1
|
Wang X, Chen W, Gou M, Li W, Li N, Tong J, Zhou Y, Xie T, Yu T, Feng W, Li Y, Chen S, Tian B, Tan S, Wang Z, Pan S, Luo X, Zhang P, Huang J, Tian L, Li CSR, Tan Y. Relationship between plasma TNF-α levels and agitation symptoms in first episode patients with schizophrenia. BMC Psychiatry 2024; 24:480. [PMID: 38956509 PMCID: PMC11218378 DOI: 10.1186/s12888-024-05796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/28/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Increasing evidence suggested that immune abnormalities involved in the pathophysiology of schizophrenia. However, the relationship between immunity and clinical features has not been clarified. The aim of this study was to measure the plasma levels of tumor necrosis factor alpha (TNF-α) and soluble TNF-α receptor 1 (sTNF-α R1) and to investigate their association with agitation in first episode patients with schizophrenia (FEPS). METHODS The plasma TNF-α and sTNF-α R1 levels were measured using sandwich enzyme-linked immunosorbent assay (ELISA) in the FEPS with (n = 36) and without agitation (n = 49) symptoms, and healthy controls (HCs, n = 54). The psychopathology was assessed by the Positive and Negative Syndrome Scale (PANSS), and the agitation symptoms were evaluated by the PANSS excitatory component (PANSS-EC). RESULTS The plasma TNF-α levels in patients with and without agitation symptoms were significantly higher than those in HCs. The patients with agitation had significantly higher plasma TNF-α levels compared to the patients without agitation. There were no significant differences in the sTNF-α R1 levels among the three groups. Furthermore, the plasma TNF-α levels were positively correlated with the PANSS total score, Positive and General psychopathological subscores, and PANSS-EC score in the FEPS, but the relationships were not found for the plasma sTNF-α R1 levels. CONCLUSIONS These results suggested that TNF-α might play an important role in the onset and development of agitation symptoms of schizophrenia.
Collapse
Affiliation(s)
- Xiaoying Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanfang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Xie
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shujuan Pan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
2
|
Chen Y, Wang S, Zhang X, Yang Q, Hua M, Li Y, Qin W, Liu F, Liang M. Functional Connectivity-Based Searchlight Multivariate Pattern Analysis for Discriminating Schizophrenia Patients and Predicting Clinical Variables. Schizophr Bull 2024:sbae084. [PMID: 38819252 DOI: 10.1093/schbul/sbae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables. STUDY DESIGN We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores. STUDY RESULTS The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort. CONCLUSION This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Yayuan Chen
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Sijia Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Qingqing Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghui Hua
- Department of Radiology, Chest Hospital, Tianjin University, Tianjin, China
| | - Yifan Li
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging and The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Gu YW, Fan JW, Zhao SW, Liu XF, Yin H, Cui LB. Large-scale mechanism hypothesis and research prospects of cognitive impairment in schizophrenia based on magnetic resonance imaging. Heliyon 2024; 10:e25915. [PMID: 38404811 PMCID: PMC10884805 DOI: 10.1016/j.heliyon.2024.e25915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Cognitive impairments in schizophrenia are pivotal clinical issues that need to be solved urgently. However, the mechanism remains unknown. It has been suggested that cognitive impairments in schizophrenia are associated with connectome damage, and are especially relevant to the disrupted hub nodes in the frontal and parietal lobes. Activating the dorsolateral prefrontal cortex (DLPFC) via repetitive transcranial magnetic stimulation (rTMS) could result in improved cognition. Based on several previous magnetic resonance imaging (MRI) studies on schizophrenia, we found that the first-episode patients showed connectome damage, as well as abnormal activation and connectivity of the DLPFC and inferior parietal lobule (IPL). Accordingly, we proposed that DLPFC-IPL pathway destruction might mediate connectome damage of cognitive impairments in schizophrenia. In the meantime, with the help of multimodal MRI and noninvasive neuromodulation tool, we may not only validate the hypothesis, but also find IPL as the potential intervention target for cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Yue-Wen Gu
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi’an, China
- Schizophrenia Imaging Lab, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Radiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing-Wen Fan
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi’an, China
- Schizophrenia Imaging Lab, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shu-Wan Zhao
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi’an, China
- Schizophrenia Imaging Lab, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao-Fan Liu
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi’an, China
- Schizophrenia Imaging Lab, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hong Yin
- Schizophrenia Imaging Lab, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Long-Biao Cui
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi’an, China
- Schizophrenia Imaging Lab, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
5
|
Wang C, Wang C, Ren Y, Zhang R, Ai L, Wu Y, Ran X, Wang M, Hu H, Shen J, Zhao Z, Yang Y, Ren W, Yu Y. Multi feature fusion network for schizophrenia classification and abnormal brain network recognition. Brain Res Bull 2024; 206:110848. [PMID: 38104673 DOI: 10.1016/j.brainresbull.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Schizophrenia classification and abnormal brain network recognition have an important research significance. Researchers have proposed many classification methods based on machine learning and deep learning. However, fewer studies utilized the advantages of complementary information from multi feature to learn the best representation of schizophrenia. In this study, we proposed a multi-feature fusion network (MFFN) using functional network connectivity (FNC) and time courses (TC) to distinguish schizophrenia patients from healthy controls. DNN backbone was adopted to learn the feature map of functional network connectivity, C-RNNAM backbone was designed to learn the feature map of time courses, and Deep SHAP was applied to obtain the most discriminative brain networks. We proved the effectiveness of this proposed model using the combining two public datasets and evaluated this model quantitatively using the evaluation indexes. The results showed that the functional network connectivity generated by independent component analysis has advantage in schizophrenia classification by comparing static and dynamic functional connections. This method obtained the best classification accuracy (ACC=87.30%, SPE=89.28%, SEN=85.71%, F1 =88.23%, and AUC=0.9081), and it demonstrated the superiority of this proposed model by comparing state-of-the-art methods. Ablation experiment also demonstrated that multi feature fusion and attention module can improve classification accuracy. The most discriminative brain networks showed that default mode network and visual network of schizophrenia patients have aberrant connections in brain networks. In conclusion, this method can identify schizophrenia effectively and visualize the abnormal brain network, and it has important clinical application value.
Collapse
Affiliation(s)
- Chang Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Chen Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Yaning Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Rui Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Lunpu Ai
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yang Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Xiangying Ran
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Mengke Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Heshun Hu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Jiefen Shen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Zongya Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China
| | - Wenjie Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China.
| |
Collapse
|
6
|
Li Z, Li H, Ralescu AL, Dillman JR, Parikh NA, He L. A novel collaborative self-supervised learning method for radiomic data. Neuroimage 2023; 277:120229. [PMID: 37321358 PMCID: PMC10440826 DOI: 10.1016/j.neuroimage.2023.120229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
The computer-aided disease diagnosis from radiomic data is important in many medical applications. However, developing such a technique relies on labeling radiological images, which is a time-consuming, labor-intensive, and expensive process. In this work, we present the first novel collaborative self-supervised learning method to solve the challenge of insufficient labeled radiomic data, whose characteristics are different from text and image data. To achieve this, we present two collaborative pretext tasks that explore the latent pathological or biological relationships between regions of interest and the similarity and dissimilarity of information between subjects. Our method collaboratively learns the robust latent feature representations from radiomic data in a self-supervised manner to reduce human annotation efforts, which benefits the disease diagnosis. We compared our proposed method with other state-of-the-art self-supervised learning methods on a simulation study and two independent datasets. Extensive experimental results demonstrated that our method outperforms other self-supervised learning methods on both classification and regression tasks. With further refinement, our method will have the potential advantage in automatic disease diagnosis with large-scale unlabeled data available.
Collapse
Affiliation(s)
- Zhiyuan Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anca L Ralescu
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, U niversity of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Cui LB, Wang XY, Fu YF, Liu XF, Wei Y, Zhao SW, Gu YW, Fan JW, Wu WJ, Gong H, Lin BD, Yin H, Guan F, Chang X. Transcriptional level of inflammation markers associates with short-term brain structural changes in first-episode schizophrenia. BMC Med 2023; 21:250. [PMID: 37424013 PMCID: PMC10332052 DOI: 10.1186/s12916-023-02963-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Inflammation has been implicated in the pathology of schizophrenia and may cause neuronal cell death and dendrite loss. Neuroimaging studies have highlighted longitudinal brain structural changes in patients with schizophrenia, yet it is unclear whether this is related to inflammation. We aim to address this question, by relating brain structural changes with the transcriptional profile of inflammation markers in the early stage of schizophrenia. METHODS Thirty-eight patients with first-episode schizophrenia and 51 healthy controls were included. High-resolution T1-weighted magnetic resonance imaging (MRI) and clinical assessments were performed at baseline and 2 ~ 6 months follow-up for all subjects. Changes in the brain structure were analyzed using surface-based morphological analysis and correlated with the expression of immune cells-related gene sets of interest reported by previous reviews. Transcriptional data were retrieved from the Allen Human Brain Atlas. Furthermore, we examined the brain structural changes and peripheral inflammation markers in association with behavioral symptoms and cognitive functioning in patients. RESULTS Patients exhibited accelerated cortical thickness decrease in the left frontal cortices, less decrease or an increase in the superior parietal lobule and right lateral occipital lobe, and increased volume in the bilateral pallidum, compared with controls. Changes in cortical thickness correlated with the transcriptional level of monocyte across cortical regions in patients (r = 0.54, p < 0.01), but not in controls (r = - 0.05, p = 0.76). In addition, cortical thickness change in the left superior parietal lobule positively correlated with changes in digital span-backward test scores in patients. CONCLUSIONS Patients with schizophrenia exhibit regional-specific cortical thickness changes in the prefrontal and parietooccipital cortices, which is related to their cognitive impairment. Inflammation may be an important factor contributing to cortical thinning in first-episode schizophrenia. Our findings suggest that the immunity-brain-behavior association may play a crucial role in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi'an, China.
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China.
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Xian-Yang Wang
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Liu
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Shu-Wan Zhao
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Yue-Wen Gu
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing-Wen Fan
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hengfen Gong
- School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, China
| | - Bochao Danae Lin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Li X, Guo J, Chen X, Yu R, Chen W, Zheng A, Yu Y, Zhou D, Dai L, Kuang L. Predicting Responses to Electroconvulsive Therapy in Adolescents with Treatment-Refractory Depression Based on Resting-State fMRI. J Clin Med 2023; 12:jcm12103556. [PMID: 37240663 DOI: 10.3390/jcm12103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTS The efficacy of electroconvulsive therapy (ECT) in the treatment of adolescents with treatment-refractory depression is still unsatisfactory, and the individual differences are large. It is not clear which factors are related to the treatment effect. Resting-state fMRI may be a good tool to predict the clinical efficacy of this treatment, and it is helpful to identify the most suitable population for this treatment. METHODS Forty treatment-refractory depression adolescents were treated by ECT and evaluated using HAMD and BSSI scores before and after treatment, and were then divided into a treatment response group and a non-treatment group according to the reduction rate of the HAMD scale. We extracted the ALFF, fALFF, ReHo, and functional connectivity of patients as predicted features after a two-sample t-test and LASSO to establish and evaluate a prediction model of ECT in adolescents with treatment-refractory depression. RESULTS Twenty-seven patients achieved a clinical response; symptoms of depression and suicidal ideation were significantly improved after treatment with ECT, which was reflected in a significant decrease in the scores of HAMD and BSSI (p < 0.001). The efficacy was predicted by ALFF, fALFF, ReHo, and whole-brain-based functional connectivity. We found that models built on a subset of features of ALFF in the left insula, fALFF in the left superior parietal gyrus, right superior parietal gyrus, and right angular, and functional connectivity between the left superior frontal gyrus, dorsolateral-right paracentral lobule, right middle frontal gyrus, orbital part-left cuneus, right olfactory cortex-left hippocampus, left insula-left thalamus, and left anterior cingulate gyrus-right hippocampus to have the best predictive performance (AUC > 0.8). CONCLUSIONS The local brain function in the insula, superior parietal gyrus, and angular gyrus as well as characteristic changes in the functional connectivity of cortical-limbic circuits may serve as potential markers for efficacy judgment of ECT and help to provide optimized individual treatment strategies for adolescents with depression and suicidal ideation in the early stages of treatment.
Collapse
Affiliation(s)
- Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiamei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Chen
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wanjun Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anhai Zheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanjie Yu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Linqi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Wu XS, Kang XW, Li X, Bai LJ, Xi YB, Li Y, Xu YQ, Hu WZ, Yin H, Lv YL. Baseline white matter function predicts short-term treatment response in first-episode schizophrenia. J Neuroimaging 2023. [PMID: 36939186 DOI: 10.1111/jon.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND AND PURPOSE The detection and characterization of functional activities in the gray matter of schizophrenia (SZ) have been widely explored. However, the relationship between resting-state functional signals in the white matter of first-episode SZ and short-term treatment response remains unclear. METHODS Thirty-six patients with first-episode SZ and 44 matched healthy controls were recruited in this study. Patients were classified as nonresponders and responders based on response to antipsychotic medication during a single hospitalization. The fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) of white matter were calculated. The relationships between functional changes and clinical features were analyzed. In addition, voxel-based morphometry was performed to analyze the white matter volume. RESULTS One-way analysis of variance showed significant differences of fALFF and ReHo in the left posterior thalamic radiation and left cingulum (hippocampus) in the patient group, and the areas were regarded as seeds. The FC was calculated between seeds and other white matter networks. Compared with responders, nonresponders showed significantly increased FC between the left cingulum (hippocampus) and left posterior thalamic radiation, splenium of corpus callosum, and left tapetum, and were associated with the changes of clinical assessment. However, there was no difference in white matter volume between groups. CONCLUSION Our work provides a novel insight that psycho-neuroimaging-based white matter function holds promise for influencing the clinical diagnosis and treatment of SZ.
Collapse
Affiliation(s)
- Xu-Sha Wu
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xiao-Wei Kang
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Li-Jun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Bin Xi
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yan Li
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China.,School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen-Zhong Hu
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Ya-Li Lv
- Department of Neurology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| |
Collapse
|
12
|
The Feature of Sleep Spindle Deficits in Patients With Schizophrenia With and Without Auditory Verbal Hallucinations. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:331-342. [PMID: 34380082 DOI: 10.1016/j.bpsc.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous sleep electroencephalography studies have detected abnormalities in sleep architecture and sleep spindle deficits in schizophrenia (SCZ), but the consistency of these results was not robust, which might be due to the small sample size and the influence of clinical factors such as the various medication therapies and symptom heterogeneity. This study aimed to regard auditory verbal hallucinations (AVHs) as a pointcut to downscale the heterogeneity of SCZ and explore whether some sleep architecture and spindle parameters were more severely impaired in SCZ patients with AVHs compared with those without AVHs. METHODS A total of 90 SCZ patients with AVHs, 92 SCZ patients without AVHs, and 91 healthy control subjects were recruited, and parameters of sleep architecture and spindle activities were compared between groups. The correlation between significant sleep parameters and clinical indicators was analyzed. RESULTS Deficits of sleep spindle activities at prefrontal electrodes and intrahemispheric spindle coherence were observed in both AVH and non-AVH groups, several of which were more serious in the AVH group. In addition, deficits of spindle activities at central and occipital electrodes and interhemispheric spindle coherence mainly manifested accompanying AVH symptoms, most of which were retained in the medication-naive first-episode patients, and were associated with Auditory Hallucination Rating Scale scores. CONCLUSIONS Our results suggest that the underlying mechanism of spindle deficits might be different between SCZ patients with and without AVHs. In the future, the sleep feature of SCZ patients with different symptoms and the influence of clinical factors, such as medication therapy, should be further illustrated.
Collapse
|
13
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Singh AP, Jain VS, Yu JPJ. Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study. Magn Reson Imaging 2023; 96:116-125. [PMID: 36496097 PMCID: PMC9815912 DOI: 10.1016/j.mri.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent, heterogenous neurodevelopmental disorder. Neuroimaging methods such as functional, structural, and diffusion MRI have been used to identify candidate imaging biomarkers for ASD, but current findings remain non-specific and likely arise from the heterogeneity present in ASD. To account for this, efforts to subtype ASD have emerged as a potential strategy for both the study of ASD and advancement of tailored behavioral therapies and therapeutics. Towards these ends, to improve upon current neuroimaging methods, we propose combining biologically sensitive neurite orientation dispersion and density index (NODDI) diffusion MR imaging with radiomics image processing to create a new methodological approach that, we hypothesize, can sensitively and specifically capture neurobiology. We demonstrate this method can sensitively distinguish differences between four genetically distinct rat models of ASD (Fmr1, Pten, Nrxn1, Disc1). Further, we demonstrate diffusion radiomic analyses hold promise for subtyping in ASD as we show unsupervised clustering of NODDI radiomic data generates clusters specific to the underlying genetic differences between the animal models. Taken together, our findings suggest the unique application of radiomic analysis on NODDI diffusion MRI may have the capacity to sensitively and specifically disambiguate the neurobiological heterogeneity present in the ASD population.
Collapse
Affiliation(s)
- Ajay P Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vansh S Jain
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
15
|
Classification of schizophrenia patients using a graph convolutional network: A combined functional MRI and connectomics analysis. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Cui LB, Wei Y, Cai M, Wang HN, Yin H, Li B. Editorial: Mapping psychopathology with MRI and connectivity analysis. Front Hum Neurosci 2023; 17:1141569. [PMID: 36816495 PMCID: PMC9930982 DOI: 10.3389/fnhum.2023.1141569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China,Schizophrenia Imaging Laboratory, Fourth Military Medical University, Xi'an, China
| | - Yongbin Wei
- Complex Traits Genetics Lab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xi'an People's Hospital, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, China,*Correspondence: Baojuan Li ✉
| |
Collapse
|
17
|
Liang C, Pearlson G, Bustillo J, Kochunov P, Turner JA, Wen X, Jiang R, Fu Z, Zhang X, Li K, Xu X, Zhang D, Qi S, Calhoun VD. Psychotic Symptom, Mood, and Cognition-associated Multimodal MRI Reveal Shared Links to the Salience Network Within the Psychosis Spectrum Disorders. Schizophr Bull 2023; 49:172-184. [PMID: 36305162 PMCID: PMC9810025 DOI: 10.1093/schbul/sbac158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia (SZ), schizoaffective disorder (SAD), and psychotic bipolar disorder share substantial overlap in clinical phenotypes, associated brain abnormalities and risk genes, making reliable diagnosis among the three illness challenging, especially in the absence of distinguishing biomarkers. This investigation aims to identify multimodal brain networks related to psychotic symptom, mood, and cognition through reference-guided fusion to discriminate among SZ, SAD, and BP. Psychotic symptom, mood, and cognition were used as references to supervise functional and structural magnetic resonance imaging (MRI) fusion to identify multimodal brain networks for SZ, SAD, and BP individually. These features were then used to assess the ability in discriminating among SZ, SAD, and BP. We observed shared links to functional and structural covariation in prefrontal, medial temporal, anterior cingulate, and insular cortices among SZ, SAD, and BP, although they were linked with different clinical domains. The salience (SAN), default mode (DMN), and fronto-limbic (FLN) networks were the three identified multimodal MRI features within the psychosis spectrum disorders from psychotic symptom, mood, and cognition associations. In addition, using these networks, we can classify patients and controls and distinguish among SZ, SAD, and BP, including their first-degree relatives. The identified multimodal SAN may be informative regarding neural mechanisms of comorbidity for psychosis spectrum disorders, along with DMN and FLN may serve as potential biomarkers in discriminating among SZ, SAD, and BP, which may help investigators better understand the underlying mechanisms of psychotic comorbidity from three different disorders via a multimodal neuroimaging perspective.
Collapse
Affiliation(s)
- Chuang Liang
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Godfrey Pearlson
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Juan Bustillo
- Departments of Neurosciences and Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Xuyun Wen
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Rongtao Jiang
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Xiao Zhang
- Department of Psychiatry, Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Daoqiang Zhang
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Shile Qi
- Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Vince D Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Tech University, Atlanta, GA, USA
| |
Collapse
|
18
|
Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. Heliyon 2022; 8:e12276. [PMID: 36582679 PMCID: PMC9793282 DOI: 10.1016/j.heliyon.2022.e12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| |
Collapse
|
19
|
Robustness of radiomics to variations in segmentation methods in multimodal brain MRI. Sci Rep 2022; 12:16712. [PMID: 36202934 PMCID: PMC9537186 DOI: 10.1038/s41598-022-20703-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Radiomics in neuroimaging uses fully automatic segmentation to delineate the anatomical areas for which radiomic features are computed. However, differences among these segmentation methods affect radiomic features to an unknown extent. A scan-rescan dataset (n = 46) of T1-weighted and diffusion tensor images was used. Subjects were split into a sleep-deprivation and a control group. Scans were segmented using four segmentation methods from which radiomic features were computed. First, we measured segmentation agreement using the Dice-coefficient. Second, robustness and reproducibility of radiomic features were measured using the intraclass correlation coefficient (ICC). Last, difference in predictive power was assessed using the Friedman-test on performance in a radiomics-based sleep deprivation classification application. Segmentation agreement was generally high (interquartile range = 0.77–0.90) and median feature robustness to segmentation method variation was higher (ICC > 0.7) than scan-rescan reproducibility (ICC 0.3–0.8). However, classification performance differed significantly among segmentation methods (p < 0.001) ranging from 77 to 84%. Accuracy was higher for more recent deep learning-based segmentation methods. Despite high agreement among segmentation methods, subtle differences significantly affected radiomic features and their predictive power. Consequently, the effect of differences in segmentation methods should be taken into account when designing and evaluating radiomics-based research methods.
Collapse
|
20
|
Predicting social anxiety in young adults with machine learning of resting-state brain functional radiomic features. Sci Rep 2022; 12:13932. [PMID: 35977968 PMCID: PMC9385624 DOI: 10.1038/s41598-022-17769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022] Open
Abstract
Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional radiomic features and machine learning have shown potential for predicting certain phenotypes or disorders from functional magnetic resonance images. In this study, we aimed to predict the level of social anxiety in young adult participants by training machine learning models with resting-state brain functional radiomic features including the regional homogeneity, fractional amplitude of low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree centrality. Among the machine learning models, the XGBoost model achieved the best performance with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting the level of social anxiety among the input brain regions and the input type of radiomic features, respectively. These results suggest potential validity for predicting social anxiety with machine learning of the resting-state brain functional radiomic features and provide further understanding of the neural basis of the symptom.
Collapse
|
21
|
Wang F, Wen F, Liu J, Yan J, Yu L, Li Y, Cui Y. Classification of tic disorders based on functional MRI by machine learning: a study protocol. BMJ Open 2022; 12:e047343. [PMID: 35577466 PMCID: PMC9114957 DOI: 10.1136/bmjopen-2020-047343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Tic disorder (TD) is a common neurodevelopmental disorder in children, and it can be categorised into three subtypes: provisional tic disorder (PTD), chronic motor or vocal TD (CMT or CVT), and Tourette syndrome (TS). An early diagnostic classification among these subtypes is not possible based on a new-onset tic symptom. Machine learning tools have been widely used for early diagnostic classification based on functional MRI (fMRI). However, few machine learning models have been built for the diagnostic classification of patients with TD. Therefore, in the present study, we will provide a study protocol that uses the machine learning model to make early classifications of the three different types of TD. METHODS AND ANALYSIS We planned to recruit 200 children aged 6-9 years with new-onset tic symptoms and 100 age-matched and sex-matched healthy controls under resting-state MRI scanning. Based on the neuroimaging data of resting-state fMRI, the support vector machine (SVM) model will be built. We planned to construct an SVM model based on functional connectivity for the early diagnosis classification of TD subtypes (including PTD, CMT/CVT, TS). ETHICS AND DISSEMINATION This study was approved by the ethics committee of Beijing Children's Hospital. The trial results will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER ChiCTR2000033257.
Collapse
Affiliation(s)
- Fang Wang
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Fang Wen
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Jingran Liu
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Junjuan Yan
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Liping Yu
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Beijing, China
| |
Collapse
|
22
|
Sun K, Liu Z, Chen G, Zhou Z, Zhong S, Tang Z, Wang S, Zhou G, Zhou X, Shao L, Ye X, Zhang Y, Jia Y, Pan J, Huang L, Liu X, Liu J, Tian J, Wang Y. A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods. J Affect Disord 2022; 300:1-9. [PMID: 34942222 DOI: 10.1016/j.jad.2021.12.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/13/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The present study aimed to explore the difference in the brain function and structure between patients with major depressive disorder (MDD) and healthy controls (HCs) using two-center and multi-modal MRI data, which would be helpful to investigate the pathogenesis of MDD. METHODS The subjects were collected from two hospitals. One including 140 patients with MDD and 138 HCs was used as primary cohort. Another one including 29 patients with MDD and 52 HCs was used as validation cohort. Functional and structural magnetic resonance images (MRI) were acquired to extract four types of features: functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and gray matter volume (GMV). Then classifiers using different combinations among the four types of selected features were respectively built to discriminate patients from HCs. Different templates were applied and the results under different templates were compared. RESULTS The classifier built with the combination of FC, ALFF, and GMV under the AAL template discriminated patients from HCs with the best performance (AUC=0.916, ACC=84.8%). The regions selected in all the different templates were mainly located in the default mode network, affective network, prefrontal cortex. LIMITATIONS First, the sample size of the validation cohort was limited. Second, diffusion tensor imaging data were not collected. CONCLUSION The performance of classifier was improved by using multi-modal MRI imaging. Different templates would be suitable for different types of analysis. The regions selected in all the different templates are possibly the core regions to investigate the pathophysiology of MDD.
Collapse
Affiliation(s)
- Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhifeng Zhou
- Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Shenzhen, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhenchao Tang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Guifei Zhou
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Xuezhi Zhou
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xiaoying Ye
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingli Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xia Liu
- Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Shenzhen, China.
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology.
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology; School of Artificial Intelligence, University of Chinese Academy of Science, Beijing, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
23
|
Zhang B, Liu S, Liu X, Chen S, Ke Y, Qi S, Wei X, Ming D. Discriminating subclinical depression from major depression using multi-scale brain functional features: A radiomics analysis. J Affect Disord 2022; 297:542-552. [PMID: 34744016 DOI: 10.1016/j.jad.2021.10.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The diagnosis of subclinical depression (SD) currently relies exclusively on subjective clinical scores and structured interviews, which shares great similarities with major depression (MD) and increases the risk of misdiagnosis of SD and MD. This study aimed to develop a method of disease classification for SD and MD by resting-state functional features using radiomics strategy. METHODS Twenty-six SD, 36 MD subjects and 33 well-matched healthy controls (HC) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). A novel radiomics analysis was proposed to discriminate SD from MD. Multi-scale brain functional features were extracted to explore a comprehensive representation of functional characteristics. A two-level feature selection strategy and support vector machine (SVM) were employed for classification. RESULTS The overall classification accuracy among SD, MD and HC groups was 84.21%. Particularly, the model excellently distinguished SD from MD with 96.77% accuracy, 100% sensitivity, and 92.31% specificity. Moreover, features with high discriminative power to distinguish SD from MD showed a strong association with default mode network, frontoparietal network, affective network, and visual network regions. LIMITATION The sample size was relatively small, which may limit the application in clinical translation to some extent. CONCLUSION These findings demonstrated that a valid radiomics approach based on functional measures can discriminate SD from MD with a high classification performance, facilitating an objective and reliable diagnosis individually in clinical practice. Features with high discriminative power may provide insight into a profound understanding of the brain functional impairments and pathophysiology of SD and MD.
Collapse
Affiliation(s)
- Bo Zhang
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Shuang Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Xiaoya Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Sitong Chen
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dong Ming
- Lab of Neural Engineering & Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China; Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
24
|
Guan F, Ni T, Zhu W, Williams LK, Cui LB, Li M, Tubbs J, Sham PC, Gui H. Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Mol Psychiatry 2022; 27:113-126. [PMID: 34193973 PMCID: PMC11018294 DOI: 10.1038/s41380-021-01201-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SCZ) is a debilitating neuropsychiatric disorder with high heritability and complex inheritance. In the past decade, successful identification of numerous susceptibility loci has provided useful insights into the molecular etiology of SCZ. However, applications of these findings to clinical classification and diagnosis, risk prediction, or intervention for SCZ have been limited, and elucidating the underlying genomic and molecular mechanisms of SCZ is still challenging. More recently, multiple Omics technologies - genomics, transcriptomics, epigenomics, proteomics, metabolomics, connectomics, and gut microbiomics - have all been applied to examine different aspects of SCZ pathogenesis. Integration of multi-Omics data has thus emerged as an approach to provide a more comprehensive view of biological complexity, which is vital to enable translation into assessments and interventions of clinical benefit to individuals with SCZ. In this review, we provide a broad survey of the single-omics studies of SCZ, summarize the advantages and challenges of different Omics technologies, and then focus on studies in which multiple omics data are integrated to unravel the complex pathophysiology of SCZ. We believe that integration of multi-Omics technologies would provide a roadmap to create a more comprehensive picture of interactions involved in the complex pathogenesis of SCZ, constitute a rich resource for elucidating the potential molecular mechanisms of the illness, and eventually improve clinical assessments and interventions of SCZ to address clinical translational questions from bench to bedside.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Weili Zhu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Justin Tubbs
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
- Behavioral Health Services, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
25
|
Lee LH, Chen CH, Chang WC, Lee PL, Shyu KK, Chen MH, Hsu JW, Bai YM, Su TP, Tu PC. Evaluating the Performance of Machine Learning Models for Automatic Diagnosis of Patients with Schizophrenia Based on a Single Site Dataset of 440 Participants. Eur Psychiatry 2021; 65:e1. [PMID: 34937587 PMCID: PMC8792868 DOI: 10.1192/j.eurpsy.2021.2248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Lung-Hao Lee
- Department of Electrical Engineering, National Central University, Taiwan.,Department of Medical Humanities and Education, College of Medicine, Kaohsiung Medical University, Taiwan.,Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan
| | - Chang-Hao Chen
- Department of Electrical Engineering, National Central University, Taiwan.,Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan
| | - Wan-Chen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Po-Lei Lee
- Department of Electrical Engineering, National Central University, Taiwan.,Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan
| | - Kuo-Kai Shyu
- Department of Electrical Engineering, National Central University, Taiwan.,Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Institute of Philosophy of Mind and Cognition, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
26
|
Li P, Zhao SW, Wu XS, Zhang YJ, Song L, Wu L, Liu XF, Fu YF, Wu D, Wu WJ, Zhang YH, Yin H, Cui LB, Guo F. The Association Between Lentiform Nucleus Function and Cognitive Impairments in Schizophrenia. Front Hum Neurosci 2021; 15:777043. [PMID: 34744673 PMCID: PMC8566813 DOI: 10.3389/fnhum.2021.777043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction: Cognitive decline is the core schizophrenia symptom, which is now well accepted. Holding a role in various aspects of cognition, lentiform nucleus (putamen and globus pallidus) dysfunction contributes to the psychopathology of this disease. However, the effects of lentiform nucleus function on cognitive impairments in schizophrenia are yet to be investigated. Objectives: We aim to detect the fractional amplitude of low-frequency fluctuation (fALFF) alterations in patients with schizophrenia, and examine how their behavior correlates in relation to the cognitive impairments of the patients. Methods: All participants underwent magnetic resonance imaging (MRI) and cognitive assessment (digit span and digit symbol coding tests). Screening of brain regions with significant changes in fALFF values was based on analysis of the whole brain. The data were analyzed between Jun 2020 and Mar 2021. There were no interventions beyond the routine therapy determined by their clinicians on the basis of standard clinical practice. Results: There were 136 patients (75 men and 61 women, 24.1 ± 7.4 years old) and 146 healthy controls (82 men and 64 women, 24.2 ± 5.2 years old) involved in the experiments seriatim. Patients with schizophrenia exhibited decreased raw scores in cognitive tests (p < 0.001) and increased fALFF in the bilateral lentiform nuclei (left: 67 voxels; x = −24, y = −6, z = 3; peak t-value = 6.90; right: 16 voxels; x = 18, y = 0, z = 3; peak t-value = 6.36). The fALFF values in the bilateral lentiform nuclei were positively correlated with digit span-backward test scores (left: r = 0.193, p = 0.027; right: r = 0.190, p = 0.030), and the right lentiform nucleus was positively correlated with digit symbol coding scores (r = 0.209, p = 0.016). Conclusion: This study demonstrates that cognitive impairments in schizophrenia are associated with lentiform nucleus function as revealed by MRI, involving working memory and processing speed.
Collapse
Affiliation(s)
- Ping Li
- Medical Imaging Department 1, Xi'an Mental Health Center, Xi'an, China
| | - Shu-Wan Zhao
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Lei Song
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Lin Wu
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Fan Liu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Wu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Wu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, The Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Zhao SW, Xu X, Wang XY, Yan TC, Cao Y, Yan QH, Chen K, Jin YC, Zhang YH, Yin H, Cui LB. Shaping the Trans-Scale Properties of Schizophrenia via Cerebral Alterations on Magnetic Resonance Imaging and Single-Nucleotide Polymorphisms of Coding and Non-Coding Regions. Front Hum Neurosci 2021; 15:720239. [PMID: 34566604 PMCID: PMC8458928 DOI: 10.3389/fnhum.2021.720239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex mental illness with genetic heterogeneity, which is often accompanied by alterations in brain structure and function. The neurobiological mechanism of schizophrenia associated with heredity remains unknown. Recently, the development of trans-scale and multi-omics methods that integrate gene and imaging information sheds new light on the nature of schizophrenia. In this article, we summarized the results of brain structural and functional changes related to the specific single-nucleotide polymorphisms (SNPs) in the past decade, and the SNPs were divided into non-coding regions and coding regions, respectively. It is hoped that the relationship between SNPs and cerebral alterations can be displayed more clearly and intuitively, so as to provide fresh approaches for the discovery of potential biomarkers and the development of clinical accurate individualized treatment decision-making.
Collapse
Affiliation(s)
- Shu-Wan Zhao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xian Xu
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xian-Yang Wang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Tian-Cai Yan
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Cao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Qing-Hong Yan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Yin-Chuan Jin
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Hong Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Xiao Y, Liao W, Long Z, Tao B, Zhao Q, Luo C, Tamminga CA, Keshavan MS, Pearlson GD, Clementz BA, Gershon ES, Ivleva EI, Keedy SK, Biswal BB, Mechelli A, Lencer R, Sweeney JA, Lui S, Gong Q. Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations. Schizophr Bull 2021; 48:241-250. [PMID: 34508358 PMCID: PMC8781382 DOI: 10.1093/schbul/sbab110] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a complex and heterogeneous syndrome. Whether quantitative imaging biomarkers can identify discrete subgroups of patients as might be used to foster personalized medicine approaches for patient care remains unclear. Cross-sectional structural MR images of 163 never-treated first-episode schizophrenia patients (FES) and 133 chronically ill patients with midcourse schizophrenia from the Bipolar and Schizophrenia Network for Intermediate Phenotypes (B-SNIP) consortium and a total of 403 healthy controls were recruited. Morphometric measures (cortical thickness, surface area, and subcortical structures) were extracted for each subject and then the optimized subtyping results were obtained with nonsupervised cluster analysis. Three subgroups of patients defined by distinct patterns of regional cortical and subcortical morphometric features were identified in FES. A similar three subgroup pattern was identified in the independent dataset of patients from the multi-site B-SNIP consortium. Similarities of classification patterns across these two patient cohorts suggest that the 3-group typology is relatively stable over the course of illness. Cognitive functions were worse in subgroup 1 with midcourse schizophrenia than those in subgroup 3. These findings provide novel insight into distinct subgroups of patients with schizophrenia based on structural brain features. Findings of different cognitive functions among the subgroups support clinical differences in the MRI-defined illness subtypes. Regardless of clinical presentation and stage of illness, anatomic MR subgrouping biomarkers can separate neurobiologically distinct subgroups of schizophrenia patients, which represent an important and meaningful step forward in differentiating subtypes of patients for studies of illness neurobiology and potentially for clinical trials.
Collapse
Affiliation(s)
- Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Department of Psychiatry, University of Münster, Münster, Germany
| | - Wei Liao
- Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Zhiliang Long
- Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiannan Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University and Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Brett A Clementz
- Department of Psychology, University of Georgia, Athens, GA, USA
| | - Elliot S Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Elena I Ivleva
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah K Keedy
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Rebekka Lencer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China,To whom correspondence should be addressed; #37 GuoXue Xiang, Chengdu 610041, China; Tel: 86-28-85423960, Fax: 86-28-85423503; e-mail:
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Bang M, Eom J, An C, Kim S, Park YW, Ahn SS, Kim J, Lee SK, Lee SH. An interpretable multiparametric radiomics model for the diagnosis of schizophrenia using magnetic resonance imaging of the corpus callosum. Transl Psychiatry 2021; 11:462. [PMID: 34489405 PMCID: PMC8421339 DOI: 10.1038/s41398-021-01586-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023] Open
Abstract
There is a growing need to develop novel strategies for the diagnosis of schizophrenia using neuroimaging biomarkers. We investigated the robustness of the diagnostic model for schizophrenia using radiomic features from T1-weighted and diffusion tensor images of the corpus callosum (CC). A total of 165 participants [86 schizophrenia and 79 healthy controls (HCs)] were allocated to training (N = 115) and test (N = 50) sets. Radiomic features of the CC subregions were extracted from T1-weighted, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) images (N = 1605). Following feature selection, various combinations of classifiers were trained, and Bayesian optimization was adopted in the best performing classifier. Discrimination, calibration, and clinical utility of the model were assessed. An online calculator was constructed to offer the probability of having schizophrenia. SHapley Additive exPlanations (SHAP) was applied to explore the interpretability of the model. We identified 30 radiomic features to differentiate participants with schizophrenia from HCs. The Bayesian optimized model achieved the highest performance, with an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.81-0.98), 80.0, 83.3, and 76.9%, respectively, in the test set. The final model offers clinical probability in an online calculator. The model explanation by SHAP suggested that second-order features from the posterior CC were highly associated with the risk of schizophrenia. The multiparametric radiomics model focusing on the CC shows its robustness for the diagnosis of schizophrenia. Radiomic features could be a potential source of biomarkers that support the biomarker-based diagnosis of schizophrenia and improve the understanding of its neurobiology.
Collapse
Affiliation(s)
- Minji Bang
- grid.410886.30000 0004 0647 3511Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jihwan Eom
- grid.15444.300000 0004 0470 5454Department of Computer Science, Yonsei University, Seoul, Republic of Korea
| | - Chansik An
- grid.416665.60000 0004 0647 2391Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Sooyon Kim
- grid.15444.300000 0004 0470 5454Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- grid.15444.300000 0004 0470 5454Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinna Kim
- grid.15444.300000 0004 0470 5454Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- grid.15444.300000 0004 0470 5454Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
30
|
Zhou Z, Wang K, Tang J, Wei D, Song L, Peng Y, Fu Y, Qiu J. Cortical thickness distinguishes between major depression and schizophrenia in adolescents. BMC Psychiatry 2021; 21:361. [PMID: 34284747 PMCID: PMC8293570 DOI: 10.1186/s12888-021-03373-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early diagnosis of adolescent psychiatric disorder is crucial for early intervention. However, there is extensive comorbidity between affective and psychotic disorders, which increases the difficulty of precise diagnoses among adolescents. METHODS We obtained structural magnetic resonance imaging scans from 150 adolescents, including 67 and 47 patients with major depressive disorder (MDD) and schizophrenia (SCZ), as well as 34 healthy controls (HC) to explore whether psychiatric disorders could be identified using a machine learning technique. Specifically, we used the support vector machine and the leave-one-out cross-validation method to distinguish among adolescents with MDD and SCZ and healthy controls. RESULTS We found that cortical thickness was a classification feature of a) MDD and HC with 79.21% accuracy where the temporal pole had the highest weight; b) SCZ and HC with 69.88% accuracy where the left superior temporal sulcus had the highest weight. Notably, adolescents with MDD and SCZ could be classified with 62.93% accuracy where the right pars triangularis had the highest weight. CONCLUSIONS Our findings suggest that cortical thickness may be a critical biological feature in the diagnosis of adolescent psychiatric disorders. These findings might be helpful to establish an early prediction model for adolescents to better diagnose psychiatric disorders.
Collapse
Affiliation(s)
- Zheyi Zhou
- grid.419897.a0000 0004 0369 313XKey Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715 China ,grid.263906.8Faculty of Psychology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Kangcheng Wang
- grid.410585.d0000 0001 0495 1805Faculty of Psychology, Shandong Normal University, Jinan, 250014 Shandong China
| | - Jinxiang Tang
- grid.452206.7Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 China ,Sleep and Psychology Center, The Bishan Hospital of Chongqing, Chongqing, 402760 China
| | - Dongtao Wei
- grid.419897.a0000 0004 0369 313XKey Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715 China ,grid.263906.8Faculty of Psychology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Li Song
- grid.419897.a0000 0004 0369 313XKey Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715 China ,grid.263906.8Faculty of Psychology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715 China
| | - Yadong Peng
- grid.452206.7Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 China ,Department of Psychology, Chongqing Health Center for Women and Children, Chongqing, 401147 China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China. .,Faculty of Psychology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China. .,Collaborative Innovation Center of Assessment Toward Basic Education Quality, Southwest University Branch, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
31
|
Cui LB, Zhang YJ, Lu HL, Liu L, Zhang HJ, Fu YF, Wu XS, Xu YQ, Li XS, Qiao YT, Qin W, Yin H, Cao F. Thalamus Radiomics-Based Disease Identification and Prediction of Early Treatment Response for Schizophrenia. Front Neurosci 2021; 15:682777. [PMID: 34290581 PMCID: PMC8289251 DOI: 10.3389/fnins.2021.682777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests structural and functional disruptions of the thalamus in schizophrenia, but whether thalamus abnormalities are able to be used for disease identification and prediction of early treatment response in schizophrenia remains to be determined. This study aims at developing and validating a method of disease identification and prediction of treatment response by multi-dimensional thalamic features derived from magnetic resonance imaging in schizophrenia patients using radiomics approaches. Methods A total of 390 subjects, including patients with schizophrenia and healthy controls, participated in this study, among which 109 out of 191 patients had clinical characteristics of early outcome (61 responders and 48 non-responders). Thalamus-based radiomics features were extracted and selected. The diagnostic and predictive capacity of multi-dimensional thalamic features was evaluated using radiomics approach. Results Using radiomics features, the classifier accurately discriminated patients from healthy controls, with an accuracy of 68%. The features were further confirmed in prediction and random forest of treatment response, with an accuracy of 75%. Conclusion Our study demonstrates a radiomics approach by multiple thalamic features to identify schizophrenia and predict early treatment response. Thalamus-based classification could be promising to apply in schizophrenia definition and treatment selection.
Collapse
Affiliation(s)
- Long-Biao Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Lu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Hai-Jun Zhang
- Department of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Sa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Xi YB, Guo F, Liu WM, Fu YF, Li JM, Wang HN, Chen FL, Cui LB, Zhu YQ, Li C, Kang XW, Li BJ, Yin H. Triple network hypothesis-related disrupted connections in schizophrenia: A spectral dynamic causal modeling analysis with functional magnetic resonance imaging. Schizophr Res 2021; 233:89-96. [PMID: 34246865 DOI: 10.1016/j.schres.2021.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The symptom-related neurobiology characteristic of schizophrenia in the brain from a network perspective is still poorly understood, leading to a lack of potential biologically-based markers and difficulty identifying therapeutic targets. We aim to test the dysregulated cross-network interactions among the Salience Network (SN), Central Executive Network (CEN) and Default Mode Network (DMN) and how they contributed to different symptoms in schizophrenia patients. METHODS We examined network interactions among the SN, CEN and DMN in 76 patients with schizophrenia vs. 80 well-matched controls using dynamic causal modeling (DCM). We further analyzed the relation between network dynamics and Positive and Negative Syndrome Scale (PANSS). RESULTS We observed that the DMN, CEN and SN across healthy controls and schizophrenia patients showed several similarities within or between-network pattern in the resting state. Comparing schizophrenia to controls, SN-centered cross-network interactions were most significantly reduced. Crucially, the strength of connections from CEN subnetwork 1 to DMN subnetwork 1 was positively correlated with the Positive Score of PANSS. The connection from the DMN subnetwork 2 to CEN subnetwork 2 was negatively correlated with the Negative Score of PANSS. CONCLUSIONS Our study provides strong evidence for the dysregulation among SN, CEN and DMN in a triple-network perspective in schizophrenia. The connection between DMN and CEN could be clinically-relevant neurobiological signature of schizophrenia symptoms. Our study indicated that the description of brain triple network hypothesis could be a novel and possible bio-marker for schizophrenia.
Collapse
Affiliation(s)
- Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen-Ming Liu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jia-Ming Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fu-Lin Chen
- College of Life Sciences, Northwest University, Taibai North Rd 229, Xi'an, Shaanxi, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, Shaanxi, China; The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan-Qiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao-Wei Kang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bao-Juan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
33
|
Cui LB, Xu X, Cao F. Building the Precision Medicine for Mental Disorders via Radiomics/Machine Learning and Neuroimaging. Front Neurosci 2021; 15:685005. [PMID: 34220441 PMCID: PMC8250851 DOI: 10.3389/fnins.2021.685005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Xian Xu
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- The Second Medical Center, National Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Wang Y, Sun K, Liu Z, Chen G, Jia Y, Zhong S, Pan J, Huang L, Tian J. Classification of Unmedicated Bipolar Disorder Using Whole-Brain Functional Activity and Connectivity: A Radiomics Analysis. Cereb Cortex 2021; 30:1117-1128. [PMID: 31408101 DOI: 10.1093/cercor/bhz152] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to develop and validate a method of disease classification for bipolar disorder (BD) by functional activity and connectivity using radiomics analysis. Ninety patients with unmedicated BD II as well as 117 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). A total of 4 types of 7018 features were extracted after preprocessing, including mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), resting-state functional connectivity (RSFC), and voxel-mirrored homotopic connectivity (VMHC). Then, predictive features were selected by Mann-Whitney U test and removing variables with a high correlation. Least absolute shrinkage and selection operator (LASSO) method was further used to select features. At last, support vector machine (SVM) model was used to estimate the state of each subject based on the selected features after LASSO. Sixty-five features including 54 RSFCs, 7 mALFFs, 1 mReHo, and 3 VMHCs were selected. The accuracy and area under curve (AUC) of the SVM model built based on the 65 features is 87.3% and 0.919 in the training dataset, respectively, and the accuracy and AUC of this model validated in the validation dataset is 80.5% and 0.838, respectively. These findings demonstrate a valid radiomics approach by rs-fMRI can identify BD individuals from healthy controls with a high classification accuracy, providing the potential adjunctive approach to clinical diagnostic systems.
Collapse
Affiliation(s)
- Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- University of Chinese Academy of Science, Beijing, 100190, China
| | - Jiyang Pan
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.,Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Science, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
35
|
Cui LB, Fu YF, Liu L, Wu XS, Xi YB, Wang HN, Qin W, Yin H. Baseline structural and functional magnetic resonance imaging predicts early treatment response in schizophrenia with radiomics strategy. Eur J Neurosci 2020; 53:1961-1975. [PMID: 33206423 DOI: 10.1111/ejn.15046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Multimodal neuroimaging features provide opportunities for accurate classification and personalized treatment options in the psychiatric domain. This study aimed to investigate whether brain features predict responses to the overall treatment of schizophrenia at the end of the first or a single hospitalization. Structural and functional magnetic resonance imaging (MRI) data from two independent samples (N = 85 and 63, separately) of schizophrenia patients at baseline were included. After treatment, patients were classified as responders and non-responders. Radiomics features of gray matter morphology and functional connectivity were extracted using Least Absolute Shrinkage and Selection Operator. Support vector machine was used to explore the predictive performance. Prediction models were based on structural features (cortical thickness, surface area, gray matter regional volume, mean curvature, metric distortion, and sulcal depth), functional features (functional connectivity), and combined features. There were 12 features after dimensionality reduction. The structural features involved the right precuneus, cuneus, and inferior parietal lobule. The functional features predominately included inter-hemispheric connectivity. We observed a prediction accuracy of 80.38% (sensitivity: 87.28%; specificity 82.47%) for the model using functional features, and 69.68% (sensitivity: 83.96%; specificity: 72.41%) for the one using structural features. Our model combining both structural and functional features achieved a higher accuracy of 85.03%, with 92.04% responder and 80.23% non-responders to the overall treatment to be correctly predicted. These results highlight the power of structural and functional MRI-derived radiomics features to predict early response to treatment in schizophrenia. Prediction models of the very early treatment response in schizophrenia could augment effective therapeutic strategies.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
36
|
Cortical abnormalities and identification for first-episode schizophrenia via high-resolution magnetic resonance imaging. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Differentiating patients with schizophrenia from healthy controls by hippocampal subfields using radiomics. Schizophr Res 2020; 223:337-344. [PMID: 32988740 DOI: 10.1016/j.schres.2020.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Accurately diagnosing schizophrenia is still challenging due to the lack of validated biomarkers. Here, we aimed to investigate whether radiomic features in bilateral hippocampal subfields from magnetic resonance images (MRIs) can differentiate patients with schizophrenia from healthy controls (HCs). METHODS A total of 152 participants with MRI (86 schizophrenia and 66 HCs) were allocated to training (n = 106) and test (n = 46) sets. Radiomic features (n = 642) from the bilateral hippocampal subfields processed with automatic segmentation techniques were extracted from T1-weighted MRIs. After feature selection, various combinations of classifiers (logistic regression, extra-trees, AdaBoost, XGBoost, or support vector machine) and subsampling were trained. The performance of the classifier was validated in the test set by determining the area under the curve (AUC). Furthermore, the association between selected radiomic features and clinical symptoms in schizophrenia was assessed. RESULTS Thirty radiomic features were identified to differentiate participants with schizophrenia from HCs. In the training set, the AUC exhibited poor to good performance (range: 0.683-0.861). The best performing radiomics model in the test set was achieved by the mutual information feature selection and logistic regression with an AUC, accuracy, sensitivity, and specificity of 0.821 (95% confidence interval 0.681-0.961), 82.1%, 76.9%, and 70%, respectively. Greater maximum values in the left cornu ammonis 1-3 subfield were associated with a higher severity of positive symptoms and general psychopathology in participants with schizophrenia. CONCLUSION Radiomic features from hippocampal subfields may be useful biomarkers for identifying schizophrenia.
Collapse
|
38
|
Sun K, Liu Z, Li Y, Wang L, Tang Z, Wang S, Zhou X, Shao L, Sun C, Liu X, Jiang T, Wang Y, Tian J. Radiomics Analysis of Postoperative Epilepsy Seizures in Low-Grade Gliomas Using Preoperative MR Images. Front Oncol 2020; 10:1096. [PMID: 32733804 PMCID: PMC7360821 DOI: 10.3389/fonc.2020.01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: The present study aimed to evaluate the performance of radiomics features in the preoperative prediction of epileptic seizure following surgery in patients with LGG. Methods: This retrospective study collected 130 patients with LGG. Radiomics features were extracted from the T2-weighted MR images obtained before surgery. Multivariable Cox-regression with two nested leave-one-out cross validation (LOOCV) loops was applied to predict the prognosis, and elastic net was used in each LOOCV loop to select the predictive features. Logistic models were then built with the selected features to predict epileptic seizures at two time points. Student's t-tests were then used to compare the logistic model predicted probabilities of developing epilepsy in the epilepsy and non-epilepsy groups. The t-test was used to identify features that differentiated patients with early-onset epilepsy from their late-onset counterparts. Results: Seventeen features were selected with the two nested LOOCV loops. The index of concordance (C-index) of the Cox model was 0.683, and the logistic model predicted probabilities of seizure were significantly different between the epilepsy and non-epilepsy groups at each time point. Moreover, one feature was found to be significantly different between the patients with early- or late-onset epilepsy. Conclusion: A total of 17 radiomics features were correlated with postoperative epileptic seizures in patients with LGG and one feature was a significant predictor of the time of epilepsy onset.
Collapse
Affiliation(s)
- Kai Sun
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Yiming Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenchao Tang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
| | - Xuezhi Zhou
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.,School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Caixia Sun
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.,Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, School of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Xing Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
39
|
Hu W, Wu X, Dong D, Cui LB, Jiang M, Zhang J, Wang Y, Wang X, Gao L, Tian J, Cao F. Novel radiomics features from CCTA images for the functional evaluation of significant ischaemic lesions based on the coronary fractional flow reserve score. Int J Cardiovasc Imaging 2020; 36:2039-2050. [DOI: 10.1007/s10554-020-01896-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/21/2020] [Indexed: 04/12/2023]
|
40
|
Predicting response to electroconvulsive therapy combined with antipsychotics in schizophrenia using multi-parametric magnetic resonance imaging. Schizophr Res 2020; 216:262-271. [PMID: 31826827 DOI: 10.1016/j.schres.2019.11.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
Electroconvulsive therapy (ECT) has been shown to be effective in schizophrenia, particularly when rapid symptom reduction is needed or in cases of resistance to drug treatment. However, there are no markers available to predict response to ECT. Here, we examine whether multi-parametric magnetic resonance imaging (MRI)-based radiomic features can predict response to ECT for individual patients. A total of 57 treatment-resistant schizophrenia patients, or schizophrenia patients with an acute episode or suicide attempts were randomly divided into primary (42 patients) and test (15 patients) cohorts. We collected T1-weighted structural MRI and diffusion MRI for 57 patients before receiving ECT and extracted 600 radiomic features for feature selection and prediction. To predict a continuous improvement in symptoms (ΔPANSS), the prediction process was performed with a support vector regression model based on a leave-one-out cross-validation framework in primary cohort and was tested in test cohort. The multi-parametric MRI-based radiomic model, including four structural MRI feature from left inferior frontal gyrus, right insula, left middle temporal gyrus and right superior temporal gyrus respectively and six diffusion MRI features from tracts connecting frontal or temporal gyrus possessed a low root mean square error of 15.183 in primary cohort and 14.980 in test cohort. The Pearson's correlation coefficients between predicted and actual values were 0.671 and 0.777 respectively. These results demonstrate that multi-parametric MRI-based radiomic features may predict response to ECT for individual patients. Such features could serve as prognostic neuroimaging biomarkers that provide a critical step toward individualized treatment response prediction in schizophrenia.
Collapse
|
41
|
Li M, Li X, Guo Y, Miao Z, Liu X, Guo S, Zhang H. Development and assessment of an individualized nomogram to predict colorectal cancer liver metastases. Quant Imaging Med Surg 2020; 10:397-414. [PMID: 32190566 DOI: 10.21037/qims.2019.12.16] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background This article aims to develop and assess the radiomics paradigm for predicting colorectal cancer liver metastasis (CRLM) from the primary tumor. Methods This retrospective study included 100 patients from the First Hospital of Jilin University from June 2017 to December 2017. The 100 patients comprised 50 patients with and 50 without CRLM. The maximum-level enhanced computed tomography (CT) image of primary cancer in the portal venous phase of each patient was selected as the original image data. To automatically implement radiomics-related paradigms, we developed a toolkit called Radiomics Intelligent Analysis Toolkit (RIAT). Results With RIAT, the model based on logistic regression (LR) using both the radiomics and clinical information signatures showed the maximum net benefit. The area under the curve (AUC) value was 0.90±0.02 (sensitivity =0.85±0.02, specificity =0.79±0.04) for the training set, 0.86±0.11 (sensitivity =0.85±0.09, specificity =0.75±0.19) for the verification set, 0.906 (95% CI, 0.840-0.971; sensitivity =0.81, specificity =0.84) for the cross-validation set, and 0.899 (95% CI, 0.761-1.000; sensitivity =0.78, specificity =0.91) for the test set. Conclusions The radiomics nomogram-based LR with clinical risk and radiomics features allows for a more accurate classification of CRLM using CT images with RIAT.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xueyan Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Guo
- Department of Radiology, the First Hospital of Jilin University, Changchun 130021, China
| | - Zheng Miao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaoming Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Shuxu Guo
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Huimao Zhang
- Department of Radiology, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
42
|
Tang X, Xu X, Han Z, Bai G, Wang H, Liu Y, Du P, Liang Z, Zhang J, Lu H, Yin H. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer. Biomed Eng Online 2020; 19:5. [PMID: 31964407 PMCID: PMC6975040 DOI: 10.1186/s12938-019-0744-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-invasive discrimination between lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes of non-small-cell lung cancer (NSCLC) could be very beneficial to the patients unfit for the invasive diagnostic procedures. The aim of this study was to investigate the feasibility of utilizing the multimodal magnetic resonance imaging (MRI) radiomics and clinical features in classifying NSCLC. This retrospective study involved 148 eligible patients with postoperative pathologically confirmed NSCLC. The study was conducted in three steps: (1) feature extraction was performed using the online freely available package with the multimodal MRI data; (2) feature selection was performed using the Student's t test and support vector machine (SVM)-based recursive feature elimination method with the training cohort (n = 100), and the performance of these selected features was evaluated using both the training and the validation cohorts (n = 48) with a non-linear SVM classifier; (3) a Radscore model was then generated using logistic regression algorithm; (4) Integrating the Radscore with the semantic clinical features, a radiomics-clinical nomogram was developed, and its overall performance was evaluated with both cohorts. RESULTS Thirteen optimal features achieved favorable discrimination performance with both cohorts, with area under the curve (AUC) of 0.819 and 0.824, respectively. The radiomics-clinical nomogram integrating the Radscore with the independent clinical predictors exhibited more favorable discriminative power, with AUC improved to 0.901 and 0.872 in both cohorts, respectively. The Hosmer-Lemeshow test and decision curve analysis results furtherly showed good predictive precision and clinical usefulness of the nomogram. CONCLUSION Non-invasive histological subtype stratification of NSCLC can be done favorably using multimodal MRI radiomics features. Integrating the radiomics features with the clinical features could further improve the performance of the histological subtype stratification in patients with NSCLC.
Collapse
Affiliation(s)
- Xing Tang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiaopan Xu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhiping Han
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Guoyan Bai
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yang Liu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Peng Du
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zhengrong Liang
- Departments of Radiology, School of Computer Science and Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Hongbing Lu
- School of Biomedical Engineering, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
43
|
Cai X, Xie D, Madsen KH, Wang Y, Bögemann SA, Cheung EFC, Møller A, Chan RCK. Generalizability of machine learning for classification of schizophrenia based on resting-state functional MRI data. Hum Brain Mapp 2020; 41:172-184. [PMID: 31571320 PMCID: PMC7268030 DOI: 10.1002/hbm.24797] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Machine learning has increasingly been applied to classification of schizophrenia in neuroimaging research. However, direct replication studies and studies seeking to investigate generalizability are scarce. To address these issues, we assessed within-site and between-site generalizability of a machine learning classification framework which achieved excellent performance in a previous study using two independent resting-state functional magnetic resonance imaging data sets collected from different sites and scanners. We established within-site generalizability of the classification framework in the main data set using cross-validation. Then, we trained a model in the main data set and investigated between-site generalization in the validated data set using external validation. Finally, recognizing the poor between-site generalization performance, we updated the unsupervised algorithm to investigate if transfer learning using additional unlabeled data were able to improve between-site classification performance. Cross-validation showed that the published classification procedure achieved an accuracy of 0.73 using majority voting across all selected components. External validation found a classification accuracy of 0.55 (not significant) and 0.70 (significant) using the direct and transfer learning procedures, respectively. The failure of direct generalization from one site to another demonstrates the limitation of within-site cross-validation and points toward the need to incorporate efforts to facilitate application of machine learning across multiple data sets. The improvement in performance with transfer learning highlights the importance of taking into account the properties of data when constructing predictive models across samples and sites. Our findings suggest that machine learning classification result based on a single study should be interpreted cautiously.
Collapse
Affiliation(s)
- Xin‐Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Sino‐Danish College, University of Chinese Academy of SciencesBeijingChina
- Sino‐Danish Center for Education and ResearchBeijingChina
| | - Dong‐Jie Xie
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Hangzhou College of Preschool Teacher EducationZhejiang Normal UniversityHangzhouChina
| | - Kristoffer H. Madsen
- Sino‐Danish Center for Education and ResearchBeijingChina
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreCopenhagenDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - Yong‐Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Sino‐Danish College, University of Chinese Academy of SciencesBeijingChina
- Sino‐Danish Center for Education and ResearchBeijingChina
| | - Sophie Alida Bögemann
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Sino‐Danish College, University of Chinese Academy of SciencesBeijingChina
- Sino‐Danish Center for Education and ResearchBeijingChina
| | | | - Arne Møller
- Sino‐Danish Center for Education and ResearchBeijingChina
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Raymond C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Sino‐Danish College, University of Chinese Academy of SciencesBeijingChina
- Sino‐Danish Center for Education and ResearchBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
44
|
Xi YB, Cui LB, Gong J, Fu YF, Wu XS, Guo F, Yang X, Li C, Wang XR, Li P, Qin W, Yin H. Neuroanatomical Features That Predict Response to Electroconvulsive Therapy Combined With Antipsychotics in Schizophrenia: A Magnetic Resonance Imaging Study Using Radiomics Strategy. Front Psychiatry 2020; 11:456. [PMID: 32528327 PMCID: PMC7253706 DOI: 10.3389/fpsyt.2020.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Neuroimaging-based brain signatures may be informative in identifying patients with psychosis who will respond to antipsychotics. However, signatures that inform the electroconvulsive therapy (ECT) health care professional about the response likelihood remain unclear in psychosis with radiomics strategy. This study investigated whether brain structure-based signature in the prediction of ECT response in a sample of schizophrenia patients using radiomics approach. METHODS This high-resolution structural magnetic resonance imaging study included 57 patients at baseline. After ECT combined with antipsychotics, 28 and 29 patients were classified as responders and non-responders. Features of gray matter were extracted and compared. The logistic regression model/support vector machine (LRM/SVM) analysis was used to explore the predictive performance. RESULTS The regularized multivariate LRM accurately discriminated responders from non-responders, with an accuracy of 90.91%. The structural features were further confirmed in the validating data set, resulting in an accuracy of 87.59%. The accuracy of the SVM in the training set was 90.91%, and the accuracy in the validation set was 91.78%. CONCLUSION Our results support the possible use of structural brain feature-based radiomics as a potential tool for predicting ECT response in patients with schizophrenia undergoing antipsychotics, paving the way for utilization of markers in psychosis.
Collapse
Affiliation(s)
- Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Jie Gong
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuejuan Yang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Chen Li
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing-Rui Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Li
- Department of Radiology, Xi'an Mental Health Center, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Jiang JB, Cao Y, An NY, Yang Q, Cui LB. Magnetic Resonance Imaging-Based Connectomics in First-Episode Schizophrenia: From Preclinical Study to Clinical Translation. Front Psychiatry 2020; 11:565056. [PMID: 33061921 PMCID: PMC7518111 DOI: 10.3389/fpsyt.2020.565056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jin-Bo Jiang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Cao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ning-Yu An
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qun Yang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Fan Y, Feng M, Wang R. Application of Radiomics in Central Nervous System Diseases: a Systematic literature review. Clin Neurol Neurosurg 2019; 187:105565. [DOI: 10.1016/j.clineuro.2019.105565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023]
|
47
|
Cui LB, Wei Y, Xi YB, Griffa A, De Lange SC, Kahn RS, Yin H, Van den Heuvel MP. Connectome-Based Patterns of First-Episode Medication-Naïve Patients With Schizophrenia. Schizophr Bull 2019; 45:1291-1299. [PMID: 30926985 PMCID: PMC6811827 DOI: 10.1093/schbul/sbz014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emerging evidence indicates that a disruption in brain network organization may play an important role in the pathophysiology of schizophrenia. The neuroimaging fingerprint reflecting the pathophysiology of first-episode schizophrenia remains to be identified. Here, we aimed at characterizing the connectome organization of first-episode medication-naïve patients with schizophrenia. A cross-sectional structural and functional neuroimaging study using two independent samples (principal dataset including 42 medication-naïve, previously untreated patients and 48 healthy controls; replication dataset including 39 first-episode patients [10 untreated patients] and 66 healthy controls) was performed. Brain network architecture was assessed by means of white matter fiber integrity measures derived from diffusion-weighted imaging (DWI) and by means of structural-functional (SC-FC) coupling measured by combining DWI and resting-state functional magnetic resonance imaging. Connectome rich club organization was found to be significantly disrupted in medication-naïve patients as compared with healthy controls (P = .012, uncorrected), with rich club connection strength (P = .032, uncorrected) and SC-FC coupling (P < .001, corrected for false discovery rate) decreased in patients. Similar results were found in the replication dataset. Our findings suggest that a disruption of rich club organization and functional dynamics may reflect an early feature of schizophrenia pathophysiology. These findings add to our understanding of the neuropathological mechanisms of schizophrenia and provide new insights into the early stages of the disorder.
Collapse
Affiliation(s)
- Long-Biao Cui
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- School of Medical Psychology, Fourth Military Medical University, Xi’an, China
| | - Yongbin Wei
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Alessandra Griffa
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Siemon C De Lange
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Martijn P Van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Wang XH, Yu A, Zhu X, Yin H, Cui LB. Cardiopulmonary Comorbidity, Radiomics and Machine Learning, and Therapeutic Regimens for a Cerebral fMRI Predictor Study in Psychotic Disorders. Neurosci Bull 2019; 35:955-957. [PMID: 31292830 DOI: 10.1007/s12264-019-00409-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/16/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
- Xiao-Hui Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Angela Yu
- Department of Medicine, Eastern Health, Box Hill, VIC, 3128, Australia
| | - Xia Zhu
- Department of Military Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
49
|
Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data. Eur J Nucl Med Mol Imaging 2019; 46:2722-2730. [PMID: 31203421 DOI: 10.1007/s00259-019-04382-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Artificial intelligence (AI) is currently regaining enormous interest due to the success of machine learning (ML), and in particular deep learning (DL). Image analysis, and thus radiomics, strongly benefits from this research. However, effectively and efficiently integrating diverse clinical, imaging, and molecular profile data is necessary to understand complex diseases, and to achieve accurate diagnosis in order to provide the best possible treatment. In addition to the need for sufficient computing resources, suitable algorithms, models, and data infrastructure, three important aspects are often neglected: (1) the need for multiple independent, sufficiently large and, above all, high-quality data sets; (2) the need for domain knowledge and ontologies; and (3) the requirement for multiple networks that provide relevant relationships among biological entities. While one will always get results out of high-dimensional data, all three aspects are essential to provide robust training and validation of ML models, to provide explainable hypotheses and results, and to achieve the necessary trust in AI and confidence for clinical applications.
Collapse
|
50
|
Liu L, Cui LB, Xi YB, Wang XR, Liu YC, Xu ZL, Wang HN, Yin H, Qin W. Association Between Connectivity of Hippocampal Sub-Regions and Auditory Verbal Hallucinations in Schizophrenia. Front Neurosci 2019; 13:424. [PMID: 31130837 PMCID: PMC6509236 DOI: 10.3389/fnins.2019.00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/12/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Hippocampal dysconnectivity has been detected in schizophrenia patients with auditory verbal hallucinations (AVHs). Neuroanatomical evidence has indicated distinct sub-regions in the hippocampus, but which sub-regions within the hippocampus may emerge dysfunction in the brain network, and the relationship between connection strength and the severity of this debilitating disorder have yet to be revealed. Masked independent component analysis (mICA), i.e., ICA restricted to a defined region of interest, can provide insight into observing local functional connectivity in a particular brain region. We aim to map out the sub-regions in the hippocampus with dysconnectivity linked to AVHs in schizophrenia. Methods: In this functional magnetic resonance imaging study of schizophrenia patients with (n = 57) and without (n = 83) AVHs, and 71 healthy controls, we first examined hippocampal connectivity using mICA, and then the correlation between connection metric and clinical severity was generated. Results: As compared with patients without AVHs, mICA showed a group of hyper-connections for the left middle part, as well as another group of hypo-connections for the bilateral antero-lateral and right antero-medial parts in patients with AVHs. Connectivity was linked to the clinical symptoms scores in the sample of patients with AVHs. Conclusion: These findings demonstrate that the left middle part is more densely connected, but the bilateral antero-lateral and right antero-medial parts are more sparsely connected in schizophrenia patients with AVHs. The findings in the present study show proof of precious location in the hippocampus mediating the neural mechanism behind AVHs in schizophrenia.
Collapse
Affiliation(s)
- Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yi-Bin Xi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xing-Rui Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Zi-Liang Xu
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|