1
|
Fu M, Lu S, Gong L, Zhou Y, Wei F, Duan Z, Xiang R, Gonzalez FJ, Li G. Intermittent fasting shifts the diurnal transcriptome atlas of transcription factors. Mol Cell Biochem 2025; 480:491-504. [PMID: 38528297 DOI: 10.1007/s11010-024-04928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/05/2024] [Indexed: 03/27/2024]
Abstract
Intermittent fasting remains a safe and effective strategy to ameliorate various age-related diseases, but its specific mechanisms are not fully understood. Considering that transcription factors (TFs) determine the response to environmental signals, here, we profiled the diurnal expression of 600 samples across four metabolic tissues sampled every 4 over 24 h from mice placed on five different feeding regimens to provide an atlas of TFs in biological space, time, and feeding regimen. Results showed that 1218 TFs exhibited tissue-specific and temporal expression profiles in ad libitum mice, of which 974 displayed significant oscillations at least in one tissue. Intermittent fasting triggered more than 90% (1161 in 1234) of TFs to oscillate somewhere in the body and repartitioned their tissue-specific expression. A single round of fasting generally promoted TF expression, especially in skeletal muscle and adipose tissues, while intermittent fasting mainly suppressed TF expression. Intermittent fasting down-regulated aging pathway and upregulated the pathway responsible for the inhibition of mammalian target of rapamycin (mTOR). Intermittent fasting shifts the diurnal transcriptome atlas of TFs, and mTOR inhibition may orchestrate intermittent fasting-induced health improvements. This atlas offers a reference and resource to understand how TFs and intermittent fasting may contribute to diurnal rhythm oscillation and bring about specific health benefits.
Collapse
Affiliation(s)
- Min Fu
- Department of Neurology, The Fourth Hospital of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Siyu Lu
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lijun Gong
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yiming Zhou
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Fang Wei
- Department of Neurology, The Fourth Hospital of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, 410006, Hunan, China.
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rong Xiang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 41001, Hunan, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guolin Li
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
2
|
Zhou C, Hu Z, Liu X, Wang Y, Wei S, Liu Z. Disruption of the peripheral biological clock may play a role in sleep deprivation-induced dysregulation of lipid metabolism in both the daytime and nighttime phases. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159530. [PMID: 38964437 DOI: 10.1016/j.bbalip.2024.159530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
STUDY OBJECTIVES This study aimed to examine the effect of sleep deprivation (SD) on lipid metabolism or lipid metabolism regulation in the liver and white adipose tissue (WAT) during the light and dark phases and explored the possible mechanisms underlying the diurnal effect of SD on lipid metabolism associated with clock genes. METHODS Male C57BL/6J mice aged 2 months were deprived of sleep daily for 20 h for ten consecutive days with weakly forced locomotion. The body weights and food consumption levels of the SD and control mice were recorded, and the mice were then sacrificed at ZT (zeitgeber time) 2 and ZT 14. The peripheral clock genes, enzymes involved in fat synthesis and catabolism in the WAT, and melatonin signalling pathway-mediated lipid metabolism in the liver were assessed. Untargeted metabolomics and tandem mass tag (TMT) proteomics were used to identify differential lipid metabolism pathways in the liver. RESULTS Bodyweight gain and daily food consumption were dramatically elevated after SD. Profound disruptions in the diurnal regulation of the hepatic peripheral clock and enzymes involved in fat synthesis and catabolism in the WAT were observed, with a strong emphasis on hepatic lipid metabolic pathways, while melatonin signalling pathway-mediated lipid metabolism exhibited moderate changes. CONCLUSIONS In mice, ten consecutive days of SD increased body weight gain and daily food consumption. In addition, SD profoundly disrupted lipid metabolism in the WAT and liver during the light and dark periods. These diurnal changes may be related to disorders of the peripheral biological clock.
Collapse
Affiliation(s)
- Chufan Zhou
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China; Nanjing Children's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ziping Hu
- Yancheng No.1 People's Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China.
| | - Xuan Liu
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yuefan Wang
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Shougang Wei
- Department of Child, Adolescent and Women's Health, School of Public Health, Capital Medical University, Beijing, China
| | - Zhifeng Liu
- Nanjing Children's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Wang L, Tian H, Wang H, Mao X, Luo J, He Q, Wen P, Cao H, Fang L, Zhou Y, Yang J, Jiang L. Disrupting circadian control of autophagy induces podocyte injury and proteinuria. Kidney Int 2024; 105:1020-1034. [PMID: 38387504 DOI: 10.1016/j.kint.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Tian
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Wang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Mao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Luo
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qingyun He
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wen
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongdi Cao
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Fang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Yang Zhou
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Lei Jiang
- Department of Nephrology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Ballester Roig MN, Leduc T, Dufort-Gervais J, Maghmoul Y, Tastet O, Mongrain V. Probing pathways by which rhynchophylline modifies sleep using spatial transcriptomics. Biol Direct 2023; 18:21. [PMID: 37143153 PMCID: PMC10161643 DOI: 10.1186/s13062-023-00377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Rhynchophylline (RHY) is an alkaloid component of Uncaria, which are plants extensively used in traditional Asian medicines. Uncaria treatments increase sleep time and quality in humans, and RHY induces sleep in rats. However, like many traditional natural treatments, the mechanisms of action of RHY and Uncaria remain evasive. Moreover, it is unknown whether RHY modifies key brain oscillations during sleep. We thus aimed at defining the effects of RHY on sleep architecture and oscillations throughout a 24-h cycle, as well as identifying the underlying molecular mechanisms. Mice received systemic RHY injections at two times of the day (beginning and end of the light period), and vigilance states were studied by electrocorticographic recordings. RESULTS RHY enhanced slow wave sleep (SWS) after both injections, suppressed paradoxical sleep (PS) in the light but enhanced PS in the dark period. Furthermore, RHY modified brain oscillations during both wakefulness and SWS (including delta activity dynamics) in a time-dependent manner. Interestingly, most effects were larger in females. A brain spatial transcriptomic analysis showed that RHY modifies the expression of genes linked to cell movement, apoptosis/necrosis, and transcription/translation in a brain region-independent manner, and changes those linked to sleep regulation (e.g., Hcrt, Pmch) in a brain region-specific manner (e.g., in the hypothalamus). CONCLUSIONS The findings provide support to the sleep-inducing effect of RHY, expose the relevance to shape wake/sleep oscillations, and highlight its effects on the transcriptome with a high spatial resolution. The exposed molecular mechanisms underlying the effect of a natural compound should benefit sleep- and brain-related medicine.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
| | - Tanya Leduc
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
| | - Julien Dufort-Gervais
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
| | - Yousra Maghmoul
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Olivier Tastet
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, 900 rue St-Denis, Tour Viger, Montréal, QC, H2X 0A9, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, H4J 1C5, Canada.
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, 900 rue St-Denis, Tour Viger, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
5
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
6
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Obodo D, Outland EH, Hughey JJ. Sex Inclusion in Transcriptome Studies of Daily Rhythms. J Biol Rhythms 2023; 38:3-14. [PMID: 36419398 PMCID: PMC9903005 DOI: 10.1177/07487304221134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
8
|
Ketchesin KD, Zong W, Hildebrand MA, Scott MR, Seney ML, Cahill KM, Shankar VG, Glausier JR, Lewis DA, Tseng GC, McClung CA. Diurnal Alterations in Gene Expression Across Striatal Subregions in Psychosis. Biol Psychiatry 2023; 93:137-148. [PMID: 36302706 PMCID: PMC10411997 DOI: 10.1016/j.biopsych.2022.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.
Collapse
Affiliation(s)
- Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mariah A Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madeline R Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marianne L Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kelly M Cahill
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vaishnavi G Shankar
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Duan D, Kim LJ, Jun JC, Polotsky VY. Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann N Y Acad Sci 2023; 1519:94-117. [PMID: 36373239 PMCID: PMC9839511 DOI: 10.1111/nyas.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The global epidemic of obesity and type 2 diabetes parallels the rampant state of sleep deprivation in our society. Epidemiological studies consistently show an association between insufficient sleep and metabolic dysfunction. Mechanistically, sleep and circadian rhythm exert considerable influences on hormones involved in appetite regulation and energy metabolism. As such, data from experimental sleep deprivation in humans demonstrate that insufficient sleep induces a positive energy balance with resultant weight gain, due to increased energy intake that far exceeds the additional energy expenditure of nocturnal wakefulness, and adversely impacts glucose metabolism. Conversely, animal models have found that sleep loss-induced energy expenditure exceeds caloric intake resulting in net weight loss. However, animal models have significant limitations, which may diminish the clinical relevance of their metabolic findings. Clinically, insomnia disorder and insomnia symptoms are associated with adverse glucose outcomes, though it remains challenging to isolate the effects of insomnia on metabolic outcomes independent of comorbidities and insufficient sleep durations. Furthermore, both pharmacological and behavioral interventions for insomnia may have direct metabolic effects. The goal of this review is to establish an updated framework for the causal links between insufficient sleep and insomnia and risks for type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Daisy Duan
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care; Department of Medicine; Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Srimani S, Schmidt CX, Gómez-Serranillos MP, Oster H, Divakar PK. Modulation of Cellular Circadian Rhythms by Secondary Metabolites of Lichens. Front Cell Neurosci 2022; 16:907308. [PMID: 35813500 PMCID: PMC9260025 DOI: 10.3389/fncel.2022.907308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.
Collapse
Affiliation(s)
- Soumi Srimani
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Maria Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Pradeep K. Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Heyde I, Oster H. Induction of internal circadian desynchrony by misaligning zeitgebers. Sci Rep 2022; 12:1601. [PMID: 35102210 PMCID: PMC8803932 DOI: 10.1038/s41598-022-05624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
24-h rhythms in physiology and behaviour are orchestrated by an endogenous circadian clock system. In mammals, these clocks are hierarchically organized with a master pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). External time signals-so-called zeitgebers-align internal with geophysical time. During shift work, zeitgeber input conflicting with internal time induces circadian desynchrony which, in turn, promotes metabolic and psychiatric disorders. However, little is known about how internal desynchrony is expressed at the molecular level under chronodisruptive environmental conditions. We here investigated the effects of zeitgeber misalignment on circadian molecular organisation by combining 28-h light-dark (LD-28) cycles with either 24-h (FF-24) or 28-h feeding-fasting (FF-28) regimes in mice. We found that FF cycles showed strong effects on peripheral clocks, while having little effect on centrally coordinated activity rhythms. Systemic, i.e., across-tissue internal circadian desynchrony was profoundly induced within four days in LD-28/FF-24, while phase coherence between tissue clocks was maintained to a higher degree under LD-28/FF-28 conditions. In contrast, temporal coordination of clock gene activity across tissues was reduced under LD-28/FF-28 conditions compared to LD-28/FF-24. These results indicate that timed food intake may improve internal synchrony under disruptive zeitgeber conditions but may, at the same time, weaken clock function at the tissue level.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, CBBM (House 66), Marie Curie Street, 23562, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, CBBM (House 66), Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
12
|
Martikainen T, Sigurdardottir F, Benedict C, Omland T, Cedernaes J. Effects of curtailed sleep on cardiac stress biomarkers following high-intensity exercise. Mol Metab 2022; 58:101445. [PMID: 35092845 PMCID: PMC8885606 DOI: 10.1016/j.molmet.2022.101445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Physical exercise—especially at high intensity—is known to impose cardiac stress, as mirrored by, e.g., increased blood levels of cardiac stress biomarkers such as cardiac Troponin T (cTnT) and NT-proBNP. We examined healthy young participants to determine whether a few nights of short sleep duration alter the effects of acute exercise on these blood biomarkers. Methods Sixteen men participated in a randomized order in a crossover design, comprising three consecutive nights of a) normal sleep duration (NS, 8.5 h of sleep/night) and b) sleep restriction (SR, 4.25 h of sleep/night). Blood was repeatedly sampled for determination of NT-proBNP and cTnT serum levels before and after a high-intensity exercise protocol (i.e., 75% VO2maxReserve cycling on an ergometer). Results Under pre-exercise sedentary conditions, blood levels of cTnT and NT-proBNP did not significantly differ between the sleep conditions (P > 0.10). However, in response to exercise, the surge of circulating cTnT was significantly greater following SR than NS (+37–38% at 120–240 min post-exercise, P ≤ 0.05). While blood levels of NT-proBNP rose significantly in response to exercise, they did not differ between the sleep conditions. Conclusion Recurrent sleep restriction may increase the cardiac stress response to acute high-intensity exercise in healthy young individuals. However, our findings must be further confirmed in women, older subjects and in patients with a history of heart disease. Chronic sleep curtailment increases the risk of cardiovascular disease. Here, we examined whether exercise-induced cardiac strain in healthy young adults is altered by sleep curtailment. Blood levels of the cardiac stress marker troponin were higher after exercise under conditions of recurrent sleep restriction. Sleep restriction may increase exercise-induced cardiac strain in adults.
Collapse
Affiliation(s)
- Teemu Martikainen
- Department of Medical Sciences, Uppsala University, Sweden; Department of Medical Cell Biology, Uppsala University, Sweden
| | - Fjola Sigurdardottir
- Department of Cardiology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian Benedict
- Department of Surgical Sciences (Sleep Science Laboratory, BMC), Uppsala University, Sweden
| | - Torbjørn Omland
- Department of Cardiology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Sweden; Department of Medical Cell Biology, Uppsala University, Sweden.
| |
Collapse
|
13
|
Sullivan KA, Grant CV, Jordan KR, Obrietan K, Pyter LM. Paclitaxel chemotherapy disrupts behavioral and molecular circadian clocks in mice. Brain Behav Immun 2022; 99:106-118. [PMID: 34563619 PMCID: PMC8671246 DOI: 10.1016/j.bbi.2021.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer patients experience circadian rhythm disruptions in activity cycles and cortisol release that correlate with poor quality of life and decreased long-term survival rates. However, the extent to which chemotherapy contributes to altered circadian rhythms is poorly understood. In the present study, we examined the extent to which paclitaxel, a common chemotherapy drug, altered entrained and free-running circadian rhythms in wheel running behavior, circulating corticosterone, and circadian clock gene expression in the brain and adrenal glands of tumor-free mice. Paclitaxel injections delayed voluntary wheel running activity onset in a light-dark cycle (LD) and lengthened the free-running period of locomotion in constant darkness (DD), indicating an effect on inherent suprachiasmatic nucleus (SCN) pacemaker activity. Paclitaxel attenuated clock gene rhythms in multiple brain regions in LD and DD. Furthermore, paclitaxel disrupted circulating corticosterone rhythms in DD by elevating its levels across a 24-hour cycle, which correlated with blunted amplitudes of Arntl, Nr1d1, Per1, and Star rhythms in the adrenal glands. Paclitaxel also shortened SCN slice rhythms, increased the amplitude of adrenal gland oscillations in PER2::luciferase cultures, and increased the concentration of pro-inflammatory cytokines and chemokines released from the SCN. These findings indicate that paclitaxel disrupts clock genes and behavior driven by the SCN, other brain regions, and adrenal glands, which were associated with chemotherapy-induced inflammation. Together, this preclinical work demonstrates that chemotherapy disrupts both central and peripheral circadian rhythms and supports the possibility that targeted circadian realignment therapies may be a novel and non-invasive way to improve patient outcomes after chemotherapy.
Collapse
Affiliation(s)
- Kyle A. Sullivan
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Neuroscience, Ohio State University, Columbus, OH, USA,James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH USA
| | - Corena V. Grant
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA,James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH USA
| | - Kelley R. Jordan
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Leah M. Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Neuroscience, Ohio State University, Columbus, OH, USA,James Comprehensive Cancer Center and Solove Research Institute, Ohio State University, Columbus, OH USA,Departments of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA,Corresponding author: Leah M. Pyter, Ohio State University, 219 Institute for Behavioral Medicine Research, 460 Medical Center Dr, Columbus OH 43210, t. 614.293.3496, f. 614.366.2097,
| |
Collapse
|
14
|
Cheng Q, Fan X, Liu Y, Xu L, Dong P, Song L, Qian R. miR-455-5p regulates circadian rhythms by accelerating the degradation of Clock mRNA. IUBMB Life 2021; 74:245-258. [PMID: 34904778 DOI: 10.1002/iub.2587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022]
Abstract
Circadian rhythms are approximately 24-hr cycles generated by organisms to adapt to daily rhythms. Core circadian proteins such as CLOCK, BMAL1, PER1/2, and CRY1/2/3 form a transcription-translation feedback loop (TTFL) to maintain circadian rhythms. MicroRNAs are involved in regulating circadian rhythms; however, the detailed mechanisms remain unclear. Here, using miRNA-seq screening, we discovered that the expression level of miR-455 was controlled by CLOCK. Furthermore, miR-455-5p also binds to the 3' untranslated region (3'UTR) of Clock mRNA and regulates its stability. To further study whether such mutual regulation forms a feedback loop to regulate circadian rhythms, we recorded bioluminescence traces of Per2::Luc U2OS cells in real time and confirmed that overexpression of miR-455-5p lengthens the period and attenuates the amplitude of circadian rhythms in synchronized cells (and vice versa). We also discovered that miR-455-5p can function as a Clock modulator to induce a fine-orchestral circadian rhythm in vitro, as well as other known factors such as dexamethasone, horse serum, or temperature. In conclusion, miR-455-5p is essential for maintaining a normal circadian rhythm via regulating Clock mRNA stability. Our study reveals a new mutual regulatory mechanism between CLOCK protein, Clock mRNA, and miR-455-5p, which regulates circadian rhythms in cells.
Collapse
Affiliation(s)
- Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Xinyi Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Yutong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Lirong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Pengjuan Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Liwen Song
- School of Medicine, Department of Obstetrics & Gynecology, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Richter HG, Mendez N, Halabi D, Torres-Farfan C, Spichiger C. New integrative approaches to discovery of pathophysiological mechanisms triggered by night shift work. Chronobiol Int 2021; 39:269-284. [PMID: 34727788 DOI: 10.1080/07420528.2021.1994984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Synchronization to periodic cues such as food/water availability and light/dark cycles is crucial for living organisms' homeostasis. Both factors have been heavily influenced by human activity, with artificial light at night (ALAN) being an evolutionary challenge imposed over roughly the last century. Evidence from studies in humans and animal models shows that overt circadian misalignment, such as that imposed to about 20% of the workforce by night shift work (NSW), negatively impinges on the internal temporal order of endocrinology, physiology, metabolism, and behavior. Moreover, NSW is often associated to mistimed feeding, with both unnatural behaviors being known to increase the risk of chronic diseases, such as eating disorders, overweight, obesity, cardiovascular, metabolic (particularly type 2 diabetes mellitus) and gastrointestinal disorders, some types of cancer, as well as mental disease including sleep disturbances, cognitive disorders, and depression. Regarding deleterious effects of ALAN on reproduction, increased risk of miscarriage, preterm delivery and low birth weight have been reported in shift-worker women. These mounting lines of evidence prompt further efforts to advance our understanding of the effects of long-term NSW on health. Emerging data suggest that NSW with or without mistimed feeding modify gene expression and functional readouts in different tissues/organs, which seem to translate into persistent cardiometabolic and endocrine dysfunction. However, this research avenue still faces multiple challenges, such as functional characterization of new experimental models more closely resembling human long-term NSW and mistimed feeding in males versus females; studying further target organs; identifying molecular changes by means of deep multi-omics analyses; and exploring biomarkers of NSW with translational medicine potential. Using high-throughput and systems biology is a relatively new approach to study NSW, aimed to generate experiments addressing new biological factors, pathways, and mechanisms, going beyond the boundaries of the circadian clock molecular machinery.
Collapse
Affiliation(s)
- Hans G Richter
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Instituto de Odontoestomatología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Spichiger
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
16
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|
17
|
Oster H, Mittag J, Schmid SM. [From neuroendocrinology to widespread diseases in internal medicine]. Dtsch Med Wochenschr 2021; 146:287-291. [PMID: 33592665 DOI: 10.1055/a-1273-1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
|
19
|
Ruddick-Collins LC, Morgan PJ, Johnstone AM. Mealtime: A circadian disruptor and determinant of energy balance? J Neuroendocrinol 2020; 32:e12886. [PMID: 32662577 DOI: 10.1111/jne.12886] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Circadian rhythms play a critical role in the physiological processes involved in energy metabolism and energy balance (EB). A large array of metabolic processes, including the expression of many energy-regulating endocrine hormones, display temporal rhythms that are driven by both the circadian clock and food intake. Mealtime has been shown to be a compelling zeitgeber in peripheral tissue rhythms. Inconsistent signalling to the periphery, because of mismatched input from the central clock vs time of eating, results in circadian disruption in which central and/or peripheral rhythms are asynchronously time shifted or their amplitudes reduced. A growing body of evidence supports the negative health effects of circadian disruption, with strong evidence in murine models that mealtime-induced circadian disruption results in various metabolic consequences, including energy imbalance and weight gain. Increased weight gain has been reported to occur even without differences in energy intake, indicating an effect of circadian disruption on energy expenditure. However, the translation of these findings to humans is not well established because the ability to undertake rigorously controlled dietary studies that explore the chronic effects on energy regulation is challenging. Establishing the neuroendocrine changes in response to both acute and chronic variations in mealtime, along with observations in populations with routinely abnormal mealtimes, may provide greater insight into underlying mechanisms that influence long-term weight management under different meal patterns. Human studies should explore mechanisms through relevant biomarkers; for example, cortisol, leptin, ghrelin and other energy-regulating neuroendocrine factors. Mistiming between aggregate hormonal signals, or between hormones with their receptors, may cause reduced signalling intensity and hormonal resistance. Understanding how mealtimes may impact on the coordination of endocrine factors is essential for untangling the complex regulation of EB. Here a review is provided on current evidence of the impacts of mealtime on energy metabolism and the underlying neuroendocrine mechanisms, with a specific focus on human research.
Collapse
Affiliation(s)
| | - Peter J Morgan
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
20
|
Koch CE, Begemann K, Kiehn JT, Griewahn L, Mauer J, M E Hess, Moser A, Schmid SM, Brüning JC, Oster H. Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nat Commun 2020; 11:3071. [PMID: 32555162 PMCID: PMC7299974 DOI: 10.1038/s41467-020-16882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Unlimited access to calorie-dense, palatable food is a hallmark of Western societies and substantially contributes to the worldwide rise of metabolic disorders. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, further augmenting metabolic disruption. We developed a paradigm to reveal differential timing in the regulation of food intake behavior in mice. While homeostatic intake peaks in the active phase, conditioned place preference and choice experiments show an increased sensitivity to overeating on palatable food during the rest phase. This hedonic appetite rhythm is driven by endogenous circadian clocks in dopaminergic neurons of the ventral tegmental area (VTA). Mice with disrupted clock function in the VTA lose their hedonic overconsumption rhythms without affecting homeostatic intake. These findings assign a functional role of VTA clocks in modulating palatable feeding behaviors and identify a potential therapeutic route to counteract hyperphagy in an obesogenic environment. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, which further augments metabolic dysfunction. Here, the authors find that in mice, circadian clocks in dopaminergic neurons in the ventral tegmental area drive hedonic appetite rhythms.
Collapse
Affiliation(s)
- C E Koch
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - K Begemann
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J T Kiehn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - L Griewahn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J Mauer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - M E Hess
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - A Moser
- Department of Neurology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - S M Schmid
- Institute of Endocrinology and Diabetes, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.,Deutsches Zentrum für Diabetesforschung e. V. (DZD), Neuherberg, Deutschland
| | - J C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - H Oster
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
21
|
Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020; 432:3578-3610. [PMID: 32376454 PMCID: PMC7781158 DOI: 10.1016/j.jmb.2020.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Under normal circadian function, metabolic control is temporally coordinated across tissues and behaviors with a 24-h period. However, circadian disruption results in negative consequences for metabolic homeostasis including energy or redox imbalances. Yet, circadian disruption has become increasingly prevalent within today's society due to many factors including sleep loss. Metabolic consequences of both have been revealed by metabolomics analyses of circadian biology and sleep. Specifically, two primary analytical platforms, mass spectrometry and nuclear magnetic resonance spectroscopy, have been used to study molecular clock and sleep influences on overall metabolic rhythmicity. For example, human studies have demonstrated the prevalence of metabolic rhythms in human biology, as well as pan-metabolome consequences of sleep disruption. However, human studies are limited to peripheral metabolic readouts primarily through minimally invasive procedures. For further tissue- and organism-specific investigations, a number of model systems have been studied, based upon the conserved nature of both the molecular clock and sleep across species. Here we summarize human studies as well as key findings from metabolomics studies using mice, Drosophila, and zebrafish. While informative, a limitation in existing literature is a lack of interpretation regarding dynamic synthesis or catabolism within metabolite pools. To this extent, future work incorporating isotope tracers, specific metabolite reporters, and single-cell metabolomics may provide a means of exploring dynamic activity in pathways of interest.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Penn Chronobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Effects of sleep on the splenic milieu in mice and the T cell receptor repertoire recruited into a T cell dependent B cell response. Brain Behav Immun Health 2020; 5:100082. [PMID: 34589857 PMCID: PMC8474558 DOI: 10.1016/j.bbih.2020.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is known to improve immune function ranging from cell distribution in the naïve state to elevated antibody titers after an immune challenge. The underlying mechanisms still remain unclear, partially because most studies have focused on the analysis of blood only. Hence, we investigated the effects of sleep within the spleen in female C57BL/6J mice with normal sleep compared to short-term sleep-deprived animals both in the naïve state and after an antigen challenge. Lack of sleep decreased the expression of genes associated with immune cell recruitment into and antigen presentation within the spleen both in the naïve state and during a T cell dependent B cell response directed against sheep red blood cells (SRBC). However, neither T cell proliferation nor formation of SRBC-specific antibodies was affected. In addition, the T cell receptor repertoire recruited into the immune response within seven days was not influenced by sleep deprivation. Thus, sleep modulated the molecular milieu within the spleen whereas we could not detect corresponding changes in the primary immune response against SRBC. Further studies will show whether sleep influences the secondary immune response against SRBC or the development of the B cell receptor repertoire, and how this can be compared to other antigens. Sleep deprivation (SD) decreases expression of genes involved in T cell function. SD induces those changes in the milieu of both lymph nodes and spleen. SD dampens the expression of several genes in the spleen during an immune response. SD does not alter the T cell receptor repertoire recruited into the immune response.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- IFN, interferon
- IL, interleukin
- Lymphocyte migration
- MHC-II, major histocompatibility complex II
- SD, sleep deprivation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- T cell dependent B cell Response
- T cell receptor repertoire
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
Collapse
|
23
|
Haraguchi A, Komada Y, Inoue Y, Shibata S. Correlation among clock gene expression rhythms, sleep quality, and meal conditions in delayed sleep-wake phase disorder and night eating syndrome. Chronobiol Int 2019; 36:770-783. [DOI: 10.1080/07420528.2019.1585366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoko Komada
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
- Liberal Arts, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yuichi Inoue
- Department of Somnology, Tokyo Medical University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
24
|
REM sleep's unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc Natl Acad Sci U S A 2019; 116:2733-2742. [PMID: 30683720 PMCID: PMC6377491 DOI: 10.1073/pnas.1816456116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sleep disturbances are common in stress-related disorders but the nature of these sleep disturbances and how they relate to changes in the stress hormone corticosterone and changes in gene expression remained unknown. Here we demonstrate that in response to chronic mild stress, rapid–eye-movement sleep (REMS), a sleep state involved in emotion regulation and fear conditioning, changed first and more so than any other measured sleep characteristic. Transcriptomic profiles related to REMS continuity and theta oscillations overlapped with those for corticosterone, as well as with predictors for anhedonia, and were enriched for apoptotic pathways. These data highlight the central role of REMS in response to stress and warrant further investigation into REMS’s involvement in stress-related mental health disorders. One of sleep’s putative functions is mediation of adaptation to waking experiences. Chronic stress is a common waking experience; however, which specific aspect of sleep is most responsive, and how sleep changes relate to behavioral disturbances and molecular correlates remain unknown. We quantified sleep, physical, endocrine, and behavioral variables, as well as the brain and blood transcriptome in mice exposed to 9 weeks of unpredictable chronic mild stress (UCMS). Comparing 46 phenotypic variables revealed that rapid–eye-movement sleep (REMS), corticosterone regulation, and coat state were most responsive to UCMS. REMS theta oscillations were enhanced, whereas delta oscillations in non-REMS were unaffected. Transcripts affected by UCMS in the prefrontal cortex, hippocampus, hypothalamus, and blood were associated with inflammatory and immune responses. A machine-learning approach controlling for unspecific UCMS effects identified transcriptomic predictor sets for REMS parameters that were enriched in 193 pathways, including some involved in stem cells, immune response, and apoptosis and survival. Only three pathways were enriched in predictor sets for non-REMS. Transcriptomic predictor sets for variation in REMS continuity and theta activity shared many pathways with corticosterone regulation, in particular pathways implicated in apoptosis and survival, including mitochondrial apoptotic machinery. Predictor sets for REMS and anhedonia shared pathways involved in oxidative stress, cell proliferation, and apoptosis. These data identify REMS as a core and early element of the response to chronic stress, and identify apoptosis and survival pathways as a putative mechanism by which REMS may mediate the response to stressful waking experiences.
Collapse
|
25
|
Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome. Proc Natl Acad Sci U S A 2018; 115:5540-5545. [PMID: 29735673 DOI: 10.1073/pnas.1720719115] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.
Collapse
|
26
|
Heyde I, Kiehn JT, Oster H. Mutual influence of sleep and circadian clocks on physiology and cognition. Free Radic Biol Med 2018; 119:8-16. [PMID: 29132973 DOI: 10.1016/j.freeradbiomed.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022]
Abstract
The 24-h sleep-wake cycle is one of the most prominent outputs of the circadian clock system. At the same time, changes in sleep-wake behavior feedback on behavioral and physiological circadian rhythms, thus altering the coordination of the body's clock network. Sleep and circadian rhythm disruption have similar physiological endpoints including metabolic, cognitive, and immunologic impairments. This raises the question to which extent these phenomena are causally linked. In this review, we summarize different physiologic outcomes of sleep deprivation and mistimed sleep and discuss the experimental evidence for a mediating role of the circadian clock machinery in this context.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Germany
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Germany.
| |
Collapse
|
27
|
Nunez AA, Yan L, Smale L. The Cost of Activity during the Rest Phase: Animal Models and Theoretical Perspectives. Front Endocrinol (Lausanne) 2018; 9:72. [PMID: 29563894 PMCID: PMC5845863 DOI: 10.3389/fendo.2018.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/19/2018] [Indexed: 01/31/2023] Open
Abstract
For humans, activity during the night is correlated with multiple pathologies that may reflect a lack of harmony among components of the circadian system; however, it remains difficult to identify causal links between nocturnal activity and different pathologies based on the data available from epidemiological studies. Animal models that use forced activity or timed sleep deprivation provide evidence of circadian disruptions that may be at the core of the health risks faced by human night and shift workers. One valuable insight from that work is the importance of changes in the distribution of food intake as a cause of metabolic imbalances associated with activity during the natural rest phase. Limitations of those models stem from the use of only nocturnal laboratory rodents and the fact that they do not replicate situations in which humans engage in work with high cognitive demands or engage voluntarily in nocturnal activity (i.e., human eveningness). Temporal niche switches by rodents have been observed in the wild and interpreted as adaptive responses to energetic challenges, but possible negative outcomes, similar to those associated with human eveningness, have not been systematically studied. Species in which a proportion of animals shows a switch from a day-active to a night-active (e.g., grass rats) when given access to running wheels provide a unique opportunity to model human eveningness in a diurnal rodent. In particular, the mosaic of phases of brain oscillators in night-active grass rats may provide clues about the circadian challenges faced by humans who show voluntary nocturnal wakefulness.
Collapse
Affiliation(s)
- Antonio A. Nunez
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
- *Correspondence: Antonio A. Nunez,
| | - Lily Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Laura Smale
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|