1
|
Xue Z, Zhang W, Ren A, Karchner SI, Franks DG, Zong Y, Ma Y, Wang J, Xu Y, Li J, Ding N, Liu C, Hahn ME, Zhao B. Enhancing ecological risk assessment of dioxins in aquatic environments: AHR diversity and species sensitivity differences in tiger puffer (Takifugu rubripes). JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138719. [PMID: 40424807 DOI: 10.1016/j.jhazmat.2025.138719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/05/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
Dioxins and dioxin-like compounds (DLCs) exert toxicity through the aryl hydrocarbon receptor (AHR), but species variations in AHR lead to differing sensitivities. Investigating the variation in AHR homolog diversity, expression levels, predominant forms, and AHR sensitivity across species-particularly in fish sensitive to dioxins-is essential for enhancing ecological risk assessment. This study focuses on the tiger puffer (Takifugu rubripes), identifying five AHRs and two ARNTs, with truAHR2a showing the highest expression and the truAHR1 subfamily displaying lower levels. All truAHRs are functional and can be activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with truARNT1 cooperating more efficiently with truAHRs than truARNT2. We determined EC50 values for truAHR1a (0.30 ± 0.10 nM), truAHR1b (0.32 ± 0.20 nM), truAHR2a (0.98 ± 0.63 nM), truAHR2b (2.62 ± 2.48 nM), and truAHR2c (0.43 ± 0.22 nM), with truAHR1a showing the highest sensitivity. The truAHR1 subfamily displayed greater sensitivity than the truAHR2 subfamily, contrasting with medaka and zebrafish, where AHR2 is similar to or more sensitive than AHR1. Comparisons highlighted species- and subform-specific sensitivities in AHRs, differing by one to two orders of magnitude. Ligand-binding assays showed that all truAHRs bound [3H]TCDD specifically. Molecular docking indicated that although TCDD binds AHRs with similar affinities and conserved residues, other subform-specific factors likely contribute to their differential sensitivities. This study provides valuable data on AHR diversity and ligand-sensitivity, contributing to ecological toxicity assessment of dioxin-like compounds.
Collapse
Affiliation(s)
- Zhenhong Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Anran Ren
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, United States
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, United States
| | - Yanjiao Zong
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yongchao Ma
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiayi Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yiqin Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jiaming Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ning Ding
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, United States
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Alexiev A, Stretch E, Kasschau KD, Wilson LB, Truong L, Tanguay RL, Sharpton TJ. Clearing the Air on Pollutant Disruptions of the Gut-Brain Axis: Developmental Exposure to Benzo[a]pyrene Disturbs Zebrafish Behavior and the Gut Microbiome in Adults and Subsequent Generations. TOXICS 2024; 13:10. [PMID: 39853010 PMCID: PMC11768907 DOI: 10.3390/toxics13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025]
Abstract
Developmental exposure to benzo[a]pyrene (BaP), a ubiquitous environmental pollutant, has been linked to various toxic effects, including multigenerational behavioral impairment. While the specific mechanisms driving BaP neurotoxicity are not fully understood, recent work highlights two important determinants of developmental BaP neurotoxicity: (1) the aryl hydrocarbon receptor (AHR), which induces host metabolism of BaP, and (2) the gut microbiome, which may interact with BaP to affect its metabolism, or be perturbed by BaP to disrupt the gut-brain axis. We utilized the zebrafish model to explore the role of AHR, the gut microbiome, and their interaction, on BaP-induced neurotoxicity. We tested (1) how developmental BaP exposure and AHR2 perturbation in zebrafish link to adult behavior, (2) how these variables associate with the structure and function of the adult zebrafish gut metagenome, and (3) whether these associations are multigenerational. Our findings reveal a reticulated axis of association between BaP exposure, developmental AHR2 expression, the zebrafish gut metagenome, and behavior. Results indicate that AHR2 is a key modulator of how BaP elicits neurotoxicity and microbiome dysbiosis. Additionally, this axis of association manifests generationally. These findings demonstrate the importance of studying pollutant-microbiome interactions and elucidate the role of specific host genes in neurotoxicity and dysbiosis.
Collapse
Affiliation(s)
- Alexandra Alexiev
- Department of Microbiology, Oregon State University, Corvallis, OR 97333, USA; (E.S.); (K.D.K.); (T.J.S.)
| | - Ebony Stretch
- Department of Microbiology, Oregon State University, Corvallis, OR 97333, USA; (E.S.); (K.D.K.); (T.J.S.)
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR 97333, USA; (E.S.); (K.D.K.); (T.J.S.)
| | - Lindsay B. Wilson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.B.W.); (L.T.); (R.L.T.)
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.B.W.); (L.T.); (R.L.T.)
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University, Corvallis, OR 97333, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (L.B.W.); (L.T.); (R.L.T.)
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University, Corvallis, OR 97333, USA
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97333, USA; (E.S.); (K.D.K.); (T.J.S.)
- Department of Statistics, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|
3
|
Cintrón-Rivera LG, Burns N, Patel R, Plavicki JS. Exposure to the aryl hydrocarbon receptor agonist dioxin disrupts formation of the muscle, nerves, and vasculature in the developing jaw. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122499. [PMID: 37660771 DOI: 10.1016/j.envpol.2023.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Human exposure to environmental pollutants can disrupt embryonic development and impact juvenile and adult health outcomes by adversely affecting cell and organ function. Notwithstanding, environmental contamination continues to increase due to industrial development, insufficient regulations, and the mobilization of pollutants as a result of extreme weather events. Dioxins are a class of structurally related persistent organic pollutants that are highly toxic, carcinogenic, and teratogenic. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent dioxin compound and has been shown to induce toxic effects in developing organisms by activating the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor targeted by multiple persistent organic pollutants. Contaminant-induced AHR activation results in malformations of the craniofacial cartilages and neurocranium; however, the mechanisms mediating these phenotypes are not well understood. In this study, we utilized the optically transparent zebrafish model to elucidate novel cellular targets and potential transcriptional targets underlying TCDD-induced craniofacial malformations. To this end, we exposed zebrafish embryos at 4 h post fertilization to TCDD and employed a mixed-methods approach utilizing immunohistochemistry staining, transgenic reporter lines, fixed and in vivo confocal imaging, and timelapse microscopy to determine the targets mediating TCDD-induced craniofacial phenotypes. Our data indicate that embryonic TCDD exposure reduced jaw and pharyngeal arch Sox10+ chondrocytes and Tcf21+ pharyngeal mesoderm progenitors. Exposure to TCDD correspondingly led to a reduction in collagen type II deposition in Sox10+ domains. Embryonic TCDD exposure impaired development of tissues derived from or guided by Tcf21+ progenitors, namely: nerves, muscle, and vasculature. Specifically, TCDD exposure disrupted development of the hyoid and mandibular arch muscles, decreased neural innervation of the jaw, resulted in compression of cranial nerves V and VII, and led to jaw vasculature malformations. Collectively, these findings reveal novel structural targets and potential transcriptional targets of TCDD-induced toxicity, showcasing how contaminant exposures lead to congenital craniofacial malformations.
Collapse
Affiliation(s)
- Layra G Cintrón-Rivera
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Nicole Burns
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Ratna Patel
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
4
|
Shankar P, Villeneuve DL. AOP Report: Aryl Hydrocarbon Receptor Activation Leads to Early-Life Stage Mortality via Sox9 Repression-Induced Craniofacial and Cardiac Malformations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2063-2077. [PMID: 37341548 PMCID: PMC10772968 DOI: 10.1002/etc.5699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The aryl hydrocarbon receptors (Ahrs) are evolutionarily conserved ligand-dependent transcription factors that are activated by structurally diverse endogenous compounds as well as environmental chemicals such as polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons. Activation of the Ahr leads to several transcriptional changes that can cause developmental toxicity resulting in mortality. Evidence was assembled and evaluated for two novel adverse outcome pathways (AOPs) which describe how Ahr activation (molecular initiating event) can lead to early-life stage mortality (adverse outcome), via either SOX9-mediated craniofacial malformations (AOP 455) or cardiovascular toxicity (AOP 456). Using a key event relationship (KER)-by-KER approach, we collected evidence using both a narrative search and a systematic review based on detailed search terms. Weight of evidence for each KER was assessed to inform overall confidence of the AOPs. The AOPs link to previous descriptions of Ahr activation and connect them to two novel key events (KEs), increase in slincR expression, a newly characterized long noncoding RNA with regulatory functions, and suppression of SOX9, a critical transcription factor implicated in chondrogenesis and cardiac development. In general, confidence levels for KERs ranged between medium and strong, with few inconsistencies, as well as several opportunities for future research identified. While the majority of KEs have only been demonstrated in zebrafish with 2,3,7,8-tetrachlorodibenzo-p-dioxin as an Ahr activator, evidence suggests that the two AOPs likely apply to most vertebrates and many Ahr-activating chemicals. Addition of the AOPs into the AOP-Wiki (https://aopwiki.org/) helps expand the growing Ahr-related AOP network to 19 individual AOPs, of which six are endorsed or in progress and the remaining 13 relatively underdeveloped. Environ Toxicol Chem 2023;42:2063-2077. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Prarthana Shankar
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- University of Wisconsin Madison Sea Grant Fellow at Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
5
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
6
|
Huang Z, Gao J, Chen Y, Huan Z, Liu Y, Zhou T, Dong Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2023; 38:1445-1454. [PMID: 36929865 DOI: 10.1002/tox.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Bisphenol AF (BPAF), an emerging environmental endocrine disruptor, has been detected in surface waters worldwide and has adverse effects on aquatic organisms. The accumulation of BPAF in oceans and its potential toxic effect on marine organisms are important concerns. In this study, the effects of BPAF (10, 100, 1, and 5 mg/L) on marine medaka (Oryzias melastigma) were evaluated, including effects on the survival rate, heart rate, hatchability, morphology, and gene expression in embryos. The survival rate of marine medaka embryos was significantly lower after treatment with 5 mg/L BPAF than in the solvent control group. Exposure to 1 mg/L and 5 mg/L BPAF significantly reduced hatchability. Low-dose BPAF (10 μg/L) significantly accelerated the heart rate of embryos, while high-dose BPAF (5 mg/L) significantly decreased the heart rate. BPAF exposure also resulted in notochord curvature, pericardial edema, yolk sac cysts, cardiovascular bleeding, and caudal curvature in marine medaka. At the molecular level, BPAF exposure affected the transcript levels of genes involved in the thyroid system (dio1, dio3a, trhr2, tg, and thra), cardiovascular system (gata4, atp2a1, and cacna1da), nervous system (elavl3 and gap43), and antioxidant and inflammatory systems (sod, pparβ, and il-8) in embryos. These results indicate that BPAF exposure can alter the expression of functional genes, induce abnormal development, and reduce the hatching and survival rates in marine medaka embryos. Overall, BPAF can adversely affect the survival and development of marine medaka embryos, and BPAF may not be an ideal substitute for BPA.
Collapse
Affiliation(s)
- Zeyin Huang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
8
|
Mi P, Li N, Ai K, Li L, Yuan D. AhR-mediated lipid peroxidation contributes to TCDD-induced cardiac defects in zebrafish. CHEMOSPHERE 2023; 317:137942. [PMID: 36702031 DOI: 10.1016/j.chemosphere.2023.137942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant that activates the aryl hydrocarbon receptor (AhR) pathway, has been reported to cause cardiac damage. However, the mechanism underlying AhR-induced cardiac defects in response to TCDD exposure remains unclear. In this study, we characterized the impacts of TCDD exposure on heart morphology and cardiac function in zebrafish. TCDD exposure in the early developmental stage of zebrafish embryos led to morphological heart malformation and pericardial edema, concomitant with reduced cardiac function. These cardiac defects were attenuated by inhibiting AhR activity with CH223191. Transcriptome profiling showed that, along with an upregulation of the AhR signaling pathway by TCDD treatment, the expression of pro-ferroptotic genes was upregulated, while that of genes implicated in glutathione metabolism were downregulated. Moreover, lipid peroxidation, as indicated by malonaldehyde (MDA) production, was increased in TCDD-exposed cardiac tissue. Accordingly, inhibiting lipid peroxidation with liproxstatin-1 reversed the adverse cardiac effects induced by TCDD treatment. Taken together, our findings demonstrate that AhR-mediated lipid peroxidation contributes to cardiac defects in the early developmental stage in zebrafish embryos exposed to TCDD.
Collapse
Affiliation(s)
- Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Na Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Kang Ai
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| | - Detian Yuan
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
9
|
Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG. Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8438-8448. [PMID: 35652794 DOI: 10.1021/acs.est.1c08875] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonamide (PFOSA), a precursor of perfluorooctanesulfonate (PFOS), is widely used during industrial processes, though little is known about its toxicity, particularly to early life stage organisms that are generally sensitive to xenobiotic exposure. Here, following exposure to concentrations of 0.01, 0.1, 1, 10, and 100 μg/L PFOSA, transcriptional, morphological, physiological, and biochemical assays were used to evaluate the potential effects on aquatic organisms. The top Tox functions in exposed zebrafish were related to cardiac diseases predicted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Ingenuity Pathway Analysis (IPA) analysis. Consistent with impacts predicted by transcriptional changes, abnormal cardiac morphology, disordered heartbeat signals, as well as reduced heart rate and cardiac output were observed following the exposure of 0.1, 1, 10, or 100 μg/L PFOSA. Furthermore, these PFOSA-induced cardiac effects were either prevented or alleviated by supplementation with an aryl hydrocarbon receptor (AHR) antagonist or ahr2-morpholino knock-down, uncovering a seminal role of AHR in PFOSA-induced cardiotoxicity. Our results provide the first evidence in fish that PFOSA can impair proper heart development and function and raises concern for PFOSA analogues in the natural environment.
Collapse
Affiliation(s)
- Honghong Chen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuanjun Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaying Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hanbing Zhong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Chunmiao Zheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| |
Collapse
|
10
|
Hansen BH, Nordtug T, Farkas J, Khan EA, Oteri E, Kvæstad B, Faksness LG, Daling PS, Arukwe A. Toxicity and developmental effects of Arctic fuel oil types on early life stages of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105881. [PMID: 34139396 DOI: 10.1016/j.aquatox.2021.105881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.
Collapse
Affiliation(s)
| | - Trond Nordtug
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Julia Farkas
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Essa A Khan
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Erika Oteri
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Bjarne Kvæstad
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | - Per S Daling
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Augustine Arukwe
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| |
Collapse
|
11
|
Köktürk M, Çomaklı S, Özkaraca M, Alak G, Atamanalp M. Teratogenic and Neurotoxic Effects of n-Butanol on Zebrafish Development. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:94-106. [PMID: 33780052 DOI: 10.1002/aah.10123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In recent years, n-butanol, a type of alcohol, has been widely used from the chemical industry to the food industry. In this study, toxic effects of n-butanol's different concentrations (10, 50, 250, 500, 750, 1,000, and 1,250 mg/L) in Zebrafish Danio rerio embryos and larvae were investigated. For this purpose, Zebrafish embryos were exposed to n-butanol in acute semistatic applications. Teratogenic effects such as cardiac edema, scoliosis, lordosis, head development abnormality, yolk sac edema, and tail abnormality were determined at different time intervals (24, 48, 72, 96, and 120 h). Additionally, histopathological abnormalities such as vacuole formation in brain tissue and necrosis in liver tissue were observed at high doses (500, 750, and 1,000 mg/L) in all treatment groups at 96 h. It was determined that heart rate decreased at 48, 72, and 96 h due to an increase in concentration. In addition, alcohol-induced eye size reduction (microphthalmia) and single eye formation (cyclopia) are also among the effects observed in our research findings. In conclusion, n-butanol has been observed to cause intense neurotoxic, teratogenic, and cardiotoxic effects in Zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, School of Applied Science, Igdır University, 76000, Igdır, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25030, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25030, Erzurum, Turkey
| |
Collapse
|
12
|
Tanaka K, Adachi H, Akasaka H, Tamaoki J, Fuse Y, Kobayashi M, Kitazawa T, Teraoka H. Oxidative stress inducers potentiate 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated pre-cardiac edema in larval zebrafish. J Vet Med Sci 2021; 83:1050-1058. [PMID: 34024870 PMCID: PMC8349820 DOI: 10.1292/jvms.21-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We reported the involvement of oxidative stress and prostaglandins including thromboxane and prostacyclin in pre-cardiac edema (early edema) caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While the involvement of oxidative stress in TCDD-induced toxicity has been frequently reported, the mechanism of its action is still unclear. In the present study, oxidative stress inducers including paraquat, hydrogen peroxide (H2O2) and rotenone augmented early edema (edema) induced by a low concentration of TCDD (0.1 ppb) at 55 hr post fertilization (hpf), while each of them alone did not cause edema. Edema caused by TCDD plus oxidative stress inducers was almost abolished by antioxidants, an antagonist for thromboxane receptor (ICI-192,605) and an agonist for prostacyclin receptor (beraprost), suggesting that the site of action of these inducers was in the regular signaling pathway after activation of aryl hydrocarbon receptor type 2 (AHR2) by TCDD. Oxidative stress inducers also enhanced edema caused by an agonist for the thromboxane receptor (U46619), and the enhancement was also inhibited by antioxidants. Sulforaphane and auranofin, activators of Nrf2 that is a master regulator of anti-oxidative response, did not affect U46619-evoked edema but almost abolished TCDD-induced edema and potentiation by paraquat in both TCDD- and U46619-induced edema. Taken together, the results suggest that oxidative stress augments pre-cardiac edema caused by TCDD via activation of thromboxane receptor-mediated signaling in developing zebrafish. As paraquat and other oxidative stress inducers used also are environmental pollutants, interaction between dioxin-like compounds and exogenous source of oxidative stress should also be considered.
Collapse
Affiliation(s)
- Katsuki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hironobu Akasaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuji Fuse
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
13
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
14
|
Nijoukubo D, Adachi H, Kitazawa T, Teraoka H. Blood vessels are primary targets for 2,3,7,8-tetrachlorodibenzo-p-dioxin in pre-cardiac edema formation in larval zebrafish. CHEMOSPHERE 2020; 254:126808. [PMID: 32339801 DOI: 10.1016/j.chemosphere.2020.126808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has adverse effects on the development and function of the heart in zebrafish eleutheroembryos (embryos and larvae). We previously reported that TCDD reduced blood flow in the mesencephalic vein of zebrafish eleutheroembryos long before inducing pericardial edema. In the present study, we compared early edema (pre-cardiac edema), reduction of deduced cardiac output and reduction of blood flow in the dorsal aorta and cardinal vein caused by TCDD. In the same group of eleutheroembryos, TCDD (1.0 ppb) caused pre-cardiac edema and circulation failure at the cardinal vein in the central trunk region with the similar time courses from 42 to 54 h post fertilization (hpf), while the same concentration of TCDD did not significantly affect aortic circulation in the central trunk region or cardiac output. The dependence of pre-cardiac edema on TCDD concentration (0-2.0 ppb) at 55 hpf correlated well with the dependence of blood flow through the cardinal vein on TCDD concentration. Several treatments that markedly inhibited TCDD-induced pre-cardiac edema such as knockdown of aryl hydrocarbon receptor nuclear translocator-1 (ARNT1) and treatment with ascorbic acid, an antioxidant, did not significantly prevent the reduction of cardiac output at 55 hpf caused by 2.0 ppb TCDD. TCDD caused hemorrhage and extravasation of Evans blue that was intravascularly injected with bovine serum albumin, suggesting an increase in endothelium permeability to serum protein induced by TCDD. The results suggest that the blood vessels are primary targets of TCDD in edema formation in larval zebrafish.
Collapse
Affiliation(s)
- Daisuke Nijoukubo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
15
|
Song JY, Casanova-Nakayama A, Möller AM, Kitamura SI, Nakayama K, Segner H. Aryl Hydrocarbon Receptor Signaling Is Functional in Immune Cells of Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2020; 21:E6323. [PMID: 32878328 PMCID: PMC7503690 DOI: 10.3390/ijms21176323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The arylhydrocarbon receptor (AhR) is an important signaling pathway in the immune system of mammals. In addition to its physiological functions, the receptor mediates the immunotoxic actions of a diverse range of environmental contaminants that bind to and activate the AhR, including planar halogenated aromatic hydrocarbons (PHAHs or dioxin-like compounds) and polynuclear aromatic hydrocarbons (PAHs). AhR-binding xenobiotics are immunotoxic not only to mammals but to teleost fish as well. To date, however, it is unknown if the AhR pathway is active in the immune system of fish and thus may act as molecular initiating event in the immunotoxicity of AhR-binding xenobiotics to fish. The present study aims to examine the presence of functional AhR signaling in immune cells of rainbow trout (Oncorhynchus mykiss). Focus is given to the toxicologically relevant AhR2 clade. By means of RT-qPCR and in situ hybdridization, we show that immune cells of rainbow trout express ahr 2α and ahr 2β mRNA; this applies for immune cells isolated from the head kidney and from the peripheral blood. Furthermore, we show that in vivo as well as in vitro exposure to the AhR ligand, benzo(a)pyrene (BaP), causes upregulation of the AhR-regulated gene, cytochrome p4501a, in rainbow trout immune cells, and that this induction is inhibited by co-treatment with an AhR antagonist. Taken together, these findings provide evidence that functional AhR signaling exists in the immune cells of the teleost species, rainbow trout.
Collapse
Affiliation(s)
- Jun-Young Song
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan; (S.-I.K.); (K.N.)
| | - Ayako Casanova-Nakayama
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
| | - Anja-Maria Möller
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan; (S.-I.K.); (K.N.)
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan; (S.-I.K.); (K.N.)
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (J.-Y.S.); (A.C.-N.); (A.-M.M.)
| |
Collapse
|
16
|
Arman S, İşisağ Üçüncü S. Cardiac toxicity of acrolein exposure in embryonic zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22423-22433. [PMID: 32307682 DOI: 10.1007/s11356-020-08853-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Acrolein is a widely distributed pollutant produced from various sources such as industrial waste, organic combustion, and power plant emissions. It is also intentionally released into irrigation canals to control invasive aquatic plants. Zebrafish (Danio rerio) has a good reputation for being an attractive model organism for developmental and toxicological research. In this study, zebrafish embryos were exposed to acrolein to investigate the cardiotoxic effects. The 96-h LC50 (median lethal concentration) value of acrolein was determined as 654.385 μg/L. Then, the embryos were treated with the sublethal experimental concentrations of acrolein (1, 4, 16, 64, and 256 μg/L) for 96 h. Embryos were examined at 48, 72, and 96 h post-fertilization (hpf). Acrolein affected the cardiac morphology and function of the embryos. Sinus venosus-bulbus arteriosus (SV-BA) distance of 64 μg/L and 256 μg/L acrolein groups was elongated compared with the control samples. Immunostaining with MF20 antibody clearly exhibited that the atrium positioned posterior to the ventricle which indicated cardiac looping inhibition. Histological preparations also showed the mispositioning and the lumens of the chambers narrowed. Acrolein-induced increased heart rate was noted in the 4, 16, 64, and 256 μg/L treatment groups. Taken together, these results indicated that acrolein disrupted the heart development and cardiac function in zebrafish, suggesting that its water-borne risks should be considered seriously.
Collapse
Affiliation(s)
- Sezgi Arman
- Department of Biology, Faculty of Arts and Sciences, Sakarya University, 54050, Serdivan, Sakarya, Turkey.
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
17
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
18
|
Philibert DA, Lyons DD, Qin R, Huang R, El-Din MG, Tierney KB. Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133611. [PMID: 31634996 DOI: 10.1016/j.scitotenv.2019.133611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.
Collapse
Affiliation(s)
- Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ketih B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
19
|
lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res Ther 2019; 10:344. [PMID: 31753016 PMCID: PMC6873685 DOI: 10.1186/s13287-019-1458-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
With the increasing incidence of cartilage-related diseases such as osteoarthritis (OA) and intervertebral disc degeneration (IDD), heavier financial and social burdens need to be faced. Unfortunately, there is no satisfactory clinical method to target the pathophysiology of cartilage-related diseases. Many gene expressions, signaling pathways, and biomechanical dysregulations were involved in cartilage development, degeneration, and regeneration. However, the underlying mechanism was not clearly understood. Recently, lots of long non-coding RNAs (lncRNAs) were identified in the biological processes, including cartilage development, degeneration, and regeneration. It is clear that lncRNAs were important in regulating gene expression and maintaining chondrocyte phenotypes and homeostasis. In this review, we summarize the recent researches studying lncRNAs’ expression and function in cartilage development, degeneration, and regeneration and illustrate the potential mechanism of how they act in the pathologic process. With continued efforts, regulating lncRNA expression in the cartilage regeneration may be a promising biological treatment approach.
Collapse
|
20
|
Pasparakis C, Esbaugh AJ, Burggren W, Grosell M. Impacts of deepwater horizon oil on fish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108558. [PMID: 31202903 DOI: 10.1016/j.cbpc.2019.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
An explosion on the Deepwater Horizon (DWH) oil rig in 2010 lead to the largest marine oil spill to occur in US history, resulting in significant impacts to the ecosystems and organisms in the Northern Gulf of Mexico (GoM). The present review sought to summarize and discuss findings from the 50+ peer-reviewed publications reporting effects of DWH oil exposure on teleost fish, and concludes that oil toxicity is a multi-target, multi-organ syndrome with substantial species-specific sensitivity differences. Of the 15 species tested with characterized exposures, 20% show effects at concentrations <1 μg l-1 while 50% display effects at <8.6 μg l-1 ΣPAH50, concentrations well within the range of reported environmental levels during the spill. Cardiotoxic effects are among the most frequently reported endpoints in DWH oil exposure studies and are thought to have significant downstream effects on fitness and survival. However, additional and possibly cardio-toxic independent impacts on sensory function and behavior are reported at very low exposure concentrations (< 1 μg l-1 ∑PAH50) and are clearly deserving of further study. Available information about modes of action leading to different categories of effects are summarized in the present review. An overview of the literature illustrates that early life stages (ELS) are approximately 1-order of magnitude more sensitive than corresponding later life stages, but also illustrates that adults can be impacted at concentrations as low as 4 μg l-1 ΣPAH50. The majority of studies exploring DWH oil toxicity in fish are performed using acute exposures (1-2 days), mid-range test temperatures (26-28 °C) and measure effects at the molecular to organismal levels, leaving a pressing need for more long-term exposures, exposures at the upper and lower levels of GoM relevant temperatures, and studies investigating population level impacts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA
| |
Collapse
|
21
|
Dong W, Wang F, Fang M, Wu J, Wang S, Li M, Yang J, Chernick M, Hinton DE, Pei DS, Chen H, Zheng N, Mu J, Xie L, Dong W. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:339-346. [PMID: 30784797 DOI: 10.1016/j.ecoenv.2019.01.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Bohai Bay, in the western region of northeastern China's Bohai Sea, receives water from large rivers containing various pollutants including dioxin-like compounds (DLCs). This study used the established zebrafish (Danio rerio) model, its known developmental toxicity endpoints and sensitive molecular analyses to evaluate sediments near and around an industrial effluent site in Bohai Bay. The primary objective was to assess the efficacy of rapid biological detection methods as an addition to chemical analyses. Embryos were exposed to various concentrations of sediment extracts as well as a 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) positive control. Exposure to sediment extract nearest the discharge site (P1) resulted in the most severe- and highest rates of change in embryos and larvae, suggesting that DLC contaminated sediment probably did not occur much beyond it. P1 extract resulted in concentration dependent increases in mortality and pericardial edema. Its highest concentration caused up-regulation of P-450 (CYP)-1A1(CYP1A) mRNA expression at 72 h post fertilization (hpf), an increase in its expression in gill arches as observed by whole mount in situ hybridization, and an increased signal in the Tg(cyp1a: mCherry) transgenic line. The pattern and magnitude of response was very similar to that of TCDD and supported the presence of DLCs in these sediment samples. Follow-up chemical analysis confirmed this presence and identified H7CDF, O8CDF and O8CDD as the main components in P1 extract. This study validates the use of biological assays as a rapid, sensitive, and cost-effective method to evaluate DLCs and their effects in sediment samples. Additionally, it provides support for the conclusion that DLCs have limited remobilization capacity in marine sediments.
Collapse
Affiliation(s)
- Wenjing Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Feng Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jie Wu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Shuaiyu Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Ming Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Jingfeng Yang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 130021, China
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China.
| |
Collapse
|
22
|
Cardiovascular Effects of PCB 126 (3,3',4,4',5-Pentachlorobiphenyl) in Zebrafish Embryos and Impact of Co-Exposure to Redox Modulating Chemicals. Int J Mol Sci 2019; 20:ijms20051065. [PMID: 30823661 PMCID: PMC6429282 DOI: 10.3390/ijms20051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
The developing cardiovascular system of zebrafish is a sensitive target for many environmental pollutants, including dioxin-like compounds and pesticides. Some polychlorinated biphenyls (PCBs) can compromise the cardiovascular endothelial function by activating oxidative stress-sensitive signaling pathways. Therefore, we exposed zebrafish embryos to PCB126 or to several redox-modulating chemicals to study their ability to modulate the dysmorphogenesis produced by PCB126. PCB126 produced a concentration-dependent induction of pericardial edema and circulatory failure, and a concentration-dependent reduction of cardiac output and body length at 80 hours post fertilization (hpf). Among several modulators tested, the effects of PCB126 could be both positively and negatively modulated by different compounds; co-treatment with α-tocopherol (vitamin E liposoluble) prevented the adverse effects of PCB126 in pericardial edema, whereas co-treatment with sodium nitroprusside (a vasodilator compound) significantly worsened PCB126 effects. Gene expression analysis showed an up-regulation of cyp1a, hsp70, and gstp1, indicative of PCB126 interaction with the aryl hydrocarbon receptor (AhR), while the transcription of antioxidant genes (sod1, sod2; cat and gpx1a) was not affected. Further studies are necessary to understand the role of oxidative stress in the developmental toxicity of low concentrations of PCB126 (25 nM). Our results give insights into the use of zebrafish embryos for exploring mechanisms underlying the oxidative potential of environmental pollutants.
Collapse
|
23
|
Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (nrfs) by AHR1b in Zebrafish (Danio rerio). Toxicol Sci 2019; 167:536-545. [PMID: 30321412 PMCID: PMC6358246 DOI: 10.1093/toxsci/kfy257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Collapse
Affiliation(s)
- Alexandra Ulin
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Jake Henderson
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Minh-Tam Pham
- Department of biology, Bates College, Lewiston, Maine 04240
| | - James Meyo
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Yuying Chen
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Sibel I Karchner
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Mark E Hahn
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Larissa M Williams
- Department of biology, Bates College, Lewiston, Maine 04240
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
24
|
Yoshioka W, Tohyama C. Mechanisms of Developmental Toxicity of Dioxins and Related Compounds. Int J Mol Sci 2019; 20:E617. [PMID: 30708991 PMCID: PMC6387164 DOI: 10.3390/ijms20030617] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Dioxins and related compounds induce morphological abnormalities in developing animals in an aryl hydrocarbon receptor (AhR)-dependent manner. Here we review the studies in which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is used as a prototypical compound to elucidate the pathogenesis of morphological abnormalities. TCDD-induced cleft palate in fetal mice involves a delay in palatogenesis and dissociation of fused palate shelves. TCDD-induced hydronephrosis, once considered to be caused by the anatomical obstruction of the ureter, is now separated into TCDD-induced obstructive and non-obstructive hydronephrosis, which develops during fetal and neonatal periods, respectively. In the latter, a prostaglandin E₂ synthesis pathway and urine concentration system are involved. TCDD-induced abnormal development of prostate involves agenesis of the ventral lobe. A suggested mechanism is that AhR activation in the urogenital sinus mesenchyme by TCDD modulates the wingless-type MMTV integration site family (WNT)/β-catenin signaling cascade to interfere with budding from urogenital sinus epithelium. TCDD exposure to zebrafish embryos induces loss of epicardium progenitor cells and heart malformation. AHR2-dependent downregulation of Sox9b expression in cardiomyocytes is a suggested underlying mechanism. TCDD-induced craniofacial malformation in zebrafish is considered to result from the AHR2-dependent reduction in SRY-box 9b (SOX9b), probably partly via the noncoding RNA slincR, resulting in the underdevelopment of chondrocytes and cartilage.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
25
|
Garcia GR, Shankar P, Dunham CL, Garcia A, La Du JK, Truong L, Tilton SC, Tanguay RL. Signaling Events Downstream of AHR Activation That Contribute to Toxic Responses: The Functional Role of an AHR-Dependent Long Noncoding RNA ( slincR) Using the Zebrafish Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:117002. [PMID: 30398377 PMCID: PMC6371766 DOI: 10.1289/ehp3281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND A structurally diverse group of chemicals, including dioxins [e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and polycyclic aromatic hydrocarbons (PAHs), can xenobiotically activate the aryl hydrocarbon receptor (AHR) and contribute to adverse health effects in humans and wildlife. In the zebrafish model, repression of sox9b has a causal role in several AHR-mediated toxic responses, including craniofacial cartilage malformations; however, the mechanism of sox9b repression remains unknown. We previously identified a long noncoding RNA, sox9b long intergenic noncoding RNA (slincR), which is increased (in an AHR-dependent manner) by multiple AHR ligands and is required for the AHR-activated repression of sox9b. OBJECTIVE Using the zebrafish model, we aimed to enhance our understanding of the signaling events downstream of AHR activation that contribute to toxic responses by identifying: a) whether slincR is enriched on the sox9b locus, b) slincR's functional contributions to TCDD-induced toxicity, c) PAHs that increase slincR expression, and d) mammalian orthologs of slincR. METHODS We used capture hybridization analysis of RNA targets (CHART), qRT-PCR, RNA sequencing, morphometric analysis of cartilage structures, and hemorrhaging screens. RESULTS The slincR transcript was enriched at the 5' untranslated region (UTR) of the sox9b locus. Transcriptome profiling and human ortholog analyses identified processes related to skeletal and cartilage development unique to TCDD-exposed controls, and angiogenesis and vasculature development unique to TCDD-exposed zebrafish that were injected with a splice-blocking morpholino targeting slincR. In comparison to TCDD exposed control morphants, slincR morphants exposed to TCDD resulted in abnormal cartilage structures and a smaller percentage of animals displaying the hemorrhaging phenotype. In addition, slincR expression was significantly increased in six out of the sixteen PAHs we screened. CONCLUSION Our study establishes that in zebrafish, slincR is recruited to the sox9b 5' UTR to repress transcription, can regulate cartilage development, has a causal role in the TCDD-induced hemorrhaging phenotype, and is up-regulated by multiple environmentally relevant PAHs. These findings have important implications for understanding the ligand-specific mechanisms of AHR-mediated toxicity. https://doi.org/10.1289/EHP3281.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Cheryl L Dunham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Abraham Garcia
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
26
|
sox9b is required in cardiomyocytes for cardiac morphogenesis and function. Sci Rep 2018; 8:13906. [PMID: 30224706 PMCID: PMC6141582 DOI: 10.1038/s41598-018-32125-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022] Open
Abstract
The high mobility group transcription factor SOX9 is expressed in stem cells, progenitor cells, and differentiated cell-types in developing and mature organs. Exposure to a variety of toxicants including dioxin, di(2-ethylhexyl) phthalate, 6:2 chlorinated polyfluorinated ether sulfonate, and chlorpyrifos results in the downregulation of tetrapod Sox9 and/or zebrafish sox9b. Disruption of Sox9/sox9b function through environmental exposures or genetic mutations produce a wide range of phenotypes and adversely affect organ development and health. We generated a dominant-negative sox9b (dnsox9b) to inhibit sox9b target gene expression and used the Gal4/UAS system to drive dnsox9b specifically in cardiomyocytes. Cardiomyocyte-specific inhibition of sox9b function resulted in a decrease in ventricular cardiomyocytes, an increase in atrial cardiomyocytes, hypoplastic endothelial cushions, and impaired epicardial development, ultimately culminating in heart failure. Cardiomyocyte-specific dnsox9b expression significantly reduced end diastolic volume, which corresponded with a decrease in stroke volume, ejection fraction, and cardiac output. Further analysis of isolated cardiac tissue by RT-qPCR revealed cardiomyocyte-specific inhibition of sox9b function significantly decreased the expression of the critical cardiac development genes nkx2.5, nkx2.7, and myl7, as well as c-fos, an immediate early gene necessary for cardiomyocyte progenitor differentiation. Together our studies indicate sox9b transcriptional regulation is necessary for cardiomyocyte development and function.
Collapse
|
27
|
Luo JJ, Su DS, Xie SL, Liu Y, Liu P, Yang XJ, Pei DS. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish. FASEB J 2018; 32:2814-2826. [PMID: 29298861 DOI: 10.1096/fj.201701171r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant (POP), an unintentional byproduct of various industrial processes, and a human carcinogen. The expression of the cytochrome P450 1A (cyp1a) gene is upregulated in the presence of TCDD through activating the aryl hydrocarbon receptor pathway in a dose-dependent manner. Several essential response elements, including the 8 potential xenobiotic response elements in the cyp1a promoter region, have been identified to be the main functional parts for the response to TCDD. Thus, we aimed to develop a convenient and sensitive biomonitoring tool to examine the level of POPs in the environment and evaluate its potential human health risks by TCDD. Here, we established a transgenic zebrafish model with a red fluorescent reporter gene ( mCherry) using the truncated cyp1a promoter. Under exposure to TCDD, the expression pattern of mCherry in the reporter zebrafish mirrored that of endogenous cyp1a mRNA, and the primary target tissues for TCDD were the brain vessels, liver, gut, cloaca, and skin. Our results indicated that exposure of the embryos to TCDD at concentrations as low as 0.005 nM for 48 h, which did not elicit morphologic abnormalities in the embryos, markedly increased mCherry expression. In addition, the reporter embryos responded to other POPs, and primary liver cell culture of zebrafish revealed that Cyp1a protein was mainly expressed in the cytoplasm of liver cells. Furthermore, our transgenic fish embryos demonstrated that TCDD exposure can regulate the expression levels of several tumor-related factors, including epidermal growth factor, TNF-α, C-myc, proliferating cell nuclear antigen, TGF-β, serine/threonine kinase (Akt), and phosphorylated Akt, suggesting that our transgenic fish can be used as a sensitive model to evaluate the carcinogenicity induced by TCDD exposure.-Luo, J.-J., Su, D.-S., Xie, S.-L., Liu, Y., Liu, P., Yang, X.-J., Pei D.-S. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish.
Collapse
Affiliation(s)
- Juan-Juan Luo
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Dong-Sheng Su
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shao-Lin Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pei Liu
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
28
|
Roy NK, Candelmo A, DellaTorre M, Chambers RC, Nádas A, Wirgin I. Characterization of AHR2 and CYP1A expression in Atlantic sturgeon and shortnose sturgeon treated with coplanar PCBs and TCDD. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:19-31. [PMID: 29427830 PMCID: PMC5855079 DOI: 10.1016/j.aquatox.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 05/25/2023]
Abstract
Atlantic sturgeon and shortnose sturgeon co-occur in many estuaries along the Atlantic Coast of North America. Both species are protected under the U.S. Endangered Species Act and internationally on the IUCN Red list and by CITES. Early life-stages of both sturgeons may be exposed to persistent aromatic hydrocarbon contaminants such as PCBs and PCDD/Fs which are at high levels in the sediments of impacted spawning rivers. Our objective was to compare the PCBs and TCDD sensitivities of both species with those of other fishes and to determine if environmental concentrations of these contaminants approach those that induce toxicity to their young life-stages under controlled laboratory conditions. Because our previous studies suggested that young life-stages of North American sturgeons are among the more sensitive of fishes to coplanar PCB and TCDD-induced toxicities, we were interested in identifying the molecular bases of this vulnerability. It is known that activation of the aryl hydrocarbon receptor 2 (AHR2) in fishes mediates most toxicities to these contaminants and transcriptional activation of xenobiotic metabolizing enzymes such as cytochrome P4501A (CYP1A). Previous studies demonstrated that structural and functional variations in AHRs are the bases for differing sensitivities of several vertebrate taxa to aromatic hydrocarbons. Therefore, in this study we characterized AHR2 and its expression in both sturgeons as an initial step in understanding the mechanistic bases of their sensitivities to these contaminants. We also used CYP1A expression as an endpoint to develop Toxicity Equivalency Factors (TEFs) for these sturgeons. We found that critical amino acid residues in the ligand binding domain of AHR2 in both sturgeons were identical to those of the aromatic hydrocarbon-sensitive white sturgeon, and differed from the less sensitive lake sturgeon. AHR2 expression was induced by TCDD (up to 6-fold) and by three of four tested coplanar PCB congeners (3-5-fold) in Atlantic sturgeon, but less so in shortnose sturgeon. We found that expression of AHR2 and CYP1A mRNA significantly covaried after exposure to TCDD and PCB77, PCB81, PCB126, but not PCB169 in both sturgeons. We also determined TEFs for the four coplanar PCBs in shortnose sturgeon based on comparison of CYP1A mRNA expression across all doses. Surprisingly, the TEFs for all four coplanar PCBs in shortnose sturgeon were much higher (6.4-162 times) than previously adopted for fishes by the WHO.
Collapse
Affiliation(s)
- Nirmal K Roy
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Allison Candelmo
- Department of Environmental Medicine, NYU School of Medicine, United States; Northeast Fisheries Science Center, NOAA Fisheries, United States
| | - Melissa DellaTorre
- Department of Environmental Medicine, NYU School of Medicine, United States
| | | | - Arthur Nádas
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine, United States.
| |
Collapse
|
29
|
Garcia GR, Bugel SM, Truong L, Spagnoli S, Tanguay RL. AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS One 2018; 13:e0193484. [PMID: 29494622 PMCID: PMC5832240 DOI: 10.1371/journal.pone.0193484] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 01/24/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a conserved ligand-activated transcription factor required for proper vertebrate development and homeostasis. The inappropriate activation of AHR by ubiquitous pollutants can lead to adverse effects on wildlife and human health. The zebrafish is a powerful model system that provides a vertebrate data stream that anchors hypothesis at the genetic and cellular levels to observations at the morphological and behavioral level, in a high-throughput format. In order to investigate the endogenous functions of AHR, we generated an AHR2 (homolog of human AHR)-null zebrafish line (ahr2osu1) using the clustered, regulatory interspaced, short palindromic repeats (CRISPR)-Cas9 precision genome editing method. In zebrafish, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) mediated toxicity requires AHR2. The AHR2-null line was resistant to TCDD-induced toxicity, indicating the line can be used to investigate the biological and toxicological functions of AHR2. The AHR2-null zebrafish exhibited decreased survival and fecundity compared to the wild type line. At 36 weeks, histological evaluations of the AHR2-null ovaries revealed a reduction of mature follicles when compared to wild type ovaries, suggesting AHR2 regulates follicle growth in zebrafish. AHR2-null adults had malformed cranial skeletal bones and severely damaged fins. Our data suggests AHR2 regulates some aspect(s) of neuromuscular and/or sensory system development, with impaired behavioral responses observed in larval and adult AHR2-null zebrafish. This study increases our understanding of the endogenous functions of AHR, which may help foster a better understanding of the target organs and molecular mechanisms involved in AHR-mediated toxicities.
Collapse
Affiliation(s)
- Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| | - Sean M. Bugel
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| | - Lisa Truong
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| | - Sean Spagnoli
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
30
|
Garcia GR, Goodale BC, Wiley MW, La Du JK, Hendrix DA, Tanguay RL. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression. Mol Pharmacol 2017; 91:609-619. [PMID: 28385905 PMCID: PMC5438132 DOI: 10.1124/mol.117.108233] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Britton C Goodale
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Michelle W Wiley
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - David A Hendrix
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| |
Collapse
|
31
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
32
|
|
33
|
Pasparakis C, Mager EM, Stieglitz JD, Benetti D, Grosell M. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:113-123. [PMID: 27829195 DOI: 10.1016/j.aquatox.2016.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - John D Stieglitz
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| |
Collapse
|
34
|
Sørhus E, Incardona JP, Karlsen Ø, Linbo T, Sørensen L, Nordtug T, van der Meeren T, Thorsen A, Thorbjørnsen M, Jentoft S, Edvardsen RB, Meier S. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development. Sci Rep 2016; 6:31058. [PMID: 27506155 PMCID: PMC4979050 DOI: 10.1038/srep31058] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - John P. Incardona
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | - Ørjan Karlsen
- Institute of Marine Research (IMR), Austevoll Research Station, and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Tiffany Linbo
- Northwest Fisheries Science Center (NOAA), 2725 Montlake Blvd. East, Seattle, WA 98112-2097, USA
| | - Lisbet Sørensen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
- University of Bergen, P.O. Box 7800, NO-5020 Bergen, Norway
| | - Trond Nordtug
- SINTEF Materials and Chemistry, P.O. Box 4760, Sluppen, NO-7465 Trondheim, Norway
| | - Terje van der Meeren
- Institute of Marine Research (IMR), Austevoll Research Station, and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
- Department of Natural Sciences, University of Agder, NO-4604 Kristiansand, Norway
| | - Rolf B. Edvardsen
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| | - Sonnich Meier
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway
| |
Collapse
|
35
|
Nijoukubo D, Tanaka Y, Okuno Y, Yin G, Kitazawa T, Peterson RE, Kubota A, Teraoka H. Protective effect of prostacyclin against pre-cardiac edema caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin and a thromboxane receptor agonist in developing zebrafish. CHEMOSPHERE 2016; 156:111-117. [PMID: 27174823 DOI: 10.1016/j.chemosphere.2016.04.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
The role of prostaglandin pathways has been suggested in some toxicological responses to dioxins. Cyclooxygenase type 2b (COX2b), thromboxane synthase, and the thromboxane receptor (TP) pathway have been implicated in mediating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced pre-cardiac edema in developing zebrafish at 55 h post fertilization (hpf). Pre-cardiac edema refers to edema located in a small cavity between the heart and body wall of zebrafish eleutheroembryos. In the present study, we assessed the role of prostacyclin, which counteracts some biological effects of thromboxane, in TCDD-induced pre-cardiac edema. Pre-cardiac edema induced by TCDD exposure (0.5 and 1 ppb) beginning at 24 hpf was markedly inhibited by exposure to beraprost (5 and 10 μM), a prostacyclin receptor (IP) agonist, beginning at 33 hpf. The preventive effect of beraprost was reduced by exposure to CAY10441 (10 μM), an IP antagonist starting at 33 hpf. Knockdowns of the IP receptor (IP-KD) with two different morpholinos caused edema by themselves and enhanced pre-cardiac edema caused by the low concentration of TCDD (0.5 ppb). On the other hand, short exposure beginning at 48 hpf to U46619 (7.5-30 μM), a thromboxane receptor agonist caused pre-cardiac edema, which was inhibited by exposure beginning at 48 hpf to both ICI-192,605 (24 μM), a TP antagonist, and beraprost. Expression of prostacyclin synthase was increased from fertilization, plateaued by 48 hpf, and was maintained until at least 96 hpf. Overall, the results demonstrate a preventive effect of prostacyclin on TCDD-induced pre-cardiac edema in developing zebrafish.
Collapse
Affiliation(s)
- Daisuke Nijoukubo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasuaki Tanaka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuki Okuno
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Guojun Yin
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | | | - Akira Kubota
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
36
|
Saley A, Hess M, Miller K, Howard D, King-Heiden TC. Cardiac Toxicity of Triclosan in Developing Zebrafish. Zebrafish 2016; 13:399-404. [PMID: 27097057 DOI: 10.1089/zeb.2016.1257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Triclosan (TCS) is an antimicrobial agent found in personal care products that has become prevalent in surface waters. TCS readily bioaccumulates within aquatic organisms, and has been found to be toxic to fish. In larval fishes, exposure to TCS disrupts a variety of developmental processes, impairs hatching success, and causes pericardial edema. In mammals, TCS exposure disrupts excitation-contraction-coupling in cardiac cells, which is associated with reductions in cardiac output. Here, we examine the impacts of TCS on heart function to better understand potential risks that TCS may pose to wild fish. Zebrafish were exposed to 0, 0.4, 40, and 400 μg TCS/L from 8 to 120 h postfertilization via static waterborne exposure with daily renewal. We examined the incidence of pericardial edema, and the impacts on heart structure and heart function. While incidence of pericardial edema increased following exposure to ≥40 μg TCS/L and the structure of the heart was altered, cardiac output was only reduced following exposure to 400 μg TCS/L. A small but significant proportion of embryos showed increased incidence of regurgitation following exposure to ≥0.4 μg TCS/L. Our findings suggest that acute exposure to TCS has the potential to cause subtle cardiac toxicity in developing fish, and further evaluation of the risks TCS pose to wild fish and human health is needed.
Collapse
Affiliation(s)
- Alisha Saley
- Department of Biology, University of Wisconsin-La Crosse , La Crosse, Wisconsin
| | - Megan Hess
- Department of Biology, University of Wisconsin-La Crosse , La Crosse, Wisconsin
| | - Kelsey Miller
- Department of Biology, University of Wisconsin-La Crosse , La Crosse, Wisconsin
| | - David Howard
- Department of Biology, University of Wisconsin-La Crosse , La Crosse, Wisconsin
| | - Tisha C King-Heiden
- Department of Biology, University of Wisconsin-La Crosse , La Crosse, Wisconsin
| |
Collapse
|
37
|
Hanchard NA, Swaminathan S, Bucasas K, Furthner D, Fernbach S, Azamian MS, Wang X, Lewin M, Towbin JA, D'Alessandro LCA, Morris SA, Dreyer W, Denfield S, Ayres NA, Franklin WJ, Justino H, Lantin-Hermoso MR, Ocampo EC, Santos AB, Parekh D, Moodie D, Jeewa A, Lawrence E, Allen HD, Penny DJ, Fraser CD, Lupski JR, Popoola M, Wadhwa L, Brook JD, Bu'Lock FA, Bhattacharya S, Lalani SR, Zender GA, Fitzgerald-Butt SM, Bowman J, Corsmeier D, White P, Lecerf K, Zapata G, Hernandez P, Goodship JA, Garg V, Keavney BD, Leal SM, Cordell HJ, Belmont JW, McBride KL. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 2016; 25:2331-2341. [PMID: 26965164 DOI: 10.1093/hmg/ddw071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/26/2016] [Indexed: 12/28/2022] Open
Abstract
Congenital heart defects involving left-sided lesions (LSLs) are relatively common birth defects with substantial morbidity and mortality. Previous studies have suggested a high heritability with a complex genetic architecture, such that only a few LSL loci have been identified. We performed a genome-wide case-control association study to address the role of common variants using a discovery cohort of 778 cases and 2756 controls. We identified a genome-wide significant association mapping to a 200 kb region on chromosome 20q11 [P= 1.72 × 10-8 for rs3746446; imputed Single Nucleotide Polymorphism (SNP) rs6088703 P= 3.01 × 10-9, odds ratio (OR)= 1.6 for both]. This result was supported by transmission disequilibrium analyses using a subset of 541 case families (lowest P in region= 4.51 × 10-5, OR= 1.5). Replication in a cohort of 367 LSL cases and 5159 controls showed nominal association (P= 0.03 for rs3746446) resulting in P= 9.49 × 10-9 for rs3746446 upon meta-analysis of the combined cohorts. In addition, a group of seven SNPs on chromosome 1q21.3 met threshold for suggestive association (lowest P= 9.35 × 10-7 for rs12045807). Both regions include genes involved in cardiac development-MYH7B/miR499A on chromosome 20 and CTSK, CTSS and ARNT on chromosome 1. Genome-wide heritability analysis using case-control genotyped SNPs suggested that the mean heritability of LSLs attributable to common variants is moderately high ([Formula: see text] range= 0.26-0.34) and consistent with previous assertions. These results provide evidence for the role of common variation in LSLs, proffer new genes as potential biological candidates, and give further insight to the complex genetic architecture of congenital heart disease.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Kristine Bucasas
- Department of Molecular and Human Genetics, Center for Statistical Genetics
| | - Dieter Furthner
- Department of Paediatrics, Children's Hospital, Linz, Austria
| | | | | | | | - Mark Lewin
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | - Nancy A Ayres
- Division of Cardiology, Department of Pediatrics, and
| | | | - Henri Justino
- Division of Cardiology, Department of Pediatrics, and
| | | | | | | | - Dhaval Parekh
- Division of Cardiology, Department of Pediatrics, and
| | | | - Aamir Jeewa
- Division of Cardiology, Department of Pediatrics, and
| | | | - Hugh D Allen
- Division of Cardiology, Department of Pediatrics, and
| | | | - Charles D Fraser
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Lalita Wadhwa
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - J David Brook
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Frances A Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Shoumo Bhattacharya
- Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Sara M Fitzgerald-Butt
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research, The Heart Center, and
| | | | - Don Corsmeier
- Department of Pediatrics and Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Department of Pediatrics and Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kelsey Lecerf
- College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gladys Zapata
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK and
| | - Vidu Garg
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research, The Heart Center, and
| | - Bernard D Keavney
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK and
| | - John W Belmont
- Department of Molecular and Human Genetics, Department of Pediatrics,
| | - Kim L McBride
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research,
| |
Collapse
|
38
|
Vehniäinen ER, Bremer K, Scott JA, Junttila S, Laiho A, Gyenesei A, Hodson PV, Oikari AOJ. Retene causes multifunctional transcriptomic changes in the heart of rainbow trout (Oncorhynchus mykiss) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:95-102. [PMID: 26667672 DOI: 10.1016/j.etap.2015.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Fish are particularly sensitive to aryl hydrocarbon receptor (AhR)-mediated developmental toxicity. The molecular mechanisms behind these adverse effects have remained largely unresolved in salmonids, and for AhR-agonistic polycyclic aromatic hydrocarbons (PAHs). This study explored the cardiac transcriptome of rainbow trout (Oncorhynchus mykiss) eleuteroembryos exposed to retene, an AhR-agonistic PAH. The embryos were exposed to retene (nominal concentration 32 μg/L) and control, their hearts were collected before, at and after the onset of the visible signs of developmental toxicity, and transcriptomic changes were studied by microarray analysis. Retene up- or down-regulated 122 genes. The largest Gene Ontology groups were signal transduction, transcription, apoptosis, cell growth, cytoskeleton, cell adhesion/mobility, cardiovascular development, xenobiotic metabolism, protein metabolism, lipid metabolism and transport, and amino acid metabolism. Together these findings suggest that retene affects multiple signaling cascades in the heart of rainbow trout embryos, and potentially disturbs processes related to cardiovascular development and function.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.
| | - Katharina Bremer
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| | - Jason A Scott
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| | - Sini Junttila
- Finnish Microarray and Sequencing Centre (FMSC), Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Asta Laiho
- Finnish Microarray and Sequencing Centre (FMSC), Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Attila Gyenesei
- Finnish Microarray and Sequencing Centre (FMSC), Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Peter V Hodson
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| | - Aimo O J Oikari
- University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
39
|
Komoike Y, Matsuoka M. [Application of Zebrafish Model to Environmental Toxicology]. Nihon Eiseigaku Zasshi 2016; 71:227-235. [PMID: 27725426 DOI: 10.1265/jjh.71.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, a tropical freshwater fish, the zebrafish, has been generally used as a useful model organism in various fields of life science worldwide. The zebrafish model has also been applied to environmental toxicology; however, in Japan, it has not yet become widely used. In this review, we will introduce the biological and historical backgrounds of zebrafish as an animal model and their breeding. We then present the current status of toxicological experiments using zebrafish that were treated with some important environmental contaminants, including cadmium, organic mercury, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and tributyltin. Finally, the future possible application of genetically modified zebrafish to the study of environmental toxicology is discussed.
Collapse
Affiliation(s)
- Yuta Komoike
- Department of Hygiene and Public Health I, Tokyo Women's Medical University
| | | |
Collapse
|
40
|
Adeyemo OK, Kroll KJ, Denslow ND. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:60-71. [PMID: 26448268 DOI: 10.1016/j.aquatox.2015.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Exposure of fish embryos to relatively low concentrations of oil has been implicated in sub-lethal toxicity. The objective of this study was to determine the effects of the exposure of Menidia beryllina embryos at 30-48h post-fertilization to the water accommodated fractions of oil (WAF, 200ppm, v/v), dispersants (20ppm, v/v, Corexit 9500 or 9527), and mixtures of oil and each of the dispersants to produce chemically enhanced water accommodated fractions (CEWAFs) over a 72-hour period. The polyaromatic hydrocarbon (PAH) and benzene, toluene, ethylene and xylene (BTEX) constituents of the 5X concentrated exposure solutions (control, WAF, dispersants and CEWAFs) were determined and those of the 1× exposures were derived using a dilution factor. PAH, BTEX and low molecular weight PAH constituents greater than 1ppb were observed in WAF and the dispersants, but at much higher levels in CEWAFs. The WAF and CEWAFs post-weathering were diluted at 1:5 (200ml WAF/CEWAF: 800ml 25ppt saltwater) for embryo exposures. Mortality, heartbeat, embryo normalcy, abnormality types and severities were recorded. The qPCR assay was used to quantify abundances of transcripts of target genes for sexual differentiation and sex determination (StAR, dmrt-1, amh, cyp19b, vtg and chg-L,), growth regulation (ghr) and stress response (cyp1a and Hsp90); and gapdh served as the housekeeping gene. Temperature was 21±1.5°C throughout the experimental period, while mortality was low and not significantly different (p=0.68) among treatments. Heartbeat was significantly different (0.0034) with the lowest heartbeats recorded in Corexit 9500 (67.5beats/min) and 9527 (67.1beats/min) exposed embryos compared with controls (82.7beats/min). Significantly more treated embryos were in a state of deterioration, with significantly more embryos presenting arrested tissue differentiation compared with controls (p=0.021). Exposure to WAF, dispersants and CEWAF induced aberrant expression of all the genes, with star, dmrt-1, ghr and hsp90 being significantly down-regulated in CEWAF and cyp19b in Corexit 9527. The cyp1a and cyp19b were significantly up-regulated in CEWAFs and WAF, respectively. The molecular endpoints were most sensitive, especially the expression of star, cyp19b, cyp1a, hsp90 and could therefore be used as early indicators of long term effects of Corexit 9500 and 9527 usage in oil spill management on M. beryllina, a valid sentinel for oil pollution events.
Collapse
Affiliation(s)
- Olanike K Adeyemo
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 2015; 88:275-289. [PMID: 26130508 PMCID: PMC4698826 DOI: 10.1016/j.freeradbiomed.2015.06.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
| | - Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
42
|
Antos PA, Błachuta M, Hrabia A, Grzegorzewska AK, Sechman A. Expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1) and CYP1 family monooxygenase mRNAs and their activity in chicken ovarian follicles following in vitro exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Lett 2015; 237:100-11. [DOI: 10.1016/j.toxlet.2015.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 11/30/2022]
|
43
|
Kataria A, Trasande L, Trachtman H. The effects of environmental chemicals on renal function. Nat Rev Nephrol 2015; 11:610-25. [PMID: 26100504 DOI: 10.1038/nrneph.2015.94] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The global incidence of chronic kidney disease (CKD) is increasing among individuals of all ages. Despite advances in proteomics, genomics and metabolomics, there remains a lack of safe and effective drugs to reverse or stabilize renal function in patients with glomerular or tubulointerstitial causes of CKD. Consequently, modifiable risk factors that are associated with a progressive decline in kidney function need to be identified. Numerous reports have documented the adverse effects that occur in response to graded exposure to a wide range of environmental chemicals. This Review summarizes the effects of such chemicals on four aspects of cardiorenal function: albuminuria, glomerular filtration rate, blood pressure and serum uric acid concentration. We focus on compounds that individuals are likely to be exposed to as a consequence of normal consumer activities or medical treatment, namely phthalates, bisphenol A, polyfluorinated alkyl acids, dioxins and furans, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environmental exposure to these chemicals during everyday life could have adverse consequences on renal function and might contribute to progressive cumulative renal injury over a lifetime. Regulatory efforts should be made to limit individual exposure to environmental chemicals in an attempt to reduce the incidence of cardiorenal disease.
Collapse
Affiliation(s)
- Anglina Kataria
- Department of Pediatrics, Clinical and Translational Science Institute, New York University School of Medicine, 227 East 30th Street, Room #733, New York, NY 10016, USA
| | - Leonardo Trasande
- Department of Pediatrics, Clinical and Translational Science Institute, New York University School of Medicine, 227 East 30th Street, Room #733, New York, NY 10016, USA
| | - Howard Trachtman
- Department of Pediatrics, Clinical and Translational Science Institute, New York University School of Medicine, 227 East 30th Street, Room #733, New York, NY 10016, USA
| |
Collapse
|
44
|
Matrone G, Wilson KS, Mullins JJ, Tucker CS, Denvir MA. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart. Differentiation 2015; 89:117-27. [PMID: 26095446 DOI: 10.1016/j.diff.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/06/2015] [Accepted: 05/10/2015] [Indexed: 11/25/2022]
Abstract
Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.
Collapse
Affiliation(s)
- Gianfranco Matrone
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | - Kathryn S Wilson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Carl S Tucker
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Martin A Denvir
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
45
|
Johnson B, Bark D, Van Herck I, Garrity D, Dasi LP. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol 2015; 14:1379-89. [DOI: 10.1007/s10237-015-0681-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/29/2015] [Indexed: 01/29/2023]
|
46
|
Yue MS, Peterson RE, Heideman W. Dioxin inhibition of swim bladder development in zebrafish: is it secondary to heart failure? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:10-17. [PMID: 25766903 PMCID: PMC4397172 DOI: 10.1016/j.aquatox.2015.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 05/20/2023]
Abstract
The swim bladder is a gas-filled organ that is used for regulating buoyancy and is essential for survival in most teleost species. In zebrafish, swim bladder development begins during embryogenesis and inflation occurs within 5 days post fertilization (dpf). Embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) before 96 h post fertilization (hpf) developed swim bladders normally until the growth/elongation phase, at which point growth was arrested. It is known that TCDD exposure causes heart malformations that lead to heart failure in zebrafish larvae, and that blood circulation is a key factor in normal development of the swim bladder. The adverse effects of TCDD exposure on the heart occur during the same period of time that swim bladder development and growth occurs. Based on this coincident timing, and the dependence of swim bladder development on proper circulatory development, we hypothesized that the adverse effects of TCDD on swim bladder development were secondary to heart failure. We compared swim bladder development in TCDD-exposed embryos to: (1) silent heart morphants, which lack cardiac contractility, and (2) transiently transgenic cmlc2:caAHR-2AtRFP embryos, which mimic TCDD-induced heart failure via heart-specific, constitutive activation of AHR signaling. Both of these treatment groups, which were not exposed to TCDD, developed hypoplastic swim bladders of comparable size and morphology to those found in TCDD-exposed embryos. Furthermore, in all treatment groups swim bladder development was arrested during the growth/elongation phase. Together, these findings support a potential role for heart failure in the inhibition of swim bladder development caused by TCDD.
Collapse
Affiliation(s)
- Monica S Yue
- Molecular and Environmental Toxicology Center, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| | - Warren Heideman
- Molecular and Environmental Toxicology Center, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
47
|
Wincent E, Jönsson ME, Bottai M, Lundstedt S, Dreij K. Aryl hydrocarbon receptor activation and developmental toxicity in zebrafish in response to soil extracts containing unsubstituted and oxygenated PAHs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3869-3877. [PMID: 25715055 DOI: 10.1021/es505588s] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many industrial sites are polluted by complex mixtures of polycyclic aromatic compounds (PACs). Besides polycyclic aromatic hydrocarbons (PAHs), these mixtures often contain significant amounts of more polar PACs including oxygenated PAHs (oxy-PAHs). The effects of oxy-PAHs are, however, poorly known. Here we used zebrafish embryos to examine toxicities and transcriptional changes induced by PAC containing soil extracts from three different industrial sites: a gasworks (GAS), a former wood preservation site (WOOD), and a coke oven (COKE), and to PAH and oxy-PAH containing fractions of these. All extracts induced aryl hydrocarbon receptor (Ahr)-regulated mRNAs, malformations, and mortality. The WOOD extract was most toxic and the GAS extract least toxic. The extracts induced glutathione transferases and heat shock protein 70, suggesting that the toxicity also involved oxidative stress. With all extracts, Ahr2-knock-down reduced the toxicity, indicating a significant Ahr2-dependence on the effects. Ahr2-knock-down was most effective with the PAH fraction of the WOOD extract and with the oxy-PAH fraction of the COKE extract. Our results indicate that oxy-PAH containing mixtures can be as potent Ahr activators and developmental toxicants as PAHs. In addition to Ahr activating potency, the profile of cytochrome P4501 inhibitors may also determine the toxic potency of the extracts.
Collapse
Affiliation(s)
- Emma Wincent
- †Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- ‡Department of Environmental Toxicology, Uppsala University, 751 05 Uppsala, Sweden
| | - Maria E Jönsson
- †Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- ‡Department of Environmental Toxicology, Uppsala University, 751 05 Uppsala, Sweden
| | - Matteo Bottai
- †Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Kristian Dreij
- †Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
48
|
Pilcher W, Miles S, Tang S, Mayer G, Whitehead A. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish. PLoS One 2014; 9:e106351. [PMID: 25208076 PMCID: PMC4160169 DOI: 10.1371/journal.pone.0106351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA.
Collapse
Affiliation(s)
- Whitney Pilcher
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Scott Miles
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Song Tang
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States of America
| | - Greg Mayer
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States of America
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bugel SM, Tanguay RL, Planchart A. Zebrafish: A marvel of high-throughput biology for 21 st century toxicology. Curr Environ Health Rep 2014; 1:341-352. [PMID: 25678986 DOI: 10.1007/s40572-014-0029-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
50
|
Lanham KA, Plavicki J, Peterson RE, Heideman W. Cardiac myocyte-specific AHR activation phenocopies TCDD-induced toxicity in zebrafish. Toxicol Sci 2014; 141:141-54. [PMID: 25037585 PMCID: PMC4271120 DOI: 10.1093/toxsci/kfu111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/26/2014] [Indexed: 12/24/2022] Open
Abstract
Exposure of zebrafish embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the zebrafish aryl hydrocarbon receptor 2 (AHR) to produce developmental and cardiovascular toxicity. AHR is found in the heart; however, AHR activation by TCDD is not confined to the heart and occurs throughout the organism. In order to understand the cause of cardiotoxicity, we constructed a constitutively active AHR (caAHR) based on the zebrafish AHR2 and expressed it specifically in cardiomyocytes. We show that AHR activation within the cardiomyocytes can account for the heart failure induced by TCDD. Expression of the caAHR within the heart produced cardiac malformations, loss of circulation, and pericardial edema. The heart-specific activation of AHR reproduced several other well-characterized endpoints of TCDD toxicity outside of the cardiovascular system, including defects in swim bladder and craniofacial development. This work identifies a single cellular site of TCDD action, the myocardial cell, that can account for the severe cardiovascular collapse observed following early life stage exposure to TCDD, and contributes to other forms of toxicity.
Collapse
MESH Headings
- Animals
- Cardiotoxicity
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Heart Defects, Congenital/chemically induced
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Plasmids
- Polychlorinated Dibenzodioxins/toxicity
- Promoter Regions, Genetic
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Regional Blood Flow/drug effects
- Zebrafish/embryology
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Kevin A Lanham
- Department of Pharmaceutical Sciences, 777 Highland Avenue, University of Wisconsin, Madison, Wisconsin 53705-2222
| | - Jessica Plavicki
- Department of Pharmaceutical Sciences, 777 Highland Avenue, University of Wisconsin, Madison, Wisconsin 53705-2222
| | - Richard E Peterson
- Department of Pharmaceutical Sciences, 777 Highland Avenue, University of Wisconsin, Madison, Wisconsin 53705-2222
| | - Warren Heideman
- Department of Pharmaceutical Sciences, 777 Highland Avenue, University of Wisconsin, Madison, Wisconsin 53705-2222
| |
Collapse
|