thyroid-associated ophthalmopathy (TAO) is believed to be related to emotional and psychological abnormalities. Given the previous neuroimaging evidence, we hypothesized that TAO patients would have altered neurovascular coupling associated with clinical-psychiatric disturbances. This study was to investigate neurovascular coupling changes in TAO by combining resting-state functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL) techniques. Amplitude of low-frequency fluctuation (ALFF) was calculated from rs-fMRI, and cerebral blood flow (CBF) was computed from ASL in 37 TAO patients and 21 healthy controls (HCs). Global neurovascular coupling was assessed by across-voxel CBF-ALFF correlation, and regional neurovascular coupling was evaluated by CBF/ALFF ratio. Auxiliary analyses were performed using fractional ALFF (fALFF) and regional homogeneity (ReHo) as rs-fMRI measures. Compared with HCs, TAO patients showed significantly reduced global CBF-ALFF coupling. Moreover, TAO patients exhibited decreased CBF/ALFF ratio in the left lingual gyrus (LG)/fusiform gyrus (FFG), and increased CBF/ALFF ratio in the bilateral precuneus (PCu). In TAOs, CBF/ALFF ratio in the left LG/FFG was positively correlated with visual acuity, while CBF/ALFF ratio in the bilateral PCu was negatively correlated with Montreal Cognitive Assessment score. The auxiliary analyses showed trends of reduced global neurovascular coupling (i.e., CBF-fALFF correlation and CBF-ReHo correlation), as well as significant altered regional neurovascular coupling (i.e., CBF/fALFF ratio and CBF/ReHo ratio) in several brain regions. These findings indicated that TAO patients had altered neurovascular coupling in the visual and higher-order cognitive cortices. The neurovascular decoupling might be a possible neuropathological mechanism of TAO.
Collapse
Affiliation(s)
- Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Xu H, Chen K, Zhu H, Bu J, Yang L, Chen F, Ma H, Qu X, Zhang R, Liu H. Neurovascular coupling changes in patients with magnetic resonance imaging negative focal epilepsy. Epilepsy Behav 2023; 138:109035. [PMID: 36535109 DOI: 10.1016/j.yebeh.2022.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Brain neuron activity is closely related to cerebral blood flow (CBF) changes. Alterations in the regional homogeneity (ReHo) and CBF occur in patients with magnetic resonance imaging negative focal epilepsy (FEP-MRI-). However, the coupling alterations of ReHo and CBF in FEP-MRI- remain unclear. The study aims to explore neurovascular coupling alterations and their clinical implication in FEP-MRI-. We collected resting-state magnetic resonance imaging (MRI) data from 31 healthy controls (HCs) and 48 patients with FEP-MRI-,including three-dimensional (3D) T1-weighted imaging, 3D arterial spin labeling (ASL) imaging,and resting-state functional MRI (rs-fMRI). The CBF and ReHo values were calculated from the ASL and rs-fMRI data, respectively. The CBF/ReHo ratio per voxel and whole-brain CBF-ReHo coupling were compared between the two groups. Correlation analysis involved the CBF/ReHo ratio and clinical indicators in FEP-MRI-. Patients with FEP-MRI- showed significantly increased cross-subject CBF-ReHo and global cross-voxel CBF-ReHo coupling. The CBF/ReHo ratio was higher in the bilateral orbitofrontal gyrus, right parietal lobe, and right middle frontal gyrus of patients with FEP-MRI-. Nevertheless, this ratio was lower in the bilateral supplementary motor areas, the left middle and posterior cingulate gyrus, and the right central sulcus cover. The CBF/ReHo ratio was markedly correlated with cognitive function, memory, intelligence, and epilepsy duration in the above abnormal brain regions. CBF/ReHo ratio may be useful as an indicator of neuropathological mechanisms. These results support the hypothesis that CBF/ReHo ratio relates to the neuropathological mechanisms of FEP-MRI-. Furthermore, it offers new perspectives for studying the mechanisms of MRI-negative epilepsy.
Collapse
Affiliation(s)
- Honghao Xu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Kefan Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lu Yang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Fangqing Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Haiyan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xuefeng Qu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
44
|
Li J, Zeng Q, Luo X, Li K, Liu X, Hong L, Zhang X, Zhong S, Qiu T, Liu Z, Chen Y, Huang P, Zhang M. Decoupling of Regional Cerebral Blood Flow and Brain Function Along the Alzheimer's Disease Continuum. J Alzheimers Dis 2023; 95:287-298. [PMID: 37483006 DOI: 10.3233/jad-230503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is accompanied with impaired neurovascular coupling. However, its early alteration remains elusive along the AD continuum. OBJECTIVE This study aimed to investigate the early disruption of neurovascular coupling in cognitively normal (CN) and mild cognitive impairment (MCI) elderly and its association with cognition and AD pathologies. METHODS We included 43 amyloid-β-negative CN participants and 38 amyloid-β-positive individuals (18 CN and 20 MCI) from the Alzheimer's Disease Neuroimaging Initiative dataset. Regional homogeneity (ReHo) map was used to represent neuronal activity and cerebral blood flow (CBF) map was used to represent cerebral blood perfusion. Neurovascular coupling was assessed by CBF/ReHo ratio at the voxel level. Analyses of covariance to detect the between-group differences and to further investigate the relations between CBF/ReHo ratio and AD biomarkers or cognition. In addition, the correlation of cerebral small vessel disease (SVD) burden and neurovascular coupling was assessed as well. RESULTS Related to amyloid-β-negative CN group, amyloid-β-positive groups showed decreased CBF/ReHo ratio mainly in the left medial and inferior temporal gyrus. Furthermore, lower CBF/ReHo ratio was associated with a lower Mini-Mental State Examination score as well as higher AD pathological burden. No association between CBF/ReHo ratio and SVD burden was observed. CONCLUSION AD pathology is a major correlate of the disturbed neurovascular coupling along the AD continuum, independent of SVD pathology. The CBF/ReHo ratio may be an index for detecting neurovascular coupling abnormalities, which could be used for early diagnosis in the future.
Collapse
Affiliation(s)
- Jixuan Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Siyan Zhong
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Qiu M, Zhou D, Zhu H, Shao Y, Li Y, Wang Y, Zong G, Xi Q. Alterations of Cerebral Blood Flow and its Connectivity Patterns Measured with Arterial Spin Labeling in Mild Cognitive Impairment. Curr Alzheimer Res 2023; 20:567-576. [PMID: 37921165 DOI: 10.2174/0115672050241163231017073139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Cerebral blood flow (CBF) is an important index for measuring brain function. Studies have shown that regional CBF changes inconsistently in mild cognitive impairment (MCI). Arterial spin labeling (ASL) is widely used in the study of CBF in patients with MCI. However, alterations in CBF connectivity in these patients remain poorly understood. METHODS In this study, 3D pseudo-continuous arterial spin labeling (3D-pCASL) technology was used to investigate the changes in regional CBF and CBF connectivity between 32 MCI patients and 32 healthy controls. The normalized CBF was used to reduce inter-subject variations. Both group comparisons in the CBF and correlations between CBF alterations and cognitive scores were assessed. CBF connectivity of brain regions with regional CBF differences was also compared between groups. RESULTS We found that compared with that in controls, the CBF was significantly reduced in the left superior parietal gyrus in MCI patients, whereas it was increased in the left precentral gyrus, right superior temporal gyrus, right putamen, and left supplementary motor area. In patients with MCI, significant correlations were identified between CBF and neuropsychological scales. Importantly, MCI patients exhibited CBF disconnections between the left supplementary motor area and the left superior parietal gyrus. CONCLUSION This study found that there are not only changes in regional CBF but also in CBF connectivity patterns in MCI patients compared with controls. These observations may provide a novel explanation for the neural mechanism underlying the pathophysiology in patients with Alzheimer's disease and MCI.
Collapse
Affiliation(s)
- Mingjuan Qiu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Di Zhou
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haiyan Zhu
- Department of Radiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yongjia Shao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yan Li
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yibin Wang
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Genlin Zong
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
46
|
Hu J, Ran H, Chen G, He Y, Li Q, Liu J, Li F, Liu H, Zhang T. Altered neurovascular coupling in children with idiopathic generalized epilepsy. CNS Neurosci Ther 2022; 29:609-618. [PMID: 36480481 PMCID: PMC9873522 DOI: 10.1111/cns.14039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022] Open
Abstract
AIMS Alterations in neuronal activity and cerebral hemodynamics have been reported in idiopathic generalized epilepsy (IGE) patients, possibly resulting in neurovascular decoupling; however, no neuroimaging evidence confirmed this disruption. This study aimed to investigate the possible presence of neurovascular decoupling and its clinical implications in childhood IGE using resting-state fMRI and arterial spin labeling imaging. METHODS IGE patients and healthy participants underwent resting-state fMRI and arterial spin labeling imaging to calculate degree centrality (DC) and cerebral blood flow (CBF), respectively. Across-voxel CBF-DC correlations were analyzed to evaluate the neurovascular coupling within the whole gray matter, and the regional coupling of brain region was assessed with the CBF/DC ratio. RESULTS The study included 26 children with IGE and 35 sex- and age-matched healthy controls (HCs). Compared with the HCs, the IGE group presented lower across-voxel CBF-DC correlations, higher CBF/DC ratio in the right posterior cingulate cortex/precuneus, middle frontal gyrus, and medial frontal gyrus (MFG), and lower ratio in the left inferior frontal gyrus. The increased CBF/DC ratio in the right MFG was correlated with lower performance intelligence quotient scores in the IGE group. CONCLUSION Children with IGE present altered neurovascular coupling, associated with lower performance intelligence quotient scores. The study shed a new insight into the pathophysiology of epilepsy and provided potential imaging biomarkers of cognitive performances in children with IGE.
Collapse
Affiliation(s)
- Jie Hu
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina,Department of Radiology and Nuclear MedicineXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Haifeng Ran
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Guiqin Chen
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Yulun He
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Qinghui Li
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Junwei Liu
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Fangling Li
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Heng Liu
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Tijiang Zhang
- Department of RadiologyThe Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou ProvinceZunyiChina
| |
Collapse
|
47
|
Cerebral blood flow and cardiovascular risk effects on resting brain regional homogeneity. Neuroimage 2022; 262:119555. [PMID: 35963506 PMCID: PMC10044499 DOI: 10.1016/j.neuroimage.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.
Collapse
|
48
|
Intson K, Geissah S, McCullumsmith RE, Ramsey AJ. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 PMCID: PMC11740474 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
Affiliation(s)
- Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Salma Geissah
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Ni MH, Li ZY, Sun Q, Yu Y, Yang Y, Hu B, Ma T, Xie H, Li SN, Tao LQ, Yuan DX, Zhu JL, Yan LF, Cui GB. Neurovascular decoupling measured with quantitative susceptibility mapping is associated with cognitive decline in patients with type 2 diabetes. Cereb Cortex 2022; 33:5336-5346. [PMID: 36310091 DOI: 10.1093/cercor/bhac422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/10/2023] Open
Abstract
Abstract
Disturbance of neurovascular coupling (NVC) is suggested to be one potential mechanism in type 2 diabetes mellitus (T2DM) associated mild cognitive impairment (MCI). However, NVC evidence derived from functional magnetic resonance imaging ignores the relationship of neuronal activity with vascular injury. Twenty-seven T2DM patients without MCI and thirty healthy controls were prospectively enrolled. Brain regions with changed susceptibility detected by quantitative susceptibility mapping (QSM) were used as seeds for functional connectivity (FC) analysis. NVC coefficients were estimated using combined degree centrality (DC) with susceptibility or cerebral blood flow (CBF). Partial correlations between neuroimaging indicators and cognitive decline were investigated. In T2DM group, higher susceptibility values in right hippocampal gyrus (R.PHG) were found and were negatively correlated with Naming Ability of Montreal Cognitive Assessment. FC increased remarkably between R.PHG and right middle temporal gyrus (R.MTG), right calcarine gyrus (R.CAL). Both NVC coefficients (DC-QSM and DC-CBF) reduced in R.PHG and increased in R.MTG and R.CAL. Both NVC coefficients in R.PHG and R.MTG increased with the improvement of cognitive ability, especially for executive function. These demonstrated that QSM and DC-QSM coefficients can be promising biomarkers for early evaluation of cognitive decline in T2DM patients and help to better understand the mechanism of NVC.
Collapse
Affiliation(s)
- Min-Hua Ni
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine , 1 Middle Section of Shiji Road, Xian yang, Shaanxi 712046 , China
| | - Ze-Yang Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Ying Yu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Yang Yang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Bo Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Teng Ma
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Hao Xie
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Si-Ning Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
- Faculty of Medical Technology, Xi’an Medical University , 1 Xinwang Road, Xi'an, Shaanxi 710016 , China
| | - Lan-Qiu Tao
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Ding-Xin Yuan
- Student Brigade, Fourth Military Medical University , 169 Changle Road, Xi'an, Shaanxi 710032 , China
| | - Jun-Ling Zhu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University , 569 Xinsi Road, Xi'an 710038, Shaanxi , China
| |
Collapse
|
50
|
Li P, Ma S, Ma X, Ding D, Zhu X, Zhang H, Liu J, Mu J, Zhang M. Reversal of neurovascular decoupling and cognitive impairment in patients with end-stage renal disease during a hemodialysis session: Evidence from a comprehensive fMRI analysis. Hum Brain Mapp 2022; 44:989-1001. [PMID: 36269166 PMCID: PMC9875915 DOI: 10.1002/hbm.26122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/28/2023] Open
Abstract
Neurovascular (NV) decoupling is a potential neuropathologic mechanism of cognitive impairment in patients with end-stage renal disease (ESRD). Hemodialysis improves cognitive impairment at 24 h post-dialysis, which suggests a potential neuroprotective effect of hemodialysis treatment on the brain. We investigated the effects of hemodialysis treatment on the reversal of NV decoupling associated with cognitive improvement. A total of 39 patients with ESRD and 39 healthy controls were enrolled. All patients were imaged twice during a dialysis session: before hemodialysis (T1pre-dialysis ) and at 24 h after dialysis (T2post-dialysis ). The healthy controls were imaged once. NV coupling was characterized based on correlation coefficients between four types of blood oxygen level-dependent signals and cerebral blood flow (CBF). A battery of neuropsychological and blood tests was performed before the imaging. Patients with ESRD showed improvements in memory and executive function at T2post-dialysis compared with that at T1pre-dialysis . At both T1pre-dialysis and T2post-dialysis , patients with ESRD had lower amplitude of low-frequency fluctuation (ALFF)-CBF coupling than healthy controls. Additionally, patients with ESRD had higher ALFF-CBF coupling at T2post-dialysis than at T1pre-dialysis . Higher memory scores, higher hemoglobin level, lower total plasma homocysteine level, lower systolic blood pressure variance, and lower ultrafiltration volume were associated with higher ALFF-CBF coupling in patients with ESRD after a hemodialysis session. These findings indicate that partial correction of anemia and hyperhomocysteinemia, stable systolic blood pressure, and fluid restriction may be closely linked to the reversal of NV decoupling and improvement in cognition in patients with ESRD.
Collapse
Affiliation(s)
- Peng Li
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina,Department of Medical ImagingNuclear Industry 215 Hospital of Shaanxi ProvinceXianyangShaanxiChina
| | - Shaohui Ma
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xueying Ma
- Department of Medical ImagingThe Affiliated Hospital of Inner Mongolia Medical UniversityHohhotInner MongoliaChina
| | - Dun Ding
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xinyi Zhu
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Huawen Zhang
- Department of Medical ImagingNuclear Industry 215 Hospital of Shaanxi ProvinceXianyangShaanxiChina
| | - Jixin Liu
- Center for Brain ImagingSchool of Life Science and Technology, Xidian UniversityXi'anChina
| | - Junya Mu
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ming Zhang
- Department of Medical ImagingFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|