1
|
He Y, Li J, Chen Y, Ren B, Zhou Z, Liu J, Gao H, Li F, Li B, Liu L, Shen H. Expression and Function of Long Non-coding RNA in Endemic Cretinism. Mol Neurobiol 2025; 62:1770-1787. [PMID: 39031326 DOI: 10.1007/s12035-024-04358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Endemic cretinism (EC) is one of the most severe iodine deficiency disorders, leading to typical symptoms such as neurodevelopmental impairments or mental deficits. In addition to environmental factors, the pathogenesis of its genetic contribution remains unclear. The study revealed the differential expression profiles of long non-coding RNA(lncRNA) and messenger RNA(mRNA) based on high-throughput RNA-seq. GO and KEGG analyses were used to annotate the function and pathway of differentially expressed (DE) mRNA and co-expressed mRNA. The protein-protein interaction(PPI) network was established. The expression levels of three lncRNAs and six mRNAs were validated by quantitative real-time PCR analysis (qRT-PCR) and subjected to correlation analysis. Compared to controls, a total of 864 lncRNAs and 393 mRNAs were differentially expressed. The PPI network had 149 nodes and 238 edges, and three key protein-coding genes were observed. Levels of LINC01220 and target mRNA IDO1 were statistically elevated in EC patients. Differentially expressed lncRNA may be a new potential player in EC. LINC01220 and IDO1 might interact with each other to participate in EC. The biological process of regulation of postsynaptic membrane potential and the Rap1 signaling pathway might exert a regulating role in the pathophysiological process of EC. Our findings could provide more theoretical and experimental evidence for investigating the pathophysiological mechanisms of EC.
Collapse
Affiliation(s)
- Yanhong He
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Jianshuang Li
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Heilongjiang Province 163319, Daqing City, People's Republic of China
| | - Yun Chen
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Bingxuan Ren
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Zheng Zhou
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Jinjin Liu
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Haiyan Gao
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Fan Li
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Baoxiang Li
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Lixiang Liu
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China
| | - Hongmei Shen
- Chinese Centre for Disease Control and Prevention, Centre for Endemic Disease Control, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China.
- Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, National Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Heilongjiang Province 150081, Harbin City, People's Republic of China.
| |
Collapse
|
2
|
Zare Z, Shafia S, Mohammadi M. Thyroid hormone deficiency affects anxiety-related behaviors and expression of hippocampal glutamate transporters in male congenital hypothyroid rat offspring. Horm Behav 2024; 162:105548. [PMID: 38636205 DOI: 10.1016/j.yhbeh.2024.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Thyroid hormones are crucial for brain development and their deficiency during fetal and postnatal periods can lead to mood and cognitive disorders. We aimed to examine the consequences of thyroid hormone deficiency on anxiety-related behaviors and protein expression of hippocampal glutamate transporters in congenital hypothyroid male offspring rats. Possible beneficial effects of treadmill exercise have also been examined. Congenital hypothyroidism was induced by adding propylthiouracil (PTU) to drinking water of pregnant Wistar rats from gestational day 6 until the end of the weaning period (postnatal day 28). Next, following 4 weeks of treadmill exercise (5 days per week), anxiety-related behaviors were examined using elevated plus maze (EPM) and light/dark box tests. Thereafter, protein expression of astrocytic (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters were measured in the hippocampus by immunoblotting. Hypothyroid rats showed decreased anxiety-like behavior, as measured by longer time spent in the open arms of the EPM and in the light area of the light/dark box, compared to control rats. Hypothyroid rats had significantly higher GLAST and GLT-1 and lower EAAC1 protein levels in the hippocampus than did the euthyroid rats. Following exercise, anxiety levels decreased in the euthyroid group while protein expression of EAAC1 increased and returned to normal levels in the hypothyroid group. Our findings indicate that thyroid hormone deficiency was associated with alterations in protein expression of glutamate transporters in the hippocampus. Up-regulation of hippocampal GLAST and GLT-1 could be at least one of the mechanisms associated with the anxiolytic effects of congenital hypothyroidism.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Alkadhi KA. Synaptic Plasticity and Cognitive Ability in Experimental Adult-Onset Hypothyroidism. J Pharmacol Exp Ther 2024; 389:150-162. [PMID: 38508752 DOI: 10.1124/jpet.123.001887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Adult-onset hypothyroidism impairs normal brain function. Research on animal models of hypothyroidism has revealed critical information on how deficiency of thyroid hormones impacts the electrophysiological and molecular functions of the brain, which leads to the well known cognitive impairment in untreated hypothyroid patients. Currently, such information can only be obtained from experiments on animal models of hypothyroidism. This review summarizes important research findings that pertain to understanding the clinical cognitive consequences of hypothyroidism, which will provide a better guiding path for therapy of hypothyroidism. SIGNIFICANCE STATEMENT: Cognitive impairment occurs during adult-onset hypothyroidism in both humans and animal models. Findings from animal studies validate clinical findings showing impaired long-term potentiation, decreased CaMKII, and increased calcineurin. Such findings can only be gleaned from animal experiments to show how hypothyroidism produces clinical symptoms.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
4
|
Xu T, Lin K, Cao M, Miao X, Guo H, Rui D, Hu Y, Yan Y. Patterns of global burden of 13 diseases attributable to lead exposure, 1990-2019. BMC Public Health 2023; 23:1121. [PMID: 37308890 DOI: 10.1186/s12889-023-15874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVES Understanding the spatio-temporal patterns of the global burden of various diseases resulting from lead exposure is critical for controlling lead pollution and disease prevention. METHODS Based on the 2019 Global Burden of Disease (GBD) framework and methodology, the global, regional, and national burden of 13 level-three diseases attributable to lead exposure were analyzed by disease type, patient age and sex, and year of occurrence. Population attributable fraction (PAF), deaths and disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR) and age-standardized DALYs rate (ASDR) obtained from the GBD 2019 database were used as descriptive indicators, and the average annual percentage change (AAPC) was estimated by a log-linear regression model to reflect the time trend. RESULTS AND CONCLUSIONS From 1990 to 2019, the number of deaths and DALYs resulting from lead exposure increased by 70.19% and 35.26%, respectively; however, the ASMR and ASDR decreased by 20.66% and 29.23%, respectively. Ischemic heart disease (IHD), stroke, and hypertensive heart disease (HHD) showed the highest increases in deaths; IHD, stroke, and diabetes and kidney disease (DKD) had the fastest-growing DALYs. The fastest decline in ASMR and ASDR was seen in stroke, with AAPCs of -1.25 (95% CI [95% confidence interval]: -1.36, -1.14) and -1.66 (95% CI: -1.76, -1.57), respectively. High PAFs occurred mainly in South Asia, East Asia, the Middle East, and North Africa. Age-specific PAFs of DKD resulting from lead exposure were positively correlated with age, whereas the opposite was true for mental disorders (MD), with the burden of lead-induced MD concentrated in children aged 0-6 years. The AAPCs of ASMR and ASDR showed a strong negative correlation with the socio-demographic index. Our findings showed that the global impact of lead exposure and its burden increased from 1990 to 2019 and varied significantly according to age, sex, region, and resulting disease. Effective public health measures and policies should be adopted to prevent and control lead exposure.
Collapse
Affiliation(s)
- Tongtong Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Kangqian Lin
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Miao Cao
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Xinlu Miao
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Heng Guo
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
| | - Dongsheng Rui
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China.
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China.
| |
Collapse
|
5
|
Marty MS, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld HA, Melching-Kollmuss S, Sheets LP, Urbisch D, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny-part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 2022; 52:546-617. [PMID: 36519295 DOI: 10.1080/10408444.2022.2130166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim HK, Song J. Hypothyroidism and Diabetes-Related Dementia: Focused on Neuronal Dysfunction, Insulin Resistance, and Dyslipidemia. Int J Mol Sci 2022; 23:ijms23062982. [PMID: 35328405 PMCID: PMC8952212 DOI: 10.3390/ijms23062982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
The incidence of dementia is steadily increasing worldwide. The risk factors for dementia are diverse, and include genetic background, environmental factors, sex differences, and vascular abnormalities. Among the subtypes of dementia, diabetes-related dementia is emerging as a complex type of dementia related to metabolic imbalance, due to the increase in the number of patients with metabolic syndrome and dementia worldwide. Thyroid hormones are considered metabolic regulatory hormones and affect various diseases, such as liver failure, obesity, and dementia. Thyroid dysregulation affects various cellular mechanisms and is linked to multiple disease pathologies. In particular, hypothyroidism is considered a critical cause for various neurological problems-such as metabolic disease, depressive symptoms, and dementia-in the central nervous system. Recent studies have demonstrated the relationship between hypothyroidism and brain insulin resistance and dyslipidemia, leading to diabetes-related dementia. Therefore, we reviewed the relationship between hypothyroidism and diabetes-related dementia, with a focus on major features of diabetes-related dementia such as insulin resistance, neuronal dysfunction, and dyslipidemia.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, 264 Seoyangro, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
7
|
Figueroa PBS, Ferreira AFF, Britto LR, Doussoulin AP, Torrão ADS. Association between thyroid function and Alzheimer's disease: A systematic review. Metab Brain Dis 2021; 36:1523-1543. [PMID: 34146214 DOI: 10.1007/s11011-021-00760-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Alterations in metabolic parameters have been associated with an increased risk of dementia, among which thyroid function has gained great importance in Alzheimer's disease (AD) pathology in recent years. However, it remains unclear whether thyroid dysfunctions could influence and contribute to the beginning and/or progression of AD or if it results from AD. This systematic review was conducted to examine the association between thyroid hormone (TH) levels and AD. Medline, ISI Web of Science, EMBASE, Cochrane library, Scopus, Scielo, and LILACS were searched, from January 2010 to March 2020. A total of 17 articles were selected. The studies reported alterations in TH and circadian rhythm in AD patients. Behavior, cognition, cerebral blood flow, and glucose consumption were correlated with TH deficits in AD patients. Whether thyroid dysfunctions and AD have a cause-effect relationship was inconclusive, however, the literature was able to provide enough data to corroborate a relationship between TH and AD. Although further studies are needed in this field, the current systematic review provides information that could help future investigations.
Collapse
Affiliation(s)
- Paulina Belén Sepulveda Figueroa
- Department of Preclinical Science, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
- Laboratory of Neuronal Communication, Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, Av. Professor Lineu Prestes, 1524 - Cidade Universitária, São Paulo, SP, Brasil, 05508900.
| | - Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, Av. Professor Lineu Prestes, 1524 - Cidade Universitária, São Paulo, SP, Brasil, 05508900.
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, Av. Professor Lineu Prestes, 1524 - Cidade Universitária, São Paulo, SP, Brasil, 05508900
| | | | - Andréa da Silva Torrão
- Laboratory of Neuronal Communication, Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, Av. Professor Lineu Prestes, 1524 - Cidade Universitária, São Paulo, SP, Brasil, 05508900
| |
Collapse
|
8
|
Contribution of Hypothyroidism to Cognitive Impairment and Hippocampal Synaptic Plasticity Regulation in an Animal Model of Depression. Int J Mol Sci 2021; 22:ijms22041599. [PMID: 33562494 PMCID: PMC7915890 DOI: 10.3390/ijms22041599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
The role that thyroid hormone deficiency plays in depression and synaptic plasticity in adults has only begun to be elucidated. This paper analyzes the possible link between depression and hypothyroidism in cognitive function alterations, using Wistar–Kyoto (WKY—an animal model of depression) rats and control Wistar rats under standard and thyroid hormone deficiency conditions (propylthiouracil administration—PTU). A weakening of memory processes in the WKY rats is shown behaviorally, and in the reduction of long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 hippocampal regions. PTU administration decreased LTP and increased basal excitatory transmission in the DG in Wistar rats. A decrease in short-term synaptic plasticity is shown by the paired-pulse ratio measurement, occurring during hypothyroidism in DG and CA1 in WKY rats. Differences between the strains may result from decreases in the p-CaMKII, p-AKT, and the level of acetylcholine, while in the case of the co-occurrence of depression and hypothyroidism, an increase in the p-ERK1-MAP seemed to be important. Obtained results show that thyroid hormones are less involved in the inhibition of glutamate release and/or excitability of the postsynaptic neurons in WKY rats, which may indicate a lower sensitivity of the hippocampus to the action of thyroid hormones in depression.
Collapse
|
9
|
Babur E, Canöz Ö, Tan B, Süer C, Dursun N. Effect of sodium selenite on synaptic plasticity and neurogenesis impaired by hypothyroidism. Int J Neurosci 2020; 132:662-672. [PMID: 33169646 DOI: 10.1080/00207454.2020.1835898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM OF THE STUDY We investigated protective effect of sodium selenite (Se) on hypothyroidism-induced impairments in, Morris water maze (MWM), long-term potentiation (LTP) and hippocampal neurogenesis male Wistar rats aged of 2 months. MATERIALS AND METHODS Hypothyroidism was induced by administration of propylthiouracil (Ptu, 1 mg/kg/d) solution to the rats from postnatal day 60 for 81 days with or without Se (0.5mg/kg/d). Neurogenesis was examined by Ki-67 immunohistochemical staining. Se values on plasma and hippocampus were measured with inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS Measurement of fT3 and fT4 levels confirmed that the fT3 levels, but not fT4, in Ptu-treated rats (5435.44±816.05 fg/ml, p < 0.05) has returned to control values (8721.66±2567.68 fg/ml) by Se treatment (8661.65±711.43 fg/ml). Analysis of learning performance in water escape learning task showed that Se supplementation disappeared memory deficit in Ptu-treated rats as shown by significantly decreased time spent in the target quadrant (33.7±0.24% in control group; 26.1±0.48% in Ptu-group, p < 0.05; 33.9±0.44 in Ptu+Se group), although there was no significant difference among groups in any measurement of learning performance on the last day. Considering LTP, Se supplementation improved the deficit in synaptic plasticity in Ptu-treated rats, as shown by significant increase in the excitatory postsynaptic potential slope (% 243±31 in control group; 172±49 in Ptu-group, p < 0.05; 222±65 in Ptu+Se group) without affecting of the impairment in somatic plasticity. Se supplementation did not improve the decrease in the number of progenitor cells in the subgranular layer (SGL) of dentate gyrus (DG) of Ptu treated rats. CONCLUSIONS These findings suggest that selenium supplementation in hypothyroid patients may improve learning and memory disorders with different physiological mechanisms.HighlightsSe increased serum fT3 levels and hippocampus Se levels in hypothyroid rats.Se attenuated impairment of population spike-LTP in hypothyroid ratsHypothyroidism disrupts neurogenesis process in the dentate gyrus of hippocampus.Se supplementation could not increase new born cells in hypothyroid rats.
Collapse
Affiliation(s)
- Ercan Babur
- Department of Physiology, Medical Faculty, Gaziosmanpasa University, Tokat, Turkey
| | - Özlem Canöz
- Department of Pathology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Nurcan Dursun
- Department of Physiology, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Cai QL, Peng DJ, Lin-Zhao, Chen JW, Yong-Li, Luo HL, Ou SY, Huang ML, Jiang YM. Impact of Lead Exposure on Thyroid Status and IQ Performance among School-age Children Living Nearby a Lead-Zinc Mine in China. Neurotoxicology 2020; 82:177-185. [PMID: 33115663 DOI: 10.1016/j.neuro.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/31/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Lead exposure is one of the most concerning public health problems worldwide, particularly among children. Yet the impact of chronic lead exposure on the thyroid status and related intelligence quotient performance among school-age children remained elusive. OBJECTIVE The aim of this study was to evaluate the influence of lead exposure on the thyroid hormones, amino acid neurotransmitters balances, and intelligence quotient (IQ) among school-age children living nearby a lead-zinc mining site. Other factors such as rice lead levels, mothers' smoking behavior, and diet intake were also investigated. METHODS A total of 255 children aged 7-12 years old were recruited in this study. Blood lead level (BLL), thyroid hormones including free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH), and amino acid neurotransmitters such as glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) were measured using graphite furnace atomic absorption spectroscopy (GFAAS), chemiluminescence immunoassay, high performance liquid chromatography (HPLC). Raven's standard progressive matrices (SPM) and the questionnaire were used to determine IQ and collect related influence factors. RESULTS The average BLL of children was 84.8 μg/L. The occurrence of lead intoxication (defined as the BLL ≥ 100 μg/L) was 31.8%. Serum TSH levels and IQ of lead-intoxicated children were significantly lower than those without lead toxicity. The GABA level of girls with the lead intoxication was higher than those with no lead-exposed group. Correlation analyses revealed that BLL were inversely associated with the serum TSH levels (R= -0.186, p < 0.05), but positively related with IQ grades (R = 0.147, p < 0.05). Moreover, BLL and Glu were inversely correlated with IQ. In addition, this study revealed four factors that may contribute to the incidence of lead intoxication among children, including the frequency of mother smoking (OR = 3.587, p < 0.05) and drinking un-boiled stagnant tap water (OR = 3.716, p < 0.05); eating fresh fruits and vegetables (OR = 0.323, p < 0.05) and soy products regularly (OR = 0.181, p < 0.05) may protect against lead intoxication. CONCLUSION Lead exposure affects the serum TSH, GABA levels and IQ of school-aged children. Developing good living habits, improving environment, increasing the intake of high-quality protein and fresh vegetable and fruit may improve the condition of lead intoxication.
Collapse
Affiliation(s)
- Qiu-Ling Cai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dong-Jie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lin-Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jing-Wen Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Public Health Office, Wuhan First Hospital, Hubei 430022, China
| | - Yong-Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Wanzhou District Health Committee, Chongqing 404000, China
| | - Hai-Lan Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Center for Disease Control and Prevention, Nanning 530021, Guangxi, China
| | - Shi-Yan Ou
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ming-Li Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
11
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Ou CY, He YH, Sun Y, Yang L, Shi WX, Li SJ. Effects of Sub-Acute Manganese Exposure on Thyroid Hormone and Glutamine (Gln)/Glutamate (Glu)-γ- Aminobutyric Acid (GABA) Cycle in Serum of Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122157. [PMID: 31216744 PMCID: PMC6616488 DOI: 10.3390/ijerph16122157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Excessive manganese (Mn) exposure may adversely affect the central nervous system, and cause an extrapyramidal disorder known as manganism. The glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle and thyroid hormone system may be involved in Mn-induced neurotoxicity. However, the effect of Mn on the Gln/Glu-GABA cycle in the serum has not been reported. Herein, the present study aimed to investigate the effects of sub-acute Mn exposure on the Gln/Glu-GABA cycle and thyroid hormones levels in the serum of rats, as well as their relationship. The results showed that sub-acute Mn exposure increased serum Mn levels with a correlation coefficient of 0.733. Furthermore, interruption of the Glu/Gln-GABA cycle in serum was found in Mn-exposed rats, as well as thyroid hormone disorder in the serum via increasing serum Glu levels, and decreasing serum Gln, GABA, triiodothyronine (T3) and thyroxine (T4) levels. Additionally, results of partial correlation showed that there was a close relationship between serum Mn levels and the detected indicators accompanied with a positive association between GABA and T3 levels, as well as Gln and T4 levels in the serum of Mn-exposed rats. Unexpectedly, there was no significant correlation between serum Glu and the serum T3 and T4 levels. In conclusion, the results demonstrated that both the Glu/Gln-GABA cycle and thyroid hormone system in the serum may play a potential role in Mn-induced neurotoxicity in rats. Thyroid hormone levels, T3 and T4, have a closer relationship with GABA and Gln levels, respectively, in the serum of rats.
Collapse
Affiliation(s)
- Chao-Yan Ou
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Yong-Hua He
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Yi Sun
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Lin Yang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Wen-Xiang Shi
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
13
|
O'Shaughnessy KL, Kosian PA, Ford JL, Oshiro WM, Degitz SJ, Gilbert ME. Developmental Thyroid Hormone Insufficiency Induces a Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study. Toxicol Sci 2019; 163:101-115. [PMID: 29385626 DOI: 10.1093/toxsci/kfy016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormones (THs) are essential for brain development, but few rodent models exist that link TH inefficiency to apical neurodevelopmental endpoints. We have previously described a structural anomaly, a heterotopia, in the brains of rats treated in utero with propylthiouracil (PTU). However, how the timing of an exposure relates to this birth defect is unknown. This study seeks to understand how various temporal treatments of the mother relates to TH insufficiency and adverse neurodevelopment of the offspring. Pregnant rats were exposed to PTU (0 or 3 ppm) through the drinking water from gestational day 6 until postnatal day (PN) 14. On PN2 a subset of pups was cross-fostered to a dam of the opposite treatment, to create 4 conditions: pups exposed to PTU prenatally, postnatally, during both periods, or not at all (control). Both PTU and TH concentrations were characterized in the mother and offspring over time, to capture the dynamics of a developmental xenobiotic exposure. Brains of offspring were examined for heterotopia presence and severity, and adult littermates were assessed for memory impairments. Heterotopia were observed under conditions of prenatal exposure, and its severity increased in animals in the most prolonged exposure group. This malformation was also permanent, but not sex biased. In contrast, behavioral impairments were limited to males, and only in animals exposed to PTU during both the gestational and postnatal periods. This suggests a distinct TH-dependent etiology for both phenotypes, and illustrates how timing of hypothyroxinemia can induce abnormal brain structure and function.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709.,Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37803
| | - Patricia A Kosian
- National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Jermaine L Ford
- Analytical Chemistry Core, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | | | - Sigmund J Degitz
- National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
14
|
Alkadhi KA. Neuroprotective Effects of Nicotine on Hippocampal Long-Term Potentiation in Brain Disorders. J Pharmacol Exp Ther 2018; 366:498-508. [PMID: 29914875 DOI: 10.1124/jpet.118.247841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/23/2018] [Indexed: 08/30/2023] Open
Abstract
Long-term potentiation (LTP) is commonly considered the cellular correlate of learning and memory. In learning and memory impairments, LTP is invariably diminished in the hippocampus, the brain region responsible for memory formation. LTP is measured electrophysiologically in various areas of the hippocampus. Two mechanistically distinct phases of LTP have been identified: early phase LTP, related to short-term memory; and late-phase LTP, related to long-term memory. These two forms can be severely reduced in a variety of conditions but can be rescued by treatment with nicotine. This report reviews the literature on the beneficial effect of nicotine on LTP in conditions that compromise learning and memory.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Professor of Pharmacology, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
15
|
Salazar P, Cisternas P, Martinez M, Inestrosa NC. Hypothyroidism and Cognitive Disorders during Development and Adulthood: Implications in the Central Nervous System. Mol Neurobiol 2018; 56:2952-2963. [PMID: 30073507 DOI: 10.1007/s12035-018-1270-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormones (THs) play a critical function in fundamental signaling of the body regulating process such as metabolism of glucose and lipids, cell maturation and proliferation, and neurogenesis, to name just a few. THs trigger biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). For years, a close relationship between the THs hormones and the central nervous system (CNS) has been described, not only for neuronal cells but also for glial development and differentiation. A deficit in thyroid hormones triiodothyronine (T3) and thyroxine (T4) is observed in the hypothyroid condition, generated by a iodine deficiency or an autoimmune response of the body. In the hypothyroid condition, several cellular deregulation and alterations have been described in dendrite spine morphology, cell migration and proliferation, and impaired synaptic transmission in the hippocampus, among others. The aim of this review is to describe the role of the thyroid hormones with focus in brain function and neurodegenerative disorders.
Collapse
Affiliation(s)
- Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,CARE UC Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Bernardo O'Higgins 340, P. O. Box 114, -D, Santiago, Chile.
| |
Collapse
|
16
|
Amano I, Takatsuru Y, Khairinisa MA, Kokubo M, Haijima A, Koibuchi N. Effects of Mild Perinatal Hypothyroidism on Cognitive Function of Adult Male Offspring. Endocrinology 2018. [PMID: 29522169 DOI: 10.1210/en.2017-03125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mild perinatal hypothyroidism may result from inadequate iodine intake, insufficient treatment of congenital hypothyroidism, or exposure to endocrine-disrupting chemicals. Because thyroid hormones are critical for brain development, severe hypothyroidism that is untreated in infancy causes irreversible cretinism. Milder hypothyroidism may also affect cognitive development; however, the effects of mild and/or moderate hypothyroidism on brain development are not fully understood. In this study, we examined the behavior of adult male mice rendered mildly hypothyroid during the perinatal period using low-dose propylthiouracil (PTU). PTU was administered through drinking water (5 or 50 ppm) from gestational day 14 to postnatal day 21. Cognitive performance, studied by an object in-location test (OLT), was impaired in PTU-treated mice at postnatal week 8. These results suggest that, although the hypothyroidism was mild, it partially impaired cognitive function. We next measured the concentration of neurotransmitters (glutamate, γ-aminobutyric acid, and glycine) in the hippocampus using in vivo microdialysis during OLT. The concentrations of neurotransmitters, particularly glutamate and glycine, decreased in PTU-treated mice. The expression levels of N-methyl-d-aspartate receptor subunits, which are profound regulators of glutamate neurotransmission and memory function, also were decreased in PTU-treated mice. These data indicate that mild perinatal hypothyroidism causes cognitive disorders in adult offspring. Such disorders may be partially induced secondary to decreased concentrations of neurotransmitters and receptor expression.
Collapse
Affiliation(s)
- Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Miski Aghnia Khairinisa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Michifumi Kokubo
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
17
|
Baghcheghi Y, Salmani H, Beheshti F, Hosseini M. Contribution of Brain Tissue Oxidative Damage in Hypothyroidism-associated Learning and Memory Impairments. Adv Biomed Res 2017; 6:59. [PMID: 28584813 PMCID: PMC5450450 DOI: 10.4103/2277-9175.206699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Salazar P, Cisternas P, Codocedo JF, Inestrosa NC. Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:870-883. [PMID: 28088629 DOI: 10.1016/j.bbadis.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 01/27/2023]
Abstract
Thyroid hormones are vital in the control of multiple body functions, including the correct performance of the brain. Multiple diseases are associated with thyroid gland functioning, including hypothyroidism. To date, little is known regarding the effects of the establishment of this condition at a young age on brain function. Here, we evaluated the effect of hypothyroidism in an early postnatal stage in cognitive abilities with focus on the hippocampus. In our model, hypothyroidism was induced in young rats at 21days of age using 0.05% 6-propyl-2-thiouracil (PTU) for 4weeks reaching significantly lower levels of fT4 (control: 1.337ng/dL±0.115, PTU: 0.050ng/dL±0.001). Following the induction of hypothyroidism, several cognitive tasks were assessed to investigate the effects of hypothyroidism on cognition performance. We determined that hypothyroidism triggers a significant dysfunction in learning and memory processes observed in the Morris Water Maze were the latency times were higher in PTU rats (controls: 37s; PTU: 57s). The cognitive impairment was correlated with a reduction in hippocampal plasticity with respect to both long-term potentiation (LTP) (control: 1.45, PTU: 1.00) and depression (LTD) (control: 0.71, PTU: 1.01). Furthermore, a decrease in the rate of glucose utilization (control: 223nmol∗mg of protein, PTU:148nmol∗mg of protein) was observed, along with an increase in oxidative stress and a decrease in MAP2 marker in the hippocampus. Our findings suggest that the induction of hypothyroidism in a young rat model alters numerous functions at the level of the hippocampus.
Collapse
Affiliation(s)
- Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Universidad de Atacama, Facultad de Ciencias Naturales, Departamento de Química y Biología, Copayapu 485, Copiapó, Chile
| | - Juan Francisco Codocedo
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
19
|
Günbey E, Karlı R, Gökosmanoğlu F, Düzgün B, Ayhan E, Atmaca H, Ünal R. Evaluation of olfactory function in adults with primary hypothyroidism. Int Forum Allergy Rhinol 2015; 5:919-22. [DOI: 10.1002/alr.21565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/26/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Emre Günbey
- Department of Otorhinolaryngology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| | - Rıfat Karlı
- Department of Otorhinolaryngology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| | - Feyzi Gökosmanoğlu
- Department of Endocrinology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| | - Berkan Düzgün
- Department of Otorhinolaryngology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| | - Emre Ayhan
- Department of Otorhinolaryngology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| | - Hulusi Atmaca
- Department of Endocrinology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| | - Recep Ünal
- Department of Otorhinolaryngology; Ondokuz Mayıs University School of Medicine; Samsun Turkey
| |
Collapse
|
20
|
Bastian TW, Prohaska JR, Georgieff MK, Anderson GW. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression. Endocrinology 2014; 155:1157-67. [PMID: 24424046 PMCID: PMC3929725 DOI: 10.1210/en.2013-1571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pharmacy Practice and Pharmaceutical Sciences (T.W.B., G.W.A.), College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota 55812; Department of Biomedical Sciences (J.R.P.), University of Minnesota Medical School Duluth, Duluth, Minnesota 55812; Department of Pediatrics and Center for Neurobehavioral Development (M.K.G.), School of Medicine, University of Minnesota, Minneapolis, Minnesota 55454
| | | | | | | |
Collapse
|
21
|
Thomas MG, Covington JA, Wall MJ. A chamber for the perfusion of in vitro tissue with multiple solutions. J Neurophysiol 2013; 110:269-77. [PMID: 23576703 DOI: 10.1152/jn.01039.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There are currently no practical systems that allow extended regions (>5 mm(2)) of a tissue slice in vitro to be exposed, in isolation, to changes in ionic conditions or to pharmacological manipulation. Previous work has only achieved this at the expense of access to the tissue for recording electrodes. Here, we present a chamber that allows a tissue slice to be maintained in multiple solutions, at physiological temperatures, and preserves the ability to record from the slice. We demonstrate the effectiveness of the tissue bath with respect to minimizing the mixing of the solutions, maintaining the viability of the tissue, and preserving the ability to record from the slice simultaneously.
Collapse
Affiliation(s)
- Matthew G Thomas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | | | | |
Collapse
|
22
|
Gilbert ME, Hedge JM, Valentín-Blasini L, Blount BC, Kannan K, Tietge J, Zoeller RT, Crofton KM, Jarrett JM, Fisher JW. An Animal Model of Marginal Iodine Deficiency During Development: The Thyroid Axis and Neurodevelopmental Outcome*. Toxicol Sci 2013; 132:177-95. [DOI: 10.1093/toxsci/kfs335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Gilbert ME, Lasley SM. Developmental thyroid hormone insufficiency and brain development: a role for brain-derived neurotrophic factor (BDNF)? Neuroscience 2012. [PMID: 23201250 DOI: 10.1016/j.neuroscience.2012.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (TH) are essential for normal brain development. Even modest degrees of TH disruption experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular functions, and in particular, brain-derived neurotrophic factor (BDNF) has a well documented role in development and function of the nervous system. A number of laboratories have reported the effects of TH administration or severe deprivation on neurotrophin expression in brain. This review provides an overview and update of recent developments in the thyroid field as they relate to the nervous system. Secondly, we describe an animal model of low level TH insufficiency that is more relevant for studying the neurological consequences associated with the modest TH perturbations of subclinical hypothyroidism, or that would be anticipated from exposure to environmental contaminants with a mode-of-action that involves the thyroid. Finally, we review the available in vivo literature on TH-mediated alterations in neurotrophins, particularly BDNF, and discuss their possible contribution to brain impairments associated with TH insufficiency. The observations of altered BDNF protein and gene expression have varied as a function of hypothyroid model, age, and brain region assessed. Only a handful of studies have investigated the relationship of neurotrophins and TH using models of TH deprivation that are not severe, and dose-response information is sparse. Differences in the models used, species, doses, regions assessed, age at assessment, and method employed make it difficult to reach a consensus. Based on the available literature, the case for a direct role for BDNF in thyroid-mediated effects in the brain is not compelling. We conclude that delineation of the potential role of neurotrophins in TH-mediated neuronal development may be more fruitful by examining additional neurotrophins (e.g., nerve growth factor), moderate degrees of TH insufficiency, and younger ages. We further suggest that investigation of BDNF invoked by synaptic activation (i.e., plasticity, enrichment, trauma) may serve to elucidate a role of thyroid hormone in BDNF-regulated synaptic function.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division, Neurotoxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | | |
Collapse
|
24
|
Ge JF, Peng L, Hu CM, Wu TN. Impaired learning and memory performance in a subclinical hypothyroidism rat model induced by hemi-thyroid electrocauterisation. J Neuroendocrinol 2012; 24:953-61. [PMID: 22324892 DOI: 10.1111/j.1365-2826.2012.02297.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It is well known that clinical hypothyroidism (CH) can induce cognitive deficits, and the decision to start treatment for CH with thyroxine is usually straightforward. However, the relationship of cognition dysfunction with subclinical hypothyroidism (SCH) is inconsistent, and the decision concerning the need to treat SCH is controversial. In the present study, we induced a SCH rat model by hemi-thyroid electrocauterisation; then employed a serial of behavioural tests, including a beam balance, open field task and Morris water maze (MWM), to investigate the behaviour performance of SCH rats; and finally explored the protein expression of phosphorylated extracellular signal-regulated kinase (ERK)1/2 in the hippocampus by western blotting. The results demonstrated that hemi-thyroid electrocauterised rats had an elevated plasma thyrotrophin-stimulating hormone (TSH) level, with normal free thyroxine (fT4) and triiodothyronine (T3) concentrations, which defines SCH in humans. If rat SCH is diagnosed according to measurements of both plasma TSH higher than 97.5 percentile for the sham group and fT4 in the range 2.5-97.5 percentile for the sham group, the success rate of SCH modelling was 66.6%. SCH decreased exploratory behaviour but did not affect motor function in rats, showing a negative correlation of exploratory behaviour with plasma TSH concentration. Moreover, SCH rats displayed an impairment of learning and memory ability in the MWM task, with a longer escape latency in the acquisition phase and a shorter duration in the target quadrant in the test phase compared to that of sham rats. The mechanism for this might be related to the increased plasma TSH concentration, the decreased hippocampal T3 level and the enhanced expression of phosphorylated ERK1/2 in the hippocampus. The results of the present study, together with the results obtained in other studies, suggest that treatment is necessary for SCH.
Collapse
Affiliation(s)
- J-F Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.
| | | | | | | |
Collapse
|
25
|
Jahagirdar V, McNay EC. Thyroid hormone's role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes. Metab Brain Dis 2012; 27:101-11. [PMID: 22437199 PMCID: PMC3348399 DOI: 10.1007/s11011-012-9291-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 12/25/2022]
Abstract
Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH's potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and reaches the conclusion that TH may modulate memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism.
Collapse
Affiliation(s)
- V Jahagirdar
- Office of Outcomes Assessment and Institutional Research, Excelsior College, Albany, NY 12203, USA.
| | | |
Collapse
|
26
|
Cao L, Wang F, Yang QG, Jiang W, Wang C, Chen YP, Chen GH. Reduced thyroid hormones with increased hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment during aging. Behav Brain Res 2012; 229:131-7. [PMID: 22261019 DOI: 10.1016/j.bbr.2012.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/31/2011] [Accepted: 01/05/2012] [Indexed: 11/27/2022]
Abstract
The mechanism underlying the decline of age-related learning and memory remains unclear. Brain-region-specific changes of synaptic proteins and decreased thyroid hormones (THs) have been implied involving this decline. During normal aging, however, the relationships among synaptic proteins, THs and abilities of learning and memory remain to be elucidated. In this study, the age-related spatial learning and memory ability of 41 Kunming mice (KM) (14 mice aged 6 months, 13 mice aged 11 months, 14 mice aged 22 months) was measured with radial six-arm water maze. The levels of SNAP-25 and Munc18-1 in brain regions were semi-quantified by Western blotting and the serum THs were detected by radioimmunoassay. Our results showed the old Kunming mice had marked impairment of spatial learning and memory, with decreased serum free triiodothyronine (FT3) and increased SNAP-25 and Munc18-1 in dorsal hippocampus (DH), ventral hippocampus (VH) and frontal lobe (F). The Pearson's correlation test showed the impairment of spatial learning ability positively correlated with SNAP-25 in DH and Munc18-1 in DH and VH. While, the levels of SNAP-25 (DH, VH and F) and Munc18-1 (DH) negatively correlated with the serum FT3 level, and the spatial memory decline marginal negatively correlate with serum THs. These results suggested that increased hippocampal SNAP-25 and Munc18-1 which seemingly result from decreased serum THs might involve the age-related impairment of spatial learning and memory.
Collapse
Affiliation(s)
- Lei Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Caron MA, Charette SJ, Maltais F, Debigaré R. Variability of protein level and phosphorylation status caused by biopsy protocol design in human skeletal muscle analyses. BMC Res Notes 2011; 4:488. [PMID: 22075211 PMCID: PMC3225408 DOI: 10.1186/1756-0500-4-488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
Background Bergström needle biopsy is widely used to sample skeletal muscle in order to study cell signaling directly in human tissue. Consequences of the biopsy protocol design on muscle protein quantity and quality remain unclear. The aim of the present study was to assess the impact of different events surrounding biopsy protocol on the stability of the Western blot signal of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), Akt, glycogen synthase kinase-3β (GSK-3β), muscle RING finger protein 1 (MuRF1) and p70 S6 kinase (p70 S6K). Six healthy subjects underwent four biopsies of the vastus lateralis, distributed into two distinct visits spaced by 48 hrs. At visit 1, a basal biopsy in the right leg was performed in the morning (R1) followed by a second in the left leg in the afternoon (AF). At visit 2, a second basal biopsy (R2) was collected from the right leg. Low intensity mobilization (3 × 20 right leg extensions) was performed and a final biopsy (Mob) was collected using the same incision site as R2. Results Akt and p70 S6K phosphorylation levels were increased by 83% when AF biopsy was compared to R1. Mob condition induced important phosphorylation of p70 S6K when compared to R2. Comparison of R1 and R2 biopsies revealed a relative stability of the signal for both total and phosphorylated proteins. Conclusions This study highlights the importance to standardize muscle biopsy protocols in order to minimize the method-induced variation when analyzing Western blot signals.
Collapse
Affiliation(s)
- Marc-André Caron
- Centre de recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|
28
|
Raine JC, Coffin AB, Hawryshyn CW. In ovo thyroxine exposure alters later UVS cone loss in juvenile rainbow trout. ACTA ACUST UNITED AC 2011; 214:2248-57. [PMID: 21653819 DOI: 10.1242/jeb.055566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thyroid hormones (THs) play a vital role in vertebrate neural development, and, together with the beta isoform of the thyroid hormone receptor (TRβ), the development and differentiation of cone photoreceptors in the vertebrate retina. Rainbow trout undergo a natural process of cone cell degeneration during development and this change in photoreceptor distribution is regulated by thyroxine (T4; a thyroid hormone). In an effort to further understand the role of T4 in photoreceptor ontogeny and later developmental changes in photoreceptor subtype distribution, the influence of enhanced in ovo T4 content on the onset of opsin expression and cone development was examined. Juvenile trout reared from the initial in ovo-treated embryos were challenged with exogenous T4 at the parr stage of development to determine if altered embryonic exposure to yolk THs would affect later T4-induced short-wavelength-sensitive (SWS1) opsin transcript downregulation and ultraviolet-sensitive (UVS) cone loss. In ovo TH manipulation led to upregulation of both SWS1 and long-wavelength-sensitive (LWS) opsin transcripts in the pre-hatch rainbow trout retina and to changes in the relative expression of TRβ. After 7 days of exposure to T4, juveniles that were also treated with T4 in ovo had greatly reduced SWS1 expression levels and premature loss of UVS cones relative to T4-treated juveniles raised from untreated eggs. These results suggest that changes in egg TH levels can have significant consequences much later in development, particularly in the retina.
Collapse
Affiliation(s)
- Jason C Raine
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | |
Collapse
|
29
|
Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol 2011; 127:108-17. [PMID: 21112393 PMCID: PMC6628916 DOI: 10.1016/j.jsbmb.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Concerning temporal trends in human reproductive health has prompted concern about the role of environmentally mediated risk factors. The population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products, subsequently multiple chemicals are found human populations around the globe. Recent reviews find that endocrine disrupting chemicals (EDCs) can adversely affect reproductive and developmental health. However, there are still many knowledge gaps. This paper reviews some of the key scientific concepts relevant to integrating information from human epidemiologic and model organisms to understand the relationship between EDC exposure and adverse human health effects. Additionally, areas of new insights which influence the interpretation of the science are briefly reviewed, including: enhanced understanding of toxicity pathways; importance of timing of exposure; contribution of multiple chemical exposures; and low dose effects. Two cases are presented, thyroid disrupting chemicals and anti-androgens chemicals, which illustrate how our knowledge of the relationship between EDCs and adverse human health effects is strengthened and data gaps reduced when we integrate findings from animal and human studies.
Collapse
Affiliation(s)
- Tracey J Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, Oakland, CA 94612, United States.
| |
Collapse
|
30
|
Gilbert ME. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function. Toxicol Sci 2011; 124:432-45. [DOI: 10.1093/toxsci/kfr244] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
31
|
Levothyroxine rescues the lead-induced hypothyroidism and impairment of long-term potentiation in hippocampal CA1 region of the developmental rats. Toxicol Appl Pharmacol 2011; 256:191-7. [PMID: 21871911 DOI: 10.1016/j.taap.2011.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 02/03/2023]
Abstract
Lead (Pb) exposure during development has been associated with impaired long-term potentiation (LTP). Hypothyroidism happening upon subjects with occupational exposure to Pb is suggestive of an adverse effect of Pb on thyroid homeostasis, leading to the hypothesis that Pb exposure may alter thyroid hormone homeostasis. Hippocampus is one of the targets of Pb exposure, and is sensitive to and dependent on thyroid hormones, leading us to explore whether levothyroxine (L-T(4)) administration could alter the thyroid disequilibrium and impairment of LTP in rat hippocampus caused by Pb exposure. Our results show that Pb exposure caused a decrease in triiodothyronine (T(3)) and tetraiodothyronine (T(4)) levels accompanied by a dramatic decrease of TSH and application of L-T(4) restored these changes to about control levels. Hippocampal and blood Pb concentration were significantly reduced following L-T(4) treatment. L-T(4) treatment rescued the impairment of LTP induced by the Pb exposure. These results suggest that Pb exposure may lead to thyroid dysfunction and induce hypothyroidism and provide a direct electrophysiological proof that L-T(4) relieves chronic Pb exposure-induced impairment of synaptic plasticity.
Collapse
|
32
|
Lasley SM, Gilbert ME. Developmental thyroid hormone insufficiency reduces expression of brain-derived neurotrophic factor (BDNF) in adults but not in neonates. Neurotoxicol Teratol 2011; 33:464-72. [PMID: 21530650 DOI: 10.1016/j.ntt.2011.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 01/21/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expression of BDNF in a number of brain regions. The present study examined the impact of modest levels of developmental thyroid hormone insufficiency on BDNF protein expression in the hippocampus, cortex and cerebellum in the neonatal and adult offspring of rat dams treated throughout pregnancy and lactation. Graded levels of hormone insufficiency were induced by adding propylthiouracil (PTU, 0, 1, 2, 3 and 10 ppm) to the drinking water of pregnant dams from early gestation (gestational day 6) until weaning of the pups. Pups were sacrificed on postnatal days (PN) 14 and 21, and -PN100, and trunk blood collected for thyroid hormone analysis. Hippocampus, cortex, and cerebellum were separated from dissected brains and assessed for BDNF protein. Dose-dependent reductions in serum hormones in dams and pups were produced by PTU. Consistent with previous findings, age and regional differences in BDNF concentrations were observed. However, no differences in BDNF expression were detected in the preweanling animals as a function of PTU exposure; yet dose-dependent alterations emerged in adulthood despite the return of thyroid hormone levels to control values. Males were more affected by PTU than females, BDNF levels in hippocampus and cortex were altered but not those in cerebellum, and biphasic dose-response functions were detected in both sexes. These findings indicate that BDNF may mediate some of the adverse effects accompanying developmental thyroid hormone insufficiency, and reflect the potential for delayed impact of modest reductions in thyroid hormones during critical periods of brain development on a protein important for normal synaptic function.
Collapse
Affiliation(s)
- S M Lasley
- Dept. of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | | |
Collapse
|
33
|
Wang Y, Hou Y, Dong J, Xu H, Gong J, Chen J. Developmental iodine deficiency and hypothyroidism reduce phosphorylation of calcium/calmodulin-dependent kinase II in the rat entorhinal cortex. Biol Trace Elem Res 2010; 137:353-63. [PMID: 20054663 DOI: 10.1007/s12011-009-8591-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Iodine is essential for the synthesis of triiodothyronine (T₃) and thyroxine (T₄). Iodine deficiency leads to inadequate thyroid hormone. Hypothyroidism induced by iodine deficiency during gestation and postnatal period leads to cognitive deficits in learning and memory. However, the mechanism underlying these deficits is unclear. Calcium-dependent calmodulin kinase II (CaMKII) known as a potential memory molecule regulates important neuronal functions including learning and memory. Recent studies have shown that hypothyroidism alters phosphorylation of CaMKII in hippocampus or even in sympathetic ganglia of rats. Though the entorhinal cortex (EC) is an important functional structure within the neuronal network responsible for learning and memory, little is known about the effect of hypothyroidism on phosphorylation of CaMKII in the EC. Here, we report that iodine deficiency and propylthiouracil treatment through gestation and lactation reduce phosphorylation of CaMKII in the EC of pups. The increase of calcineurin, as well as reduction of neurogranin and calmodulin, may account for the reduced phosphorylation of CaMKII induced by developmental iodine deficiency and hypothyroidism. These findings in the EC may contribute to understanding the mechanisms that underlie impairment of learning and memory induced by developmental iodine deficiency and hypothyroidism.
Collapse
Affiliation(s)
- Yi Wang
- Department of Occupational and Environmental Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Koromilas C, Liapi C, Schulpis KH, Kalafatakis K, Zarros A, Tsakiris S. Structural and functional alterations in the hippocampus due to hypothyroidism. Metab Brain Dis 2010; 25:339-54. [PMID: 20886273 DOI: 10.1007/s11011-010-9208-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/02/2010] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) exert a broad spectrum of effects on the central nervous system (CNS). Hypothyroidism, especially during CNS development, can lead to structural and functional changes (mostly resulting in mental retardation). The hippocampus is considered as one of the most important CNS structures, while the investigation and understanding of its direct and indirect interactions with the THs could provide crucial information on the neurobiological basis of the (frequently-faced in clinical practice) hypothyroidism-induced mental retardation and neurobehavioral dysfunction. THs-deficiency during the fetal and/or the neonatal period produces deleterious effects for neural growth and development (such as reduced synaptic connectivity, delayed myelination, disturbed neuronal migration, deranged axonal projections, decreased synaptogenesis and alterations in neurotransmitters' levels). On the other hand, the adult-onset thyroid dysfunction is usually associated with neurological and behavioural abnormalities. In both cases, genomic and proteomic changes seem to occur. The aim of this review is to provide an up-to-date synopsis of the available knowledge regarding the aforementioned alterations that take place in the hippocampus due to fetal-, neonatal- or adult-onset hypothyroidism.
Collapse
Affiliation(s)
- Christos Koromilas
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
35
|
Bastian TW, Prohaska JR, Georgieff MK, Anderson GW. Perinatal iron and copper deficiencies alter neonatal rat circulating and brain thyroid hormone concentrations. Endocrinology 2010; 151:4055-65. [PMID: 20573724 PMCID: PMC2940517 DOI: 10.1210/en.2010-0252] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Copper (Cu), iron (Fe), and iodine/thyroid hormone (TH) deficiencies lead to similar defects in late brain development, suggesting that these micronutrient deficiencies share a common mechanism contributing to the observed derangements. Previous studies in rodents (postweanling and adult) and humans (adolescent and adult) indicate that Cu and Fe deficiencies affect the hypothalamic-pituitary-thyroid axis, leading to altered TH status. Importantly, however, relationships between Fe and Cu deficiencies and thyroidal status have not been assessed in the most vulnerable population, the developing fetus/neonate. We hypothesized that Cu and Fe deficiencies reduce circulating and brain TH levels during development, contributing to the defects in brain development associated with these deficiencies. To test this hypothesis, pregnant rat dams were rendered Cu deficient (CuD), FeD, or TH deficient from early gestation through weaning. Serum thyroxine (T(4)) and triiodothyronine (T(3)), and brain T(3) levels, were subsequently measured in postnatal d 12 (P12) pups. Cu deficiency reduced serum total T(3) by 48%, serum total T(4) by 21%, and whole-brain T(3) by 10% at P12. Fe deficiency reduced serum total T(3) by 43%, serum total T(4) by 67%, and whole-brain T(3) by 25% at P12. Brain mRNA analysis revealed that expression of several TH-responsive genes were altered in CuD or FeD neonates, suggesting that reduced TH concentrations were sensed by the FeD and CuD neonatal brain. These results indicate that at least some of the brain defects associated with neonatal Fe and Cu deficiencies are mediated through reductions in circulating and brain TH levels.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | | | | | | |
Collapse
|
36
|
Dong J, Liu W, Wang Y, Xi Q, Chen J. Hypothyroidism following developmental iodine deficiency reduces hippocampal neurogranin, CaMK II and calmodulin and elevates calcineurin in lactational rats. Int J Dev Neurosci 2010; 28:589-96. [DOI: 10.1016/j.ijdevneu.2010.07.230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/26/2010] [Accepted: 07/14/2010] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental HealthSchool of Public HealthChina Medical UniversityShenyangPR China
| | - Wanyang Liu
- Department of Occupational and Environmental HealthSchool of Public HealthChina Medical UniversityShenyangPR China
| | - Yi Wang
- Department of Occupational and Environmental HealthSchool of Public HealthChina Medical UniversityShenyangPR China
| | - Qi Xi
- Department of Occupational and Environmental HealthSchool of Public HealthChina Medical UniversityShenyangPR China
- Department of PhysiologyThe University of Tennessee Health Science CenterRoom 305, Nash Building 894 Union AvenueMemphisTN38163United States
| | - Jie Chen
- Department of Occupational and Environmental HealthSchool of Public HealthChina Medical UniversityShenyangPR China
| |
Collapse
|
37
|
Saegusa Y, Woo GH, Fujimoto H, Kemmochi S, Shimamoto K, Hirose M, Mitsumori K, Nishikawa A, Shibutani M. Sustained production of Reelin-expressing interneurons in the hippocampal dentate hilus after developmental exposure to anti-thyroid agents in rats. Reprod Toxicol 2010; 29:407-14. [DOI: 10.1016/j.reprotox.2010.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/23/2010] [Accepted: 03/21/2010] [Indexed: 01/02/2023]
|
38
|
Gong J, Liu W, Dong J, Wang Y, Xu H, Wei W, Zhong J, Xi Q, Chen J. Developmental iodine deficiency and hypothyroidism impair neural development in rat hippocampus: involvement of doublecortin and NCAM-180. BMC Neurosci 2010; 11:50. [PMID: 20412599 PMCID: PMC2876162 DOI: 10.1186/1471-2202-11-50] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental iodine deficiency results in inadequate thyroid hormone (TH), which damages the hippocampus. Here, we explored the roles of hippocampal doublecortin and neural cell adhesion molecule (NCAM)-180 in developmental iodine deficiency and hypothyroidism. METHODS Two developmental rat models were established with either an iodine-deficient diet, or propylthiouracil (PTU)-adulterated water (5 ppm or 15 ppm) to impair thyroid function, in pregnant rats from gestational day 6 until postnatal day (PN) 28. Silver-stained neurons and protein levels of doublecortin and NCAM-180 in several hippocampal subregions were assessed on PN14, PN21, PN28, and PN42. RESULTS The results show that nerve fibers in iodine-deficient and 15 ppm PTU-treated rats were injured on PN28 and PN42. Downregulation of doublecortin and upregulation of NCAM-180 were observed in iodine-deficient and 15 ppm PTU-treated rats from PN14 on. These alterations were irreversible by the restoration of serum TH concentrations on PN42. CONCLUSION Developmental iodine deficiency and hypothyroidism impair the expression of doublecortin and NCAM-180, leading to nerve fiber malfunction and thus impairments in hippocampal development.
Collapse
Affiliation(s)
- Jian Gong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gong J, Dong J, Wang Y, Xu H, Wei W, Zhong J, Liu W, Xi Q, Chen J. Developmental iodine deficiency and hypothyroidism impair neural development, up-regulate caveolin-1 and down-regulate synaptophysin in rat hippocampus. J Neuroendocrinol 2010; 22:129-39. [PMID: 20025630 DOI: 10.1111/j.1365-2826.2009.01943.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developmental iodine deficiency leads to inadequate thyroid hormone, which damages the hippocampus. In the present study, we implicate hippocampal caveolin-1 and synaptophysin in developmental iodine deficiency and hypothyroidism. Two developmental rat models were established: pregnant rats were administered either an iodine-deficient diet or propylthiouracil (PTU)-adulterated (5 p.p.m. or 15 p.p.m.) drinking water from gestational day 6 until postnatal day (PN) 28. Nissl staining and the levels of caveolin-1 and synaptophysin in several hippocampal subregions were assessed on PN14, PN21, PN28 and PN42. The results obtained show that surviving cells in the iodine-deficient and PTU-treated rats were lower than in controls. Up-regulation of caveolin-1 and down-regulation of synaptophysin were observed in the iodine-deficient and PTU-treated rats. Our findings implicate decreases in the number of surviving cells and alterations in the levels of caveolin-1 and synaptophysin in the impairments in neural development induced by developmental iodine deficiency and hypothyroidism.
Collapse
Affiliation(s)
- J Gong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hosseini M, Dastghaib SS, Rafatpanah H, Hadjzadeh MAR, Nahrevanian H, Farrokhi I. Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo) 2010; 65:1175-81. [PMID: 21243293 PMCID: PMC2999716 DOI: 10.1590/s1807-59322010001100021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 08/23/2010] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Severe cognitive impairment follows thyroid hormone deficiency during the neonatal period. The role of nitric oxide (NO) in learning and memory has been widely investigated. METHODS This study aimed to investigate the effect of hypothyroidism during neonatal and juvenile periods on NO metabolites in the hippocampi of rats and on learning and memory. Animals were divided into two groups and treated for 60 days from the first day of lactation. The control group received regular water, whereas animals in a separate group were given water supplemented with 0.03% methimazole to induce hypothyroidism. Male offspring were selected and tested in the Morris water maze. Samples of blood were collected to measure the metabolites of NO, NO2, NO3 and thyroxine. The animals were then sacrificed, and their hippocampi were removed to measure the tissue concentrations of NO2 and NO3. DISCUSSION Compared to the control group's offspring, serum thyroxine levels in the methimazole group's offspring were significantly lower (P<0.01). In addition, the swim distance and time latency were significantly higher in the methimazole group (P<0.001), and the time spent by this group in the target quadrant (Q1) during the probe trial was significantly lower (P<0.001). There was no significant difference in the plasma levels of NO metabolites between the two groups; however, significantly higher NO metabolite levels in the hippocampi of the methimazole group were observed compared to controls (P<0.05). CONCLUSION These results suggest that the increased NO level in the hippocampus may play a role in the learning and memory deficits observed in childhood hypothyroidism; however, the precise underlying mechanism(s) remains to be elucidated.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | |
Collapse
|
41
|
Dong J, Liu W, Wang Y, Hou Y, Xi Q, Chen J. Developmental iodine deficiency resulting in hypothyroidism reduces hippocampal ERK1/2 and CREB in lactational and adolescent rats. BMC Neurosci 2009; 10:149. [PMID: 20021662 PMCID: PMC2804698 DOI: 10.1186/1471-2202-10-149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background Developmental iodine deficiency (ID) leads to inadequate thyroid hormone that impairs learning and memory with an unclear mechanism. Here, we show that hippocampal extracellular signal-regulated kinase (ERK1/2) and cAMP response element-binding protein (CREB) are implicated in the impaired learning and memory in lactational and adolescent rat hippocampus following developmental ID and hypothyroidism. Methods Three developmental rat models were created by administrating dam rats with either iodine-deficient diet or propylthiouracil (PTU, 5 ppm or 15 ppm)-added drinking water from gestational day (GD) 6 till postnatal day (PN) 28. Then, the total and phorsporylated ERK1/2 and total and phorsporylated CREB in the hippocampus were detected with western blot on PN14, PN21, PN28 and PN42. Results The iodine-deficient and hypothyroid pups showed lower serum FT3 and FT4 levels, smaller body size, and delayed eyes opening. The mean number of surviving cells in the hippocampus of the iodine-deficient and 15 ppm PTU-treated rats was significantly reduced compared to controls (P < 0.05). Iodine-deficient and 15 ppm PTU-treatment groups demonstrated significantly lower level of total and phosphorylated ERK1/2 and CREB than the controls on PN14, PN21 and PN28 (P < 0.05, respectively). The reduction of ERK1/2 and CREB was not reversible with the restoration of serum thyroid hormone concentrations on PN42. Conclusions Developmental ID and hypothyroidism down-regulate hippocampal ERK1/2 and CREB in lactational and adolescent rats.
Collapse
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, PR China.
| | | | | | | | | | | |
Collapse
|
42
|
Developmental Iodine Deficiency and Hypothyroidism Impair Spatial Memory in Adolescent Rat Hippocampus: Involvement of CaMKII, Calmodulin and Calcineurin. Neurotox Res 2009; 19:81-93. [DOI: 10.1007/s12640-009-9142-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/15/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
|
43
|
Caria MA, Dratman MB, Kow LM, Mameli O, Pavlides C. Thyroid hormone action: nongenomic modulation of neuronal excitability in the hippocampus. J Neuroendocrinol 2009; 21:98-107. [PMID: 19076268 DOI: 10.1111/j.1365-2826.2008.01813.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Years of effort have failed to establish a generally-accepted mechanism of thyroid hormone (TH) action in the mature brain. Recently, both morphological and pharmacological evidence have supported a direct neuroactive role for the hormone and its triiodinated metabolites. However, no direct physiological validation has been available. We now describe electrophysiological studies in vivo in which we observed that local thyroxine (T4) administration promptly inhibited field excitatory postsynaptic potentials recorded in the dentate gyrus (DG) with stimulation of the medial perforant pathway, a result that was found to be especially pronounced in hypothyroid rats. In separate in vitro experiments, we observed more subtle but statistically significant responses of hippocampal slices to treatment with the hormone. The results demonstrate that baseline firing rates of CA1 pyramidal cells were modestly reduced by pulse-perfusion with T4. By contrast, administration of triiodothyronine (T3) was often noted to have modest enhancing effects on CA1 cell firing rates in hippocampal slices from euthyroid animals. Moreover, and more reliably, robust firing rate increases induced by norepinephrine were amplified when preceded by treatment with T3, whereas they were diminished by pretreatment with T4. These studies provide the first direct evidence for functional, nongenomic actions of TH leading to rapid changes in neuronal excitability in adult rat DG studied in vivo and highlight the opposing effects of T4 and T3 on norepinephrine-induced responses of CA1 cells studied in vitro.
Collapse
Affiliation(s)
- M A Caria
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
44
|
Alzoubi KH, Gerges NZ, Aleisa AM, Alkadhi KA. Levothyroxin restores hypothyroidism-induced impairment of hippocampus-dependent learning and memory: Behavioral, electrophysiological, and molecular studies. Hippocampus 2009; 19:66-78. [PMID: 18680156 DOI: 10.1002/hipo.20476] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothyroidism induces cognitive impairment in experimental animals and patients. Clinical reports are conflicting about the ability of thyroid hormone replacement therapy to fully restore the hypothyroidism-induced learning and memory impairment. In this study, we investigated the effects of L-thyroxin (thyroxin) treatment on hippocampus-dependent learning and memory in thyroidectomized adult rats. In the radial arm water maze (RAWM) task, thyroxin treated thyroidectomized animals made significantly fewer errors than the untreated hypothyroid animals in Trial 3 of the acquisition phase, short-term memory and long-term memory tests. In addition, the number of errors made by the thyroxin treated thyroidectomized animals was not different from that of the control group. Furthermore, the days-to-criterion (DTC) values for thyroxin treated thyroidectomized animals were not different from those of the control group but significantly lower than those of the untreated hypothyroid animals. In anesthetized rats, extracellular recording from hippocampal area CA1 of hypothyroid rats shows that thyroxin treatment restores impaired Late-phase long-term potentiation (L-LTP). Immunoblot analysis of signaling molecules, including cyclic-AMP response element binding protein (CREB), mitogen-activated protein kinases (MAPKp44/42; ERK1/2), in area CA1 revealed that thyroxin treatment reversed hypothyroidism-induced reduction of signaling molecules essential for learning and memory, and L-LTP. This study shows that thyroxin treatment reverses hypothyroidism-induced impairment of hippocampus-dependent cognition, and L-LTP, probably by restoring the levels of signaling molecule important for these processes.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | |
Collapse
|
45
|
Brown JS. Effects of bisphenol-A and other endocrine disruptors compared with abnormalities of schizophrenia: an endocrine-disruption theory of schizophrenia. Schizophr Bull 2009; 35:256-78. [PMID: 18245062 PMCID: PMC2643957 DOI: 10.1093/schbul/sbm147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, numerous substances have been identified as so-called "endocrine disruptors" because exposure to them results in disruption of normal endocrine function with possible adverse health outcomes. The pathologic and behavioral abnormalities attributed to exposure to endocrine disruptors like bisphenol-A (BPA) have been studied in animals. Mental conditions ranging from cognitive impairment to autism have been linked to BPA exposure by more than one investigation. Concurrent with these developments in BPA research, schizophrenia research has continued to find evidence of possible endocrine or neuroendocrine involvement in the disease. Sufficient information now exists for a comparison of the neurotoxicological and behavioral pathology associated with exposure to BPA and other endocrine disruptors to the abnormalities observed in schizophrenia. This review summarizes these findings and proposes a theory of endocrine disruption, like that observed from BPA exposure, as a pathway of schizophrenia pathogenesis. The review shows similarities exist between the effects of exposure to BPA and other related chemicals with schizophrenia. These similarities can be observed in 11 broad categories of abnormality: physical development, brain anatomy, cellular anatomy, hormone function, neurotransmitters and receptors, proteins and factors, processes and substances, immunology, sexual development, social behaviors or physiological responses, and other behaviors. Some of these similarities are sexually dimorphic and support theories that sexual dimorphisms may be important to schizophrenia pathogenesis. Research recommendations for further elaboration of the theory are proposed.
Collapse
Affiliation(s)
- James S Brown
- Department of Psychiatry, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
46
|
Zoeller RT, Tyl RW, Tan SW. Current and Potential Rodent Screens and Tests for Thyroid Toxicants. Crit Rev Toxicol 2008; 37:55-95. [PMID: 17364705 DOI: 10.1080/10408440601123461] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article reviews current rodent screens and tests to detect thyroid toxicants. Many points of disruption for thyroid toxicants are outlined and include: (a) changes in serum hormone level; (b) thyroperoxidase inhibitors; (c) the perchlorate discharge test; (d) inhibitors of iodide uptake; (e) effects on iodothyronine deiodinases; (f) effects on thyroid hormone action; and (g) role of binding proteins (e.g., rodent transthyretin). The major thyroid endpoints currently utilized in existing in vivo assay protocols of the Organization for Economic Cooperation and Development (OECD), Japanese researchers, and U.S. Environmental Protection Agency (EPA) include thyroid gland weight, histopathology, circulating thyroid hormone measurements, and circulating thyroid-stimulating hormone (TSH). These endpoints can be added into the existing in vivo assays for reproduction, development, and neurodevelopment that are outlined in this chapter. Strategic endpoints for possible addition to existing protocols to detect effects on developmental and adult thyroid endpoints are discussed. Many of these endpoints for detecting thyroid system disruption require development and additional research before they can be considered in existing assays. Examples of these endpoints under development include computer-assisted morphometry of the brain and evaluation of treatment-related changes in gene expression, thyrotropin-releasing hormone (TRH) and TSH challenge tests, and tests to evaluate thyroid hormone (TH)-dependent developmental events, especially in the rodent brain (e.g., measures of cerebellar and cortical proliferation, differentiation, migration, apoptosis, planimetric measures and gene expression, and oligodendrocyte differentiation). Finally, TH-responsive genes and proteins as well as enzyme activities are being explored. Existing in vitro tests are also reviewed, for example, thyroid hormone (TH) metabolism, receptor binding, and receptor activation assays, and their restrictions are described. The in vivo assays are currently the most appropriate for understanding the potential effects of a thyroid toxicant on the thyroid system. The benefits and potential limitations of the current in vivo assays are listed, and a discussion of the rodent thyroid system in the context of human health is touched upon. Finally, the importance of understanding the relationship between timing of exposure, duration of dose, and time of acquisition of the endpoints in interpreting the results of the in vivo assays is emphasized.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, Morrill Science Center, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
47
|
Congenital hypothyroidism is associated with intermediate filament misregulation, glutamate transporters down-regulation and MAPK activation in developing rat brain. Neurotoxicology 2008; 29:1092-9. [PMID: 18845185 DOI: 10.1016/j.neuro.2008.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 12/17/2022]
Abstract
Developmental thyroid hormone (TH) deficiency leads to mental retardation and neurological deficits in humans. In this study, congenital hypothyroidism was induced in rats by adding 0.05% 6-propyl-2-thiouracil in the drinking water during gestation and suckling period. This treatment induced hyperphosphorylation of neurofilaments, the neuronal intermediate filament (IF) proteins, of heavy, medium and low molecular weight (NF-H, NF-M and NF-L, respectively) without altering the phosphorylation level of astrocyte IF proteins, glial fibrillary acidic protein (GFAP) and vimentin in cerebral cortex of rats. NF-H was hyperphosphorylated on KSP repeats in the carboxy-terminal tail domain. Furthermore, the immunocontent of GFAP and NF subunits was down-regulated, while vimentin was unaltered both in tissue homogenate and in cytoskeletal fraction of hypothyroid animals. Moreover, we verified the immunocontent of astrocyte glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) as well as activation of mitogen-activated protein kinases (MAPKs) in hypothyroid rats. Results showed that hypothyroidism is associated with decreased GLAST and GLT-1 immunocontent. Additionally, we demonstrated increased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation without altering Jun N-terminal kinase (JNK) and p38(MAPK) phosphorylation. However, total JNK levels were down-regulated. Taken together, these results suggest that the thyroid status could modulate the integrity of neuronal cytoskeleton acting on the endogenous NF-associated phosphorylating system and that such effect could be related to glutamate-induced excitotoxicity, as well as ERK1/2 and JNK modulation. These events could be somehow related to the neurological dysfunction described in hypothyroidism.
Collapse
|
48
|
Taylor MA, Swant J, Wagner JJ, Fisher JW, Ferguson DC. Lower thyroid compensatory reserve of rat pups after maternal hypothyroidism: correlation of thyroid, hepatic, and cerebrocortical biomarkers with hippocampal neurophysiology. Endocrinology 2008; 149:3521-30. [PMID: 18372327 DOI: 10.1210/en.2008-0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The developing central nervous system of the fetus and neonate is recognized as very sensitive to maternal or gestational hypothyroidism. Despite this recognition, there is still a lack of data concerning the relationship between thyroid-related biomarkers and neurological outcomes. We used propylthiouracil administered at 0, 3, or 10 ppm in drinking water from gestational d 2 until weaning to create hypothyroid conditions to study the relationship between hypothalamic-pituitary-thyroid axis compensation and impaired neurodevelopment. In addition to serum T(3), T(4), free T(4), and TSH concentrations, cerebrocortical T(3) concentration (cT(3)), hepatic type I and cerebrocortical type II (D2) 5'-deiodinase activity, and thyroidal mRNA for thyroglobulin and sodium iodide symporter were measured. Extracellular recordings from the CA1 region in hippocampal slices were obtained from both postnatal d 21-32 (pups) and postnatal d 90-110 (adults) rats to assess neurophysiological effects. Thyroidal mRNA for thyroglobulin and sodium iodide symporter were increased in pups but not in dams. Both propylthiouracil doses increased cerebrocortical D2 activity approximately 5-fold in pups but only 10 ppm increased D2 activity in dams. In dams, cT(3) concentrations were maintained at 3 ppm but fell 75% at 10 ppm. cT(3) concentration in pups fell 50% at 3 ppm and more than 90% at 10 ppm. In both 3 and 10 ppm pups, hippocampal baseline synaptic activity correlated negatively with cerebrocortical D2 activity. In 3 ppm adults, impaired long-term potentiation was evident. In summary, during depletion of serum T(4), D2 activity served as a sensitive marker of tissue thyroid status, an indicator of the brain's compensatory response to maintain cT(3), and correlated with a neurophysiological outcome.
Collapse
Affiliation(s)
- Matthew A Taylor
- Interdisciplinary Toxicology Program, and Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
49
|
Nunez J, Celi FS, Ng L, Forrest D. Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 2008; 287:1-12. [PMID: 18448240 PMCID: PMC2486256 DOI: 10.1016/j.mce.2008.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 12/16/2022]
Abstract
Thyroid hormone (TH) has a remarkable range of actions in the development and function of the nervous system. A multigenic picture is emerging of the mechanisms that specify these diverse functions in target tissues. Distinct responses are mediated by alpha and beta isoforms of TH receptor which act as ligand-regulated transcription factors. Receptor activity can be regulated at several levels including that of uptake of TH ligand and the activation or inactivation of ligand by deiodinase enzymes in target tissues. Processes under the control of TH range from learning and anxiety-like behaviour to sensory function. At the cellular level, TH controls events as diverse as axonal outgrowth, hippocampal synaptic activity and the patterning of opsin photopigments necessary for colour vision. Overall, TH coordinates this variety of events in both central and sensory systems to promote the function of the nervous system as a complete entity.
Collapse
|
50
|
Kawaguchi M, Morohoshi K, Saita E, Yanagisawa R, Watanabe G, Takano H, Morita M, Imai H, Taya K, Himi T. Developmental exposure to pentachlorophenol affects the expression of thyroid hormone receptor beta1 and synapsin I in brain, resulting in thyroid function vulnerability in rats. Endocrine 2008; 33:277-84. [PMID: 19082768 DOI: 10.1007/s12020-008-9086-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/28/2008] [Indexed: 11/28/2022]
Abstract
Pentachlorophenol (PCP), a component of biocides and a contaminant in diverse tissue samples from humans from various geographic areas, disrupts regulatory effects of thyroid hormones. Here we examined the effects of developmental exposure of rats to PCP on various aspects of brain development, male reproductive function, and adrenal function, all of which are under thyroid hormones regulation. PCP was administered to dams and their offspring via drinking water (6.6 mg l(-1)) during gestation and lactation. Tissue samples were obtained from dams, 3-week-old weanling pups, and 12-week-old pups. Gene expressions of thyroid hormone receptor beta1 and synapsin I, factors that promote brain growth, was increased in the cerebral cortex of PCP-treated weanling females, whereas plasma concentrations of total thyroxine were decreased in dams and weanling pups, and plasma thyroid-stimulating hormone concentrations were higher in PCP-treated weanling males. PCP caused a decrease in plasma corticosterone concentrations in 12-week-old female rats, but not in male rats or weanling females. PCP-treated male pups had significantly increased testis weight at 12 week of age. No overt signs of toxicity were noted throughout this study. Our results show that PCP exposure during development causes thyroid function vulnerability, testicular hypertrophy in adults, and aberrations of brain gene expression.
Collapse
Affiliation(s)
- Maiko Kawaguchi
- Faculty of Pharmacy and Research Institute of Pharmaceutical Science, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|