1
|
Sridhar VV, Turner LW, Reidenbach LS, Horzmann KA, Freeman JL. A review of the influence of pH on toxicity testing of acidic environmental chemical pollutants in aquatic systems using zebrafish (Danio rerio) and glyphosate toxicity as a case study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117506. [PMID: 39667323 DOI: 10.1016/j.ecoenv.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Glyphosate is an acidic herbicide reported to contaminate water sources around the globe. Glyphosate alters the pH of a solution depending upon the concentration and buffering capacity of the solution in which it is present. Hence, toxicity observed in laboratory-based studies could be caused by the chemical or acidic pH if the solution is not adjusted to neutral conditions, confounding toxicity assessments. When reviewing zebrafish glyphosate toxicity studies, major discrepancies were noted among the published literature. Moreover, it was discovered that most of these studies did not mention pH or neutralization of the test solution. Thirty-six articles were identified when restricting the search from January 2009 through April 2024 to studies testing glyphosate toxicity (as glyphosate or glyphosate-based herbicides) in zebrafish and assessed for time of exposure, test concentrations, and mention or assessment of pH in exposure solutions. Additionally, toxicity curves for unadjusted pH and adjusted pH conditions for glyphosate were also determined in developing zebrafish from 1 to 120 hours post fertilization (hpf), to further clarify and support pH influence of glyphosate in these toxicity tests. Furthermore, a pH toxicity curve was established for the same developmental period to address if the divergence noted in the literature was based on glyphosate's influence on acidity of the exposure solution. Results showed that at concentrations greater than 10 ppm (mg/L), the pH of the water used in the experiments at chemistry parameters commonly used in zebrafish toxicity studies reduced to 5.5. As the glyphosate concentration increased, the pH continued to drop as low as 2.98. When comparing unneutralized and neutralized glyphosate solutions, the 120 hpf-LC50 without neutralization was close to 50 ppm, while minimal lethality was observed up to 1000 ppm in the neutralized solutions. Findings were then compared to the thirty-six zebrafish glyphosate toxicity studies for alignment of findings with glyphosate or pH toxicity. Eighteen of the studies included treatment concentrations less than 10 ppm with pH likely not to influence reported outcomes. Of the 18 remaining studies at higher concentrations likely to influence pH, only one reported neutralizing their exposure solutions. Two additional studies mentioned pH as a potential driving factor but did not repeat in neutral conditions. As a result, 17 of the 36 studies are observing primarily pH toxicity in the glyphosate assessments. Based on these findings, caution is warranted in interpreting results of acidic environmental contaminants in cases where pH of exposure solutions is not stated.
Collapse
Affiliation(s)
| | - Lucas W Turner
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
2
|
Stradtman SC, Swihart JN, Moore K, Akoro IN, Ahkin Chin Tai JK, Tamagno WA, Freeman JL. Integrated Analysis of Neuroendocrine and Neurotransmission Pathways Following Developmental Atrazine Exposure in Zebrafish. Int J Mol Sci 2024; 25:13066. [PMID: 39684776 DOI: 10.3390/ijms252313066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Atrazine is an endocrine-disrupting herbicide, with exposure impacting adverse outcomes along multiple endocrine pathways. This study investigated the neuroendocrine system as the central target of atrazine toxicity, examining effects of early developmental exposures on neurohormones and genes associated with kisspeptin, hypothalamic, pituitary, and dopamine systems. Zebrafish were exposed to 0, 0.3, 3, or 30 ppb (µg/L) atrazine during two developmental time windows. For neurohormone assessments, exposure was ceased at the end of embryogenesis (72 h post-fertilization, hpf) and analyzed immediately or grown to 0.5, 2, or 2.5 years post-fertilization (ypf). Gene expression was measured immediately after 1-72 hpf or 72-120 hpf exposure. Estradiol decreased in the 0.3 and 30 ppb groups in 0.5 ypf female brains, while dopamine decreased in the same treatment groups at 72 hpf. Increases were also observed in 2.5 ypf female brains (3 ppb) for estradiol and in 2 ypf female and male brains (3 and 30 ppb) for dopamine. Gene expression alterations occurred for the follicle-stimulating hormone (fsh) at 72 hpf and the growth hormone (gh1) at 72 and 120 hpf. Overall, results indicated that developmental atrazine exposure has immediate and long-term sex-specific effects on neurohormonal systems.
Collapse
Affiliation(s)
- Sydney C Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna N Swihart
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kaylin Moore
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
4
|
Kiper K, Mild B, Chen J, Yuan C, Wells EM, Zheng W, Freeman JL. Cerebral Vascular Toxicity after Developmental Exposure to Arsenic (As) and Lead (Pb) Mixtures. TOXICS 2024; 12:624. [PMID: 39330552 PMCID: PMC11435665 DOI: 10.3390/toxics12090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Arsenic (As) and lead (Pb) are environmental pollutants found in common sites linked to similar adverse health effects. This study determined driving factors of neurotoxicity on the developing cerebral vasculature with As and Pb mixture exposures. Cerebral vascular toxicity was evaluated at mixture concentrations of As and Pb representing human exposures levels (10 or 100 parts per billion; ppb; µg/L) in developing zebrafish by assessing behavior, morphology, and gene expression. In the visual motor response assay, hyperactivity was observed in all three outcomes in dark phases in larvae with exposure (1-120 h post fertilization, hpf) to 10 ppb As, 10 ppb Pb, or 10 ppb mix treatment. Time spent moving exhibited hyperactivity in dark phases for 100 ppb As and 100 ppb mix treatment groups only. A decreased brain length and ratio of brain length to total length in the 10 ppb mix group was measured with no alterations in other treatment groups or other endpoints (i.e., total larval length, head length, or head width). Alternatively, measurements of cerebral vasculature in the midbrain and cerebellum uncovered decreased total vascularization at 72 hpf in all treatment groups in the mesencephalon and in all treatment groups, except the 100 ppb Pb and 10 ppb As groups, in the cerebellum. In addition, decreased sprouting and branching occurred in the mesencephalon, while only decreased branching was measured in the cerebellum. The 10 ppb Pb group showed several cerebral vasculature modifications that were aligned with a specific gene expression alteration pattern different from other treatment groups. Additionally, the 100 ppb As group drove gene alterations, along with several other endpoints, for changes observed in the 100 ppb mix treatment group. Perturbations assessed in this study displayed non-linear concentration-responses, which are important to consider in environmental health outcomes for As and Pb neurotoxicity.
Collapse
Affiliation(s)
- Keturah Kiper
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Breeann Mild
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jenny Chen
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ellen M. Wells
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
5
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
6
|
Ren M, Lv X, Xu T, Sun J, Gao M, Lin H. Effects of atrazine and curcumin exposure on TCMK-1 cells: Oxidative damage, pyroptosis and cell cycle arrest. Food Chem Toxicol 2024; 185:114483. [PMID: 38301994 DOI: 10.1016/j.fct.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Atrazine (ATR), a commonly used herbicide, is highly bioaccumulative and toxic, posing a threat to a wide range of organisms. Curcumin has strong antioxidant properties. However, it is unclear whether curcumin counteracts cellular pyroptosis as well as cell cycle arrest induced by ATR exposure. Therefore, we conducted a study using TCMK-1 cells and established cell models by adding 139 μmol/L ATR and 20 μmol/L curcumin. The results showed that ATR exposure produced excessive reactive oxygen species (ROS), reduced activities of enzymes such as GSH-PX, SOD and Total Antioxidant Capacity, markedly increased the content of H2O2, disrupted the antioxidant system, activated Caspase-1, and the expression levels of the pyroptosis-related genes NLRP3, GSDMD, ASC, Caspase-1, IL-1β and IL-18 were increased. The simultaneous excess of ROS led to DNA damage, activation of P53 led to elevated expression levels of P53 and P21, as a consequence, the expression levels of cyclinE, CDK2 and CDK4 were reduced. These results suggest that Cur can modulate ATR exposure-induced pyroptosis as well as cell cycle arrest in TCMK-1 cells by governing oxidative stress.
Collapse
Affiliation(s)
- Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiunan Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Wasel O, King H, Choi YJ, Lee LS, Freeman JL. Differential Developmental Neurotoxicity and Tissue Uptake of the Per- and Polyfluoroalkyl Substance Alternatives, GenX and PFBS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19274-19284. [PMID: 37943624 PMCID: PMC11299994 DOI: 10.1021/acs.est.3c05023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals with several applications. Multiple adverse health effects are reported for longer carbon chain (≤C8) PFAS. Shorter carbon chain PFAS, [e.g., hexafluoropropylene oxide dimer acid (HFPO-DA; GenX) and perfluorobutanesulfonic acid (PFBS)] were introduced as alternatives. Past studies indicate that longer-chain PFAS are neurotoxic targeting the dopamine pathway, but it is not known if shorter-chain PFAS act similarly. This study aimed to evaluate developmental neurotoxicity and tissue uptake of GenX and PFBS using the zebrafish (Danio rerio). First, acute toxicity was assessed by measuring LC50 at 120 h postfertilization (hpf). Body burden was determined after embryonic exposure (1-72 hpf) to sublethal concentrations of GenX or PFBS by LC-ESI-MS/MS. Locomotor activity using a visual motor response assay at 120 hpf and dopamine levels at 72 hpf was assessed after embryonic exposure. PFBS was more acutely toxic and bioaccumulative than GenX. GenX and PFBS caused hyperactivity at 120 hpf, but stronger behavioral alterations were observed for PFBS. An increase in whole organism dopamine occurred at 40 ppb of GenX, while a decrease was observed at 400 ppb of PFBS. Differences detected in dopamine for these two PFAS indicate differential mechanisms of developmental neurotoxicity.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hanna King
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
9
|
Ahkin Chin Tai JK, Horzmann KA, Jenkins TL, Akoro IN, Stradtman S, Aryal UK, Freeman JL. Adverse developmental impacts in progeny of zebrafish exposed to the agricultural herbicide atrazine during embryogenesis. ENVIRONMENT INTERNATIONAL 2023; 180:108213. [PMID: 37774458 PMCID: PMC10613503 DOI: 10.1016/j.envint.2023.108213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Atrazine (ATZ) is an herbicide commonly used on crops in the Midwestern US and other select global regions. The US Environmental Protection Agency ATZ regulatory limit is 3 parts per billion (ppb; µg/L), but this limit is often exceeded. ATZ has a long half-life, is a common contaminant of drinking water sources, and is indicated as an endocrine disrupting chemical in multiple species. The zebrafish was used to test the hypothesis that an embryonic parental ATZ exposure alters protein levels leading to modifications in morphology and behavior in developing progeny. Zebrafish embryos (F1) were collected from adults (F0) exposed to 0, 0.3, 3, or 30 ppb ATZ during embryogenesis. Differential proteomics, morphology, and behavior assays were completed with offspring aged 120 or 144 h with no additional chemical treatment. Proteomic analysis identified differential expression of proteins associated with neurological development and disease; and organ and organismal morphology, development, and injury, specifically the skeletomuscular system. Head length and ratio of head length to total length was significantly increased in the F1 of 0.3 and 30 ppb ATZ groups (p < 0.05). Based on molecular pathway alterations, further craniofacial morphology assessment found decreased distance for cartilaginous structures, decreased surface area and distance between saccular otoliths, and a more posteriorly positioned notochord (p < 0.05), indicating delayed ossification and skeletal growth. The visual motor response assay showed hyperactivity in progeny of the 30 ppb treatment group for distance moved and of the 0.3 and 30 ppb treatment groups for time spent moving (p < 0.05). Due to the changes in saccular otoliths, an acoustic startle assay was completed and showed decreased response in the 0.3 and 30 ppb treatments (p < 0.05). These findings suggest that a single embryonic parental exposure alters cellular pathways in their progeny that lead to perturbations in craniofacial development and behavior.
Collapse
Affiliation(s)
| | - Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Thomas L Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
10
|
Souza VVD, Souza TDS, Campos JMSD, Oliveira LAD, Ribeiro YM, Hoyos DCDM, Xavier RMP, Charlie-Silva I, Lacerda SMDSN. Ecogenotoxicity of environmentally relevant atrazine concentrations: A threat to aquatic bioindicators. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105297. [PMID: 36549823 DOI: 10.1016/j.pestbp.2022.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a herbicide that is frequently present in surface waters and may result in damage to the health of various organisms, including humans. However, most scientific literature reports injuries caused by ATZ at high concentrations, which are not found in the environment. Therefore, the scope of this study was to investigate the impacts of realistic concentrations of ATZ found in surface waters (1, 2, 5, 10, 15 and 20 μg/L) using the bioindicators Allium cepa, Daphnia magna and zebrafish (Danio rerio). ATZ elicited a genotoxic effect in A. cepa, manifested by the induction of chromosomal aberrations, and a mutagenic effect with increased incidence of micronuclei formation, promotion of cell death and reduction in nuclear size revealed by flow cytometry analysis. D. magna exposed to 10, 15 and 20 μg/L of ATZ showed significant reduction in body size after 21 days, delayed first-brood release, decreased egg production and total offspring, as well as swimming behavioral changes. ATZ exposure promoted physiological and developmental alterations in zebrafish embryos, including an increased spontaneous movement rate, which led to premature hatching at all concentrations investigated. Increase in total body length, decrease of the yolk sac area, pericardial edema and higher heart rate were also detected in ATZ-treated zebrafish. In summary, environmentally relevant concentrations of ATZ can induce substantial alterations in the three bioindicators investigated. This study evidences the deleterious effects of ATZ on three aquatic bioindicators employing established and current techniques, and may contribute to elucidate the risks caused by this widely used herbicide even at low concentrations and short-to-medium-term exposure.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana da Silva Souza
- Laboratory of Ecotoxicology, Department of Biology, Federal University of Espírito Santo, Alegre, Brazil
| | | | - Luiza Araújo de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves Moreira Ribeiro
- Laboratory of Ichthyohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
11
|
Dutta S, Banu SK, Arosh JA. Endocrine disruptors and endometriosis. Reprod Toxicol 2023; 115:56-73. [PMID: 36436816 DOI: 10.1016/j.reprotox.2022.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis is a hormone-dependent inflammatory gynecological disease of reproductive-age women. It is clinically and pathologically characterized by the presence of functional endometrium as heterogeneous lesions outside the uterine cavity. The two major symptoms are chronic pelvic pain and infertility, which profoundly affect women's reproductive health and quality of life. This significant individual and public health concerns underscore the importance of understanding the pathogenesis of endometriosis. The environmental endocrine-disrupting chemicals (EDCs) are exogenous agents that interfere with the synthesis, secretion, transport, signaling, or metabolism of hormones responsible for homeostasis, reproduction, and developmental processes. Endometriosis has been potentially linked to exposure to EDCs. In this review, based on the robust literature search, we have selected four endocrine disruptors (i) polychlorinated biphenyls (PCB)s (ii) dioxins (TCDD) (iii) bisphenol A (BPA) and its analogs and (iv) phthalates to elucidate their critical role in the etiopathogenesis of endometriosis. The epidemiological and experimental data discussed in this review indicate that these four EDCs activate multiple intracellular signaling pathways associated with proinflammation, estrogen, progesterone, prostaglandins, cell survival, apoptosis, migration, invasion, and growth of endometriosis. The available information strongly indicates that environmental exposure to EDCs such as PCBs, dioxins, BPA, and phthalates individually or collectively contribute to the pathophysiology of endometriosis. Further understanding of the molecular mechanisms of how these EDCs establish endometriosis and therapeutic strategies to mitigate the effects of these EDCs in the pathogenesis of endometriosis are timely needed. Moreover, understanding the interactive roles of these EDCs in the pathogenesis of endometriosis will help regulate the exposure to these EDCs in reproductive age women.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| |
Collapse
|
12
|
Wasel O, Thompson KM, Freeman JL. Assessment of unique behavioral, morphological, and molecular alterations in the comparative developmental toxicity profiles of PFOA, PFHxA, and PFBA using the zebrafish model system. ENVIRONMENT INTERNATIONAL 2022; 170:107642. [PMID: 36410238 PMCID: PMC9744091 DOI: 10.1016/j.envint.2022.107642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Perfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are persistent in the environment. Due to adverse health outcomes associated with longer chain PFAS, shorter chain chemicals were used as replacements, but developmental toxicity assessments of the shorter chain chemicals are limited. Toxicity of three perfluoroalkyl acids (PFAAs) [perfluorooctanoic acid (PFOA), composed of 8 carbon (C8), perfluorohexanoic acid (PFHxA, C6), and perfluorobutanoic acid (PFBA, C4)] was compared in developing zebrafish (Danio rerio). LC50s at 120 h post fertilization (hpf) assessed potency of each PFAA by exposing developing zebrafish (1-120 hpf) to range of concentrations. Zebrafish were then exposed to sublethal concentrations (0.4-4000 ppb, µg/L) throughout embryogenesis (1-72 hpf). Effects of the embryonic exposure on locomotor activities was completed with the visual motor response test at 120 hpf. At 72 hpf, morphological changes (total body length, head length, head width) and transcriptome profiles to compare altered molecular and disease pathways were determined. The LC50 ranking followed trend as expected based on chain length. PFOA caused hyperactivity and PFBA hypoactivity, while PFHxA did not change behavior. PFOA, PFHxA, and PFBA caused morphological and transcriptomic alterations that were unique for each chemical and were concentration-dependent indicating different toxicity mechanisms. Cancer was a top disease for PFOA and FXR/RXR activation was a top canonical pathway for PFBA. Furthermore, comparison of altered biological and molecular pathways in zebrafish exposed to PFOA matched findings reported in prior epidemiological studies and other animal models, supporting the predictive value of the transcriptome approach and for predicting adverse health outcomes associated with PFHxA or PFBA exposure.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kathryn M Thompson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
13
|
Horzmann KA, Lin LF, Taslakjian B, Yuan C, Freeman JL. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis. CHEMOSPHERE 2022; 308:136431. [PMID: 36126741 DOI: 10.1016/j.chemosphere.2022.136431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
Atrazine often contaminates drinking water sources, exceeding the maximum contaminant level established by the US Environmental Protection Agency at 3 parts per billion (ppb; μg/L). Atrazine is linked to endocrine disruption, neurotoxicity, and cancer, with delayed health effects observed after developmental exposure in line with the developmental origins of health and disease (DOHaD) hypothesis. To test the hypothesis that embryonic atrazine exposure induces delayed neurotoxicity in adult female zebrafish (Danio rerio), embryos were exposed to 0, 0.3, 3, or 30 ppb atrazine during embryogenesis (1-72 h post fertilization (hpf)) and raised to adults with no additional atrazine exposure. Behavioral outcomes were tested through a novel tank test, light-dark box, and open field test and indicated female zebrafish had more anxious phenotypes at 9 months post fertilization (mpf). Female brain transcriptomic analysis at 9 mpf found altered gene expression pathways related to organismal injury and cancer with beta-estradiol and estrogen receptor as top upstream regulators. These results were compared to 9 mpf male and 6 mpf female groups with the same atrazine embryonic exposures and showed differences in specific genes that were altered, but similarities in top molecular pathways. Molecular pathways associated with behavior were observed only in the 6 mpf transcriptomic profiles, suggesting prediction of observed behavioral outcomes at 9 mpf. The expression of genes associated with serotonin neurotransmission was also evaluated at 14 mpf to determine persistence; however, no significant changes were observed. Brain global methylation in 12 mpf zebrafish observed an increased percent 5 mC in females with embryonic 0.3 ppb atrazine exposure. Finally, the body length, body weight, and brain weight were determined at 14 mpf and were altered in all treatment groups. These results indicate that embryonic atrazine exposure does cause delayed neurotoxicity within the DOHaD framework, which is significant given atrazine's presence and persistence in the environment.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn AL, 36849, USA.
| | - Li F Lin
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Boghos Taslakjian
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Ahmed ZSO, Tahon MA, Hasan RS, El-Sayed HGM, AbuBaker HO, Ahmed IM, Ahmed YH. Histopathological, immunohistochemical, and molecular investigation of atrazine toxic effect on some organs of adult male albino rats with a screening of Acacia nilotica as a protective trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83797-83809. [PMID: 35771327 DOI: 10.1007/s11356-022-21659-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide; however, it has deleterious effects. The current study aimed to investigate the potential toxic effect of ATZ as a neuroendocrine disruptor on the cerebellum and thyroid gland and on the liver as a detoxifying organ. We examined the ability of ATZ to induce oxidative stress and subsequent apoptosis in these organs. Moreover, we investigated the potential protective effect of Acacia nilotica, because of its potent antioxidant activity. Thus, our study was carried out on 40 adult male albino rats that were divided equally into 4 groups (10 rats/each group). The first group received distilled water, while the second group received ATZ dissolved in corn oil at 200 mg/kg body weight/day by stomach gavage. The third group was treated orally by ATZ (200 mg/kg body weight/day) plus Acacia nilotica (400 mg/kg/day). Group IV received Acacia nilotica only at a dose (400 mg/kg/day). After successive 30 days of the experiment, blood and tissue samples were collected from all groups. Our findings revealed the ability of ATZ to induce toxic effects was observed microscopically in the form of degenerated neurons and vacuolated neuropil of the cerebellum, degenerated hepatocytes, and vacuolation of the follicular cells of the thyroid gland. Furthermore, ATZ significantly elevated AST, ALT, and ALP serum levels and TB concentration, while decreased GSH. DNA fragmentation% and activated caspase-3 expression significantly increased after ATZ exposure. Interestingly, Acacia nilotica administration was able to partially protect the examined organs against the toxic effect of ATZ exposure.
Collapse
Affiliation(s)
- Zainab Sabry Othman Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Mohamed Abdelaziz Tahon
- Central laboratory of residue analysis of pesticides and heavy metal in food, Agricultural Research Center, Giza, Egypt
| | - Randa S Hasan
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Hazem G M El-Sayed
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Huda O AbuBaker
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ismaiel M Ahmed
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
15
|
Wang S, Bryan C, Xie J, Zhao H, Lin L, Tai JAC, Horzmann KA, Sanchez O, Zhang M, Freeman JL, Yuan C. Atrazine exposure in zebrafish induces aberrant genome-wide methylation. Neurotoxicol Teratol 2022; 92:107091. [DOI: 10.1016/j.ntt.2022.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023]
|
16
|
Dehghani M, Gharehchahi E, Jafari S, Moeini Z, Derakhshan Z, Ferrante M, Conti GO. Health risk assessment of exposure to atrazine in the soil of Shiraz farmlands, Iran. ENVIRONMENTAL RESEARCH 2022; 204:112090. [PMID: 34582803 DOI: 10.1016/j.envres.2021.112090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Atrazine-contaminated soils can pose a carcinogenic and non-carcinogenic health risk through different routes for exposed people. This study aimed to assess the health risk of exposure to atrazine-contaminated soils through direct ingestion and dermal contact in farmlands nearby Shiraz. Atrazine concentration was measured in 22 selected sites using grid sampling. The carcinogenic and non-cancer risks associated with dermal and ingestion exposure in children and adults were estimated. The lowest and highest atrazine concentrations were in S1 (0.015 mg/kg soil) and S22 (0.55 mg/kg soil). Hazard Index (HI)1 values ranged from 0.007 to 0.25 for children, and the values ranged from 0.0008 to 0.03 for adults. The mean cancer risk for children and adults was 6.01 × 10-4 and 7.40 × 10-5, respectively. The HI value was less than 1 for all sampling sites, indicating that exposure to atrazine does not threaten children and adults. However, the cancer risk exceeds the United States Environmental Protection Agency (US.EPA)2 threshold risk limit (10-6 to 10-4) in all sampling sites. Therefore, it is recommended that children should avoid playing on atrazine-contaminated farms or soils near anywhere atrazine may have been used.
Collapse
Affiliation(s)
- Mansooreh Dehghani
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Gharehchahi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Jafari
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohre Moeini
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Derakhshan
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Italy
| |
Collapse
|
17
|
Ouattara BS, Puvvula J, Abadi A, Munde S, Kolok AS, Bartelt‐Hunt S, Bell JE, Wichman CS, Rogan E. Geospatial Distribution of Age-Adjusted Incidence of the Three Major Types of Pediatric Cancers and Waterborne Agrichemicals in Nebraska. GEOHEALTH 2022; 6:e2021GH000419. [PMID: 35372745 PMCID: PMC8859510 DOI: 10.1029/2021gh000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted to examine, at the county level, the relationship between pediatric cancer incidence rate and atrazine and nitrate mean concentrations in surface and groundwater. A negative binomial regression analysis was performed to investigate the association between central nervous system (CNS) tumors, leukemia, lymphoma, and atrazine and nitrate mean concentrations in groundwater. The age-adjusted brain and other CNS cancer incidence was higher than the national average in 63% of the Nebraska counties. After controlling for the counties socio-economic status and nitrate concentrations in groundwater, counties with groundwater atrazine concentrations above 0.0002 µg/L had a higher incidence rate for pediatric cancers (brain and other CNS, leukemia, and lymphoma) compared to counties with groundwater atrazine concentrations in the reference group (0.0000-0.0002 µg/L). Additionally, compared to counties with groundwater nitrate concentrations between 0 and 2 mg/L (reference group), counties with groundwater nitrate concentrations between 2.1 and 5 mg/L (group 2) had a higher incidence rate for pediatric brain and other CNS cancers (IRR = 8.39; 95% CI: 8.24-8.54), leukemia (IRR = 7.35; 95% CI: 7.22-7.48), and lymphoma (IRR = 5.59; CI: 5.48-5.69) after adjusting for atrazine groundwater concentration and the county socio-economic status. While these findings do not indicate a causal relationship, because other contaminants or cancer risk factors have not been accounted for, they suggest that atrazine and nitrate may pose a risk relative to the genesis of pediatric brain and CNS cancers, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Balkissa S. Ouattara
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Jagadeesh Puvvula
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Azar Abadi
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Siddhi Munde
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Alan S. Kolok
- Idaho Water Resources Research InstituteUniversity of IdahoMoscowIDUSA
| | - Shannon Bartelt‐Hunt
- Department of Civil and Environmental EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnOmahaNEUSA
| | - Jesse E. Bell
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Christopher S. Wichman
- Department of BiostatisticsCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Eleanor Rogan
- Department of Environmental, Agricultural and Occupational HealthCollege of Public HealthUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
18
|
Yang C, Lim W, Song G. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109103. [PMID: 34129918 DOI: 10.1016/j.cbpc.2021.109103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Excessively used pesticides in agricultural areas are spilled into aquatic environments, wherein they are suspended or sedimented. Owing to climate change, herbicides are the fastest growing sector of the pesticide industry and are detected in surface water, groundwater, and sediments near agricultural areas. In freshwater, organisms, including mussels, snails, frogs, and fish, are exposed to various types and concentrations of herbicides. Invertebrates are sensitive to herbicide exposure because their defense systems are incomplete. At the top of the food chain in freshwater ecosystems, fish show high bioaccumulation of herbicides. Herbicide exposure causes reproductive toxicity and population declines in freshwater organisms and further contamination of fish used for consumption poses a risk to human health. In addition, it is important to understand how environmental factors are physiologically processed and assess their impacts on reproductive parameters, such as gonadosomatic index and steroid hormone levels. Zebrafish is a good model for examining the effects of herbicides such as atrazine and glyphosate on embryonic development in freshwater fish. This review describes the occurrence and role of herbicides in freshwater environments and their potential implications for the reproduction and embryonic development of freshwater organisms.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Mattonet K, Nowack-Weyers N, Vogel V, Moser D, Tierling S, Kasper-Sonnenberg M, Wilhelm M, Scherer M, Walter J, Hengstler JG, Schölmerich A, Kumsta R. Prenatal exposure to endocrine disrupting chemicals is associated with altered DNA methylation in cord blood. Epigenetics 2021; 17:935-952. [PMID: 34529553 DOI: 10.1080/15592294.2021.1975917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to endocrine disrupting chemicals can interfere with development, and has been associated with social-cognitive functioning and adverse health outcomes later in life. Exposure-associated changes of DNA methylation (DNAm) patterns have been suggested as a possible mediator of this relationship. This study investigated whether prenatal low-dose exposure to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) is associated with altered DNAm patterns across the genome in a Western urban-industrial population. In 142 mother-infant pairs from the Duisburg Birth Cohort Study, PCBs and PCDD/Fs levels were quantified from maternal blood during late pregnancy and associated with DNAm levels in cord blood using the Illumina EPIC beadchip. The epigenome-wide association studies (EWAS) identified 32 significantly differentially methylated positions (DMPs) and eight differentially methylated regions (DMRs) associated with six congeners of PCB and PCDD in females or males (FDRs < 0.05). DMPs and DMRs mapped to genes involved in neurodevelopment, gene regulation, and immune functioning. Weighted gene correlation network analysis (WGCNA) showed 31 co-methylated modules (FDRs < 0.05) associated with one congener of PCDF levels in females. Results of both analytical strategies indicate that prenatal exposure to PCBs and PCDD/Fs is associated with altered DNAm of genes involved in neurodevelopment, gene expression and immune functioning. DNAm and gene expression levels of several of these genes were previously associated with EDC exposure in rodent models. Follow-up studies will clarify whether these epigenetic changes might contribute to the origin for adverse mental and health outcomes.
Collapse
Affiliation(s)
- Katharina Mattonet
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Nikola Nowack-Weyers
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany.,Department of Developmental Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Vanessa Vogel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Sascha Tierling
- Department of Genetics/ Epigenetics, Saarland University, Saarbrücken, Germany
| | - Monika Kasper-Sonnenberg
- Department of Hygiene Social and Environmental Medicine, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Michael Wilhelm
- Department of Hygiene Social and Environmental Medicine, Faculty of Medicine, Ruhr-University Bochum, Germany
| | - Michael Scherer
- Department of Genetics/ Epigenetics, Saarland University, Saarbrücken, Germany.,Research Group Computational Biology, Max-Planck-Institute for Informatics, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics/ Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - Axel Schölmerich
- Department of Developmental Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Germany
| |
Collapse
|
20
|
Hoffmann S, Marigliani B, Akgün-Ölmez SG, Ireland D, Cruz R, Busquet F, Flick B, Lalu M, Ghandakly EC, de Vries RBM, Witters H, Wright RA, Ölmez M, Willett C, Hartung T, Stephens ML, Tsaioun K. A Systematic Review to Compare Chemical Hazard Predictions of the Zebrafish Embryotoxicity Test With Mammalian Prenatal Developmental Toxicity. Toxicol Sci 2021; 183:14-35. [PMID: 34109416 PMCID: PMC8404989 DOI: 10.1093/toxsci/kfab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Originally developed to inform the acute toxicity of chemicals on fish, the zebrafish embryotoxicity test (ZET) has also been proposed for assessing the prenatal developmental toxicity of chemicals, potentially replacing mammalian studies. Although extensively evaluated in primary studies, a comprehensive review summarizing the available evidence for the ZET's capacity is lacking. Therefore, we conducted a systematic review of how well the presence or absence of exposure-related findings in the ZET predicts prenatal development toxicity in studies with rats and rabbits. A two-tiered systematic review of the developmental toxicity literature was performed, a review of the ZET literature was followed by one of the mammalian literature. Data were extracted using DistillerSR, and study validity was assessed with an amended SYRCLE's risk-of-bias tool. Extracted data were analyzed for each species and substance, which provided the basis for comparing the 2 test methods. Although limited by the number of 24 included chemicals, our results suggest that the ZET has potential to identify chemicals that are mammalian prenatal developmental toxicants, with a tendency for overprediction. Furthermore, our analysis confirmed the need for further standardization of the ZET. In addition, we identified contextual and methodological challenges in the application of systematic review approaches to toxicological questions. One key to overcoming these challenges is a transition to more comprehensive and transparent planning, conduct and reporting of toxicological studies. The first step toward bringing about this change is to create broad awareness in the toxicological community of the need for and benefits of more evidence-based approaches.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- seh consulting + services, 33106 Paderborn, Germany
| | - Bianca Marigliani
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, 12231-280 São Paulo, Brazil
| | - Sevcan Gül Akgün-Ölmez
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, 34722, Turkey
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Rebecca Cruz
- Laboratory of Dental Clinical Research, Universidade Federal Fluminense, Niterói, 20520-040 Rio de Janeiro, Brazil
| | | | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | - Manoj Lalu
- Department of Anesthesiology and Pain Medicine, Ottawa Hospital Research Institute, Ottawa, K1H 8L6 Ontario, Canada
| | - Elizabeth C Ghandakly
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Rob B M de Vries
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Systematic Review Centre for Laboratory Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, 6500HB Nijmegen, The Netherlands
| | | | - Robert A Wright
- William H. Welch Medical Library, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Metin Ölmez
- Umraniye Family Health Center (No. 44), Turkish Ministry of Health, 34760 Istanbul, Turkey
| | - Catherine Willett
- Humane Society International, Washington, 20037 District of Columbia, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Martin L Stephens
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration (EBTC), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Sadeghnia H, Shahba S, Ebrahimzadeh-Bideskan A, Mohammadi S, Malvandi AM, Mohammadipour A. Atrazine neural and reproductive toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1966637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamidreza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Shabnam Mohammadi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Shan W, Hu W, Wen Y, Ding X, Ma X, Yan W, Xia Y. Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reprod Toxicol 2021; 103:149-158. [PMID: 34146662 DOI: 10.1016/j.reprotox.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Atrazine is one of the widely used herbicides in the world and most of the current researches on atrazine neurodevelopment toxicity have focused on rodents or zebrafish models in vivo, resulting in relatively high cost, time consumption, and lower translational value to identify its hazard for the developing brain. Major international initiatives have pushed forward to convert the traditional animal-based developmental toxicity tests to in vitro assays using human cells to detect and predict chemical health hazards. In this study, we presented a human neural differentiation model based on human embryonic stem cells (hESC) that can be used to test toxicity at different stages of neural differentiation in vitro. hESC were differentiated into neural stem cells (NSC) and then terminally differentiated towards mixed neurons and glial cells for 21 days. Cell survival, proliferation, cell cycle, apoptosis, and gene expression levels were examined. Our results demonstrated that atrazine inhibited the proliferation of hESC and NSC, and showed different toxic sensitivity on these two kinds of cells. Also, atrazine blocked the NSC cell cycle G1 phase via down-regulating CCND1, CDK2, and CDK4, with no obvious effect on apoptosis. In addition, atrazine curbed EB spontaneous differentiation and NSC-induced neurons and glia cells differentiation. Atrazine altered genes expression levels of PAX6, TUBB3, NCAM1, GFAP, TH, NR4A1, and GRIA1. From the data we obtained, we recognized that the dopaminergic system was not the only target of atrazine neurotoxicity, glutamatergic neurons and astrocytes were also adversely affected.
Collapse
Affiliation(s)
- Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Ya Wen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Xingwang Ding
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
23
|
Ahkin Chin Tai JK, Horzmann KA, Franco J, Jannasch AS, Cooper BR, Freeman JL. Developmental atrazine exposure in zebrafish produces the same major metabolites as mammals along with altered behavioral outcomes. Neurotoxicol Teratol 2021; 85:106971. [PMID: 33713789 DOI: 10.1016/j.ntt.2021.106971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
Atrazine (ATZ) is the second most commonly applied agricultural herbicide in the United States. Due to contamination concerns, the U.S. EPA has set the maximum contaminant level in potable water sources at 3 parts per billion (ppb; μg/l). Depending on the time of year and sampling location, water sources often exceed this limit. ATZ is an endocrine disrupting chemical in multiple species observed to target the neuroendocrine system. In this study the zebrafish vertebrate model was used to test the hypothesis that a developmental ATZ exposure generates metabolites similar to those found in mammals and alters morphology and behavior in developing larvae. Adult AB zebrafish were bred, embryos were collected, and exposed to 0, 0.3, 3, or 30 ppb ATZ from 1 to 120 h post fertilization (hpf). Targeted metabolomic analysis found that zebrafish produce the same major ATZ metabolites as mammals: desethyl atrazine (DEA), deisopropyl atrazine (DIA), and diaminochloroatrazine (DACT). The visual motor response test at 120 hpf detected hyperactivity in larvae in the 0.3 ppb treatment group and hypoactivity in the 30 ppb treatment group (p < 0.05). Further analysis into behavior during the dark and light phases showed zebrafish larvae exposed to 0.3 ppb ATZ had an increase in total distance moved in the first light phase and time spent moving in the first dark and light phases (p < 0.05). Alternatively, a decrease in total distance moved was observed in the second and third dark phases in zebrafish exposed to 30 ppb ATZ (p < 0.05). No significant differences were observed for any of the morphological measurements following ATZ exposure from 1 to 120 hpf (p > 0.05). These findings suggest that a ATZ exposure during early development generates metabolite profiles similar to mammals and leads to behavioral alterations supporting ATZ as a neurodevelopmental toxicant.
Collapse
Affiliation(s)
| | | | - Jackeline Franco
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Amber S Jannasch
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Bruce R Cooper
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
24
|
Lee JY, Park H, Lim W, Song G. Benfuresate induces developmental toxicity in zebrafish larvae by generating apoptosis and pathological modifications. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104751. [PMID: 33518044 DOI: 10.1016/j.pestbp.2020.104751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 05/21/2023]
Abstract
Benfuresate (2,3-dihydro-3,3-dimethylbenzofuran-5-yl ethanesulphonate) is a widely used pre-emergence herbicide of the benzofurane group, which works through the inhibition of lipid synthesis. During embryonic development of zebrafish, benfuresate retards growth while causing internal changes in the body, including alteration of the expression of cell cycle regulators, induction of apoptosis, and suppression of the circulatory system. Acute toxicity towards benfuresate is seen across the range of 5-15 μM in a dose-dependent manner and contributes to pathological conditions and subsequent morphological changes. For embryos 120 h post fertilization (hpf), benfuresate exposure results in an array of malformations involving eye or otolith development, pericardial edema, yolk sac edema, and abnormal curvature of the spine. Mechanistically, benfuresate exposure altered the transcription levels of the proliferative pathway genes ccnd1, ccne1, cdk2, and cdk6, all of which sensitize cells to apoptosis. Benfuresate exposure also affected vascular formation, including the formation of various vessels (DA, SIVs, CA, CV) whose functions in lymphatic-blood circulation were disrupted following decreased vegfaa, vegfc, flt1, flt4, and kdrl expression. These findings provide evidence of embryo-larval toxicity due to benfuresate and highlight the perils of herbicide exposure for non-target organisms far removed from application sites, especially in aquatic environments.
Collapse
Affiliation(s)
- Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Destro ALF, Silva SB, Gregório KP, de Oliveira JM, Lozi AA, Zuanon JAS, Salaro AL, da Matta SLP, Gonçalves RV, Freitas MB. Effects of subchronic exposure to environmentally relevant concentrations of the herbicide atrazine in the Neotropical fish Astyanax altiparanae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111601. [PMID: 33396121 DOI: 10.1016/j.ecoenv.2020.111601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Atrazine (ATZ) is among the most widely used herbicides in the world, and yet it has a potential to contaminate aquatic environments due to pesticide leaching from agricultural areas. In the Neotropical region, studies about the effects of this herbicide in native aquatic wildlife is scarce.Our study aimed at investigating the effects of a 30-day exposure to a commercial atrazine formulation on oxidative stress parameters, histopathology in testis and liver, and hormone levels in males and female of yellow-tailed tetra fish (Astyanax altiparanae). Adults were exposed to low but environmentally relevant concentrations of atrazine as follows: 0 (CTL-control), 0.5 (ATZ0.5), 1 (ATZ1), 2 (ATZ2) and 10 (ATZ10) μg/L. Our results showed decreased GST activity in gills in all groups of exposed animals and increased CAT activity in gills from the ATZ10 group. In the liver, there was an increase in lipid peroxidation in fish from ATZ1 and ATZ2 groups. Histological analysis of the liver showed increased percentage of sinusoid capillaries in ATZ2 fish, increased vascular congestion in ATZ1 and increased leukocyte infiltration in the ATZ10 group. Hepatocyte diameter analysis revealed a decrease in cell size in all groups exposed to ATZ, and a decrease in hepatocyte nucleus diameter in ATZ1, ATZ2 and ATZ10 groups. Endocrine parameters did not show significant changes following ATZ exposure, although an increase of triiodothyronine/thyroxine (T3/T4) ratio was observed in ATZ2 fish. Our results provide evidence that even low, environmentally relevant concentrations of ATZ produced oxidative damage and histological alterations in adult yellow-tailed tetra.
Collapse
Affiliation(s)
- Ana Luiza F Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Stella B Silva
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kemilli P Gregório
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Amanda A Lozi
- Department of Cellular and structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Ana Lúcia Salaro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
26
|
Xie J, Wettschurack K, Yuan C. Review: In vitro Cell Platform for Understanding Developmental Toxicity. Front Genet 2020; 11:623117. [PMID: 33424939 PMCID: PMC7785584 DOI: 10.3389/fgene.2020.623117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Developmental toxicity and its affiliation to long-term health, particularly neurodegenerative disease (ND) has attracted significant attentions in recent years. There is, however, a significant gap in current models to track longitudinal changes arising from developmental toxicity. The advent of induced pluripotent stem cell (iPSC) derived neuronal culture has allowed for more complex and functionally active in vitro neuronal models. Coupled with recent progress in the detection of ND biomarkers, we are equipped with promising new tools to understand neurotoxicity arising from developmental exposure. This review provides a brief overview of current progress in neuronal culture derived from iPSC and in ND markers.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kyle Wettschurack
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
27
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
28
|
Martínez R, Codina AE, Barata C, Tauler R, Piña B, Navarro-Martín L. Transcriptomic effects of tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122881. [PMID: 32474318 DOI: 10.1016/j.jhazmat.2020.122881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the antifouling tributyltin (TBT) has been related to imposex in mollusks and to obesogenicity, adipogenesis and masculinization in fish. To understand the underlying molecular mechanisms, we evaluated dose-response effects of TBT (1.7-56 nM) in zebrafish eleutheroembryos transcriptome exposed from 2 to 5 days post-fertilization. RNA-sequencing analysis identified 3238 differentially expressed transcripts in eleutheroembryos exposed to TBT. Benchmark dose analyses (BMD) showed that the point of departure (PoD) for transcriptomic effects (9.28 nM) was similar to the metabolomic PoD (11.5 nM) and about one order of magnitude lower than the morphometric PoD (67.9 nM) or the median lethal concentration (LC50: 93.6 nM). Functional analysis of BMD transcriptomic data identified steroid metabolism and cholesterol and vitamin D3 biosynthesis as the most sensitive pathways to TBT (<50% PoD). Conversely, transcripts related to general stress and DNA damage became affected only at doses above the PoD. Therefore, our results indicate that transcriptomes can act as early molecular indicators of pollutant exposure, and illustrates their usefulness for the mechanistic identification of the initial toxic events. As the estimated molecular PoDs are close to environmental levels, we concluded that TBT may represent a substantial risk in some natural environments.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya 08007, Spain.
| | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
29
|
Leet JK, Richter CA, Cornman RS, Berninger JP, Bhandari RK, Nicks DK, Zajicek JL, Blazer VS, Tillitt DE. Effects of early life stage exposure of largemouth bass to atrazine or a model estrogen (17α-ethinylestradiol). PeerJ 2020; 8:e9614. [PMID: 33072434 PMCID: PMC7537618 DOI: 10.7717/peerj.9614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Endocrine disrupting contaminants are of continuing concern for potentially contributing to reproductive dysfunction in largemouth and smallmouth bass in the Chesapeake Bay watershed (CBW) and elsewhere. Exposures to atrazine (ATR) have been hypothesized to have estrogenic effects on vertebrate endocrine systems. The incidence of intersex in male smallmouth bass from some regions of CBW has been correlated with ATR concentrations in water. Fish early life stages may be particularly vulnerable to ATR exposure in agricultural areas, as a spring influx of pesticides coincides with spawning and early development. Our objectives were to investigate the effects of early life stage exposure to ATR or the model estrogen 17α-ethinylestradiol (EE2) on sexual differentiation and gene expression in gonad tissue. We exposed newly hatched largemouth bass (LMB, Micropterus salmoides) from 7 to 80 days post-spawn to nominal concentrations of 1, 10, or 100 µg ATR/L or 1 or 10 ng EE2/L and monitored histological development and transcriptomic changes in gonad tissue. We observed a nearly 100% female sex ratio in LMB exposed to EE2 at 10 ng/L, presumably due to sex reversal of males. Many gonad genes were differentially expressed between sexes. Multidimensional scaling revealed clustering by gene expression of the 1 ng EE2/L and 100 µg ATR/L-treated male fish. Some pathways responsive to EE2 exposure were not sex-specific. We observed differential expression in male gonad in LMB exposed to EE2 at 1 ng/L of several genes involved in reproductive development and function, including star, cyp11a2, ddx4 (previously vasa), wnt5b, cyp1a and samhd1. Expression of star, cyp11a2 and cyp1a in males was also responsive to ATR exposure. Overall, our results confirm that early development is a sensitive window for estrogenic endocrine disruption in LMB and are consistent with the hypothesis that ATR exposure induces some estrogenic responses in the developing gonad. However, ATR-specific and EE2-specific responses were also observed.
Collapse
Affiliation(s)
- Jessica K Leet
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Catherine A Richter
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Robert S Cornman
- Fort Collins Science Center, United States Geological Survey, Fort Collins, CO, USA
| | - Jason P Berninger
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Diane K Nicks
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - James L Zajicek
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Vicki S Blazer
- Leetown Science Center, United States Geological Survey, Kearneysville, WV, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| |
Collapse
|
30
|
Embryonic atrazine exposure and later in life behavioral and brain transcriptomic, epigenetic, and pathological alterations in adult male zebrafish. Cell Biol Toxicol 2020; 37:421-439. [PMID: 32737625 DOI: 10.1007/s10565-020-09548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Atrazine (ATZ), a commonly used pesticide linked to endocrine disruption, cancer, and altered neurochemistry, frequently contaminates water sources at levels above the US Environmental Protection Agency's 3 parts per billion (ppb; μg/L) maximum contaminant level. Adult male zebrafish behavior, brain transcriptome, brain methylation status, and neuropathology were examined to test the hypothesis that embryonic ATZ exposure causes delayed neurotoxicity, according to the developmental origins of health and disease paradigm. Zebrafish (Danio rerio) embryos were exposed to 0 ppb, 0.3 ppb, 3 ppb, or 30 ppb ATZ during embryogenesis (1-72 h post fertilization (hpf)), then rinsed and raised to maturity. At 9 months post fertilization (mpf), males had decreased locomotor parameters during a battery of behavioral tests. Transcriptomic analysis identified altered gene expression in organismal development, cancer, and nervous and reproductive system development and function pathways and networks. The brain was evaluated histopathologically for morphometric differences, and decreased numbers of cells were identified in raphe populations. Global methylation levels were evaluated at 12 mpf, and the body length, body weight, and brain weight were measured at 14 mpf to evaluate effects of ATZ on mature brain size. No significant difference in genome methylation or brain size was observed. The results demonstrate that developmental exposure to ATZ does affect neurodevelopment and neural function in adult male zebrafish and raises concern for possible health effects in humans due to ATZ's environmental presence and persistence. Graphical abstract.
Collapse
|
31
|
Blahova J, Cocilovo C, Plhalova L, Svobodova Z, Faggio C. Embryotoxicity of atrazine and its degradation products to early life stages of zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103370. [PMID: 32146350 DOI: 10.1016/j.etap.2020.103370] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Triazine herbicide atrazine is considered to be moderately toxic to various aquatic animals. The aim of our study was to evaluate the acute embryotoxicity of atrazine and its two degradation products, desisopropylatrazine and desethylatrazine, and their mixture to the early life stages of zebrafish (Danio rerio) by means of a modified method of the Fish Embryo Acute Toxicity (FET) Test - OECD guideline 236. Toxic effects were studied by the evaluation of lethal endpoints and development of disorders. Furthermore, sublethal endpoints such as hatching rate, formation of somites, development of eyes, spontaneous movement, heartbeat, blood circulation, pigmentation and occurrence of edema at 24, 48, 72 and 96 h post fertilization were assessed. Newly fertilized eggs were exposed to various concentrations of atrazine, desisopropylatrazine and desethylatrazine, and their combination 0.3, 30, 100, 300, 1000, 3,000 and 10,000 μg/l, which represent environmentally relevant levels of these pollutants in surface waters and multiples of these concentrations to find out if the toxic effect depends on dose. Single substances and their combination were not associated with a negative effect on mortality. Rare malformations were observed during these embryonal toxicity tests. Only pericardial edema was recorded during the monitored observation. A significant increase in the occurrence of pericardial edema between the control 0% and the experimental group 17.6 %) was found only in the group exposed to the highest concentration of a triazine herbicide combination (10,000 μg/l) at 72 and 96 h post fertilization. Obtained results indicate that especially higher not environmentally relevant concentrations of atrazine, its metabolites or their combination present a potencial risk of embryotoxicity for zebrafish.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Claudia Cocilovo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Lucie Plhalova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection, Welfare and Behaviour, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
32
|
Jing S, Lan MX, Wen W, Jing Z, Hao Z, Jun WY. Adsorption characteristics of atrazine on different soils in the presence of Cd(II). ADSORPT SCI TECHNOL 2020. [DOI: 10.1177/0263617420928845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the effects of temperature, pH, and biochar under cadmium stress on the adsorption characteristics of atrazine in soils in northeast China were studied by batch adsorption method. In the atrazine–Cd(II) coexistence system, the adsorption of atrazine by the soils reached equilibrium within 24 h, but there were some differences in sorption capacities of the three types of soil and the order of adsorption is albic soil > black soil > saline-alkaline soil. With the concentration of atrazine increased, the adsorption capacity of atrazine in the three types of soil gradually increased, the upward trend became more obvious with the ambient temperature of the solution decreased. The adsorption kinetics curves of atrazine in the three types of soil conform to the pseudo-second-order kinetic model and the adsorption isotherm follows the Langmuir model. When atrazine and Cd(II) coexist in soils, the decrease in atrazine adsorption in the soil may be due to the competitive interaction between the two chemicals. Cd(II) occupies part of the adsorption site of atrazine, thus saturating the active site in soils. Since atrazine is a weakly alkaline pesticide, the lower the pH of the soil, the higher the affinity of atrazine for the soil. After adding biochar to the soil, the functional groups in biochar can form π bond with atrazine, which promotes the fixation of atrazine in the soil. The results show that the prevention of atrazine and cadmium leaching can be achieved by appropriately adjusting the pH, temperature, clay content, and organic matter of the soils.
Collapse
Affiliation(s)
- Sun Jing
- Jilin Agricultural University, China
| | | | - Wang Wen
- Jilin Agricultural University, China
| | | | - Zhang Hao
- Jilin Agricultural University, China
| | | |
Collapse
|
33
|
Lamb SD, Chia JHZ, Johnson SL. Paternal exposure to a common herbicide alters the behavior and serotonergic system of zebrafish offspring. PLoS One 2020; 15:e0228357. [PMID: 32275662 PMCID: PMC7147785 DOI: 10.1371/journal.pone.0228357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Increasingly, studies are revealing that endocrine disrupting chemicals (EDCs) can alter animal behavior. Early life exposure to EDCs may permanently alter phenotypes through to adulthood. In addition, the effects of EDCs may not be isolated to a single generation − offspring may indirectly be impacted, via non-genetic processes. Here, we analyzed the effects of paternal atrazine exposure on behavioral traits (distance moved, exploration, bottom-dwelling time, latency to enter the top zone, and interaction with a mirror) and whole-brain mRNA of genes involved in the serotonergic system regulation (slc6a4a, slc6a4b, htr1Aa, htr1B, htr2B) of zebrafish (Danio rerio). F0 male zebraFIsh were exposed to atrazine at 0.3, 3 or 30 part per billion (ppb) during early juvenile development, the behavior of F1 progeny was tested at adulthood, and the effect of 0.3 ppb atrazine treatment on mRNA transcription was quantified. Paternal exposure to atrazine significantly reduced interactions with a mirror (a proxy for aggression) and altered the latency to enter the top zone of a tank in unexposed F1 offspring. Bottom-dwelling time (a proxy for anxiety) also appeared to be somewhat affected, and activity (distance moved) was reduced in the context of aggression. slc6a4a and htr1Aa mRNA transcript levels were found to correlate positively with anxiety levels in controls, but we found that this relationship was disrupted in the 0.3 ppb atrazine treatment group. Overall, paternal atrazine exposure resulted in alterations across a variety of behavioral traits and showed signs of serotonergic system dysregulation, demonstrating intergenerational effects. Further research is needed to explore transgenerational effects on behavior and possible mechanisms underpinning behavioral effects.
Collapse
Affiliation(s)
- Simon D. Lamb
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| | - Jolyn H. Z. Chia
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| | - Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (SDL); (SLJ)
| |
Collapse
|
34
|
Horzmann KA, Portales AM, Batcho KG, Freeman JL. Developmental toxicity of trichloroethylene in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:728-739. [PMID: 31989135 DOI: 10.1039/c9em00565j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Trichloroethylene (TCE), an industrial solvent and degreaser, is an environmental toxicant that contaminates over half of Superfund sites, is a known carcinogen, and is linked to congenital defects and neurodegenerative disease. The developmental toxicity of TCE near ecologically relevant levels needs further characterization in order to better assess health risks of exposure. In this study, the toxicodynamics of TCE in the zebrafish (Danio rerio) model was investigated through the establishment of a LC50 concentration and by monitoring the acute developmental toxicity of ecologically relevant concentrations (0, 5, 50, and 500 parts per billion; ppb) of TCE during two different exposure lengths (1-72 hours post fertilization (hpf) and 1-120 hpf). Acute developmental toxicity was assessed by monitoring survival and hatching, larval morphology, larval heart rate, and behavioral responses during an embryonic photomotor response test and a larval visual motor response test. Embryonic exposure to TCE was associated with decreased percent hatch at 48 hpf, altered larval morphology, increased heart rate, and altered behavioral responses during the photomotor response test and visual motor response test. Larval morphology and behavioral alterations were more pronounced in the 1-120 hpf exposure length trials. The observed alterations suggest developmental TCE toxicity is still a concern at regulatory concentrations and that timing of exposure influences developmental toxicity.
Collapse
Affiliation(s)
- Katharine A Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|
35
|
Hanson ML, Solomon KR, Van Der Kraak GJ, Brian RA. Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence. Crit Rev Toxicol 2020; 49:670-709. [DOI: 10.1080/10408444.2019.1701985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mark L. Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Keith R. Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
36
|
Wang D, Li B, Wu Y, Li B. The Effects of Maternal Atrazine Exposure and Swimming Training on Spatial Learning Memory and Hippocampal Morphology in Offspring Male Rats via PSD95/NR2B Signaling Pathway. Cell Mol Neurobiol 2019; 39:1003-1015. [PMID: 31187311 DOI: 10.1007/s10571-019-00695-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
Abstract
Atrazine (ATR), a widely used herbicide, has been previously shown to damage spatial memory capability and the hippocampus of male rats during the development. It has also been indicated that physical exercise can improve learning and memory in both humans and animals, as a neuroprotective method. Our aim here was to investigate the effect of maternal ATR exposure during gestation and lactation on spatial learning and memory function and hippocampal morphology in offspring and to further evaluate the neuroprotective effect of swimming training and identify possible related learning and memory signaling pathways. Using Sprague-Dawley rats, we examined behavioral and molecular biology effects associated with maternal ATR exposure, as well as the effects of 8 or 28 days swimming training. Maternal exposure to ATR was found to impair spatial learning and memory by behavioral test, damage the hippocampal morphology, and reduce related genes and proteins expression of learning and memory in the hippocampus. The extended, 28 days, period of swimming training produced a greater amelioration of the adverse effects of ATR exposure than the shorter, 8 days, training period. Our results suggest that maternal ATR exposure may damage the spatial learning and memory of offspring male rats via PSD95/NR2B signaling pathway. The negative effect of ATR could be at least partially reversed by swimming training, pointing to a potential neuroprotective role of physical exercise in nervous system diseases accompanying by learning and memory deficit.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Bai Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yanping Wu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Baixiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
37
|
Petitjean Q, Jean S, Gandar A, Côte J, Laffaille P, Jacquin L. Stress responses in fish: From molecular to evolutionary processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:371-380. [PMID: 31154210 DOI: 10.1016/j.scitotenv.2019.05.357] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
In the context of global changes, fish are increasingly exposed to multiple stressors that have cascading effects from molecules to the whole individual, thereby affecting wild fish populations through selective processes. In this review, we synthetize recent advances in molecular biology and evolutionary biology to outline some potentially important effects of stressors on fish across biological levels. Given the burgeoning literature, we highlight four promising avenues of research. First, (1) the exposure to multiple stressors can lead to unexpected synergistic or antagonistic effects, which should be better taken into account to improve our predictions of the effects of actual and future human activities on aquatic organisms. Second, (2) we argue that such interactive effects might be due to switches in energy metabolism leading to threshold effects. Under multiple stress exposure, fish could switch from a "compensation" strategy, i.e. a reallocation of energy to defenses and repair to a "conservation" strategy, i.e. blocking of stress responses leading to strong deleterious effects and high mortality. Third, (3) this could have cascading effects on fish survival and population persistence but multiscale studies are still rare. We propose emerging tools merging different levels of biological organization to better predict population resilience under multiple stressors. Fourth (4), there are strong variations in sensitivity among populations, which might arise from transgenerational effects of stressors through plastic, genetic, and epigenetic mechanisms. This can lead to local adaptation or maladaptation, with strong impacts on the evolutionary trajectories of wild fish populations. With this review, we hope to encourage future research to bridge the gap between molecular ecology, ecotoxicology and evolutionary biology to better understand the evolution of responses of fishes to current and future multiple stressors in the context of global changes.
Collapse
Affiliation(s)
- Quentin Petitjean
- Laboratoire EDB Évolution & Diversité Biologique UMR 5174, Université de Toulouse, Université Toulouse 3 Paul Sabatier, UPS, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France; Laboratoire ECOLAB UMR 5245, CNRS, INPT-ENSAT, Université Toulouse 3 Paul Sabatier; avenue de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - Séverine Jean
- Laboratoire ECOLAB UMR 5245, CNRS, INPT-ENSAT, Université Toulouse 3 Paul Sabatier; avenue de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - Allison Gandar
- Laboratoire ECOLAB UMR 5245, CNRS, INPT-ENSAT, Université Toulouse 3 Paul Sabatier; avenue de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - Jessica Côte
- Laboratoire EDB Évolution & Diversité Biologique UMR 5174, Université de Toulouse, Université Toulouse 3 Paul Sabatier, UPS, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Pascal Laffaille
- Laboratoire ECOLAB UMR 5245, CNRS, INPT-ENSAT, Université Toulouse 3 Paul Sabatier; avenue de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - Lisa Jacquin
- Laboratoire EDB Évolution & Diversité Biologique UMR 5174, Université de Toulouse, Université Toulouse 3 Paul Sabatier, UPS, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
38
|
Kaur G, Dogra N, Singh S. Health Risk Assessment of Occupationally Pesticide-Exposed Population of Cancer Prone Area of Punjab. Toxicol Sci 2019; 165:157-169. [PMID: 29893964 DOI: 10.1093/toxsci/kfy140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The alarming health issues especially the unusually high number of cancer cases in agriculture community of Bathinda district of Punjab (India) is a serious concern. There is limited knowledge about the role of gene-environment interactions in oncogenesis prevalent in this area. The aim of this study was to evaluate the association of oxidative stress with CYP1A2, CYP2B6, CYP2C9, CYP3A4, and PON1 genetic variation in the pesticide-exposed (occupationally) population of Bathinda district of Punjab (India). This study demonstrated significantly elevated relative risk (RR) of lower antioxidant defense mechanism (Glutathione, Catalase, Superoxide Dismutase, Glutathione peroxidases, and Glutathione Reductase) in occupationally pesticide-exposed group (n = 120) as compared with unexposed group (n = 84) from Bathinda district of Punjab (India). Our data shows pesticide exposure to be a major risk factor leading to increased oxidative stress inside the body. Gas chromatographic analysis revealed the residues of organophosphates (chlorpyriphos, dichlorvos, ethoprophos) and herbicides (atrazine, butachlor, alachlor, metolachlor) in the blood samples of the exposed population. In vitro results showed a dose dependent decrease in cell viability following treatment of pesticides detected in blood samples in hPBMCs and A549 cell line. Genetic variation analysis revealed missense mutations in CYP2B6 (2 mutations), CY3A4 (1 mutation), and CYP2C9 (2 mutations). The observed mutations have been predicted to cause structural and conformation change in protein structure which could result in altered stability. In first of its kind of study, our data reveal oxidative stress and pesticide residue accumulation inside the body to be the major reasons for health concerns in Bathinda district.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Nilambra Dogra
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab 151001, India
| |
Collapse
|
39
|
Promoting zebrafish embryo tool to identify the effects of chemicals in the context of Water Framework Directive monitoring and assessment. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring Histone Methylation (H3K9me3) Changes in Live Cells. ACS OMEGA 2019; 4:13250-13259. [PMID: 31460452 PMCID: PMC6705211 DOI: 10.1021/acsomega.9b01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/19/2019] [Indexed: 05/16/2023]
Abstract
H3K9me3 (methylation of lysine 9 of histone H3) is an epigenetic modification that acts as a repressor mark. Several diseases, including cancers and neurological disorders, have been associated with aberrant changes in H3K9me3 levels. Different tools have been developed to enable detection and quantification of H3K9me3 levels in cells. Most techniques, however, lack live cell compatibility. To address this concern, we have engineered recombinant protein sensors for probing H3K9me3 in situ. A heterodimeric sensor containing a chromodomain and chromo shadow domain from HP1a was found to be optimal in recognizing H3K9me3 and exhibited similar spatial resolution to commercial antibodies. Our sensor offers similar quantitative accuracy in characterizing changes in H3K9me3 compared to antibodies but claims single cell resolution. The sensor was applied to evaluate changes in H3K9me3 responding to environmental chemical atrazine (ATZ). ATZ was found to result in significant reductions in H3K9me3 levels after 24 h of exposure. Its impact on the distribution of H3K9me3 among cell populations was also assessed and found to be distinctive. We foresee the application of our sensors in multiple toxicity and drug-screening applications.
Collapse
Affiliation(s)
- Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Agnes Mendonca
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
| | - Alan Min
- Department of Computer Science, Purdue University, West Lafayette 47907, Indiana, United States
| | - Jichang Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette 47907, Indiana, United States
- Purdue University Center for Cancer Research, West Lafayette 47907, Indiana, United States
| |
Collapse
|
41
|
Sheng W, Shi Y, Ma J, Wang L, Zhang B, Chang Q, Duan W, Wang S. Highly sensitive atrazine fluorescence immunoassay by using magnetic separation and upconversion nanoparticles as labels. Mikrochim Acta 2019; 186:564. [DOI: 10.1007/s00604-019-3667-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/06/2019] [Indexed: 01/04/2023]
|
42
|
Wang F, Yang QW, Zhao WJ, Du QY, Chang ZJ. Effects of short-time exposure to atrazine on miRNA expression profiles in the gonad of common carp (Cyprinus carpio). BMC Genomics 2019; 20:587. [PMID: 31315571 PMCID: PMC6636164 DOI: 10.1186/s12864-019-5896-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atrazine is widely used in agriculture and is a known endocrine disrupting chemical. Atrazine can seep into the water body through surface, posing a potential threat to the aquatic ecological environment and human drinking water source. In vertebrate, studies have shown that it can affect reproduction and development seriously, but its molecular mechanism for aquatic animals is unknown. Aquaculture is very common in China, especially common carp, whose females grow faster than males. However, the effects of atrazine on the reproduction of carp, especially miRNA, have not been investigated. RESULTS In this study, common carp (Cyprinus carpio) at two key developmental stages were exposed to atrazine in vitro. Sex ratio was observed to analyze the effect of atrazine on the sex. MiRNA expression profiles were analysed to identify miRNAs related to gonad development and to reveal the atrazine mechanisms interfering with gonad differentiation. The results showed that the sex ratio was biased towards females. Atrazine exposure caused significant alteration of multiple miRNAs. Predicted targets of differently-expressed miRNAs were involved in many reproductive biology signalling pathways. CONCLUSIONS Our results indicate that atrazine promoted the expression of female-biased genes by decreasing miRNAs in primordial gonad. In addition, our results indicate that atrazine can up-regulate aromatase expression through miRNAs, which supports the hypothesis that atrazine has endocrine-disrupting activity by altering the gene expression profile of the Hypothalamus-Pituitary-Gonad axis through its corresponding miRNAs.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qian-Wen Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Wen-Jie Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Qi-Yan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhong-Jie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
43
|
Jacquin L, Gandar A, Aguirre-Smith M, Perrault A, Hénaff ML, Jong LD, Paris-Palacios S, Laffaille P, Jean S. High temperature aggravates the effects of pesticides in goldfish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:255-264. [PMID: 30711860 DOI: 10.1016/j.ecoenv.2019.01.085] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
In human-altered rivers, fish are often conjointly exposed to an increase in water temperature due to global warming and to a contamination by organic pollutants such as pesticides, but their combined effects are still elusive. Thermal and chemical stressors could potentially interact because high temperature increases metabolism and toxicant uptake, and can alter the ability of organisms to set up adequate stress responses and to maintain homeostasis. These combined stressors could thus potentially result in higher level of molecular and cellular damage, and stronger effects on behavior and physiology, but experimental evidence across biological levels is still scarce. In this study, goldfish Carassius auratus were experimentally exposed to an environmentally realistic cocktail of pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazol) commonly found in rivers of South-West of France at low or high dose in two different thermal conditions: a common summer temperature (22 °C) or a high temperature recorded during heat waves (32 °C). Results showed that high temperature alone caused behavioral and physiological changes (increased swimming activity, increased hepatosomatic index, decreased reproductive index) but limited cellular damage. However, high temperature aggravated the effects of pesticides at the molecular and cellular level. Indeed, pesticide exposure resulted in higher genotoxic effects (micronuclei rate) and irreversible cellular damage of the gills and liver (apoptosis, inflammation, necrosis) at 32 °C compared to 22 °C. This suggests potential synergistic effects of climate change and pollution, and highlights the need for multiple stress approaches to better predict the impacts of human activities on aquatic wildlife.
Collapse
Affiliation(s)
- L Jacquin
- Laboratoire Evolution & Diversité Biologique EDB, UMR 5174, Université de Toulouse, UPS, CNRS, IRD, Toulouse, France.
| | - A Gandar
- Laboratoire Ecolab, Université de Toulouse, UPS, CNRS, INPT, ENSAT, route de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - M Aguirre-Smith
- Laboratoire Evolution & Diversité Biologique EDB, UMR 5174, Université de Toulouse, UPS, CNRS, IRD, Toulouse, France; Laboratoire Ecolab, Université de Toulouse, UPS, CNRS, INPT, ENSAT, route de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - A Perrault
- Laboratoire Ecolab, Université de Toulouse, UPS, CNRS, INPT, ENSAT, route de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - M Le Hénaff
- Bordeaux Science Agro, 1 cours du Général De Gaulle, CS 40201, 33175 Gradignan, France
| | - L De Jong
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, 3 place Victor Hugo, 13331 Marseille, France
| | - S Paris-Palacios
- UMR-I02 SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université de Reims Champagne-Ardenne, Faculté des Sciences, Campus du Moulin de la Housse, BP1039 51687 Reims cedex 2, France
| | - P Laffaille
- Laboratoire Ecolab, Université de Toulouse, UPS, CNRS, INPT, ENSAT, route de l'Agrobiopole, 31326 Castanet-Tolosan, France
| | - S Jean
- Laboratoire Ecolab, Université de Toulouse, UPS, CNRS, INPT, ENSAT, route de l'Agrobiopole, 31326 Castanet-Tolosan, France
| |
Collapse
|
44
|
Hoskins TD, Dellapina M, Papoulias DM, Boone MD. Effects of larval atrazine exposure in mesocosms on Blanchard's cricket frogs (Acris blanchardi) reared through overwintering and to reproductive age. CHEMOSPHERE 2019; 220:845-857. [PMID: 33395806 DOI: 10.1016/j.chemosphere.2018.12.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/12/2023]
Abstract
We exposed Blanchard's cricket frog (Acris blanchardi) tadpoles to atrazine in simulated aquatic communities (outdoor mesocosms) at nominal concentrations of 0, 1, 10, 100, and 200 μg/L and tracked the effects of exposure to spring emergence in the laboratory, as well as to reproductive age in outdoor, terrestrial enclosures. We tested hypotheses that 1) atrazine addition increases the prevalence and intensity of testicular ova (TO) among phenotypic males at metamorphosis and after overwintering, 2) atrazine reduces maturation of ova after overwintering among phenotypic females, and 3) atrazine alters mass, time, and survival to metamorphosis, as well as growth and survival across terrestrial life stages. Atrazine addition increased probability of TO presence at metamorphosis, but only when treatments were pooled and compared to the control, where background atrazine was detected. Atrazine did not influence the intensity of TO among metamorphs. We observed TO among males at spring emergence and at reproductive age regardless of exposure concentration. We found no evidence for effects of exposure on gonadal maturation among females after overwintering. Exposure to 200 μg/L reduced survival to metamorphosis, but atrazine did not affect mass at metamorphosis, time to metamorphosis, or survival or mass after overwintering. We demonstrate that atrazine addition can increase TO prevalence relative to background rates at metamorphosis and that TO are also present among phenotypic males after overwintering. We suggest that this non-model species is sensitive to effects of larval EDC exposures on gonadal development and morphology and that further work with cricket frogs is warranted.
Collapse
|
45
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
46
|
Walker BS, Kramer AG, Lassiter CS. Atrazine affects craniofacial chondrogenesis and axial skeleton mineralization in zebrafish (Danio rerio). Toxicol Ind Health 2018; 34:329-338. [DOI: 10.1177/0748233718760419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atrazine is a commonly used herbicide that has previously been implicated as an endocrine-disrupting compound. Previous studies have shown that estrogenic endocrine-disrupting compounds affect the development of the heart, cartilage, and bone in zebrafish ( Danio rerio). To determine whether atrazine has effects similar to other endocrine disruptors, zebrafish embryos were treated with a range of atrazine concentrations. Atrazine treatment at a low concentration of 0.1 µM resulted in significant differences in craniofacial cartilage elements, while concentrations ≥1 µM led to decreased survival and increased heart rates. Fish treated with ≥1 µM atrazine also developed with delayed vertebrae mineralization. Higher concentrations of atrazine caused gross craniofacial defects and decreased hatching rates. Further studies into the molecular pathways disrupted in these developmental processes could shed light on a link between endocrine-disrupting compounds and developmental abnormalities.
Collapse
|
47
|
Caballero-Gallardo K, Wirbisky-Hershberger SE, Olivero-Verbel J, de la Rosa J, Freeman JL. Embryonic exposure to an aqueous coal dust extract results in gene expression alterations associated with the development and function of connective tissue and the hematological system, immunological and inflammatory disease, and cancer in zebrafish. Metallomics 2018; 10:463-473. [PMID: 29485154 DOI: 10.1039/c7mt00300e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Coal mining is one of the economic activities with the greatest impact on environmental quality. At all stages contaminants are released as particulates such as coal dust. The first aim of this study was to obtain an aqueous coal dust extract and characterize its composition in terms of trace elements by ICP-MS. In addition, the developmental toxicity of the aqueous coal extract was evaluated using zebrafish (Danio rerio) after exposure to different concentrations (0-1000 ppm; μg mL-1) to establish acute toxicity, morphology and transcriptome changes. Trace elements within the aqueous coal dust extract present at the highest concentrations (>10 ppb) included Sr, Zn, Ba, As, Cu and Se. In addition, Cd and Pb were found in lower concentrations. No significant difference in mortality was observed (p > 0.05), but a delay in hatching was found at 0.1 and 1000 ppm (p < 0.05). No significant differences in morphological characteristics were observed in any of the treatment groups (p > 0.05). Transcriptomic results of zebrafish larvae revealed alterations in 77, 61 and 1376 genes in the 1, 10, and 100 ppm groups, respectively. Gene ontology analysis identified gene alterations associated with the development and function of connective tissue and the hematological system, as well as pathways associated with apoptosis, the cell cycle, transcription, and oxidative stress including the MAPK signaling pathway. In addition, altered genes were associated with cancer; connective tissue, muscular, and skeletal disorders; and immunological and inflammatory diseases. Overall, this is the first study to characterize gene expression alterations in response to developmental exposure to aqueous coal dust residue from coal mining with transcriptome results signifying functions and systems to target in future studies.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | | | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Jesus de la Rosa
- Associate Unit CSIC - University of Huelva ''Atmospheric Pollution'', Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071 Huelva, Spain
| | - Jennifer L Freeman
- School of Health Sciences, 550 Stadium Mall Drive Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
48
|
Horzmann KA, de Perre C, Lee LS, Whelton AJ, Freeman JL. Comparative analytical and toxicological assessment of methylcyclohexanemethanol (MCHM) mixtures associated with the Elk River chemical spill. CHEMOSPHERE 2017; 188:599-607. [PMID: 28917212 DOI: 10.1016/j.chemosphere.2017.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 05/27/2023]
Abstract
On January 9, 2014, a chemical mixture containing crude methylcyclohexanemethanol (MCHM) contaminated the water supply of Charleston, West Virginia. Although the mixture was later identified as a mix of crude MCHM and stripped propylene glycol phenyl ethers, initial risk assessment focused on 4-MCHM, the predominant component of crude MCHM. The mixture's exact composition and the toxicity differences between 4-MCHM, crude MCHM, and the tank mixture were unknown. We analyzed the chemical composition of crude MCHM and the tank mixture via GC/MS and, based on identified spectra, found that crude MCHM and the tank mixture differed in chemical composition. To evaluate acute developmental toxicity, zebrafish embryos were exposed to 0, 1, 6.25, 12.5, 25, 50, or 100 parts per million (ppm; mg/L) of 4-MCHM, crude MCHM, or the tank mixture. The percent mortality and percent hatch, larval morphology alterations, and larval visual motor response test were used to establish toxicity profiles for each of the chemicals or mixtures. The acute toxicity differed between 4-MCHM, crude MCHM and the tank mixture with significant differences in survival, hatching, morphology, and locomotion at levels as low as the short-term screening level of 1 ppm, suggesting a need for further research into human health risks. This study is the first to evaluate the developmental toxicity of the tank mixture and highlights that studies evaluating risk should not assume the effects of 4-MCHM or crude MCHM are representative of the Tank 396 mixture.
Collapse
Affiliation(s)
| | - Chloe de Perre
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew J Whelton
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
49
|
Bridi D, Altenhofen S, Gonzalez JB, Reolon GK, Bonan CD. Glyphosate and Roundup ® alter morphology and behavior in zebrafish. Toxicology 2017; 392:32-39. [PMID: 29032223 DOI: 10.1016/j.tox.2017.10.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023]
Abstract
Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup®. This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup®-treated adult zebrafish demonstrated a significant impairment in memory. Both glyphosate and Roundup® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup®, altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response.
Collapse
Affiliation(s)
- Daiane Bridi
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia Farmacêutica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonas Brum Gonzalez
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Kellermann Reolon
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biotecnologia Farmacêutica, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C, Freeman JL. Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol 2017; 109:727-734. [PMID: 28859886 DOI: 10.1016/j.fct.2017.08.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 11/26/2022]
Abstract
Atrazine, a herbicide used on agricultural crops is widely applied in the Midwestern United States as well as other areas of the globe. Atrazine frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. Previous studies have reported morphological, hormonal, and molecular alterations due to developmental and adulthood atrazine exposure; however, studies examining epigenetic alterations are limited. In this study, the effects of atrazine exposure on DNA methyltransferase (DNMT) activity and kinetics were evaluated. Global DNA methylation levels and dnmt expression in zebrafish larvae exposed to 0, 3, or 30 parts per billion (ppb) atrazine throughout embryogenesis was then assessed. Results indicate that atrazine significantly decreased the activity of maintenance DNMTs and that the inhibition mechanism can be described using non-competitive Michaelis-Menten kinetics. Furthermore, results show that an embryonic atrazine exposure decreases global methylation levels and the expression of dnmt4 and dnmt5. These findings indicate that atrazine exposure can decrease the expression and activity of DNMTs, leading to decreased DNA methylation levels.
Collapse
Affiliation(s)
| | - Oscar F Sanchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Devang Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|