1
|
Cheng C, Jia M, Peng X, Sun Y, Jiao Y, Zhang M, Song X, Chu Z, Zeng X, Sun JB, Yang XJ, Qin W. Different regulative effects of high- and low-frequency external trigeminal nerve stimulation (eTNS) on sleep activity: Preliminary study. Sleep Med 2025; 125:136-145. [PMID: 39608185 DOI: 10.1016/j.sleep.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
STUDY OBJECTIVE With the growing prominence of peripheral nerve stimulation technology, the clinical applications and potential neurophysiological mechanisms of external trigeminal nerve stimulation (eTNS) have garnered increasing attention. Despite its status as the sole neuromodulation method commonly employed in sleep, no studies have explored the effects of eTNS at varying frequencies on sleep activities. This study aims to investigate the regulatory effects of high-frequency and low-frequency eTNS on sleep activities using polysomnography. METHODS In this within-subjects experiment, 20 participants underwent a night of adaptation sleep, followed by 8-h sessions of sham, 120Hz-, and 2Hz-eTNS interventions in a randomized order in the sleep laboratory, with polysomnographic signals collected throughout. RESULTS The results indicated that 120Hz-eTNS significantly improved sleep efficiency, increased N2 sleep proportion, and reduced sleep latency, without significantly affecting sleep stage transition probabilities, sleep duration, or sleep-specific wave activities. Conversely, while 2Hz-eTNS did not impact sleep efficiency or latency, it increased the proportion of N3 sleep, stabilizes N3 sleep, and enhanced the survival probability of N3 and REM sleep duration. Additionally, it increases the density of slow oscillations (SOs), improved the coupling ratio of SO-spindles, and enhanced coupling timing accuracy. CONCLUSIONS These findings suggest that eTNS during sleep can indeed modulate sleep activities, with different frequencies exerting distinct regulatory effects. This may hold significant value for advancing the clinical application and efficacy of eTNS.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Mengnan Jia
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiangmiao Peng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yuchen Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiaoyu Song
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Zhaoyang Chu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China.
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaan xi, 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Mayeli A, Sanguineti C, Ferrarelli F. Recent Evidence of Non-Rapid Eye Movement Sleep Oscillation Abnormalities in Psychiatric Disorders. Curr Psychiatry Rep 2024:10.1007/s11920-024-01544-x. [PMID: 39400693 DOI: 10.1007/s11920-024-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW We review recent studies published from 2019 to 2024 examining slow waves and sleep spindles abnormalities across neurodevelopmental, mood, trauma-related, and psychotic disorders using polysomnography and Electroencephalogram (EEG). RECENT FINDINGS Individuals with attention-deficit/hyperactivity disorder (ADHD) showed higher slow-spindle activity, while findings on slow-wave activity were mixed. Individuals with autism spectrum disorder (ASD) showed inconsistent results with some evidence of lower spindle chirp and slow-wave amplitude. Individuals with depression displayed lower slow-wave and spindle parameters mostly in medicated patients. Individuals with post-traumatic stress disorder (PTSD) showed higher spindle frequency and activity, which were associated with their clinical symptoms. Psychotic disorders demonstrated the most consistent alterations, with lower spindle density, amplitude, and duration across illness stages that correlated with patients' symptom severity and cognitive deficits, whereas lower slow-wave measures were present in the early phases of the disorders. Sleep spindle and slow-wave abnormalities are present across psychiatric populations, with the most consistent alterations observed in psychotic disorders. Larger studies with standardized methodologies and longitudinal assessments are needed to establish the potential of these oscillations as neurophysiological biomarkers and/or treatment targets.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA
| | - Claudio Sanguineti
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Dias I, Kollarik S, Siegel M, Baumann CR, Moreira CG, Noain D. Novel murine closed-loop auditory stimulation paradigm elicits macrostructural sleep benefits in neurodegeneration. J Sleep Res 2024:e14316. [PMID: 39223830 DOI: 10.1111/jsr.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Boosting slow-wave activity (SWA) by modulating slow waves through closed-loop auditory stimulation (CLAS) might provide a powerful non-pharmacological tool to investigate the link between sleep and neurodegeneration. Here, we established mouse CLAS (mCLAS)-mediated SWA enhancement and explored its effects on sleep deficits in neurodegeneration, by targeting the up-phase of slow waves in mouse models of Alzheimer's disease (AD, Tg2576) and Parkinson's disease (PD, M83). We found that tracking a 2 Hz component of slow waves leads to highest precision of non-rapid eye movement (NREM) sleep detection in mice, and that its combination with a 30° up-phase target produces a significant 15-30% SWA increase from baseline in wild-type (WTAD) and transgenic (TGAD) mice versus a mock stimulation group. Conversely, combining 2 Hz with a 40° phase target yields a significant increase ranging 30-35% in WTPD and TGPD mice. Interestingly, these phase-target-triggered SWA increases are not genotype dependent but strain specific. Sleep alterations that may contribute to disease progression and burden were described in AD and PD lines. Notably, pathological sleep traits were rescued by mCLAS, which elicited a 14% decrease of pathologically heightened NREM sleep fragmentation in TGAD mice, accompanied by a steep decrease in microarousal events during both light and dark periods. Overall, our results indicate that model-tailored phase targeting is key to modulate SWA through mCLAS, prompting the acute alleviation of key neurodegeneration-associated sleep phenotypes and potentiating sleep regulation and consolidation. Further experiments assessing the long-term effect of mCLAS in neurodegeneration may majorly impact the establishment of sleep-based therapies.
Collapse
Affiliation(s)
- Inês Dias
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Michelle Siegel
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Center of Competence Sleep and Health, University of Zurich (UZH), Zurich, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Center of Competence Sleep and Health, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
4
|
Leach S, Krugliakova E, Sousouri G, Snipes S, Skorucak J, Schühle S, Müller M, Ferster ML, Da Poian G, Karlen W, Huber R. Acoustically evoked K-complexes together with sleep spindles boost verbal declarative memory consolidation in healthy adults. Sci Rep 2024; 14:19184. [PMID: 39160150 PMCID: PMC11333484 DOI: 10.1038/s41598-024-67701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Over the past decade, phase-targeted auditory stimulation (PTAS), a neuromodulation approach which presents auditory stimuli locked to the ongoing phase of slow waves during sleep, has shown potential to enhance specific aspects of sleep functions. However, the complexity of PTAS responses complicates the establishment of causality between specific electroencephalographic events and observed benefits. Here, we used down-PTAS during sleep to specifically evoke the early, K-complex (KC)-like response following PTAS without leading to a sustained increase in slow-wave activity throughout the stimulation window. Over the course of two nights, one with down-PTAS, the other without, high-density electroencephalography (hd-EEG) was recorded from 14 young healthy adults. The early response exhibited striking similarities to evoked KCs and was associated with improved verbal memory consolidation via stimulus-evoked spindle events nested into the up-phase of ongoing 1 Hz waves in a central region. These findings suggest that the early, KC-like response is sufficient to boost memory, potentially by orchestrating aspects of the hippocampal-neocortical dialogue.
Collapse
Affiliation(s)
- Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Selina Schühle
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuel Müller
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Krugliakova E, Karpovich A, Stieglitz L, Huwiler S, Lustenberger C, Imbach L, Bujan B, Jedrysiak P, Jacomet M, Baumann CR, Fattinger S. Exploring the local field potential signal from the subthalamic nucleus for phase-targeted auditory stimulation in Parkinson's disease. Brain Stimul 2024; 17:769-779. [PMID: 38906529 DOI: 10.1016/j.brs.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal. OBJECTIVE We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS. METHODS We recruited patients diagnosed with PD and undergoing Percept™ PC neurostimulator (Medtronic) implantation for deep brain stimulation of STN (STN-DBS) in a two-step surgery. Patients underwent three full-night recordings, including one between-surgeries recording and two during rehabilitation, one with DBS+ (on) and one with DBS- (off). Surface EEG and STN-LFP signals from Percept PC were recorded simultaneously, and PTAS was applied during sleep in all three recording sessions. RESULTS Our results show that during NREM sleep, slow waves of the cortex and STN are time-locked. PTAS application resulted in power and coherence changes, which can be detected in STN-LFP. CONCLUSION Our findings suggest the feasibility of implementing PTAS using solely STN-LFP signal for slow wave detection, thus without a need for an external EEG device alongside the implanted neurostimulator. Moreover, we propose options for more efficient STN-LFP signal preprocessing, including different referencing and filtering to enhance the reliability of cortical slow wave detection in STN-LFP recordings.
Collapse
Affiliation(s)
- Elena Krugliakova
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Artyom Karpovich
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Huwiler
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center, Clinic Lengg, Zurich, Switzerland
| | - Bartosz Bujan
- Neurorehabilitation, Clinic Lengg, Zurich, Switzerland
| | | | - Maria Jacomet
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sara Fattinger
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Reicher V, Szalárdy O, Bódizs R, Vojnits B, Magyar TZ, Takács M, Réthelyi JM, Bunford N. NREM Slow-Wave Activity in Adolescents Is Differentially Associated With ADHD Levels and Normalized by Pharmacological Treatment. Int J Neuropsychopharmacol 2024; 27:pyae025. [PMID: 38875132 PMCID: PMC11232459 DOI: 10.1093/ijnp/pyae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/13/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND A compelling hypothesis about attention-deficit/hyperactivity disorder (ADHD) etiopathogenesis is that the ADHD phenotype reflects a delay in cortical maturation. Slow-wave activity (SWA) of non-rapid eye movement (NREM) sleep electroencephalogram (EEG) is an electrophysiological index of sleep intensity reflecting cortical maturation. Available data on ADHD and SWA are conflicting, and developmental differences, or the effect of pharmacological treatment, are relatively unknown. METHODS We examined, in samples (Mage = 16.4, SD = 1.2), of ever-medicated adolescents at risk for ADHD (n = 18; 72% boys), medication-naïve adolescents at risk for ADHD (n = 15, 67% boys), and adolescents not at risk for ADHD (n = 31, 61% boys) matched for chronological age and controlling for non-ADHD pharmacotherapy, whether ADHD pharmacotherapy modulates the association between NREM SWA and ADHD risk in home sleep. RESULTS Findings indicated medication-naïve adolescents at risk for ADHD exhibited greater first sleep cycle and entire night NREM SWA than both ever-medicated adolescents at risk for ADHD and adolescents not at risk for ADHD and no difference between ever-medicated, at-risk adolescents, and not at-risk adolescents. CONCLUSIONS Results support atypical cortical maturation in medication-naïve adolescents at risk for ADHD that appears to be normalized by ADHD pharmacotherapy in ever-medicated adolescents at risk for ADHD. Greater NREM SWA may reflect a compensatory mechanism in middle-later adolescents at risk for ADHD that normalizes an earlier occurring developmental delay.
Collapse
Affiliation(s)
- Vivien Reicher
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Blanka Vojnits
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | | | - Mária Takács
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Nóra Bunford
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Baxter BS, Mylonas D, Kwok KS, Talbot CE, Patel R, Zhu L, Vangel M, Stickgold R, Manoach DS. The effects of closed-loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep 2023; 46:zsad206. [PMID: 37531587 PMCID: PMC11009689 DOI: 10.1093/sleep/zsad206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Indexed: 08/04/2023] Open
Abstract
STUDY OBJECTIVES Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.
Collapse
Affiliation(s)
- Bryan S Baxter
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Dimitrios Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Kristi S Kwok
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine E Talbot
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudra Patel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
8
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
9
|
A failure of sleep-dependent consolidation of visuoperceptual procedural learning in young adults with ADHD. Transl Psychiatry 2022; 12:499. [PMID: 36460644 PMCID: PMC9718731 DOI: 10.1038/s41398-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
ADHD has been associated with cortico-striatal dysfunction that may lead to procedural memory abnormalities. Sleep plays a critical role in consolidating procedural memories, and sleep problems are an integral part of the psychopathology of ADHD. This raises the possibility that altered sleep processes characterizing those with ADHD could contribute to their skill-learning impairments. On this basis, the present study tested the hypothesis that young adults with ADHD have altered sleep-dependent procedural memory consolidation. Participants with ADHD and neurotypicals were trained on a visual discrimination task that has been shown to benefit from sleep. Half of the participants were tested after a 12-h break that included nocturnal sleep (sleep condition), whereas the other half were tested after a 12-h daytime break that did not include sleep (wakefulness condition) to assess the specific contribution of sleep to improvement in task performance. Despite having a similar degree of initial learning, participants with ADHD did not improve in the visual discrimination task following a sleep interval compared to neurotypicals, while they were on par with neurotypicals during the wakefulness condition. These findings represent the first demonstration of a failure in sleep-dependent consolidation of procedural learning in young adults with ADHD. Such a failure is likely to disrupt automatic control routines that are normally provided by the non-declarative memory system, thereby increasing the load on attentional resources of individuals with ADHD.
Collapse
|
10
|
Khodagholy D, Ferrero JJ, Park J, Zhao Z, Gelinas JN. Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends Neurosci 2022; 45:968-983. [PMID: 36404457 PMCID: PMC10437206 DOI: 10.1016/j.tins.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Cognitive functions are increasingly understood to involve coordinated activity patterns between multiple brain regions, and their disruption by neuropsychiatric disorders is similarly complex. Closed-loop neurostimulation can directly modulate neural signals with temporal and spatial precision. How to leverage such an approach to effectively identify and target distributed neural networks implicated in mediating cognition remains unclear. We review current conceptual and technical advances in this area, proposing that devices that enable large-scale acquisition, integrated processing, and multiregion, arbitrary waveform stimulation will be critical for mechanistically driven manipulation of cognitive processes in physiological and pathological brain networks.
Collapse
Affiliation(s)
- Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jaehyo Park
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA; Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, 701 W 168(th) St., New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA..
| |
Collapse
|
11
|
Sleep Fosters Odor Recognition in Children with Attention Deficit Hyperactivity Disorder but Not in Typically Developing Children. Brain Sci 2022; 12:brainsci12091182. [PMID: 36138918 PMCID: PMC9496889 DOI: 10.3390/brainsci12091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Prior experience represents a prerequisite for memory consolidation across various memory systems. In the context of olfaction, sleep was found to enhance the consolidation of odors in adults but not in typically developing children (TDC), likely due to differences in pre-experience. Interestingly, unmedicated children with attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition related to dopamine dysfunction, showed lower perceptive thresholds for odors, potentially allowing for more odor experience compared to TDC. We investigated sleep-associated odor memory consolidation in ADHD. Twenty-eight children with ADHD and thirty age-matched TDC participated in an incidental odor recognition task. For the sleep groups (ADHD: n = 14, TDC: n = 15), the encoding of 10 target odorants took place in the evening, and the retention of odorants was tested with 10 target odorants and 10 distractor odorants the next morning. In the wake groups (ADHD: n = 14, TDC: n = 15), the time schedule was reversed. Odor memory consolidation was superior in the ADHD sleep group compared to the TDC sleep and the ADHD wake groups. Intensity and familiarity ratings during encoding were substantially higher in ADHD compared to TDC. Sleep-associated odor memory consolidation in ADHD is superior to TDC. Abundant pre-experience due to lower perceptive thresholds is suggested as a possible explanation. Olfaction might serve as a biomarker in ADHD.
Collapse
|
12
|
Transient Destabilization of Declarative Memory—Opposing Impact of Physical Exercise or Rest after Encoding in Typically Developing Children and Children with Attention Deficit Hyperactivity Disorder but No Difference after Subsequent Sleep. Brain Sci 2022; 12:brainsci12030322. [PMID: 35326278 PMCID: PMC8946801 DOI: 10.3390/brainsci12030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Children are especially sensitive to a broad range of influences and show a remarkable capacity for learning. One prominent example is declarative memory, which may be influenced by a variety of factors and is impaired in attention deficit hyperactivity disorder (ADHD). Exercise and sleep, or both combined, might foster declarative memory. Methods: Here, 12 typically developing children (TDC) and 12 age-matched children with ADHD participated in an exercise and rest condition before a night in the sleep laboratory. Declarative memory was encoded before exercise or rest and retrieved before and after a night of sleep. Results: Exercise in TDC but rest in ADHD lead to a transient destabilization of declarative memory, while there were no more differences after a night of sleep. Rapid eye movement (REM) sleep latency was prolonged after exercise in both groups. Conclusions: Exercise leads to opposing effects on immediate declarative memory formation. The factors or contexts that promote or hinder declarative memory formation in children ADHD and TDC differ, and further work is needed to determine the recommendations for declarative learning in children with ADHD.
Collapse
|
13
|
Gomez-Merino D, Drogou C, Debellemaniere E, Erblang M, Dorey R, Guillard M, Van Beers P, Thouard M, Masson R, Sauvet F, Leger D, Bougard C, Arnal PJ, Rabat A, Chennaoui M. Strategies to Limit Cognitive Impairments under Sleep Restriction: Relationship to Stress Biomarkers. Brain Sci 2022; 12:brainsci12020229. [PMID: 35203992 PMCID: PMC8869873 DOI: 10.3390/brainsci12020229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Adding relaxation techniques during nap or auditory stimulation of EEG slow oscillation (SO) during nighttime sleep may limit cognitive impairments in sleep-deprived subjects, potentially through alleviating stress-releasing effects. We compared daytime sleepiness, cognitive performances, and salivary stress biomarker responses in 11 volunteers (aged 18–36) who underwent 5 days of sleep restriction (SR, 3 h per night, with 30 min of daily nap) under three successive conditions: control (SR-CT), relaxation techniques added to daily nap (SR-RT), and auditory stimulation of sleep slow oscillations (SO) during nighttime sleep (SR-NS). Test evaluation was performed at baseline (BASE), the fifth day of chronic SR (SR5), and the third and fifth days after sleep recovery (REC3, REC5, respectively). At SR5, less degradation was observed for percentage of commission errors in the executive Go–noGo inhibition task in SR-RT condition compared to SR-CT, and for sleepiness score in SR-NS condition compared both to SR-CT and SR-RT. Beneficial effects of SR-RT and SR-NS were additionally observed on these two parameters and on salivary α-amylase (sAA) at REC3 and REC5. Adding relaxation techniques to naps may help performance in inhibition response, and adding nocturnal auditory stimulation of SO sleep may benefit daytime sleepiness during sleep restriction with persistent effects during recovery. The two strategies activated the autonomic nervous system, as shown by the sAA response.
Collapse
Affiliation(s)
- Danielle Gomez-Merino
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
- Correspondence: (D.G.-M.); (M.C.)
| | - Catherine Drogou
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | - Eden Debellemaniere
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
- Dreem SAS, 75009 Paris, France;
| | - Mégane Erblang
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | - Rodolphe Dorey
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | - Mathias Guillard
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | - Pascal Van Beers
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | | | - Robin Masson
- Ecole du Val de Grace, 75005 Paris, France; (M.T.); (R.M.)
| | - Fabien Sauvet
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | - Damien Leger
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
- Centre du Sommeil et de la Vigilance, APHP, Hôpital Hôtel-Dieu, 75004 Paris, France
| | - Clément Bougard
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | | | - Arnaud Rabat
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
| | - Mounir Chennaoui
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), 91223 Bretigny-sur-Orge, France; (C.D.); (E.D.); (M.E.); (R.D.); (M.G.); (P.V.B.); (F.S.); (C.B.); (A.R.)
- VIgilance FAtigue SOMmeil et Santé Publique, Université de Paris, 75004 Paris, France;
- Correspondence: (D.G.-M.); (M.C.)
| |
Collapse
|
14
|
Krugliakova E, Skorucak J, Sousouri G, Leach S, Snipes S, Ferster ML, Da Poian G, Karlen W, Huber R. Boosting Recovery During Sleep by Means of Auditory Stimulation. Front Neurosci 2022; 16:755958. [PMID: 35185455 PMCID: PMC8847378 DOI: 10.3389/fnins.2022.755958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sufficient recovery during sleep is the basis of physical and psychological well-being. Understanding the physiological mechanisms underlying this restorative function is essential for developing novel approaches to promote recovery during sleep. Phase-targeted auditory stimulation (PTAS) is an increasingly popular technique for boosting the key electrophysiological marker of recovery during sleep, slow-wave activity (SWA, 1-4 Hz EEG power). However, it is unknown whether PTAS induces physiological sleep. In this study, we demonstrate that, when applied during deep sleep, PTAS accelerates SWA decline across the night which is associated with an overnight improvement in attentional performance. Thus, we provide evidence that PTAS enhances physiological sleep and demonstrate under which conditions this occurs most efficiently. These findings will be important for future translation into clinical populations suffering from insufficient recovery during sleep.
Collapse
Affiliation(s)
- Elena Krugliakova
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Sousouri
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Sven Leach
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Giulia Da Poian
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Reto Huber
- Child Development Centre and Children’s Research Centre, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Sousouri G, Krugliakova E, Skorucak J, Leach S, Snipes S, Ferster ML, Da Poian G, Karlen W, Huber R. Neuromodulation by means of phase-locked auditory stimulation affects key marker of excitability and connectivity during sleep. Sleep 2021; 45:6347149. [PMID: 34373925 DOI: 10.1093/sleep/zsab204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
The propagating pattern of sleep slow waves (high-amplitude oscillations < 4.5 Hz) serves as a blueprint of cortical excitability and brain connectivity. Phase-locked auditory stimulation is a promising tool for the modulation of ongoing brain activity during sleep; however, its underlying mechanisms remain unknown. Here, eighteen healthy young adults were measured with high-density electroencephalography (hd-EEG) in three experimental conditions; one with no stimulation, one with up- and one with down-phase stimulation; ten participants were included in the analysis. We show that up-phase auditory stimulation on a right prefrontal area locally enhances cortical involvement and promotes traveling by increasing the propagating distance and duration of targeted small-amplitude waves. On the contrary, down-phase stimulation proves more efficient at perturbing large-amplitude waves and interferes with ongoing traveling by disengaging cortical regions and interrupting high synchronicity in the target area as indicated by increased traveling speed. These results point out to different underlying mechanisms mediating the effects of up- and down-phase stimulation and highlight the strength of traveling analysis as a sensitive and informative method for the study of connectivity and cortical excitability alterations.
Collapse
Affiliation(s)
- Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Giulia Da Poian
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zurich, Switzerland
| |
Collapse
|
16
|
Harrington MO, Cairney SA. Sounding It Out: Auditory Stimulation and Overnight Memory Processing. CURRENT SLEEP MEDICINE REPORTS 2021; 7:112-119. [PMID: 34722123 PMCID: PMC8550047 DOI: 10.1007/s40675-021-00207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Abstract
Purpose of Review
Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations.
Recent Findings
Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations.
Summary
Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep.
Collapse
|
17
|
No benefit of auditory closed-loop stimulation on memory for semantically-incongruent associations. Neurobiol Learn Mem 2021; 183:107482. [PMID: 34182134 DOI: 10.1016/j.nlm.2021.107482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023]
Abstract
Auditory closed-loop stimulation has gained traction in recent years as a means of enhancing slow oscillatory activity and, consequently, sleep-associated memory consolidation. Previous studies on this topic have primarily focused on the consolidation of semantically-congruent associations. In this study, we investigated the effect of auditory closed-loop stimulation on the overnight retention of semantically-incongruent associations. Twelve healthy males (age: M = 20.06, SD = 2.02 years) participated in two experimental conditions (simulation and sham). In the stimulation condition, clicks were delivered in phase with slow oscillation up-states, whereas in the sham condition no auditory stimuli were applied. Corroborating earlier work, stimulation (vs. sham) enhanced the slow oscillation rhythm, phase-coupled spindle activity and slow oscillation power. However, there was no benefit of stimulation on overnight memory retention. These findings suggest that closed-loop stimulation does not benefit semantically-incongruent associations.
Collapse
|
18
|
Davidson P, Jönsson P, Carlsson I, Pace-Schott E. Does Sleep Selectively Strengthen Certain Memories Over Others Based on Emotion and Perceived Future Relevance? Nat Sci Sleep 2021; 13:1257-1306. [PMID: 34335065 PMCID: PMC8318217 DOI: 10.2147/nss.s286701] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep has been found to have a beneficial effect on memory consolidation. It has furthermore frequently been suggested that sleep does not strengthen all memories equally. The first aim of this review paper was to examine whether sleep selectively strengthens emotional declarative memories more than neutral ones. We examined this first by reviewing the literature focusing on sleep/wake contrasts, and then the literature on whether any specific factors during sleep preferentially benefit emotional memories, with a special focus on the often-suggested claim that rapid eye movement sleep primarily consolidates emotional memories. A second aim was to examine if sleep preferentially benefits memories based on other cues of future relevance such as reward, test-expectancy or different instructions during encoding. Once again, we first focused on studies comparing sleep and wake groups, and then on studies examining the contributions of specific factors during sleep (for each future relevance paradigm, respectively). The review revealed that although some support exists that sleep is more beneficial for certain kinds of memories based on emotion or other cues of future relevance, the majority of studies does not support such an effect. Regarding specific factors during sleep, our review revealed that no sleep variable has reliably been found to be specifically associated with the consolidation of certain kinds of memories over others based on emotion or other cues of future relevance.
Collapse
Affiliation(s)
- Per Davidson
- Department of Psychology, Lund University, Lund, Sweden.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Peter Jönsson
- School of Education and Environment, Centre for Psychology, Kristianstad University, Kristianstad, Sweden
| | | | - Edward Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| |
Collapse
|
19
|
Schmid SR, Nissen C, Riemann D, Spiegelhalder K, Frase L. Auditorische Stimulation während des Schlafs. SOMNOLOGIE 2020. [DOI: 10.1007/s11818-020-00255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ZusammenfassungDie Insomnie, d. h. eine Ein- und/oder Durchschlafstörung, die sich negativ auf die Leistungsfähigkeit und Tagesbefindlichkeit auswirkt, ist eine der häufigsten Erkrankungen in der Allgemeinbevölkerung. Sie wird derzeit meistens pharmakologisch und/oder psychotherapeutisch behandelt, wobei die pharmakologische Behandlung mit Benzodiazepin-Rezeptor-Agonisten zu Abhängigkeit führen kann und die Verfügbarkeit von für die Insomnie-Therapie ausgebildeten Psychotherapeuten momentan nicht in ausreichendem Maße gegeben ist. Durch innovative Behandlungsmethoden könnte hier eine Versorgungslücke effektiv geschlossen werden. Hierzu zählt die auditorische Stimulation, welche vorhandene Sinneskanäle nutzt, um den Schlaf zu beeinflussen. Bisher wurde die auditorische Stimulation vor allem zur Untersuchung von Prozessen der Gedächtniskonsolidierung bei gesunden Probanden angewendet, wobei erfolgreich eine Erhöhung langsamer Oszillationen erreicht wurde, welche vor allem während des Tiefschlafs auftreten. Erste Befunde und sekundäre Outcome-Parameter liefern Hinweise, dass die Potenzierung langsamer Oszillationen durch auditorische Stimulation den Schlaf vertiefen kann, jedoch wurde hierzu bislang keine Studie mit Insomniepatienten durchgeführt. Weitere Forschung bezüglich des Einflusses der Potenzierung langsamer Oszillationen auf die Linderung von Ein- und Durchschlafproblemen bei vorliegender nichtorganischer Insomnie erscheint daher geboten zu sein, um der hohen Beschwerdelast dieser Patientengruppe entgegenzuwirken.
Collapse
|
20
|
Scholes S, Santisteban JA, Zhang Y, Bertone A, Gruber R. Modulation of Slow-Wave Sleep: Implications for Psychiatry. Curr Psychiatry Rep 2020; 22:52. [PMID: 32710222 DOI: 10.1007/s11920-020-01175-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The objectives of this review are to examine and integrate existing empirical evidence regarding the impact of slow-wave sleep (SWS) modulation on memory and executive function performance in individuals with psychiatric disorders, and to examine the feasibility of integrating SWS modulation into psychiatric care. RECENT FINDINGS SWS modulation in individuals with psychiatric disorders resulted in changes to SWS across multiple psychiatric disorders, using all stimulation methods. SWS stimulation was associated with improved cognitive performance. SWS modulation using acoustic stimulation resulted in improved cognitive performance in children with ADHD, and the use of transcranial stimulation was associated with improved cognitive performance in individuals with mild cognitive impairment. Significant relationships between changes in SWS and cognitive improvement were found for individual with mild cognitive impairment following the use of acoustic or transcranial stimulation night. Our review reveals partial support to the potential efficacy of SWS modulation as a transdiagnostic intervention that uses sleep to improve cognitive functions of individuals diagnosed with psychiatric disorders and cognitive deficits. It further highlights multiple barriers pertaining to the feasibility of integrating SWS modulation into clinical practice and proposes ways to improve it.
Collapse
Affiliation(s)
- Samantha Scholes
- Attention, Behaviour and Sleep Lab, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Verdun, Montréal, QC, H4H 1R3, Canada.,Perceptual Neuroscience Lab (PNLab) for Autism, Development Department of Educational and Counselling Psychology, McGill University, Montréal, QC, Canada
| | - J A Santisteban
- Attention, Behaviour and Sleep Lab, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Verdun, Montréal, QC, H4H 1R3, Canada
| | - Yujie Zhang
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Armando Bertone
- Perceptual Neuroscience Lab (PNLab) for Autism, Development Department of Educational and Counselling Psychology, McGill University, Montréal, QC, Canada
| | - Reut Gruber
- Attention, Behaviour and Sleep Lab, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Verdun, Montréal, QC, H4H 1R3, Canada. .,Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|