1
|
Chen Z, Wei W, Hu Y, Niu Q, Yan Y. Associations between co-exposure to per- and polyfluoroalkyl substances and metabolic diseases: The mediating roles of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176187. [PMID: 39265689 DOI: 10.1016/j.scitotenv.2024.176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) pose potential risks to human health. In real-world settings, humans are exposed to various PFAS through numerous pathways. OBJECTIVES This study evaluated the associations between co-exposure to PFAS and obesity and its comorbidities, along with the mediating roles of inflammation and oxidative stress. METHODS We analyzed 11,090 participants from National Health and Nutrition Examination Survey (NHANES), 2003-2018. Linear regression, logistic regression, and generalized additive models were used to assess the individual effects of PFAS exposure on obesity and its comorbidities. The environmental risk score (ERS) was calculated using the adaptive elastic-net model to assess the co-exposure effects. Linear and logistic regression models explored the associations between ERS and obesity and its comorbidities. Mediation analyses explored the roles of inflammatory (neutrophils, lymphocytes, and alkaline phosphatase) and oxidative stress (gamma-glutamyl transferase, total bilirubin, and uric acid) markers in the associations between ERS and obesity and its comorbidities. RESULTS For each unit increase in ERS, the odds of obesity and type 2 diabetes mellitus (T2DM) increased 3.60-fold (95 % CI: 2.03, 6.38) and 1.91-fold (95 % CI: 1.28, 2.86), respectively. For each unit increase in ERS, BMI increased by 2.36 (95 % CI: 1.24, 3.48) kg/m2, waist circumference increased by 6.47 (95 % CI: 3.56, 9.37) cm, and waist-to-height ratio increased by 0.04 (95 % CI: 0.02, 0.06). Lymphocytes, alkaline phosphatase, and total bilirubin were significantly associated with both ERS and obesity, with mediation proportions of 4.17 %, 3.62 %, and 7.37 %, respectively. Lymphocytes, alkaline phosphatase, total bilirubin, and uric acid were significantly associated with both ERS and T2DM, with the mediation proportions of 8.90 %, 8.74 %, 29.73 %, and 38.19 %, respectively. CONCLUSIONS Co-exposure to PFAS was associated with obesity and T2DM, and these associations may be mediated by inflammation and oxidative stress. Further mechanistic and prospective studies are required to verify these associations.
Collapse
Affiliation(s)
- Zuhai Chen
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wanting Wei
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Zeng Y, Dai Y, Yin L, Huang J, Hoffmann MR. Rethinking alternatives to fluorinated pops in aqueous environment and corresponding destructive treatment strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174200. [PMID: 38936705 DOI: 10.1016/j.scitotenv.2024.174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Alternatives are being developed to replace fluorinated persistent organic pollutants (POPs) listed in the Stockholm Convention, bypass environmental regulations, and overcome environmental risks. However, the extensive usage of fluorinated POPs alternatives has revealed potential risks such as high exposure levels, long-range transport properties, and physiological toxicity. Therefore, it is imperative to rethink the alternatives and their treatment technologies. This review aims to consider the existing destructive technologies for completely eliminating fluorinated POPs alternatives from the earth based on the updated classification and risks overview. Herein, the types of common alternatives were renewed and categorized, and their risks to the environment and organisms were concluded. The efficiency, effectiveness, energy utilization, sustainability, and cost of various degradation technologies in the treatment of fluorinated POPs alternatives were reviewed and evaluated. Meanwhile, the reaction mechanisms of different fluorinated POPs alternatives are systematically generalized, and the correlation between the structure of alternatives and the degradation characteristics was discussed, providing mechanistic insights for their removal from the environment. Overall, the review supplies a theoretical foundation and reference for the control and treatment of fluorinated POPs alternatives pollution.
Collapse
Affiliation(s)
- Yuxin Zeng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, PR China.
| | - Michael R Hoffmann
- Department of Environmental Science & Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
3
|
Shang Y, Chen K, Ni H, Zhu X, Yuan X, Wang Y, Liu X, Cui Z, Niu Y, Shi Y, Wu H, Xia D, Wu Y. Environmentally relevant concentrations of perfluorobutane sulfonate impair locomotion behaviors and healthspan by downregulating mitophagy in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135938. [PMID: 39326150 DOI: 10.1016/j.jhazmat.2024.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Perfluorobutane sulfonate (PFBS), a chemical compound within the group of per- and polyfluoroalkyl substances (PFAS), has been utilized as an alternative to perfluorooctane sulfonate (PFOS) recently. Previous research has indicated that PFBS might be linked to a range of health concerns. However, the potential impacts of environmentally relevant concentrations of PFBS (25 nM) on aging as well as the underlying mechanisms remained largely unexplored. In this study, we investigated the impact of PFBS exposure on aging and the associated mechanisms in Caenorhabditis elegans. Our findings indicated that exposure to PFBS impaired healthspan of C. elegans. Through bioinformatic screening analyses, we identified that the dysfunctions of pink-1 mediated mitophagy might play a critical role in PFBS induced aging. The results furtherly revealed that PFBS exposure led to elevated levels of reactive oxygen species (ROS) and mitophagy impairment through downregulating pink-1/pdr-1 pathway. Furthermore, the mitophagy agonist Urolithin A (UA) effectively reversed PFBS-induced mitophagy dysfunction and enhanced healthspan in C. elegans. Taken together, our study suggested that exposure to environmentally relevant concentrations of PFBS could accelerate aging by downregulating the pink-1 mediated mitophagy. Promoting mitophagy within cells could be a promising therapeutic strategy for delaying PFBS-induced aging.
Collapse
Affiliation(s)
- Yahui Shang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Zhu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Ahmad M, Hu C, Liu M, Zhang H, Shah SAUR, Nabi G, Hao Y, Chen L. Cytotoxicity and mechanisms of perfluorobutane sulfonate (PFBS) in umbilical cord fibroblast cells of Yangtze finless porpoise. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107098. [PMID: 39298911 DOI: 10.1016/j.aquatox.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Yangtze finless porpoises (YFP) accumulate high levels of per- and polyfluoroalkyl substances (PFASs). However, the health impacts of PFASs to YFP are still unknown because it is technically and ethically unfeasible to use the critically endangered YFP in toxicological exposures. To uncover the potential toxicities of PFASs to YFP, this study exposed a YFP umbilical cord fibroblast cell line to perfluorobutane sulfonate (PFBS), an emerging PFASs pollutant in the aquatic environments. After exposure, the cytotoxicity and mechanisms of PFBS were explored. Our preliminary experiments found that PFBS compromised the cell viability in a concentration and duration dependent manner. In an exposure of 48-h duration, the maximum no observed effect concentration (NOEC) of PFBS was determined to be 400 µM. High-throughput proteomics were then conducted to identify the differentially expressed proteins in YFP cells exposed to 400 µM PFBS for 48 h. The results found that PFBS exposure significantly perturbed the proteome fingerprints of YFP umbilical cord fibroblast cells. Functional annotation of differential proteins showed that PFBS had the potential to impair a variety of biological processes associated with the immunity, oxidative stress, metabolism, and proteolysis. Consistently, the intracellular levels of reactive oxygen species (ROS) and proinflammatory cytokine IL-1β were significantly increased by PFBS in YFP umbilical cord fibroblast cells. Overall, this study highlights the toxic effects of emerging PFASs on YFP and provides reference data to evaluate the health risks of aquatic pollution under the context of national YFP protection. To our knowledge, this is the first omics study using YFP umbilical cord fibroblast cells in ecotoxicology of PFASs, which is applicable to various cetacean species and pollutants.
Collapse
Affiliation(s)
- Maaz Ahmad
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haobo Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed Ata Ur Rahman Shah
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Rericha Y, St. Mary L, Truong L, McClure R, Martin JK, Leonard SW, Thunga P, Simonich MT, Waters KM, Field JA, Tanguay RL. Diverse PFAS produce unique transcriptomic changes linked to developmental toxicity in zebrafish. FRONTIERS IN TOXICOLOGY 2024; 6:1425537. [PMID: 39104825 PMCID: PMC11298493 DOI: 10.3389/ftox.2024.1425537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24-120 h post fertilization, and additional temporal transcriptomics at several timepoints (48-96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24-96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.
Collapse
Affiliation(s)
- Yvonne Rericha
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lindsey St. Mary
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lisa Truong
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Ryan McClure
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - J. Kainalu Martin
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Scott W. Leonard
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Preethi Thunga
- Biological Sciences Department, College of Sciences, North Carolina State University, Raleigh, NC, United States
| | - Michael T. Simonich
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Katrina M. Waters
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Jennifer A. Field
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Yu G, Luo T, Liu Y, Huo X, Mo C, Huang B, Li Y, Feng L, Sun Y, Zhang J, Zhang Z. Multi-omics reveal disturbance of glucose homeostasis in pregnant rats exposed to short-chain perfluorobutanesulfonic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116402. [PMID: 38728940 DOI: 10.1016/j.ecoenv.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Perfluorobutanesulfonic acid (PFBS), a short-chain alternative to perfluorooctanesulfonic acid (PFOS), is widely used in various products and is increasingly present in environmental media and human bodies. Recent epidemiological findings have raised concerns about its potential adverse health effects, although the specific toxic mechanism remains unclear. This study aimed to investigate the metabolic toxicity of gestational PFBS exposure in maternal rats. Pregnant Sprague Dawley (SD) rats were randomly assigned to three groups and administered either 3% starch gel (control), 5, or 50 mg/kg bw·d PFBS. Oral glucose tolerance tests (OGTT) and lipid profiles were measured, and integrated omics analysis (transcriptomics and non-targeted metabolomics) was employed to identify changes in genes and metabolites and their relationships with metabolic phenotypes. The results revealed that rats exposed to 50 mg/kg bw·d PFBS exhibited a significant decrease in 1-h glucose levels and the area under the curve (AUC) of OGTT compared with the starch group. Transcriptomics analysis indicated significant alterations in gene expression related to cytochrome P450 exogenous metabolism, glutathione metabolism, bile acid secretion, tumor pathways, and retinol metabolism. Differentially expressed metabolites (DEMs) were enriched in pathways such as pyruvate metabolism, the glucagon signaling pathway, central carbon metabolism in cancer, and the citric acid cycle. Co-enrichment analysis and pairwise correlation analysis among genes, metabolites, and outcomes identified several differentially expressed genes (DEGs), including Gstm1, Kit, Adcy1, Gck, Ppp1r3c, Ppp1r3d, and DEMs such as fumaric acid, L-lactic acid, 4-hydroxynonenal, and acetylvalerenolic acid. These DEGs and DEMs may play a role in the modulation of glucolipid metabolic pathways. In conclusion, our results suggest that gestational exposure to PFBS may induce molecular perturbations in glucose homeostasis. These findings provide insights into the potential mechanisms contributing to the heightened risk of abnormal glucose tolerance associated with PFBS exposure.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, 117549, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 117549, Singapore
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaona Huo
- International Peace Maternity and Child Health Hospital, Shanghai 200030, China
| | - Chunbao Mo
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - You Li
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Yan Sun
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Zhiyong Zhang
- School of Public Health, Guilin Medical University, Guilin 541001, China; The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
7
|
Dunn F, Paquette SE, Pennell KD, Plavicki JS, Manz KE. Metabolomic changes following GenX and PFBS exposure in developing zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106908. [PMID: 38608566 PMCID: PMC11209921 DOI: 10.1016/j.aquatox.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.
Collapse
Affiliation(s)
- Fiona Dunn
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, United States
| | - Shannon E Paquette
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, United States
| | - Jessica S Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02903, United States.
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, United States; Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
8
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
9
|
Li J, Hu C, Zhao B, Li J, Chen L. Proteomic and cardiac dysregulation by representative perfluoroalkyl acids of different chemical speciation during early embryogenesis of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172000. [PMID: 38552965 DOI: 10.1016/j.scitotenv.2024.172000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Perfluoroalkyl acids (PFAAs) of different chemical speciation were previously found to cause diverse toxicity. However, the toxicological mechanisms depending on chemical speciation are still largely unknown. In this follow-up study, zebrafish embryos were acutely exposed to only one concentration at 4.67 μM of the acid and salt of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS), till 96 h post-fertilization (hpf), aiming to gain more mechanistic insights. High-throughput proteomics found that PFAA acid and salt exerted discriminative effects on protein expression pattern. Bioinformatic analyses based on differentially expressed proteins underlined the developmental cardiotoxicity of PFOA acid with regard to cardiac muscle contraction, vascular smooth muscle contraction, adrenergic signaling in cardiomyocytes, and multiple terms related to myocardial contraction. PFOA salt and PFBS acid merely disrupted the cardiac muscle contraction pathway, while cardiac muscle cell differentiation was significantly enriched in PFBA acid-exposed zebrafish larvae. Consistently, under PFAA exposure, especially PFOA and PFBS acid forms, transcriptional levels of key genes for cardiogenesis and the concentrations of troponin and epinephrine associated with myocardial contraction were significantly dysregulated. Moreover, a transgenic line Tg (my17: GFP) expressing green fluorescent protein in myocardial cells was employed to visualize the histopathology of developing heart. PFOA acid concurrently caused multiple deficits in heart morphogenesis and function, which were characterized by the significant increase in sinus venosus and bulbus arteriosus distance (SV-BA distance), the induction of pericardial edema, and the decrease in heart rate, further confirming the stronger toxicity of PFOA acid than the salt counterpart on heart development. Overall, this study highlighted the developmental cardiotoxicity of PFAAs, with potency ranking PFOA > PFBS > PFBA. The acid forms of PFAAs induced stronger cardiac toxicity than their salt counterparts, providing an additional insight into the structure-toxicity relationship.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Bin Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
10
|
Ivantsova E, Lu A, Martyniuk CJ. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish. CHEMOSPHERE 2024; 349:140815. [PMID: 38040261 DOI: 10.1016/j.chemosphere.2023.140815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) are short-chain perfluoroalkyl substances (PFAS) ubiquitous in the environment. Here we review data on the presence and toxicity mechanisms of PFBA and PFBS in fish. We aimed to (1) synthesize data on physiological systems perturbed by PFBA or PFBS; (2) determine whether toxicity studies use concentrations reported in aquatic ecosystems and fish tissues; (3) conduct a computational toxicity assessment to elucidate putative mechanisms of PFBA and PFBS-induced toxicity. PFBA and PFBS are reported in the low ng/L in aquatic systems, and both substances are present in tissues of several fish including carp, bass, tilapia, and drum species. Evidence supports toxicity effects on several organ systems, including the cardiac, immune, hepatic, and reproductive system. Multigenerational effects in fish have also been documented for these smaller chain PFAS. To further elucidate mechanisms of reproductive impairment, we conducted in silico molecular docking to evaluate chemical interactions with several fish estrogen receptors, specifically zebrafish, fathead minnow, and Atlantic salmon. PFBS showed higher binding affinity for fish estrogen receptors relative to PFBA. Computational analysis also pointed to effects on lipids "Adipocyte Hypertrophy and Hyperplasia", "Lipogenesis Regulation in Adipocyte", and estrogen-related processes. Based on our review, most data for PFBA and PFBS are gathered for concentrations outside environmental relevance, limiting our understanding of their environment impacts. At the time of this review, there is relatively more toxicity data available for PFBS relative to PFBA in fish. This review synthesizes data on environmental levels and toxicology endpoints for PFBA and PFBS in fish to guide future investigations and endpoint assessments.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Austin Lu
- Blind Brook High School, Rye Brook, NY, 10573, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
11
|
Sun B, Li J, Bai Y, Zhou X, Lam PKS, Chen L. Hypoxic and temporal variation in the endocrine disrupting toxicity of perfluorobutanesulfonate in marine medaka (Oryzias melastigma). J Environ Sci (China) 2024; 136:279-291. [PMID: 37923438 DOI: 10.1016/j.jes.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts. However, the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown. In the present study, adult marine medaka were exposed to environmentally realistic concentrations of PFBS (0 and 10 µg/L) under normoxia or hypoxia conditions for 7 days, aiming to explore the interactive behavior between PFBS and hypoxia. In addition, PFBS singular exposure was extended till 21 days under normoxia to elucidate the time-course progression in PFBS toxicity. The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure. With regard to the sex endocrine system, 7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females, which, subsequently, recovered after the 21-day exposure. The potency of hypoxia to disturb the sex hormones was much stronger than PFBS. A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure. Changes in sex endocrinology of coexposed fish were largely determined by hypoxia, which drove the formation of an estrogenic environment. PFBS further enhanced the endocrine disrupting effects of hypoxia. However, the hepatic synthesis of vitellogenin and choriogenin, two commonly used sensitive biomarkers of estrogenic activity, failed to initiate in response to the estrogen stimulus. Compared to sex endocrine system, disturbances in thyroidal axis by PFBS or hypoxia were relatively mild. Overall, the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Li D, Zhang J, Liu X, Wang X, Li B, Du Z, Juhasz A, Wang J, Wang J, Zhu L. Are PFBS, PFHxS, and 6:2FTSA more friendly to the soil environment compared to PFOS? A new insight based on ecotoxicity study in soil invertebrates (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166689. [PMID: 37652386 DOI: 10.1016/j.scitotenv.2023.166689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
As alternatives to perfluorooctane sulfonate (PFOS) with shorter carbon chains or lower proportion of fluorine atoms, perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonic acid (6:2FTSA) have been detected in various environmental media. However, it is unclear whether the toxicity of these alternatives is lower than that of PFOS. Therefore, this study investigated the toxicity and differences in PFBS, PFHxS, 6:2FTSA, and PFOS (0.2 mg/kg) after 56 d of exposure using the common invertebrate Eisenia fetida in soil as the test organism. The results showed that although PFOS, PFBS, PFHxS, and 6:2FTSA induced oxidative stress and apoptosis in earthworms and led to developmental and reproductive toxicity in terms of comprehensive toxicity, PFHxS > PFOS > PFBS >6:2FTSA. To reveal the mechanisms underlying the differences in toxicity between the alternatives and PFOS, we conducted molecular docking and transcriptomic analyses. The results indicated that, unlike PFOS, PFBS, and PFHxS, 6:2FTSA did not cause significant changes in antioxidant enzyme activity at the molecular level. Furthermore, PFOS exposure caused disorder in the nervous and metabolic systems of earthworms, and PFHxS disrupted energy balance and triggered inflammatory responses, which may be important reasons for the higher toxicity of these compounds. In contrast, exposure to 6:2FTSA did not result in adverse transcriptomic effects, suggesting that 6:2FTSA exerted the least molecular-scale toxicity in earthworms. The results of this study provide new insights into the environmental safety of using PFBS, PFHxS, and 6:2FTSA as alternatives to PFOS.
Collapse
Affiliation(s)
- Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Xiaowen Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Xiaole Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| |
Collapse
|
13
|
Meng X, Yu G, Luo T, Zhang R, Zhang J, Liu Y. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring. CHEMOSPHERE 2023; 341:140120. [PMID: 37696479 DOI: 10.1016/j.chemosphere.2023.140120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Emerging epidemiological evidence indicates potential associations between gestational perfluorobutane sulfonate (PFBS) exposure and adverse metabolic outcomes in offspring. However, the underlying mechanisms remain unclear. Our study aimed to investigate PFBS exposure effects during pregnancy and lactation on rat offspring lipid profiles and the possible underlying mechanisms. Although the biochemical index difference including total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), alanine amino transaminase (ALT), aspartate amino transferase (AST), and fasting blood glucose between exposed groups and the control group was not significant, transcriptome analyses showed that the differentially expressed genes (DEGs) in the 50 mg/kg/day PFBS exposure group were significantly related to protein digestion and absorption, peroxisome proliferator activated-receptor (PPAR) signaling pathway, xenobiotic metabolism by cytochrome P450, glycine, serine and threonine metabolism, β-alanine metabolism, bile secretion, unsaturated fatty acid (FA) biosynthesis, and alanine, aspartate and glutamate metabolism. Untargeted metabolomics analyses identified 17 differential metabolites in the 50 mg/kg/day PFBS exposure group. Among these, phosphatidylserine [PS (18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))], lysoPE (18:1(11Z)/0:0), and PS (14:0/20:4(5Z,8Z,11Z,14Z)) were significantly correlated with phospholipid metabolism disorders. Correlation analysis indicated the DEGs, including FA binding protein (Fabp4), spermine oxidase (Smox), Fabp2, acyl-CoA thioesterase 5 (Acot5), sarcosine dehydrogenase (Sardh), and amine oxidase, copper-containing 3 (Aoc3) that significantly enriched in xenobiotic metabolism by cytochrome P450 and glycine, serine, and threonine metabolism signaling pathways were highly related to the differential metabolite pantetheine 4'-phosphate. Pantetheine 4'-phosphate was significantly negatively associated with non-high-density lipoprotein (non-HDL) and TC levels. Collectively, our study indicated that maternal PFBS exposure at a relatively low level could alter gene expression and metabolic molecules in lipid metabolism-related pathway series in rat offspring, although the effects on metabolic phenotypes were not significant within the limited observational period, using group-wise and trend analyses.
Collapse
Affiliation(s)
- Xi Meng
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin, 541001, China
| | - Ruiyuan Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yongjie Liu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
14
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
15
|
Zhang YH, Ding TT, Huang ZY, Liang HY, Du SL, Zhang J, Li HX. Environmental exposure and ecological risk of perfluorinated substances (PFASs) in the Shaying River Basin, China. CHEMOSPHERE 2023; 339:139537. [PMID: 37478992 DOI: 10.1016/j.chemosphere.2023.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
There have been concerns raised about the environmental effects of perfluoroalkyl substances (PFASs) because of their toxicity, widespread distribution, and persistence. Understanding the occurrences and ecological risk posed by PFASs is essential, especially for the short-chain replacements perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), which are now becoming predominant PFASs. The lack of aquatic life criteria (ALC), however, prevents an accurate assessment of the ecological risks of PFBA and PFBS. This study thus investigated the occurrence of 15 PFASs at 29 sampling sites in Shaying River Basin (in China) systematically, conducted the toxicity tests of PFBA and PFBS on eight resident aquatic organisms in China, and derived the predicted non-effect concentration (PNEC) values for PFBA and PFBS for two environmental media in China. The results showed that the total PFASs concentrations (ΣPFASs) ranged from 5.07 to 20.32 ng/L (average of 10.95 ng/L) in surface water, whereas in sediment, ΣPFASs ranged from 6.46 to 20.05 ng/g (dw) (average of 11.51 ng/g). The presence of PFBS was the most prominent PFASs in both water (0.372-8.194 ng/L) and sediment (4.54-15.72 ng/g), demonstrating that short-chain substitution effects can be observed in watersheds. The PNEC values for freshwater and sediment were 6.60 mg/L and 8.30 mg/kg (ww), respectively, for PFBA, and 14.04 mg/L, 37.08 mg/kg (ww), respectively, for PFBS. Ecological risk assessment of two long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and two short-chain PFASs, PFBA and PFBS, using the hazard quotient method revealed that Shaying River and other major River Basins in China were at risk of PFOS contamination. This study contributes to a better understanding of the presence and risk of PFASs in the Shaying River and first proposes the ALCs for PFBA and PFBS in China, which could provide important reference information for water quality standards.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zi-Yan Huang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310005, PR China; Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hong-Yi Liang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Shi-Lin Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hui-Xian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
16
|
Sun B, Li J, Hu C, Giesy JP, Lam PKS, Chen L. Toxicity of perfluorobutanesulfonate on gill functions of marine medaka (Oryzias melastigma): A time course and hypoxia co-exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162297. [PMID: 36801345 DOI: 10.1016/j.scitotenv.2023.162297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is found in hypoxia regions. Results of previous studies have shown that hypoxia was capable of altering the inherent toxicity of PFBS. However, regarding gill functions, hypoxic influences and time course progression of toxic effects of PFBS remain unclear. In this study, with the aim to reveal the interaction behavior between PFBS and hypoxia, adult marine medaka Oryzias melastigma were exposed for 7 days to 0 or 10 μg PFBS/L under normoxic or hypoxic conditions. Subsequently, to explore the time-course transition in gill toxicity, medaka were exposed to PFBS for 21 days. The results showed that hypoxia dramatically increased the respiratory rate of medaka gill, which was further enhanced by exposure to PFBS; although exposure to PFBS under normoxic conditions for 7 days did not alter respiration, exposure to PFBS for 21 days significantly accelerated the respiration rate of female medaka. Concurrently, both hypoxia and PFBS were potent to interrupt the gene transcriptions and Na+, K+-ATPase enzymatic activity that play pivotal roles in the osmoregulation in gills of marine medaka, consequently disrupting homeostasis of major ions in blood, such as Na+, Cl-, and Ca2+. In addition, composition and diversity of the microbiome residing on surfaces of the gill were profiled by using amplicon sequencing. Acute exposure to hypoxia for only 7 days caused a significant decrease in diversity of the bacterial community of gill whatever the presence of PFBS, while PFBS exposure for 21 days increased the diversity of gill microbial community. Principal component analysis revealed that, compared with PFBS, hypoxia was the predominant driver of gill microbiome dysbiosis. Depending on duration of exposure, a divergence was caused in the microbial community of gill. Overall, the current findings underline the interaction between hypoxia and PFBS on gill function and demonstrate the temporal variation in PFBS toxicity.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
17
|
Wilson PW, Cho C, Allsing N, Khanum S, Bose P, Grubschmidt A, Sant KE. Tris(4-chlorophenyl)methane and tris(4-chlorophenyl)methanol disrupt pancreatic organogenesis and gene expression in zebrafish embryos. Birth Defects Res 2023; 115:458-473. [PMID: 36470842 DOI: 10.1002/bdr2.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Tris(4-chlorophenyl) methane (TCPM) and tris(4-chlorophenyl)methanol (TCPMOH) are anthropogenic environmental contaminants believed to be manufacturing byproducts of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) due to environmental co-occurrence. TCPM and TCPMOH are persistent, bioaccumulate in the environment, and are detected in human breast milk and adipose tissues. DDT exposures have been previously shown to disrupt insulin signaling and glucoregulation, increasing risk for diabetes. We have previously shown that embryonic exposures organochlorines such as polychlorinated biphenyls disrupted pancreatic development and early embryonic glucoregulatory networks. Here, we determined the impacts of the similar compounds TCPM and TCPMOH on zebrafish pancreatic growth and gene expression following developmental exposures. METHODS Zebrafish embryos were exposed to 50 nM TCPM or TCPMOH beginning at 24 hr postfertilization (hpf) and exposures were refreshed daily. At 96 hpf, pancreatic growth and islet area were directly visualized in Tg(ptf1a::GFP) and Tg(insulin::GFP) embryos, respectively, using microscopy. Gene expression was assessed at 100 hpf with RNA sequencing. RESULTS Islet and total pancreas area were reduced by 20.8% and 13% in embryos exposed to 50 nM TCPMOH compared to controls. TCPM did not induce significant morphological changes to the developing pancreas, indicating TCPMOH, but not TCPM, impairs pancreatic development despite similarity in molecular responses. Transcriptomic responses to TCPM and TCPMOH were correlated (R2 = .903), and pathway analysis found downregulation of processes including retinol metabolism, circadian rhythm, and steroid biosynthesis. CONCLUSION Overall, our data suggest that TCPM and TCPMOH may be hazardous to embryonic growth and development.
Collapse
Affiliation(s)
- Peyton W Wilson
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Christine Cho
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Nicholas Allsing
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Saleha Khanum
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Pria Bose
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Ava Grubschmidt
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
18
|
Brosset E, Ngueta G. Exposure to per- and polyfluoroalkyl substances and glycemic control in older US adults with type 2 diabetes mellitus. ENVIRONMENTAL RESEARCH 2023; 216:114697. [PMID: 36334831 DOI: 10.1016/j.envres.2022.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) have been associated with impaired glucose homeostasis. We aimed to examine associations of serum concentrations of PFAS with poor glycemic control (PGC) in US adults aged ≥65 years with type 2 diabetes mellitus (T2DM). METHODS We abstracted data from the 1999 to 2018 NHANES examination. In main analyses, we defined PGC as glycated haemoglobin A1C ≥ 8.0% in adults aged ≥75 years and A1C ≥ 7.0% (in main analyses) or A1C ≥ 7.5% (in sensitivity analyses) in those aged 65-74 years. We considered PFAS detected in >80% of the US population: perfluorodecanoic acid (PFDeA), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS). We estimated the adjusted odds ratio (aOR) and 95% confidence intervals (95% CI) of PGC across quartiles of PFAS concentrations using generalized linear mixed models, with the logit link. RESULTS Of the 4575 adults included, 42.2% were ≥75 years of age and men represented 53.2%. Compared to adults in the bottom quartile, the odds of PGC was lower in the third quartile of PFDeA (aOR = 0.46, 95% CI: 0.29-0.77; P = 0.0026) and PFHxS (aOR = 0.56, 95% CI: 0.32-0.96; P = 0.0368), the second quartile of PFNA (aOR = 0.41, 95% CI: 0.23-0.71), the upper quartile of PFOA (aOR = 0.29, 95% CI: 0.12-0.73; P = 0.0017), and higher in the second quartile of ΣPFAS (aOR = 1.85, 95% CI: 1.16-2.95; P = 0.0102). In sensitivity analyses, likelihood for PGC was higher in the upper quartile of PFNA (aOR = 2.30, 95% CI: 1.25-4.21; P = 0.0071) and PFHxS (aOR = 2.87, 95% CI: 1.56-5.30; P = 0.0007), the second quartile of PFOS (aOR = 2.81, 95% CI: 1.11-7.14; P = 0.0297), PFHxS (aOR = 1.90, 95% CI: 1.09-3.32; P = 0.0240) and ΣPFAS (aOR = 2.29, 95% CI: 1.40-3.77; P = 0.0010). CONCLUSIONS In US adults aged ≥65 years with known T2DM, PGC is more likely to be observed in those with high serum levels of PFNA and PFHxS (independent of sex) and PFDeA (in men), after controlling for confounders.
Collapse
Affiliation(s)
- Eloïse Brosset
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France; Department of Community Health Sciences, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gerard Ngueta
- CHU de Sherbrooke Research Center, Sherbrooke, Québec, Canada; Department of Community Health Sciences, Faculty of Medicine & Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
19
|
Leclercq A, Ranefall P, Sjunnesson YCB, Hallberg I. Occurrence of late-apoptotic symptoms in porcine preimplantation embryos upon exposure of oocytes to perfluoroalkyl substances (PFASs) under in vitro meiotic maturation. PLoS One 2022; 17:e0279551. [PMID: 36576940 PMCID: PMC9797085 DOI: 10.1371/journal.pone.0279551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
The objectives of this study were to evaluate the effect of perfluoroalkyl substances on early embryonic development and apoptosis in blastocysts using a porcine in vitro model. Porcine oocytes (N = 855) collected from abattoir ovaries were subjected to perfluorooctane sulfonic acid (PFOS) (0.1 μg/ml) and perfluorohexane sulfonic acid (PFHxS) (40 μg/ml) during in vitro maturation (IVM) for 45 h. The gametes were then fertilized and cultured in vitro, and developmental parameters were recorded. After 6 days of culture, resulting blastocysts (N = 146) were stained using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and imaged as stacks using confocal laser scanning microscopy. Proportion of apoptotic cells as well as total numbers of nuclei in each blastocyst were analyzed using objective image analysis. The experiment was run in 9 replicates, always with a control present. Effects on developmental parameters were analyzed using logistic regression, and effects on apoptosis and total numbers of nuclei were analyzed using linear regression. Higher cell count was associated with lower proportion of apoptotic cells, i.e., larger blastocysts contained less apoptotic cells. Upon PFAS exposure during IVM, PFHxS tended to result in higher blastocyst rates on day 5 post fertilization (p = 0.07) and on day 6 post fertilization (p = 0.05) as well as in higher apoptosis rates in blastocysts (p = 0.06). PFHxS resulted in higher total cell counts in blastocysts (p = 0.002). No effects attributable to the concentration of PFOS used here was seen. These findings add to the evidence that some perfluoroalkyl substances may affect female reproduction. More studies are needed to better understand potential implications for continued development as well as for human health.
Collapse
Affiliation(s)
- Anna Leclercq
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Petter Ranefall
- Department of Information Technology, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Ylva Cecilia Björnsdotter Sjunnesson
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Hallberg
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Xue X, Gao N, Xu F. Toxicity of perfluooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) to Scenedesmus obliquus: Photosynthetic characteristics, oxidative damage and transcriptome analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120397. [PMID: 36228843 DOI: 10.1016/j.envpol.2022.120397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
With the wide application as an alternative for perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate (PFBS) has been frequently detected in the aquatic environment. However, the aquatic toxicity of PFBS is still poorly understood. The present work studied the aquatic toxicity of PFBS using freshwater algae Scenedesmus obliquus (S. obliquus) as indicator, and the toxicity of PFOS was also examined for comparison. The results showed that PFBS exhibited much lower toxicity to S. obliquus than PFOS. The EC50 value was higher than 1800 mg L-1 after 7 days of exposure to PFBS. By contrast, a much lower EC50 value of 136.69 mg L-1 was obtained for PFOS. Photosynthetic efficiency analyzed by chlorophyll fluorescence also verified that PFOS induced a higher toxic effect on the algae than PFBS. The malondialdehyde, catalase and superoxide dismutase results indicate that PFOS exposure led to the accumulation of ROS, which caused oxidative damage to the algae, thereby resulting in the inhibition in the growth and photosynthesis of the algae. Furthermore, transcriptome analysis indicates that the significant down-regulation of key genes related to photosynthesis induced by PFOS was the fundamental mechanism for the inhibition in photosynthetic efficiency and biomass growth of S. obliquus.
Collapse
Affiliation(s)
- Xingyan Xue
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Silva Brito R, Canedo A, Farias D, Rocha TL. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157665. [PMID: 35907527 DOI: 10.1016/j.scitotenv.2022.157665] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish (Danio rerio) is an alternative model system for drug screening, developing new products, and assessing ecotoxic effects of pollutants and biomonitor species in environmental risk assessment. However, the history and current use of transgenic zebrafish lines in ecotoxicology and toxicology studies remain poorly explored. Thus, the present study aimed to summarize and discuss the existing data in the literature about the applications of transgenic zebrafish lines in ecotoxicology and toxicology. The articles were analyzed according to publication year, journal, geographic distribution, and collaborations. Also, the bioassays were evaluated according to the tested chemical, transgenic lines, development stage, biomarkers, and exposure conditions (i.e., concentration, time, type, and route of exposure). Revised data showed that constitutive transgenic lines are the main type of transgenic used in the studies, besides most of uses embryos and larvae under static conditions. Tg(fli1: EGFP) was the main transgenic line, while the GFP and EGFP were the main reporter proteins. Transgenic zebrafish stands out in assessing vasotoxicity, neurotoxicity, systemic toxicity, hepatoxicity, endocrine disruption, cardiotoxicity, immunotoxicity, hematotoxicity, ototoxicity, and pancreotoxicity. This review showed that transgenic zebrafish lines are emerging as a suitable in vivo model system for assessing the mechanism of action and toxicity of chemicals and new biotechnology products, and the effects of traditional and emerging pollutants.
Collapse
Affiliation(s)
- Rafaella Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
22
|
Beale DJ, Sinclair GM, Shah R, Paten AM, Kumar A, Long SM, Vardy S, Jones OAH. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157255. [PMID: 35817100 DOI: 10.1016/j.scitotenv.2022.157255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Per and Polyfluoroalkyl Substances (PFAS) are a diverse group of man-made chemicals with a range of industrial applications and which are widespread in the environment. They are structurally diverse but comprise a common chemical feature of at least one (though usually more) perfluorocarbon moiety (-CnF2n-) attached to a functional group such as a carboxylic or sulphonic acid. The strength of the Carbon-Fluorine bond means the compounds do not break down easily and can thus bioaccumulate. PFAS are of high concern to regulators and the public due to their potential toxicity and high persistence. At high exposure levels, PFAS have been implicated in a range of harmful effects on human and environmental health, particularly problems in/with development, cholesterol and endocrine disruption, immune system function, and oncogenesis. However, most environmental toxicology studies use far higher levels of PFAS than are generally found in the environment. Additionally, since the type of exposure, the PFAS used, and the organisms tested all vary between studies, so do the results. Traditional ecotoxicology studies may thus not identify PFAS effects at environmentally relevant exposures. Here we conduct a review of omics-based PFAS exposure studies using laboratory ecotoxicological methodologies and environmentally relevant exposure levels and show that common biochemical response pathways are identified in multiple studies. A major pathway identified was the pentose phosphate shunt pathway. Such molecular markers of sublethal PFAS exposure will greatly benefit accurate and effective risk assessments to ensure that new PFAS regulations can consider the full effects of PFAS exposure on environmental and human health receptors.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Georgia M Sinclair
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Amy M Paten
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, Acton, ACT 2601, Australia
| | - Anupama Kumar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
23
|
Gong H, Du J, Xu J, Yang Y, Lu H, Xiao H. Perfluorononanoate and Perfluorobutane Sulfonate Induce Cardiotoxic Effects in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2527-2536. [PMID: 35899994 PMCID: PMC9804353 DOI: 10.1002/etc.5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 07/22/2022] [Indexed: 05/14/2023]
Abstract
Globally, per- and polyfluoroalkyl substances are common artificial ingredients in industrial and consumer products. Recently, they have been shown to be an emerging human health risk. Perfluorononanoic acid (PFNA)/perfluorononanoate and perfluorobutane sulfonic acid (PFBS)/perfluorobutane sulfonate cause reproductive toxicity and hepatotoxicity, disrupt thyroid functions, and damage embryonic development in zebrafish. However, the cardiotoxic effects of PFNA and PFBS have not been fully established. We found that PFNA and PFBS exposures repress hatchability while increasing malformation and mortality in zebrafish embryos. Hematoxylin and eosin staining as well as assessment of the transgenic zebrafish line Tg(myl7:nDsRed) revealed that exposure of embryos to PFNA increases the occurrence of severe cardiac malformations relative to exposure to PFBS. Moreover, we evaluated the differential expressions of cardiac development-associated genes in response to PFNA and PFBS, which validated the potential cardiotoxic effects, consistent with cardiac dysfunctions. Overall, our findings reveal novel cardiotoxic effects of PFNA and PFBS in zebrafish, implying that they may exert some cardiotoxic effect in humans. To the best of our knowledge, ours is the first study to show that PFNA exerts more severe cardiotoxic effects in zebrafish when compared with PFBS. Based on these findings, studies should evaluate the mechanisms of their cardiotoxic effects. Environ Toxicol Chem 2022;41:2527-2536. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Hongjian Gong
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Juan Du
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Jia Xu
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Yuan Yang
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Hui Lu
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Han Xiao
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| |
Collapse
|
24
|
Roy MA, Gridley CK, Li S, Park Y, Timme-Laragy AR. Nrf2a dependent and independent effects of early life exposure to 3,3'-dichlorobiphenyl (PCB-11) in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106219. [PMID: 35700651 PMCID: PMC9701526 DOI: 10.1016/j.aquatox.2022.106219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 06/03/2023]
Abstract
The environmental pollutant 3,3'-dichlorobiphenyl (PCB-11) is a lower-chlorinated polychlorinated biphenyl (PCB) congener present in air and water samples. Both PCB-11 and its metabolite, 4-PCB-11-Sulfate, are detected in humans, including in pregnant women. Previous research in zebrafish (Danio rerio) has shown that 0.2 μM exposures to 4-PCB-11-Sulfate starting at 1 day post fertilization (dpf) increase hepatic neutral lipid accumulation in larvae at 15 dpf. Here, we explored whether nuclear factor erythroid 2-related factor 2 (Nrf2), known as the master-regulator of the adaptive response to oxidative stress, contributes to metabolic impacts of 4-PCB-11-Sulfate. For this work, embryos were collected from homozygous wildtype or Nrf2a mutant adult zebrafish that also express GFP in pancreatic β-cells, rendering Tg(ins:GFP;nrf2afh318+/+) and Tg(ins:GFP;nrf2afh318-/-) lines. Exposures were conducted from 1-15 dpf to either 0.05% DMSO or DMSO-matched 0.2 µM 4-PCB-11-Sulfate, and at 15 dpf subsets of larvae were imaged for overall morphology, primary pancreatic islet area, and collected for fatty acid profiling and RNAseq. At 15 dpf, independent of genotype, fish exposed to 4-PCB-11-Sulfate survived significantly more at 80-85% compared to 65-73% survival for unexposed fish, and had primary pancreatic islets 8% larger compared to unexposed fish. Fish growth at 15 dpf was dependent on genotype, with Nrf2a mutant fish a significant 3-5% shorter than wildtype fish, and an interaction effect was observed where Nrf2a mutant fish exposed to 4-PCB-11-Sulfate experienced a significant 29% decrease in the omega-3 fatty acid DHA compared to unexposed mutant fish. RNAseq revealed 308 differentially expressed genes, most of which were dependent on genotype. These findings suggest that Nrf2a plays an important role in growth as well as for DHA production in the presence of 4-PCB-11-Sulfate. Further research would be beneficial to understand the importance of Nrf2a throughout the lifecourse, especially in the context of toxicant exposures.
Collapse
Affiliation(s)
- Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA; Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Charlotte K Gridley
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 171B Goessmann Building, 686 N Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
25
|
Hu C, Sun B, Liu M, Yu J, Zhou X, Chen L. Fecal transplantation from young zebrafish donors efficiently ameliorates the lipid metabolism disorder of aged recipients exposed to perfluorobutanesulfonate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153758. [PMID: 35151729 DOI: 10.1016/j.scitotenv.2022.153758] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Aging is a biological process that is accompanied by the gradual loss of physiological functions. Under the context of ubiquitous and persistent environmental pollution, the elderly will be more vulnerable to the detrimental effects of toxic pollutants than the young. With objectives to explore effective measures to ameliorate the double stress of aging and toxicants, the present study transplanted the feces from young zebrafish donors to aged recipients, which were concurrently exposed to perfluorobutanesulfonate (PFBS), an emerging environmental pollutant of international concern. After exposure, growth, hepatic structural organization, and lipid metabolism were examined. The results showed that, irrespective of PFBS toxicity, transplantation of young feces significantly enhanced the growth of the aged. In the livers of aged and PFBS-exposed zebrafish, vacuolization symptom was prevalently observed, while young fecal transplantation alleviated the structural defects in aged livers. In the gut of the elderly, digestive activity of lipids was promoted after the transplantation of young feces. The blood of the aged females accumulated significantly higher concentration of triglyceride (TG) than the young counterparts (2.6-fold), implying that the elderly were at high risk of cardiovascular diseases. PFBS treatment of the aged further increased blood TG levels by 2.0-fold relative to the aged control group, pointing to the aggravation of the health of the elderly by environmental pollution. However, it is intriguing that young fecal transplantation efficiently inhibited the metabolic toxicity of PFBS and restored the normal level of blood TG, which provided more evidence about the benefit of young fecal transplant to improve the health of the aged individuals. In the aged livers transplanted with young feces, mitochondrial β-oxidation of fatty acids was consistently activated. Overall, the present study verified the efficacy of young fecal transplantation to mitigate the metabolic disorders resulting from aging and an environmental pollutant.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
26
|
Zhang C, McElroy AC, Liberatore HK, Alexander NLM, Knappe DR. Stability of Per- and Polyfluoroalkyl Substances in Solvents Relevant to Environmental and Toxicological Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6103-6112. [PMID: 34734715 PMCID: PMC9065217 DOI: 10.1021/acs.est.1c03979] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely used anthropogenic chemicals. For environmental and toxicological analysis, it is important to understand the stability of PFASs, including novel per- and polyfluoroalkyl ether acids (PFEAs), in commonly used solvents. In this study, we investigated the effects of PFAS characteristics, solvent type, water-to-organic solvent ratio, and temperature on the stability of 21 PFASs including 18 PFEAs. None of the studied PFASs showed measurable degradation in deionized water, methanol, or isopropyl alcohol over 30 days; however, nine PFEAs degraded in the polar aprotic solvents acetonitrile, acetone, and dimethyl sulfoxide (DMSO). PFEA degradation followed first-order kinetics, and first-order rate constants increased with increasing temperature and with decreasing water-to-organic solvent ratio. Monoethers with a carboxylic acid functional group adjacent to a tertiary carbon (>CF-COOH) degraded more rapidly than multiethers in which the carboxylic acid moiety was adjacent to repeating -CF2O- groups. In contrast, monoethers with a carboxylic acid moiety adjacent to a secondary carbon (-CF2-COOH) were stable in all tested solvents. Using high-resolution mass spectrometry, we determined that PFEAs with a >CF-COOH group were stoichiometrically decarboxylated in aprotic solvents and formed products with a >CFH group; e.g., hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX), HFPO-trimer acid, and HFPO-tetramer acid were stoichiometrically converted to Fluoroethers E-1, E-2, and E-3, respectively. PFEA degradation results highlight the importance of solvent choice when preparing dosing solutions and performing extractions for environmental and toxicological assessments of PFEAs.
Collapse
Affiliation(s)
- Chuhui Zhang
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amie C. McElroy
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hannah K. Liberatore
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Nancy Lee M. Alexander
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Detlef R.U. Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
27
|
Qin W, Ren X, Zhao L, Guo L. Exposure to perfluorooctane sulfonate reduced cell viability and insulin release capacity of β cells. J Environ Sci (China) 2022; 115:162-172. [PMID: 34969446 DOI: 10.1016/j.jes.2021.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found to have multiple adverse outcomes on human health. Recently, epidemiological and toxicological studies showed that exposure to PFAS had adverse impacts on pancreas and showed association with insulin abnormalities. To explore how PFAS may contribute to diabetes, we studied impacts of perfluorooctane sulfonate (PFOS) on cell viability and insulin release capacity of pancreatic β cells by using in vivo and in vitro methods. We found that 28-day administration with PFOS (10 mg/(kg body weight•day)) caused reductions of pancreas weight and islet size in male mice. PFOS administration also led to lower serum insulin level both in fasting state and after glucose infusion among male mice. For cell-based in vitro bioassay, we used mouse β-TC-6 cancer cells and found 48-hr exposure to PFOS decreased the cell viability at 50 μmol/L. By measuring insulin content in supernatant, 48-hr pretreatment of PFOS (100 μmol/L) decreased the insulin release capacity of β-TC-6 cells after glucose stimulation. Although these concentrations were higher than the environmental concentration of PFOS, it might be reasonable for high concentration of PFOS to exert observable toxic effects in mice considering mice had a faster removal efficiency of PFOS than human. PFOS exposure (50 μmol/L) to β-TC-6 cells induced intracellular accumulation of reactive oxidative specie (ROS). Excessive ROS induced the reactive toxicity of cells, which eventually invoke apoptosis and necrosis. Results in this study provide evidence for the possible causal link of exposure to PFOS and diabetes risk.
Collapse
Affiliation(s)
- Weiping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lianghong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
28
|
Maddela NR, Ramakrishnan B, Kakarla D, Venkateswarlu K, Megharaj M. Major contaminants of emerging concern in soils: a perspective on potential health risks. RSC Adv 2022; 12:12396-12415. [PMID: 35480371 PMCID: PMC9036571 DOI: 10.1039/d1ra09072k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Soil pollution by the contaminants of emerging concern (CECs) or emerging contaminants deserves attention worldwide because of their toxic health effects and the need for developing regulatory guidelines. Though the global soil burden by certain CECs is in several metric tons, the source-tracking of these contaminants in soil environments is difficult due to heterogeneity of the medium and complexities associated with the interactive mechanisms. Most CECs have higher affinities towards solid matrices for adsorption. The CECs alter not only soil functionalities but also those of plants and animals. Their toxicities are at nmol to μmol levels in cell cultures and test animals. These contaminants have a higher propensity in accumulating mostly in root-based food crops, threatening human health. Poor understanding on the fate of certain CECs in anaerobic environments and their transfer pathways in the food web limits the development of effective bioremediation strategies and restoration of the contaminated soils and endorsement of global regulatory efforts. Despite their proven toxicities to the biotic components, there are no environmental laws or guidelines for certain CECs. Moreover, the information available on the impact of soil pollution with CECs on human health is fragmentary. Therefore, we provide here a comprehensive account on five significantly important CECs, viz., (i) PFAS, (ii) micro/nanoplastics, (iii) additives (biphenyls, phthalates), (iv) novel flame retardants, and (v) nanoparticles. The emphasis is on (a) degree of soil burden of CECs and the consequences, (b) endocrine disruption and immunotoxicity, (c) genotoxicity and carcinogenicity, and (d) soil health guidelines.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí Portoviejo 130105 Ecuador
| | | | - Dhatri Kakarla
- University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University Anantapuramu 515003 India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle Callaghan NSW 2308 Australia
| |
Collapse
|
29
|
Hanslik L, Huppertsberg S, Kämmer N, Knepper TP, Braunbeck T. Rethinking the relevance of microplastics as vector for anthropogenic contaminants: Adsorption of toxicants to microplastics during exposure in a highly polluted stream - Analytical quantification and assessment of toxic effects in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151640. [PMID: 34774627 DOI: 10.1016/j.scitotenv.2021.151640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Given the increasing amounts of plastic debris entering marine and freshwater ecosystems, there is a growing demand for environmentally relevant exposure scenarios to improve the risk assessment of microplastic particles (MPs) in aquatic environments. So far, data on adverse effects in aquatic organisms induced by naturally exposed MPs are scarce and controversially discussed. As a consequence, we investigated the potential role of MPs regarding the sorption and transfer of environmental contaminants under natural conditions. For this end, a mixture of four common polymer types (polyethylene, polypropylene, polystyrene, polyvinyl chloride) was exposed to natural surface water in a polluted stream for three weeks. Samples of water, MP mixture, sediment, and suspended matter were target-screened for the presence of pollutants using GC/LC-MS, resulting in up to 94 different compounds. Possible adverse effects were investigated using several biomarkers in early developmental stages of zebrafish (Danio rerio). Exposure to natural stream water samples significantly inhibited acetylcholinesterase activity, altered CYP450 induction and modified behavioral patterns of zebrafish. In contrast, effects by samples of both non-exposed MPs and exposed MPs in zebrafish were less prominent than effects by water samples. In fact, the analytical target screening documented only few compounds sorbed to natural particles and MPs. Regarding acute toxic effects, no clear differentiation between different MPs and natural particles could be made, suggesting that - upon exposure in natural water bodies - MPs seem to approximate the sorption behavior of natural particles, presumably to a large extent due to biofilm formation. Thus, if compared to natural inorganic particles, MPs most likely do not transfer elevated amounts of environmental pollutants to biota and, therefore, do not pose a specific additional threat to aquatic organisms.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein, D-65510, Germany
| | - Nadine Kämmer
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein, D-65510, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| |
Collapse
|
30
|
Hu C, Huang Z, Sun B, Liu M, Tang L, Chen L. Metabolomic profiles in zebrafish larvae following probiotic and perfluorobutanesulfonate coexposure. ENVIRONMENTAL RESEARCH 2022; 204:112380. [PMID: 34785208 DOI: 10.1016/j.envres.2021.112380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Probiotic supplements are able to attenuate the developmental toxicity of perfluorobutanesulfonate (PFBS) pollutant. However, the underlying mechanisms remain unexplored. To this end, the present study acutely exposed zebrafish larvae for 4 days to 0 and 10 mg/L of PFBS, with or without the addition of probiotic Lactobacillus rhamnosus in the rearing water. The metabolomics approach was used to reveal the combined effects of PFBS and probiotics on metabolic dynamics, based on which gene transcriptions, enzymatic activities, and behavioral endpoints were further examined. The results showed that probiotic supplements were the major driver of the metabolomic fingerprints in coexposed zebrafish larvae. The addition of probiotic bacteria significantly decreased the methylation potential whilst up-regulating the demethylation process of genomic DNA, which may globally stimulate the gene expression to improve somatic growth. Acute exposure to PFBS significantly increased the cortisol concentration in zebrafish larvae, subsequently inducing stress response and hyperactive behavior. In contrast, probiotic supplementation promoted the degradation of cortisol, thus alleviating the stressful state. Antagonistic action of probiotics against PFBS developmental toxicity was also noted regarding the locomotor behavior. In addition, gut microbiota-mediated production of secondary bile acids was remarkably enhanced by probiotic supplements regardless of PFBS exposure. Overall, the present study underlines the efficacy of probiotic bacteria to protect zebrafish larvae from the metabolic disturbances of PFBS, thereby providing more evidence to support the application of probiotics in aquaculture and fishery as an environmentally-friendly choice.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
31
|
Rericha Y, Cao D, Truong L, Simonich MT, Field JA, Tanguay RL. Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. iScience 2022; 25:103789. [PMID: 35146398 PMCID: PMC8819378 DOI: 10.1016/j.isci.2022.103789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in environmental and biological samples and cause adverse health effects. Studies have predominately focused on long-chain PFAS, with far fewer addressing short-chain alternatives. This study leveraged embryonic zebrafish to investigate developmental toxicity of a short-chain series: perfluorobutane sulfonate (PFBS), perfluoropentanoic acid (PFPeA), perfluorobutane sulfonamide (FBSA), and 4:2 fluorotelomer sulfonic acid (4:2 FTS). Following static exposures at 8 h postfertilization (hpf) to each chemical (1-100 μM), morphological and behavioral endpoints were assessed at 24 and 120 hpf. Only FBSA induced abnormal morphology, while exposure to all chemicals caused aberrant larval behavior. RNA sequencing at 48 hpf following 47 μM exposures revealed only FBSA significantly disrupted normal gene expression. Measured tissue concentrations were FBSA > PFBS > 4:2 FTS > PFPeA. This study demonstrates functional head groups impact bioactivity and bioconcentration.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|
32
|
Annunziato KM, Marin M, Liang W, Conlin SM, Qi W, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. The Nrf2a pathway impacts zebrafish offspring development with maternal preconception exposure to perfluorobutanesulfonic acid. CHEMOSPHERE 2022; 287:132121. [PMID: 34509758 PMCID: PMC8765597 DOI: 10.1016/j.chemosphere.2021.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Since the voluntary phaseout of perfluorooctanesulfonic acid (PFOS), smaller congeners, such as perfluorobutanesulfonic acid (PFBS) have served as industrial replacements and been detected in contaminated aquifers. This study sought to examine the effects of a maternal preconception PFBS exposure on the development of eggs and healthy offspring. Adult female zebrafish received a one-week waterborne exposure of 0.08, 0.14, and 0.25 mg/L PFBS. After which, females were bred with non-exposed males and embryos collected over 5 successful breeding events. PFBS concentrations were detected in levels ranging from 99 to 253 pg/embryo in the first collection but were below the limit of quantitation by fourth and fifth clutches. Therefore, data were subsequently binned into early collection embryos in which PFBS was detected and late collections, in which PFBS was below quantitation. In the early collection, embryo 24 h survival was significantly reduced. In the late collection, embryo development was impacted with unique patterns emerging between Nrf2a wildtype and mutant larvae. Additionally, the impact of nutrient loading into the embryos was assessed through measurement of fatty acid profiles, total cholesterol, and triglyceride content. There were no clear dose-dependent effects, but again unique patterns were observed between the genotypes. Preconception PFBS exposures were found to alter egg and embryo development, which is mediated by direct toxicant loading in the eggs, nutrient loading into eggs, and the function of Nrf2a. These findings provide insight into the reproductive and developmental effects of PFBS and identify maternal preconception as a novel critical window of exposure.
Collapse
Affiliation(s)
- Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
33
|
Sun B, Liu M, Tang L, Hu C, Huang Z, Zhou X, Chen L. Probiotic supplementation mitigates the developmental toxicity of perfluorobutanesulfonate in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149458. [PMID: 34365260 DOI: 10.1016/j.scitotenv.2021.149458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant of international concern, which is found to impair the early embryonic development of fishes. In the context of ubiquitous and persistent pollution, it is necessary to explore mitigatory strategies against the developmental toxicity of PFBS. In this study, zebrafish larvae were acutely exposed to 0, 1, 3.3 and 10 mg/L of PFBS till 168 h post-fertilization (hpf), during which probiotic Lactobacillus rhamnosus bacteria were administered via the exposure media. After the singular or combined exposure, interaction between PFBS and probiotics on the growth of zebrafish larvae was measured. PFBS exposure significantly decreased the larval body weight, weight gain and specific growth rate, while probiotic supplementation efficiently inhibited the growth retardation caused by PFBS. Furthermore, PFBS and probiotic combinations remarkably activated the antioxidant capacity to timely scavenge the reactive oxidative species and protect the larvae from lipid peroxidation. Biochemical assay and fluorescent staining verified that PFBS exposure significantly promoted the production of bile acids, which were further enhanced by the probiotics. In coexposed zebrafish larvae, up-regulation of peroxisome proliferator-activated receptor (PPARb) would enhance the β-oxidation of fatty acids to meet the energy demand from larval growth, subsequently decreasing fatty acid concentrations. In addition, probiotic supplements masked the dysbiosis of PFBS and potently shaped the gut microbiota, which closely modulated the production of bile acids. Overall, the present findings underline the beneficial effects of probiotics to protect the developing larvae from the aquatic toxicities of PFBS, thus highlighting the potential application values of probiotic recipe in aquaculture and ecological reservation.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
34
|
Sun B, Liu M, Tang L, Hu C, Huang Z, Chen L. Probiotics inhibit the stunted growth defect of perfluorobutanesulfonate via stress and thyroid axes in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118013. [PMID: 34428700 DOI: 10.1016/j.envpol.2021.118013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant in aquatic environments and potently disrupts the early developmental trajectory of teleosts. Considering the persistent and toxic nature of PFBS, it is necessary to develop in situ protective measures to ameliorate the toxic damage of PFBS. Probiotic supplements are able to mitigate the growth retardation defects of PFBS. However, the interactive mechanisms remain elusive. To this end, this study acutely exposed zebrafish larvae to a concentration gradient of PFBS (0, 1, 3.3 and 10 mg/L) for 4 days, during which probiotic bacteria Lactobacillus rhamnosus were added in the rearing water. After exposure, alterations in gene transcriptions and key hormones along the hypothalamus-pituitary-interrenal (HPI), growth hormone/insulin-like growth factor (GH/IGF) and hypothalamus-pituitary-thyroid (HPT) axes were examined. The results showed that PFBS single exposure significantly increased the cortisol concentrations, suggesting the induction of stress response, while probiotic supplementation effectively decreased the cortisol levels in coexposed larvae in an attempt to relieve the stress of PFBS toxicant. It was unexpected that probiotic additive significantly decreased the larval GH concentrations independent of PFBS, thereby eliminating the contribution of GH/IGF axis to the growth improvement of probiotics. In contrast, probiotic bacteria remarkably increased the concentration of thyroid hormones, particularly the thyroxine (T4), in zebrafish larvae. The pronounced down-regulation of uridinediphosphate glucoronosyltransferases (UDPGT) gene pointed to the blocked elimination process of T4 by probiotics. Furthermore, proteomic fingerprinting found that probiotics were potent to shape the protein expression pattern in PFBS-exposed zebrafish larvae and modulated multiple biological processes that are essential for the growth. In summary, the present findings suggest that HPI and HPT axes may cooperate to enhance the growth of fish larvae under PFBS and probiotic coexposures.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
35
|
Hu C, Liu M, Tang L, Liu H, Sun B, Chen L. Probiotic intervention mitigates the metabolic disturbances of perfluorobutanesulfonate along the gut-liver axis of zebrafish. CHEMOSPHERE 2021; 284:131374. [PMID: 34217933 DOI: 10.1016/j.chemosphere.2021.131374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Probiotic supplementation is effective to modulate the metabolic disorders caused by perfluorobutanesulfonate (PFBS). However, the underlying mechanisms remain unclear. To this end, the present study exposed adult zebrafish to PFBS (0 and 10 μg/L), probiotics, or their binary combinations for 40 days. After the exposure, the nutritional stores, intestinal organization, and metabolic activities along the gut-liver axis were investigated. The results showed that PFBS exposure decreased the nutrient reserves significantly, especially the lipid content, which was alleviated by the probiotic administration. Intestinal mucus secretion was promoted remarkably in the presence of the probiotic, which enhanced epithelial protection against PFBS damage. Metagenomic analysis showed that PFBS alone induced gut microbial dysbiosis, which was efficiently antagonized by the probiotic bacteria. Intestinal metabolomic profiling revealed that ferroptosis occurred because of the unrestricted lipid peroxidation following PFBS exposure. However, probiotic administration prevented the ferroptotic symptoms induced by PFBS, further highlighting the beneficial effects of the probiotic on the host. In PFBS-exposed livers, high levels of bile acid metabolites (e.g., taurochenodeoxycholic acid) accumulated, implying the induction of cholestasis. Notably, probiotic addition recovered the metabolomic homeostasis under PFBS stress, probably resulting from the activation of detoxification pathways based on the pentose and glucuronate interconversion. Overall, the present study provides systematic evidence of the antagonistic interaction between PFBS and the probiotic regarding the metabolic activities along the microbe, gut and liver axis, highlighting the application values of probiotic recipe in aquaculture industry and ecological reservation.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
36
|
Wan HT, Cheung LY, Chan TF, Li M, Lai KP, Wong CKC. Characterization of PFOS toxicity on in-vivo and ex-vivo mouse pancreatic islets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117857. [PMID: 34330010 DOI: 10.1016/j.envpol.2021.117857] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Considerable human data have shown that the exposure to perfluorooctane sulfonate (PFOS) correlates to the risk of metabolic diseases, however the underlying effects are not clearly elucidated. In this study, we investigated the impacts of PFOS treatment, using in-vivo, ex-vivo and in-vitro approaches, on pancreatic β-cell functions. Mice were oral-gavage with 1 and 5 μg PFOS/g body weight/day for 21 days. The animals showed a significant increase in liver triglycerides, accompanied by a reduction of triglycerides in blood sera and glycogen in livers and muscles. Histological examination of pancreases showed no noticeable changes in the size and number of islets from the control and treatment groups. Immunohistochemistry showed a reduction of staining intensities of insulin and the transcriptional factors (Pdx-1, islet-1) in islets of pancreatic sections from PFOS-treated groups, but no changes in the intensity of Glut2 and glucagon were noted. Transcriptomic study of isolated pancreatic islets treated ex vivo with 1 μM and 10 μM PFOS for 24 h, underlined perturbations of the insulin signaling pathways. Western blot analysis of ex-vivo PFOS-treated islets revealed a significant reduction in the expression levels of the insulin receptor, the IGF1 receptor-β, Pdk1-Akt-mTOR pathways, and Pdx-1. Using the mouse β-cells (Min-6) treated with 1 μM and 10 μM PFOS for 24 h, Western blot analysis consistently showed the PFOS-treatment inhibited Akt-pathway and reduced cellular insulin contents. Moreover, functional studies revealed the inhibitory effects of PFOS on glucose-stimulated insulin-secretion (GSIS) and the rate of ATP production. Our data support the perturbing effects of PFOS on animal metabolism and demonstrate the underlying molecular targets to impair β-cell functions.
Collapse
Affiliation(s)
- Hin Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lok Yi Cheung
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Marco Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
37
|
Margolis R, Sant KE. Associations between Exposures to Perfluoroalkyl Substances and Diabetes, Hyperglycemia, or Insulin Resistance: A Scoping Review. J Xenobiot 2021; 11:115-129. [PMID: 34564296 PMCID: PMC8482218 DOI: 10.3390/jox11030008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants that are commonly found in the human body due to exposures via drinking water, surfactants used in consumer materials, and aqueous film-forming foams (AFFFs). PFAS exposure has been linked to adverse health effects such as low infant birth weights, cancer, and endocrine disruption, though increasingly studies have demonstrated that they may perturb metabolic processes and contribute to dysfunction. This scoping review summarizes the chemistry of PFAS exposure and the epidemiologic evidence for associations between exposure to per- and polyfluoroalkyl substances and the development of diabetes, hyperglycemia, and/or insulin resistance. We identified 11 studies on gestational diabetes mellitus, 3 studies on type 1 diabetes, 7 studies on type 2 diabetes, 6 studies on prediabetes or unspecified diabetes, and 15 studies on insulin resistance or glucose tolerance using the SCOPUS and PubMed databases. Approximately 24 reported positive associations, 9 negative associations, 2 non-linear associations, and 2 inverse associations, and 8 reported no associations found between PFAS and all diabetes search terms. Cumulatively, these data indicate the need for further studies to better assess these associations between PFAS exposure and diabetes.
Collapse
Affiliation(s)
| | - Karilyn E. Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|
38
|
Zeeshan M, Zhang YT, Yu S, Huang WZ, Zhou Y, Vinothkumar R, Chu C, Li QQ, Wu QZ, Ye WL, Zhou P, Dong P, Zeng XW, Hu LW, Yang BY, Shen X, Zhou Y, Dong GH. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: Isomers of C8 health project. CHEMOSPHERE 2021; 278:130486. [PMID: 34126693 DOI: 10.1016/j.chemosphere.2021.130486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exposure has been linked to diabetes, but evidence on the association of isomers of PFAS with type 2 diabetes (T2D) remains scant. This population based cross-sectional study aimed to investigate associations between serum PFAS isomers, glucose-homeostasis markers and T2D, adjusted for multiple potential confounders. We used data from "Isomers of C8 Health Project in China" from July 2015 to October 2016. A total of 10 PFAS including isomers of PFOS and PFOA were measured in serum of 1045 Chinese adults. Fasting blood glucose, fasting insulin, homeostasis model of insulin (HOMA-IR) and beta cell function (HOMA-β) were considered as markers of glucose-homeostasis. We found significant positive associations between serum PFAS isomers and glucose-homeostasis markers, namely, fasting blood glucose, fasting insulin and HOMA-IR. Per log-unit increase in branched (br)-PFOS concentration was associated with increased fasting blood glucose (β = 0.25, 95% CI: 0.18, 0.33), fasting insulin (β = 2.19, 95% CI: 1.44, 2.93) and HOMA-IR (β = 0.69, 95% CI: 0.50, 0.89). As compared to br-PFOS, linear (n)-PFOS and -PFOA showed lesser significant associations with glucose-homeostasis makers. Further, exposure to all PFAS including isomeric PFOS, PFOA and PFHxS increased the risk of T2D with br-PFOS exhibiting the highest risk (OR = 5.41, 95% CI: 3.68-7.96). The associations were stronger among women than men. In conclusion, chronic exposure to PFAS isomers was associated with impaired glucose-homeostasis and may increase the prevalence of T2D in Chinese adults. Given the ubiquity of PFAS in the environment and the public health burden of T2D, future studies are warranted to corroborate the findings.
Collapse
Affiliation(s)
- Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Zhong Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Rajamanickam Vinothkumar
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wan-Lin Ye
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Pengxin Dong
- Nursing College, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
39
|
Liu M, Tang L, Hu C, Huang Z, Sun B, Lam JCW, Lam PKS, Chen L. Antagonistic interaction between perfluorobutanesulfonate and probiotic on lipid and glucose metabolisms in the liver of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105897. [PMID: 34153904 DOI: 10.1016/j.aquatox.2021.105897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) and probiotic bacteria can interact to induce hepatic hypertrophy. However, the molecular events occurring in the hypertrophic liver are still unknown. Therefore, we performed this follow-up study using adult zebrafish that were exposed for 40 days to 0 and 10 μg/L PFBS, with or without dietary supplementation of probiotic Lactobacillus rhamnosus. After PFBS or/and probiotic exposures, proteome perturbation, histological pathogenesis and glucose metabolism were investigated in the livers. Proteomic analysis showed potent intervention of PFBS or/and probiotic with hepatic functions. PFBS single exposure caused marked disturbances in lipid metabolisms, which may underlie the severe vacuolization in male liver. The addition of probiotic alleviated the lipid metabolic disorders of PFBS. Furthermore, probiotic supplementation enhanced ATP energy production using glucose in mitochondrial respiratory chain of male fish. However, PFBS alone caused remarkable increase in blood glucose level (by 2.5-fold relative to the control), underlining the onset of hyperglycemia symptom. In contrast, the liver of male fish from the coexposure group functioned appropriately, which immediately increased insulin levels by 2.2-fold to reduce the glucose accumulation in blood. In female liver, PFBS alone significantly decreased the blood glucagon concentration by 2.9-fold. The deficiency of glucagon hormone consequently contributed to the accumulation of glycogen (3.2-fold) therein. Vigorous antagonistic interaction between PFBS and probiotic was noted with respect to glucose metabolism, which restored ATP, glucose, glycogen and glucagon to the control levels. Overall, the present study finds that probiotic L. rhamnosus is efficient to mitigate the metabolic disorders of PFBS on lipid and glucose, highlighting the potential values of probiotic bacteria to protect the aquatic ecosystem.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
40
|
Guo W, Lei L, Shi X, Li R, Wang Q, Han J, Yang L, Chen L, Zhou B. Nonalcoholic Fatty Liver Disease Development in Zebrafish upon Exposure to Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate, a Novel Brominated Flame Retardant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6926-6935. [PMID: 33938212 DOI: 10.1021/acs.est.1c01476] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a novel brominated flame retardant, can potentially cause lipid metabolism disorder; however, its biological effects on lipid homeostasis remain unknown. We investigated its ability to cause nonalcoholic fatty liver disease (NAFLD) in zebrafish. Female zebrafish were fed a high-fat diet (HFD, 24% crude fat) or normal diet (ND, 6% crude fat), and exposed to TBPH (0.02, 2.0 μM) for 2 weeks. Consequently, HFD-fed fish showed a higher measured concentration of TBPH than ND-fed fish. Further, TBPH-treated fish in the HFD group showed higher hepatic triglyceride levels and steatosis. In comparison to ND-fed fish, treating HFD-fed fish with TBPH led to an increase in the concentration of several proinflammatory markers (e.g., TNF-α, IL-6); TBPH exposure also caused oxidative stress. In addition, the mRNA levels of genes encoding peroxisome proliferator-activated receptors were increased, and the transcription of genes involved in lipid synthesis, transport, and oxidation was upregulated in both ND- and HFD-fed fish. Both the ND and HFD groups also showed demethylation of the peroxisome proliferator-activated receptor-γ coactivator 1-α gene promoter, accompanied by the upregulation of tet1 and tet2 transcription. To summarize, we found that TBPH amplified the disruption of lipid homeostasis in zebrafish, leading to the enhancement of diet-induced NAFLD progression.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongjie Shi
- College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan 430014, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
41
|
Sant KE, Annunziato K, Conlin S, Teicher G, Chen P, Venezia O, Downes GB, Park Y, Timme-Laragy AR. Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116644. [PMID: 33581636 PMCID: PMC8101273 DOI: 10.1016/j.envpol.2021.116644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 05/17/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental contaminant previously found in consumer surfactants and industrial fire-fighting foams. PFOS has been widely implicated in metabolic dysfunction across the lifespan, including diabetes and obesity. However, the contributions of the embryonic environment to metabolic disease remain uncharacterized. This study seeks to identify perturbations in embryonic metabolism, pancreas development, and adiposity due to developmental and subchronic PFOS exposures and their persistence into later larval and juvenile periods. Zebrafish embryos were exposed to 16 or 32 μM PFOS developmentally (1-5 days post fertilization; dpf) or subchronically (1-15 dpf). Embryonic fatty acid and macronutrient concentrations and expression of peroxisome proliferator-activated receptor (PPAR) isoforms were quantified in embryos. Pancreatic islet morphometry was assessed at 15 and 30 dpf, and adiposity and fish behavior were assessed at 15 dpf. Concentrations of lauric (C12:0) and myristic (C14:0) saturated fatty acids were increased by PFOS at 4 dpf, and PPAR gene expression was reduced. Incidence of aberrant islet morphologies, principal islet areas, and adiposity were increased in 15 dpf larvae and 30 dpf juvenile fish. Together, these data suggest that the embryonic period is a susceptible window of metabolic programming in response to PFOS exposures, and that these early exposures alone can have persisting effects later in the lifecourse.
Collapse
Affiliation(s)
- Karilyn E Sant
- Division of Environmental Health, San Diego State University School of Public Health, San Diego, CA, 92182, USA; Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA.
| | - Kate Annunziato
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Sarah Conlin
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gregory Teicher
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Phoebe Chen
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Olivia Venezia
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| |
Collapse
|
42
|
Yue Y, Li S, Qian Z, Pereira RF, Lee J, Doherty JJ, Zhang Z, Peng Y, Clark JM, Timme-Laragy AR, Park Y. Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food Chem Toxicol 2020; 145:111695. [PMID: 32835727 PMCID: PMC7554236 DOI: 10.1016/j.fct.2020.111695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Perfluorobutanesulfonic acid (PFBS), a shorter chain Per- and polyfluoroalkyl substances (PFASs) cognate of perfluorooctanesulfonic acid (PFOS), has been used as replacement for the toxic surfactant PFOS. However, emerging evidences suggest safety concerns for PFBS and its effect on reproductive health is still understudied. Therefore, the current work aimed to investigate the effect of PFBS, in comparison to PFOS, on reproductive health using Caenorhabditis elegans as an in vivo animal model. PFOS (≥10 μM) and PFBS (≥1000 μM) significantly impaired the reproduction capacity of C. elegans, represented as reduced brood size (total egg number) and progeny number (hatched offspring number), without affecting the hatchability. Additionally, the preconception exposure of PFOS and PFBS significantly altered the embryonic nutrient loading and composition, which further led to abnormalities in growth rate, body size and locomotive activity in F1 offspring. Though the effective exposure concentration of PFBS was approximately 100 times higher than PFOS, the internal concentration of PFBS was lower than that of PFOS to produce the similar effects of PFOS. In conclusion, PFOS and PFBS significantly impaired the reproductive capacities in C. elegans and the preconception exposure of these two compounds can lead to offspring physiological dysfunctions.
Collapse
Affiliation(s)
- Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Zhuojia Qian
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | | | - Jonghwa Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Jeffery J Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - Ye Peng
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
43
|
Tang L, Song S, Hu C, Liu M, Lam PKS, Zhou B, Lam JCW, Chen L. Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. CHEMOSPHERE 2020; 256:127169. [PMID: 32464364 DOI: 10.1016/j.chemosphere.2020.127169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 05/27/2023]
Abstract
Parental exposure to perfluorobutane sulfonate (PFBS), an aquatic pollutant of emerging concern, is previously found to impair the embryonic development of offspring. However, the impairing mechanisms remain to clarify. In the present study, adult zebrafish were exposed to 0, 10 and 100 μg/L PFBS for 28 d, after which disturbances in maternal transcript transfer and offspring embryogenesis were investigated. Prior to zygotic genome activation, high-throughput transcriptomic sequencing revealed that parental PFBS exposure significantly altered the transcript profile of maternal origin in offspring eggs, while toxic actions varied as a function of PFBS concentrations. In offspring eggs derived from 10 μg/L exposure group, differential transcripts were mainly associated with the histone-DNA interaction of nucleosome, which would modify the compacted chromatin configuration and accessibility of transcriptional factors to DNA sequences. In this regard, the timing of zygotic genome activation was presumably disrupted. Parental exposure to 100 μg/L PFBS primarily interrupted the maternal transfer of adherens junction transcripts, which was supposed to dysregulate the cell-cell adhesion during early embryo formation. Development and growth of offspring embryos were significantly compromised by parental PFBS exposure, as exemplified by higher mortality, delayed hatching, slower heart rate, reduced body weight and neurobehavioral disorders. Overall, the present study presented the first toxicological evidence about the disturbances of PFBS in maternal transcript transfer, although the inherent linkage between maternal transcript modifications and offspring development defects still needs future works to construct.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwen Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
44
|
Annunziato KM, Doherty J, Lee J, Clark JM, Liang W, Clark CW, Nguyen M, Roy MA, Timme-Laragy AR. Chemical Characterization of a Legacy Aqueous Film-Forming Foam Sample and Developmental Toxicity in Zebrafish ( Danio rerio). ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97006. [PMID: 32966100 PMCID: PMC7510953 DOI: 10.1289/ehp6470] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drinking water contamination related to the use of aqueous film-forming foam (AFFF) has been documented at hundreds of military bases, airports, and firefighter training facilities. AFFF has historically contained high levels of long-chain per- and polyfluoroalkyl substances (PFAS), which pose serious health concerns. However, the composition and toxicity of legacy AFFF mixtures are unknown, presenting great uncertainties in risk assessment and affected communities. OBJECTIVES This study aimed to determine the fluorinated and nonfluorinated chemical composition of a legacy AFFF sample and its toxicity in zebrafish embryos. METHODS A sample of legacy AFFF (3% application formulation, manufactured before 2001) was provided by the Massachusetts Department of Environmental Protection. High resolution mass spectrometry (HRMS) was used to identify PFAS and nonfluorinated compounds, and a commercial laboratory measured 24 PFAS by a modified U.S. EPA Method 537.1. AFFF toxicity was assessed in zebrafish embryos in comparison with four major constituents: perfluorooctanesulfonic acid (PFOS); perfluorohexanesulfonic acid (PFHxS); sodium dodecyl sulfate (SDS); and sodium tetradecyl sulfate (TDS). End points included LC 50 values, and sublethal effects on growth, yolk utilization, and pancreas and liver development. RESULTS We identified more than 100 PFAS. Of the PFAS detected, PFOS was measured at the highest concentration (9,410 mg / L ) followed by PFHxS (1,500 mg / L ). Fourteen nonfluorinated compounds were identified with dodecyl sulfate and tetradecyl sulfate the most abundant at 547.8 and 496.4 mg / L , respectively. An LC 50 of 7.41 × 10 - 4 % AFFF was calculated, representing a dilution of the 3% formulation. TDS was the most toxic of the constituents tested but could not predict the AFFF phenotype in larval zebrafish. PFOS exposure recapitulated the reduction in length but could not predict effects on development of the liver, which was the tissue most sensitive to AFFF. DISCUSSION To our knowledge, this research is the first characterization of the chemical composition and toxicity of legacy AFFF, which has important implications for regulatory toxicology. https://doi.org/10.1289/EHP6470.
Collapse
Affiliation(s)
- Kate M. Annunziato
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - John M. Clark
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Christopher W. Clark
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Malina Nguyen
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Monika A. Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
45
|
Liu S, Yang R, Yin N, Faiola F. Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells. CHEMOSPHERE 2020; 254:126709. [PMID: 32348926 DOI: 10.1016/j.chemosphere.2020.126709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are typical per- and poly-fluorinated alkyl substances (PFASs) that epidemiological studies have already associated with diabetes. However, insufficient data on their toxicity have been reported to explain any mechanism of action, which could justify such an association. Meanwhile, short-chain PFASs designed to substitute PFOA and PFOS, have already raised increasing concerns for their biosafety. Here, we evaluated whether common PFASs affected pancreatic and endocrine cell development using a human pluripotent stem cell pancreatic induction model and human pancreatic progenitor cell (hPP) endocrine induction model. The short-chain PFASs, pentafluorobenzoic acid, perfluorohexanoic acid, perfluorobutanesulfonic acid, and perfluorohexanesulfonic acid, homologous to PFOA or PFOS, did not significantly disrupt hPP generation, unlike PFOA and PFOS, based on pancreatic and duodenal homeobox 1 (PDX1) expression. However, SRY box 9 (SOX9) expression was suppressed in PDX1+ hPPs. All six PFASs did not disrupt SOX9 expression or hPP proliferation. However, endocrine differentiation of hPPs was affected, as indicated by neurogenin-3 (NGN3) downregulation, owing to abnormal increases in SOX9 and hairy and enhancer of split-1 (HES1) expressions. Thus, hyperactivation of NOTCH signaling was repressed after hPPs committed to the endocrine lineage. In conclusion, our study demonstrates how powerful human pluripotent stem cell-based pancreatic differentiation models can be in developmental toxicity evaluations, compared to traditional toxicity assays, mostly based on live animals. Moreover, our findings suggest that PFASs may alter pancreatic development after the pancreatic domain emerges from the gut tube, and provide insights into their toxicity mechanisms.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Lau C, Rumpler J, Das KP, Wood CR, Schmid JE, Strynar MJ, Wambaugh JF. Pharmacokinetic profile of Perfluorobutane Sulfonate and activation of hepatic nuclear receptor target genes in mice. Toxicology 2020; 441:152522. [PMID: 32534104 DOI: 10.1016/j.tox.2020.152522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organic chemicals with wide industrial and consumer uses. They are found ubiquitously at low levels in the environment and are detectable in humans and wildlife. Perfluorobutane Sulfonate (PFBS) is a short-chained PFAS used to replace perfluorooctane sulfonate in commerce. In general, the rate of clearance for the short-chained PFAS is faster than that for the long-chained congeners. This study evaluated the pharmacokinetic properties of PFBS and its hepatic transcriptional responses in CD-1 mice. Males and females were given PFBS by oral gavage at 30 or 300 mg/kg; controls received 0.5 % Tween-20 vehicle. Trunk blood was collected at 0.5, 1, 2, 4, 8, 16 and 24 h thereafter; liver and kidney were also harvested. Serum and tissue concentrations of PFBS were determined by HPLC-MS-MS. Expression of several hepatic nuclear receptor target genes was determined by qPCR. The half-life of PFBS was estimated as 5.8 h in the males and 4.5 h in the females. Tmax was reached within 1-2 h. Volume of distribution was similar between the two sexes (0.32-0.40 L/kg). The rate of PFBS clearance was linear with exposure doses. Within 24 h, serum PFBS declined to less than 5 % of Cmax. PFBS was detected in liver or kidney, although tissue levels of the chemical were only a fraction of those in serum. At 24 h after administration of 300 mg/kg PFBS, elevated expression of several hepatic genes targeted for PPARα, PPARy, and PXR but not by AhR, LXR or CAR was observed, with responses indistinguishable between males and females. Little to no transcriptional response was seen with the 30 mg/kg dose. The short serum half-lives of PFBS (4-5 h) in mice were comparable to those reported in rats. Although detection of PFBS in liver was low compared to that in serum even at the 300 mg/kg dose, the tissue level was sufficient to activate several hepatic nuclear receptors, which may represent an acute response to the chemical at a high dose.
Collapse
Affiliation(s)
- Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Jason Rumpler
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN, USA
| | - Kaberi P Das
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Carman R Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judith E Schmid
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mark J Strynar
- Watershed and Ecosystems Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John F Wambaugh
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
47
|
Qin WP, Cao LY, Li CH, Guo LH, Colbourne J, Ren XM. Perfluoroalkyl Substances Stimulate Insulin Secretion by Islet β Cells via G Protein-Coupled Receptor 40. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3428-3436. [PMID: 32092270 DOI: 10.1021/acs.est.9b07295] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The potential causal relationship between exposure to environmental contaminants and diabetes is troubling. Exposure of perfluoroalkyl substances (PFASs) is found to be associated with hyperinsulinemia and the enhancement of insulin secretion by islet β cells in humans, but the underlying mechanism is still unclear. Here, by combining in vivo studies with both wild type and gene knockout mice and in vitro studies with mouse islet β cells (β-TC-6), we demonstrated clearly that 1 h exposure of perfluorooctanesulfonate (PFOS) stimulated insulin secretion and intracellular calcium level by activating G protein-coupled receptor 40 (GPR40), a vital free fatty acid regulated membrane receptor on islet β cells. We further showed that the observed effects of PFASs on the mouse model may also exist in humans by investigating the molecular binding interaction of PFASs with human GPR40. We thus provided evidence for a novel mechanism for how insulin-secretion is disrupted by PFASs in humans.
Collapse
Affiliation(s)
- Wei-Ping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Lin-Ying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - John Colbourne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| |
Collapse
|
48
|
Dasgupta S, Reddam A, Liu Z, Liu J, Volz DC. High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113550. [PMID: 31706782 PMCID: PMC6920544 DOI: 10.1016/j.envpol.2019.113550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been used for decades within industrial processes and consumer products, resulting in frequent detection within the environment. Using zebrafish embryos, we screened 38 PFASs for developmental toxicity and revealed that perfluorooctanesulfonamide (PFOSA) was the most potent developmental toxicant, resulting in elevated mortality and developmental abnormalities following exposure from 6 to 24 h post fertilization (hpf) and 6 to 72 hpf. PFOSA resulted in a concentration-dependent increase in mortality and abnormalities, with surviving embryos exhibiting a >12-h delay in development at 24 hpf. Exposures initiated at 0.75 hpf also resulted in a concentration-dependent delay in epiboly, although these effects were not driven by a specific sensitive window of development. We relied on mRNA-sequencing to identify the potential association of PFOSA-induced developmental delays with impacts on the embryonic transcriptome. Relative to stage-matched vehicle controls, these data revealed that pathways related to hepatotoxicity and lipid transport were disrupted in embryos exposed to PFOSA from 0.75 to 14 hpf and 0.75 to 24 hpf. Therefore, we measured liver area as well as neutral lipids in 128-hpf embryos exposed to vehicle (0.1% DMSO) or PFOSA from 0.75 to 24 hpf and clean water from 24 to 128 hpf, and showed that PFOSA exposure from 0.75 to 24 hpf resulted in a decrease in liver area and increase in yolk sac neutral lipids at 128 hpf. Overall, our findings show that early exposure to PFOSA adversely impacts embryogenesis, an effect that may lead to altered lipid transport and liver development.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA; Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - Zekun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
49
|
Abstract
A major goal of translational toxicology is to identify adverse chemical effects and determine whether they are conserved or divergent across experimental systems. Translational toxicology encompasses assessment of chemical toxicity across multiple life stages, determination of toxic mode-of-action, computational prediction modeling, and identification of interventions that protect or restore health following toxic chemical exposures. The zebrafish is increasingly used in translational toxicology because it combines the genetic and physiological advantages of mammalian models with the higher-throughput capabilities and genetic manipulability of invertebrate models. Here, we review recent literature demonstrating the power of the zebrafish as a model for addressing all four activities of translational toxicology. Important data gaps and challenges associated with using zebrafish for translational toxicology are also discussed.
Collapse
Affiliation(s)
- Tamara Tal
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Permoserstraβe 15 04318 Leipzig, Germany
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| | - Bianca Yaghoobi
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
| | - Pamela J. Lein
- Department of Molecular Sciences, University of California, Davis School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA 95616 USA
- Corresponding authors: Pamela Lein, Department of Molecular Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616 USA, +1-530-752-1970, ; Tamara Tal, Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, +49-341-236-1524,
| |
Collapse
|
50
|
|