1
|
Dusart N, Moulia B, Saudreau M, Serre C, Charrier G, Hartmann FP. Differential warming at crown scale impacts walnut primary growth onset and secondary growth rate. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7127-7144. [PMID: 39225364 DOI: 10.1093/jxb/erae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Trees are exposed to significant spatio-temporal thermal variations, which can induce intra-crown discrepancies in the onset and dynamics of primary and secondary growth. In recent decades, an increase in late winter and early spring temperatures has been observed, potentially accelerating bud break, cambial activation, and their coordination. Intra-crown temperature heterogeneities could lead to asymmetric tree shapes unless there is a compensatory mechanism at the crown level. An original warming experiment was conducted on young Juglans regia trees in a greenhouse. The average temperature difference during the day between warmed and control parts from February to August was 4 °C. The warming treatment advanced the date of budbreak significantly, by up to 14 d. Warming did not alter secondary growth resumption but increased growth rates, leading to higher xylem cell production (by 2-fold) and to an increase in radial increment (+80% compared with control). Meristem resumptions were asynchronous without coordination in response to temperature. Buds on warmed branches began to swell 2 weeks prior to cambial division, which was 1 week earlier than on control branches. A difference in carbon and water remobilization at the end of bud ecodormancy was noted under warming. Overall, our results argue for a lack of compensatory mechanisms at the crown scale, which may lead to significant changes in tree architecture in response to intra-crown temperature heterogeneities.
Collapse
Affiliation(s)
- Nicolas Dusart
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Bruno Moulia
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Marc Saudreau
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Christophe Serre
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Félix P Hartmann
- UMR 547 PIAF, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Chen H, Wang L, Wang Y, Ni Z, Xia B, Qiu R. New Perspective to Evaluate the Carbon Offsetting by Urban Blue-Green Infrastructure: Direct Carbon Sequestration and Indirect Carbon Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12966-12975. [PMID: 38990074 DOI: 10.1021/acs.est.3c07337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Urban blue-green infrastructure (BGI) offers a multitude of ecological advantages to residents, thereby playing a pivotal role in fortifying urban resilience and fostering the development of climate-resilient cities. Nonetheless, current research falls short of a comprehensive analysis of BGI's overall potential for carbon reduction and its indirect carbon reduction impact. To fill this research gap, we utilized the integrated valuation of ecosystem services and trade-offs model and remote sensing estimation algorithm to quantify the direct carbon sequestration and resultant indirect carbon reduction facilitated by the BGI within the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (China). To identify the regions that made noteworthy contributions to carbon offsets and outliers, spatial autocorrelation analysis was also employed. The findings of this study reveal that in 2019, the BGI within the study area contributed an overall carbon offset of 1.5 × 108 t·C/yr, of which 3.5 × 107 and 11.0 × 107 t·C/yr were the result of direct carbon sequestration and indirect carbon reduction, respectively. The GBA's total CO2 emissions were 1.1 × 108 t in 2019. While the direct carbon sequestration offset 32.0% of carbon emissions, the indirect carbon reduction mitigated 49.9% of potential carbon emissions. These results highlight the critical importance of evaluating BGI's indirect contribution to carbon reduction. The findings of this study provide a valuable reference for shaping management policies that prioritize the protection and restoration of specific areas, thereby facilitating the harmonized development of carbon offset capabilities within urban agglomerations.
Collapse
Affiliation(s)
- Hanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yafei Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Beicheng Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Lu LL, Liu H, Wang J, Zhao KP, Miao Y, Li HC, Hao GY, Han SJ. Seasonal patterns of nonstructural carbohydrate storage and mobilization in two tree species with distinct life-history traits. TREE PHYSIOLOGY 2024; 44:tpae042. [PMID: 38602710 DOI: 10.1093/treephys/tpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb, with distinct life-history traits (i.e. a deciduous broadleaf species vs an evergreen coniferous species), were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.
Collapse
Affiliation(s)
- Long-Long Lu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Hao Liu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Jing Wang
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Kun-Peng Zhao
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Yuan Miao
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Hai-Chang Li
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Shi-Jie Han
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| |
Collapse
|
4
|
Ramirez JA, Craven D, Herrera D, Posada JM, Reu B, Sierra CA, Hoch G, Handa IT, Messier C. Non-structural carbohydrate concentrations in tree organs vary across biomes and leaf habits, but are independent of the fast-slow plant economic spectrum. FRONTIERS IN PLANT SCIENCE 2024; 15:1375958. [PMID: 38766471 PMCID: PMC11099217 DOI: 10.3389/fpls.2024.1375958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Carbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Under a carbon-limited scenario, we expect a trade-offs between carbon allocation to growth, reserves, and defense. A resulting hypothesis is that carbon allocation to reserves exhibits a coordinated variation with functional traits associated with the 'fast-slow' plant economics spectrum. We tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models. Our results provide evidence that NSC concentrations in stems and branches are decoupled from plant functional traits. while those in roots are weakly coupled with plant functional traits. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow trait spectrum was coordinated, as species with higher leaf NSC had trait values associated with resource conservative species, such as lower SLA, leaf N, and leaf P. We also detected a small effect of leaf habit on the variation of NSC concentrations in branches and roots. Efforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the 'fast-slow' plant economics spectrum and that capture how species respond to a broad range of global change drivers.
Collapse
Affiliation(s)
- Jorge Andres Ramirez
- Facultad de Ciencias Agrarias, Universidad del Cauca, Popayán, Colombia
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, QC, Canada
| | - Dylan Craven
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Huechuraba, Santiago, Chile
- Data Observatory Foundation, and Technology Center, Santiago, Chile
| | - David Herrera
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Juan Manuel Posada
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Bjorn Reu
- School of Biology, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Guenter Hoch
- Department of Environmental Sciences – Botany, University of Basel, Basel, Switzerland
| | - Ira Tanya Handa
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, QC, Canada
| | - Christian Messier
- Centre d’Étude de la Forêt (CEF), Université du Québec à Montréal, Montréal, QC, Canada
- Institut des Sciences de la Foret Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| |
Collapse
|
5
|
Arend M, Hoch G, Kahmen A. Stem growth phenology, not canopy greening, constrains deciduous tree growth. TREE PHYSIOLOGY 2024; 44:tpad160. [PMID: 38159107 DOI: 10.1093/treephys/tpad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Canopy phenology is a widely used proxy for deciduous forest growth with various applications in terrestrial ecosystem modeling. Its use relies on common assumptions that canopy greening and stem growth are tightly coordinated processes, enabling predictions on the timing and the quantity of annual tree growth. Here, we present parallel observations of canopy and stem growth phenology and annual stem increment in around 90 deciduous forest trees with diffuse-porous (Fagus sylvatica, Acer pseudoplatanus, Carpinus betulus) or ring-porous (Quercus robur × petraea) wood anatomy. These data were collected in a mixed temperate forest at the Swiss-Canopy-Crane II site, in 4 years with strongly contrasting weather conditions. We found that stem growth resumption lagged several weeks behind spring canopy greening in diffuse-porous but not in ring-porous trees. Canopy greening and stem growth resumption showed no or only weak signs of temporal coordination across the observation years. Within the assessed species, the seasonal timing of stem growth varied strongly among individuals, as trees with high annual increments resumed growth earlier and also completed their main growth earlier. The length of main growth activity had no influence on annual increments. Our findings not only challenge tight temporal coordination of canopy and stem growth phenology but also demonstrate that longer main growth activity does not translate into higher annual increments. This may compromise approaches modeling tree growth and forest productivity with canopy phenology and growth length.
Collapse
Affiliation(s)
- Matthias Arend
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
- Department of Environmental Sciences, Plant Ecology, University of Trier, Behringstraße 21, Trier 54296, Germany
| | - Günter Hoch
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| |
Collapse
|
6
|
Didion-Gency M, Vitasse Y, Buchmann N, Gessler A, Gisler J, Schaub M, Grossiord C. Chronic warming and dry soils limit carbon uptake and growth despite a longer growing season in beech and oak. PLANT PHYSIOLOGY 2024; 194:741-757. [PMID: 37874743 PMCID: PMC10828195 DOI: 10.1093/plphys/kiad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.
Collapse
Affiliation(s)
- Margaux Didion-Gency
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Yann Vitasse
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Hart AT, Landhäusser SM, Wiley E. Tracing carbon and nitrogen reserve remobilization during spring leaf flush and growth following defoliation. TREE PHYSIOLOGY 2024:tpae015. [PMID: 38281259 DOI: 10.1093/treephys/tpae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Woody plants rely on the remobilization of carbon (C) and nitrogen (N) reserves to support growth and survival when resource demand exceeds supply at seasonally predictable times like spring leaf flush and following unpredictable disturbances like defoliation. However, we have a poor understanding of how reserves are regulated and whether distance between source and sink tissues affects remobilization. This leads to uncertainty about which reserves-and how much-are available to support plant functions like leaf growth. To better understand the source of remobilized reserves and constraints on their allocation, we created aspen saplings with organ-specific labeled reserves by using stable isotopes (13C,15N) and grafting unlabeled or labeled stems to labeled or unlabeled root stocks. We first determined which organs had imported root or stem-derived C and N reserves after spring leaf flush. We then further tested spatial and temporal variation in reserve remobilization and import by comparing 1) upper and lower canopy leaves, 2) early and late leaves, and 3) early flush and re-flush leaves after defoliation. During spring flush, remobilized root C and N reserves were preferentially allocated to sinks closer to the reserve source (i.e., lower vs upper canopy leaves). However, the reduced import of 13C in late versus early leaves indicates reliance on C reserves declined over time. Following defoliation, re-flush leaves imported the same proportion of root N as spring flush leaves, but they imported a lower proportion of root C. This lower import of reserve C suggests that, after defoliation, leaf re-flush rely more heavily on current photosynthate, which may explain the reduced leaf mass recovery of re-flush canopies (31% of initial leaf mass). The reduced reliance on reserves occurred even though roots retained significant starch concentrations (~5% dry wt), suggesting aspen prioritizes the maintenance of root reserves at the expense of fast canopy recovery.
Collapse
Affiliation(s)
- Ashley T Hart
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Erin Wiley
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
8
|
Blumstein M, Oseguera M, Caso-McHugh T, Des Marais DL. Nonstructural carbohydrate dynamics' relationship to leaf development under varying environments. THE NEW PHYTOLOGIST 2024; 241:102-113. [PMID: 37882355 DOI: 10.1111/nph.19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Leaf-out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key. Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf-out timing and corresponding NSCs. Despite significant differences in leaf-out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two. Our results suggest that NSCs are coordinated with leaf-out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - Miranda Oseguera
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA
| | - Theresa Caso-McHugh
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - David L Des Marais
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Silvestro R, Mura C, Alano Bonacini D, de Lafontaine G, Faubert P, Mencuccini M, Rossi S. Local adaptation shapes functional traits and resource allocation in black spruce. Sci Rep 2023; 13:21257. [PMID: 38040772 PMCID: PMC10692160 DOI: 10.1038/s41598-023-48530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Climate change is rapidly altering weather patterns, resulting in shifts in climatic zones. The survival of trees in specific locations depends on their functional traits. Local populations exhibit trait adaptations that ensure their survival and accomplishment of growth and reproduction processes during the growing season. Studying these traits offers valuable insights into species responses to present and future environmental conditions, aiding the implementation of measures to ensure forest resilience and productivity. This study investigates the variability in functional traits among five black spruce (Picea mariana (Mill.) B.S.P.) provenances originating from a latitudinal gradient along the boreal forest, and planted in a common garden in Quebec, Canada. We examined differences in bud phenology, growth performance, lifetime first reproduction, and the impact of a late-frost event on tree growth and phenological adjustments. The findings revealed that trees from northern sites exhibit earlier budbreak, lower growth increments, and reach reproductive maturity earlier than those from southern sites. Late-frost damage affected growth performance, but no phenological adjustment was observed in the successive year. Local adaptation in the functional traits may lead to maladaptation of black spruce under future climate conditions or serve as a potent evolutionary force promoting rapid adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- R Silvestro
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - C Mura
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - D Alano Bonacini
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - G de Lafontaine
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de biologie, chimie et Géographie, Centre for Northern Studies, Centre for Forest Research, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - P Faubert
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
- Carbone boréal, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
| | - M Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Bellaterra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - S Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
10
|
Qiao Y, Gu H, Xu H, Ma Q, Zhang X, Yan Q, Gao J, Yang Y, Rossi S, Smith NG, Liu J, Chen L. Accelerating effects of growing-season warming on tree seasonal activities are progressively disappearing. Curr Biol 2023; 33:3625-3633.e3. [PMID: 37567171 DOI: 10.1016/j.cub.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The phenological changes induced by climate warming have profound effects on water, energy, and carbon cycling in forest ecosystems. In addition to pre-season warming, growing-season warming may drive tree phenology by altering photosynthetic carbon uptake. It has been reported that the effect of pre-season warming on tree phenology is decreasing. However, temporal change in the effect of growing-season warming on tree phenology is not yet clear. Combining long-term ground observations and remote-sensing data, here we show that spring and autumn phenology were advanced by growing-season warming, while the accelerating effects of growing-season warming on tree phenology were progressively disappearing, manifesting as phenological events converted from being advanced to being delayed, in the temperate deciduous broadleaved forests across the Northern Hemisphere between 1983 and 2014. We further observed that the effect of growing-season warming on photosynthetic productivity showed a synchronized decline over the same period. The responses of phenology and photosynthetic productivity had a strong linear relationship with each other, and both showed significant negative correlations with the elevated temperature and vapor pressure deficit during the growing season. These findings indicate that warming-induced water stress may drive the observed decline in the responses of tree phenology to growing-season warming by decelerating photosynthetic productivity. Our results not only demonstrate a close link between photosynthetic carbon uptake and tree seasonal activities but also provide a physiological perspective of the nonlinear phenological responses to climate warming.
Collapse
Affiliation(s)
- Yuxin Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hongshuang Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hanfeng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qimei Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qin Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jie Gao
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Yuchuan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Blumstein M, Gersony J, Martínez-Vilalta J, Sala A. Global variation in nonstructural carbohydrate stores in response to climate. GLOBAL CHANGE BIOLOGY 2023; 29:1854-1869. [PMID: 36583374 DOI: 10.1111/gcb.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Woody plant species store nonstructural carbohydrates (NSCs) for many functions. While known to buffer against fluctuations in photosynthetic supply, such as at night, NSC stores are also thought to buffer against environmental extremes, such as drought or freezing temperatures by serving as either back-up energy reserves or osmolytes. However, a clear picture of how NSCs are shaped by climate is still lacking. Here, we update and leverage a unique global database of seasonal NSC storage measurements to examine whether maximum total NSC stores and the amount of soluble sugars are associated with clinal patterns in low temperatures or aridity, indicating they may confer a benefit under freezing or drought conditions. We examine patterns using the average climate at each study site and the unique climatic conditions at the time and place in which the sample was taken. Altogether, our results support the idea that NSC stores act as critical osmolytes. Soluble Sugars increase with both colder and drier conditions in aboveground tissues, indicating they can plastically increase a plants' tolerance of cold or arid conditions. However, maximum total NSCs increased, rather than decreased, with average site temperature and had no relationship to average site aridity. This result suggests that the total amount of NSC a plant stores may be more strongly determined by its capacity to assimilate carbon than by environmental stress. Thus, NSCs are unlikely to serve as reservoir of energy. This study is the most comprehensive synthesis to date of global NSC variation in relation to climate and supports the idea that NSC stores likely serve as buffers against environmental stress. By clarifying their role in cold and drought tolerance, we improve our ability to predict plant response to environment.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jessica Gersony
- Department of Natural Resources, University of New Hampshire, Durham, New Hampshire, USA
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Jordi Martínez-Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
12
|
Piper FI, Fajardo A. Carbon stress causes earlier budbreak in shade-tolerant species and delays it in shade-intolerant species. AMERICAN JOURNAL OF BOTANY 2023; 110:1-11. [PMID: 36696584 DOI: 10.1002/ajb2.16129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
PREMISE Climate change may lead to C stress (negative C balance) in trees. Because nonstructural carbohydrates (NSC) are required during metabolic reactivation in the spring, C stress might delay budbreak timing. This effect is expected to be greater in shade-intolerant than in shade-tolerant species, owing to the faster C economy in the shade-intolerant. METHODS We experimentally induced C stress in saplings of six temperate tree species that differed in their light requirements by exposing them to either full light or shade from summer to spring, then recorded the date of first budbreak for the individuals. Because the levels of C reserves that represent effective C stress may differ among species, we estimated the degree of C stress by recording survival during the experiment and measuring whole-sapling NSC concentrations after budbreak. RESULTS Shade reduced NSC concentrations and increased the sugar fraction in the NSC in all species. In the shade, shade-intolerant species had higher mortality and generally lower NSC concentrations than the shade-tolerant species, indicating a trend for more severe C stress in species with faster C economy. In shade-intolerant species, budbreak started earlier and proceeded faster in full light than in shade, but in shade-tolerant species budbreak was delayed in full light. The effects of the light environments on budbreak were not greater in shade-intolerant than in shade-tolerant species. CONCLUSIONS Our study reveals a correspondence between budbreak responses to light and the light requirements of the species. This finding confirms that C metabolism has a significant role in triggering budbreak and demonstrates that whether C stress accelerates or delays budbreak depends on the species' light requirements.
Collapse
Affiliation(s)
- Frida I Piper
- Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, 3460000, Chile
- Instituto de Ecología y Biodiversidad (IEB), Chile. Victoria 631, Barrio Universitario, Concepción, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Universidad de Talca, Chile
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Campus Lircay, Talca, 3460000, Chile
- Instituto de Ecología y Biodiversidad (IEB), Chile. Victoria 631, Barrio Universitario, Concepción, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Universidad de Talca, Chile
| |
Collapse
|
13
|
Uni D, Lerner D, Smit I, Mzimba D, Sheffer E, Winters G, Klein T. Differential climatic conditions drive growth of Acacia tortilis tree in its range edges in Africa and Asia. AMERICAN JOURNAL OF BOTANY 2023; 110:e16132. [PMID: 36706279 DOI: 10.1002/ajb2.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
PREMISE Tree growth is a fundamental biological process that is essential to ecosystem functioning and water and element cycling. Climate exerts a major impact on tree growth, with tree species often requiring a unique set of conditions to initiate and maintain growth throughout the growing season. Still, little is known about the specific climatic factors that enable tree growth in savannah and desert tree species. Among the global tree species, Acacia tortilis occupies one of the largest distribution ranges (crossing 6500 km and 54 latitudes), spanning large parts of Africa and into the Middle East and Asia. METHODS Here we collected climate data and monitored Acacia tortilis tree growth (continuous measurements of stem circumference) in its southern and northern range edges in South Africa (SA) and Israel (IL), respectively, to elucidate whether the growth-climate interactions were similar in both edges. RESULTS Growth occurred during the summer (between December and March) in SA and in IL during early summer and autumn (April-June and October-November, respectively). Surprisingly, annual growth was 40% higher in IL than in SA. Within the wide distribution range of Acacia tortilis, our statistical model showed that climatic drivers of tree growth differed between the two sites. CONCLUSIONS High temperatures facilitated growth at the hot and arid IL site, while high humidity permitted growth at the more humid SA site. Our results confer an additional understanding of tree growth adaptation to extreme conditions in Acacia's world range edges, a major point of interest with ongoing climate change.
Collapse
Affiliation(s)
- Daphna Uni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Lerner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Izak Smit
- Scientific Services, South Africa National Parks, Skukuza, 1350, South Africa
- Sustainability Research Unit, Nelson Mandela University, George, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Duduzile Mzimba
- Scientific Services, South Africa National Parks, Skukuza, 1350, South Africa
| | - Efrat Sheffer
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gidon Winters
- The Dead Sea-Arava Science Center, Tamar Regional Council, Neve Zohar, 86910, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, Eilat, 8855630, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Silvestro R, Sylvain JD, Drolet G, Buttò V, Auger I, Mencuccini M, Rossi S. Upscaling xylem phenology: sample size matters. ANNALS OF BOTANY 2022; 130:811-824. [PMID: 36018569 PMCID: PMC9758298 DOI: 10.1093/aob/mcac110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Upscaling carbon allocation requires knowledge of the variability at the scales at which data are collected and applied. Trees exhibit different growth rates and timings of wood formation. However, the factors explaining these differences remain undetermined, making samplings and estimations of the growth dynamics a complicated task, habitually based on technical rather than statistical reasons. This study explored the variability in xylem phenology among 159 balsam firs [Abies balsamea (L.) Mill.]. METHODS Wood microcores were collected weekly from April to October 2018 in a natural stand in Quebec, Canada, to detect cambial activity and wood formation timings. We tested spatial autocorrelation, tree size and cell production rates as explanatory variables of xylem phenology. We assessed sample size and margin of error for wood phenology assessment at different confidence levels. KEY RESULTS Xylem formation lasted between 40 and 110 d, producing between 12 and 93 cells. No effect of spatial proximity or size of individuals was detected on the timings of xylem phenology. Trees with larger cell production rates showed a longer growing season, starting xylem differentiation earlier and ending later. A sample size of 23 trees produced estimates of xylem phenology at a confidence level of 95 % with a margin of error of 1 week. CONCLUSIONS This study highlighted the high variability in the timings of wood formation among trees within an area of 1 km2. The correlation between the number of new xylem cells and the growing season length suggests a close connection between the processes of wood formation and carbon sequestration. However, the causes of the observed differences in xylem phenology remain partially unresolved. We point out the need to carefully consider sample size when assessing xylem phenology to explore the reasons underlying this variability and to allow reliable upscaling of carbon allocation in forests.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
| | - Jean-Daniel Sylvain
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Guillaume Drolet
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Valentina Buttò
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Isabelle Auger
- Direction de la recherche forestière Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1P3W8, Canada
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra, 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l’Université, Chicoutimi (QC) G7H2B1, Canada
| |
Collapse
|
15
|
Imada S, Tako Y. Seasonal accumulation of photoassimilated carbon relates to growth rate and use for new aboveground organs of young apple trees in following spring. TREE PHYSIOLOGY 2022; 42:2294-2305. [PMID: 35796531 PMCID: PMC9652006 DOI: 10.1093/treephys/tpac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Deciduous trees accumulate carbon (C) in woody parts during the growth season which is subsequently used for the initial development and growth of newly formed organs in the following season; however, it is unclear which period during the growth season contributes to C accumulation. Three-year-old potted Malus domestica (apple) trees were grown in controlled growth chambers during the growth season and exposed to 13CO2 in an exposure chamber at seven different periods of the growth season, including vegetative and reproductive growth periods. Approximately half of the trees were harvested in late autumn, and the remaining trees were grown in a field in the following year. The 13C accumulation in the different organs in late autumn, and its concentration in the new aboveground growth during the following growth season, was determined. The concentration of the photoassimilated 13C in woody parts (shoots, trunk, rootstock and coarse roots) in the late autumn was higher in the trees labeled during the period of vigorous vegetative growth than in those labeled during other periods of growth. Furthermore, 13C concentration in the leaves, annual shoots, flower buds and flowers in the following early spring was also high in the trees labeled during this period. The concentration of 13C in the flower buds and flowers was positively correlated with that in the woody parts in the late autumn and old shoots in the following spring. Hence, the seasonal accumulation of photoassimilated C in woody parts in late autumn is related to growth rates during the growth season and its use for the initial development of newly formed organs in the following spring. These results suggest that under non-stressed conditions, C accumulated during the period of vigorous vegetative growth largely contributes to the C reserves that are used for the development of new organs in the following year.
Collapse
Affiliation(s)
| | - Yasuhiro Tako
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| |
Collapse
|
16
|
Wang X, Schönbeck L, Gessler A, Yang Y, Rigling A, Yu D, He P, Li M. The effects of previous summer drought and fertilization on winter non-structural carbon reserves and spring leaf development of downy oak saplings. FRONTIERS IN PLANT SCIENCE 2022; 13:1035191. [PMID: 36407605 PMCID: PMC9669721 DOI: 10.3389/fpls.2022.1035191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
It is still unknown whether the previous summer season drought and fertilization will affect the winter non-structural carbohydrate (NSC) reserves, spring leaf development, and mortality of trees in the next year. We, therefore, conducted an experiment with Quercus pubescens (downy oaks) saplings grown under four drought levels from field capacity (well-watered; ~25% volumetric water content) to wilting point (extreme drought; ~6%), in combination with two fertilizer treatments (0 vs. 50 kg/ha/year blended) for one growing season to answer this question. We measured the pre- and post-winter NSC, and calculated the over-winter NSC consumption in storage tissues (i.e. shoots and roots) following drought and fertilization treatment, and recorded the spring leaf phenology, leaf biomass, and mortality next year. The results showed that, irrespective of drought intensity, carbon reserves were abundant in storage tissues, especially in roots. Extreme drought did not significantly alter NSC levels in tissues, but delayed the spring leaf expansion and reduced the leaf biomass. Previous season fertilization promoted shoot NSC use in extreme drought-stressed saplings over winter (showing reduced carbon reserves in shoots after winter), but it also showed positive effects on survival next year. We conclude that: (1) drought-stressed downy oak saplings seem to be able to maintain sufficient mobile carbohydrates for survival, (2) fertilization can alleviate the negative effects of extreme drought on survival and recovery growth of tree saplings.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Leonie Schönbeck
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, United States
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne, Geneva, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Yue Yang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- College of Ecology and Environment, Hainan University, Haikou, Hainan, China
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zurich, Switzerland
| | - Dapao Yu
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, Liaoning, China
| | - Peng He
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, School of Geographical Sciences, Northeast Normal University, Changchun, Jilin, China
- School of Life Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
17
|
Bar-On P, Yaakobi A, Moran U, Rozenstein O, Kopler I, Klein T. A montane species treeline is defined by both temperature and drought effects on growth season length. TREE PHYSIOLOGY 2022; 42:1700-1719. [PMID: 35738872 DOI: 10.1093/treephys/tpac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Montane treelines are defined by a threshold low temperature. However, what are the dynamics when the snow-free summer growth season coincides with a 6-month seasonal drought? We tested this fundamental question by measuring tree growth and leaf activity across elevations in Mt Hermon (2814 m; in Israel and Syria), where oak trees (Quercus look and Quercus boissieri) form an observed treeline at 1900 m. While in theory, individuals can be established at higher elevations (minimum daily temperature >6.5 °C for >4 months even at the summit), soil drying and vapor pressure deficit in summer enforces growth cessation in August, leaving only 2-3 months for tree growth. At lower elevations, Q. look Kotschy is replaced by Quercus cerris L. (1300 m) and Quercus calliprinos Webb (1000 m) in accompanying Q. boissieri Reut., and growth season length (GSL) is longer due to an earlier start in April. Leaf gas exchange continues during autumn, but assimilates are no longer utilized in growth. Interestingly, the growth and activity of Q. boissieri were equivalent to that of each of the other three species across the ~1 km elevation gradient. A planting experiment at 2100 m showed that seedlings of the four oak species survived the cold winter and showed budding of leaves in summer, but wilted in August. Our unique mountain site in the Eastern Mediterranean introduces a new factor to the formation of treelines, involving a drought limitation on GSL. This site presents the elevation edge for each species and the southern distribution edge for both the endemic Q. look and the broad-range Q. cerris. With ongoing warming, Q. look and Q. boissieri are slowly expanding to higher elevations, while Q. cerris is at risk of future extirpation.
Collapse
Affiliation(s)
- Peleg Bar-On
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Yaakobi
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Moran
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Offer Rozenstein
- Institute of Soil, Water, and Environmental Studies, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Idan Kopler
- MIGAL - Galilee Research Institute, South Industrial Zone, PO Box 831, Kiryat Shmona 11016, Israel
| | - Tamir Klein
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Cho N, Agossou C, Kim E, Lim JH, Hwang T, Kang S. Recent field findings and modeling on non-structural carbohydrates (NSCs): How to synthesize? ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Gu H, Qiao Y, Xi Z, Rossi S, Smith NG, Liu J, Chen L. Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests. Nat Commun 2022; 13:3698. [PMID: 35760820 PMCID: PMC9237039 DOI: 10.1038/s41467-022-31496-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022] Open
Abstract
Under global warming, advances in spring phenology due to rising temperatures have been widely reported. However, the physiological mechanisms underlying the advancement in spring phenology still remain poorly understood. Here, we investigated the effect of temperature during the previous growing season on spring phenology of current year based on the start of season extracted from multiple long-term and large-scale phenological datasets between 1951 and 2018. Our findings indicate that warmer temperatures during previous growing season are linked to earlier spring phenology of current year in temperate and boreal forests. Correspondingly, we observed an earlier spring phenology with the increase in photosynthesis of the previous growing season. These findings suggest that the observed warming-induced earlier spring phenology is driven by increased photosynthetic carbon assimilation in the previous growing season. Therefore, the vital role of warming-induced changes in carbon assimilation should be considered to accurately project spring phenology and carbon cycling in forest ecosystems under future climate warming. The mechanisms underlying plant phenological shifts are debated. Here, based on phenological observations and ecosystem flux and climate data, Gu and colleagues provide evidence that warming-enhanced photosynthesis in a growing season contributes to earlier spring phenology in the following year in temperate and boreal forests.
Collapse
Affiliation(s)
- Hongshuang Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuxin Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China. .,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
20
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
21
|
Fermaniuk C, Fleurial KG, Wiley E, Landhäusser SM. Large seasonal fluctuations in whole-tree carbohydrate reserves: is storage more dynamic in boreal ecosystems? ANNALS OF BOTANY 2021; 128:943-957. [PMID: 34293090 PMCID: PMC8577199 DOI: 10.1093/aob/mcab099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Carbon reserves are a critical source of energy and substrates that allow trees to cope with periods of minimal carbon gain and/or high carbon demands, conditions which are prevalent in high-latitude forests. However, we have a poor understanding of carbon reserve dynamics at the whole-tree level in mature boreal trees. We therefore sought to quantify the seasonal changes in whole-tree and organ-level carbon reserve pools in mature boreal Betula papyrifera. METHODS Non-structural carbohydrate (NSC; soluble sugars and starch) tissue concentrations were measured at key phenological stages throughout a calendar year in the roots, stem (inner bark and xylem), branches and leaves, and scaled up to estimate changes in organ and whole-tree NSC pool sizes. Fine root and stem growth were also measured to compare the timing of growth processes with changes in NSC pools. KEY RESULTS The whole-tree NSC pool increased from its spring minimum to its maximum at bud set, producing an average seasonal fluctuation of 0.96 kg per tree. This fluctuation represents a 72 % change in the whole-tree NSC pool, which greatly exceeds the relative change reported for more temperate conspecifics. At the organ level, branches accounted for roughly 48-60 % of the whole-tree NSC pool throughout the year, and their seasonal fluctuation was four to eight times greater than that observed in the stemwood, coarse roots and inner bark. CONCLUSIONS Branches in boreal B. papyrifera were the largest and most dynamic storage pool, suggesting that storage changes at the branch level largely drive whole-tree storage dynamics in these trees. The greater whole-tree seasonal NSC fluctuation in boreal vs. temperate B. papyrifera may result from (1) higher soluble sugar concentration requirements in branches for frost protection, and/or (2) a larger reliance on reserves to fuel new leaf and shoot growth in the spring.
Collapse
Affiliation(s)
- C Fermaniuk
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - K G Fleurial
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - E Wiley
- Department of Biology, University of Central Arkansas, Conway, AR, USA
| | - S M Landhäusser
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Pasqualotto G, Ascari L, Bicego G, Carraro V, Huerta ES, De Gregorio T, Siniscalco C, Anfodillo T. Radial stem growth dynamics and phenology of a multi-stemmed species (Corylus avellana L.) across orchards in the Northern and Southern hemispheres. TREE PHYSIOLOGY 2021; 41:2022-2033. [PMID: 33987674 DOI: 10.1093/treephys/tpab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Climate change and the global economy impose new challenges in the management of food-producing trees and require studying how to model plant physiological responses, namely growth dynamics and phenology. Hazelnut (Corylus avellana L.) is a multi-stemmed forest species domesticated for nut production and now widely spread across different continents. However, information on stem growth and its synchronization with leaf and reproductive phenology is extremely limited. This study aimed at (i) defining the sequencing of radial growth phases in hazelnut (onset, maximum growth and cessation) and the specific temperature triggering stem growth; and (ii) combining the stem growth phases with leaf and fruit phenology. Point dendrometers were installed on 20 hazelnut trees across eight orchards distributed in the Northern and Southern hemisphere during a period of three growing seasons between 2015 and 2018. The radial growth variations and climatic parameters were averaged and recorded every 15 min. Leaf and reproductive phenology were collected weekly at each site. Results showed that stem radial growth started from day of year 84 to 134 in relation to site and year but within a relatively narrow range of temperature (from 13 to 16.5 °C). However, we observed a temperature-related acclimation in the cultivar Tonda di Giffoni. Maximum growth always occurred well before the summer solstice (on average 35 days) and before the maximum annual air temperatures. Xylogenesis developed rapidly since the time interval between onset and maximum growth rate was about 3 weeks. Importantly, the species showed an evident delay of stem growth onset with respect to leaf emergence (on average 4-6 weeks) rarely observed in tree species. These findings represent the first global analysis of radial growth dynamics in hazelnut, which is an essential step for developing models on orchard functioning and management on different continents.
Collapse
Affiliation(s)
- Gaia Pasqualotto
- Department Territorio e Sistemi Agro Forestali (TESAF), University of Padova, Viale dell'Università 16, 350120 Legnaro, Italy
| | - Lorenzo Ascari
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - Giovanni Bicego
- Department Territorio e Sistemi Agro Forestali (TESAF), University of Padova, Viale dell'Università 16, 350120 Legnaro, Italy
| | - Vinicio Carraro
- Department Territorio e Sistemi Agro Forestali (TESAF), University of Padova, Viale dell'Università 16, 350120 Legnaro, Italy
| | - Eloy Suarez Huerta
- Hazelnut Company Division, Ferrero Trading Luxembourg, Rue de Trèves, L-2632 Findel, Luxembourg
| | - Tommaso De Gregorio
- Hazelnut Company Division, Ferrero Trading Luxembourg, Rue de Trèves, L-2632 Findel, Luxembourg
| | - Consolata Siniscalco
- Department of Life Science and Systems Biology, University of Torino, Viale Mattioli, 25, 10125 Torino, Italy
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro Forestali (TESAF), University of Padova, Viale dell'Università 16, 350120 Legnaro, Italy
| |
Collapse
|
23
|
Hilty J, Muller B, Pantin F, Leuzinger S. Plant growth: the What, the How, and the Why. THE NEW PHYTOLOGIST 2021; 232:25-41. [PMID: 34245021 DOI: 10.1111/nph.17610] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/19/2021] [Indexed: 05/28/2023]
Abstract
Growth is a widely used term in plant science and ecology, but it can have different meanings depending on the context and the spatiotemporal scale of analysis. At the meristem level, growth is associated with the production of cells and initiation of new organs. At the organ or plant scale and over short time periods, growth is often used synonymously with tissue expansion, while over longer time periods the increase in biomass is a common metric. At even larger temporal and spatial scales, growth is mostly described as net primary production. Here, we first address the question 'what is growth?'. We propose a general framework to distinguish between the different facets of growth, and the corresponding physiological processes, environmental drivers and mathematical formalisms. Based on these different definitions, we then review how plant growth can be measured and analysed at different organisational, spatial and temporal scales. We conclude by discussing why gaining a better understanding of the different facets of plant growth is essential to disentangle genetic and environmental effects on the phenotype, and to uncover the causalities around source or sink limitations of plant growth.
Collapse
Affiliation(s)
- Jonas Hilty
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| |
Collapse
|
24
|
Amico Roxas A, Orozco J, Guzmán-Delgado P, Zwieniecki MA. Spring phenology is affected by fall non-structural carbohydrate concentration and winter sugar redistribution in three Mediterranean nut tree species. TREE PHYSIOLOGY 2021; 41:1425-1438. [PMID: 34383074 DOI: 10.1093/treephys/tpab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Deciduous trees mostly rely on non-structural carbohydrates (NSC-soluble carbohydrates and starch) stored prior to dormancy to sustain both spring bloom and the initial phase of spring growth prior to the transition of leaves from sink to source. Winter management of NSC, their loss due to respiration, reallocation patterns and remobilization during spring, seems to be key to a timely and synchronous bloom. To assess tree dependence on NSC during dormancy, we tested whether the interruption of local branch NSC accumulation prior to dormancy by defoliation and the interruption of NSC translocation by phloem girdling influence spring phenology in three major deciduous Mediterranean nut crop species: Prunus dulcis (Mill.) D.A Webb, a hybrid between Pistacia integerrima (J. L. Stewart ex Brandis) and P. atlantica Desf. (referred to as P. integerrima), and Juglans regia L. Defoliation treatments had different effects on NSC concentration in different species depending on the time of application. However, despite the significant initial impact (increase or decrease of NSC concentration), with time this impact diminished resulting in overall similar concentrations between control and defoliated branches suggesting the presence of NSC reallocation during dormancy. Phloem girdling in P. dulcis and P. integerrima resulted in reduced export activity and greater NSC concentrations, while in J. regia girdling resulted in lower NSC concentrations, indicating that this species requires a net import of NSC during dormancy. Bud break was distinctly delayed by both defoliation and phloem girdling in all the three species, providing evidence of the significant roles that fall NSC accumulation and winter NSC management play in priming trees for spring growth resumption.
Collapse
Affiliation(s)
- Adele Amico Roxas
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jessica Orozco
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Paula Guzmán-Delgado
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
25
|
Osada N. Differential springtime branch warming controls intra-crown nitrogen allocation and leaf photosynthetic traits in understory saplings of a temperate deciduous species. Oecologia 2021; 196:331-340. [PMID: 33963901 DOI: 10.1007/s00442-021-04929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
Between-branch nitrogen competition is expected to be important during spring in temperate deciduous trees as nitrogen allocation would be higher in branches from earlier budburst than in those from later budburst. Such phenology-induced branch interaction would influence plant photosynthesis, but this has not been evaluated. Warming experiments were conducted on whole crowns (warmed trees; trunks and all branches of the same tree were warmed) or parts of the crowns (warmed branches with unwarmed control branches in the same tree), with unwarmed control trees, in saplings of the deciduous species Fraxinus lanuginosa. Spring leaf phenology and leaf photosynthetic traits were investigated to determine how the difference in temperature affects leaf phenology and photosynthetic traits. The timing of budburst was influenced by temperature-budburst was earlier in warmed trees and warmed branches than in control trees and control branches, but budburst timing did not differ between control trees and control branches or between warmed trees and warmed branches. In contrast, leaf traits were affected by the variation in phenology within crowns-nitrogen content and photosynthetic capacity were greater in the leaves of the warmed branches than in the control branches, but they did not differ between the leaves of warmed trees and control trees. Thus, branch warming altered the distribution of nitrogen between warmed and unwarmed branches as warmed branches developed faster, resulting in intracrown variation in leaf photosynthetic traits.
Collapse
Affiliation(s)
- Noriyuki Osada
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Nagoya, 468-8502, Japan. .,Tomakomai Research Station, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, 053-0035, Japan.
| |
Collapse
|
26
|
Tsamir-Rimon M, Ben-Dor S, Feldmesser E, Oppenhimer-Shaanan Y, David-Schwartz R, Samach A, Klein T. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. THE NEW PHYTOLOGIST 2021; 229:1398-1414. [PMID: 32880972 DOI: 10.1111/nph.16907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Carbon reserve use is a major drought response in trees, enabling tree survival in conditions prohibiting photosynthesis. However, regulation of starch metabolism under drought at the whole-tree scale is still poorly understood. To this end, we combined measurements of nonstructural carbohydrates (NSCs), tree physiology and gene expression. The experiment was conducted outside on olive trees in pots under 90 d of seasonal spring to summer warming. Half of the trees were also subjected to limited water conditions for 28 d. Photosynthesis decreased in dehydrating trees from 19 to 0.5 µmol m-2 s-1 during the drought period. Starch degradation and mannitol production were a major drought response, with mannitol increasing to 71% and 41% out of total NSCs in shoots and roots, respectively. We identified the gene family members potentially relevant either to long-term or stress-induced carbon storage. Partitioning of expression patterns among β amylase and starch synthase family members was observed, with three β amylases possibly facilitating the rapid starch degradation under heat and drought. Our results suggest a group of stress-related, starch metabolism genes, correlated with NSC fluctuations during drought and recovery. The daily starch metabolism gene expression was different from the stress-mode starch metabolism pattern, where some genes are uniquely expressed during the stress-mode response.
Collapse
Affiliation(s)
- Mor Tsamir-Rimon
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Shifra Ben-Dor
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yaara Oppenhimer-Shaanan
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Tamir Klein
- Plant & Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
27
|
Urrutia-Jalabert R, Lara A, Barichivich J, Vergara N, Rodriguez CG, Piper FI. Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:905. [PMID: 32733500 PMCID: PMC7357304 DOI: 10.3389/fpls.2020.00905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
There is an ongoing debate on whether a drought induced carbohydrate limitation (source limitation) or a direct effect of water shortage (sink limitation) limit growth under drought. In this study, we investigated the effects of the two driest summers recorded in southern Chile in the last seven decades, on the growth and non-structural carbohydrates (NSC) concentrations of the slow-growing conifer Fitzroya cupressoides. Specifically, we studied the seasonal variation of NSC in saplings and adults one and two years after the occurrence of a 2 year-summer drought at two sites of contrasting precipitation and productivity (mesic-productive vs. rainy-less productive). We also evaluated radial growth before, during and after the drought, and predicted that drought could have reduced growth. If drought caused C source limitation, we expected that NSCs will be lower during the first than the second year after drought. Conversely, similar NSC concentrations between years or higher NSC concentrations in the first year would be supportive of sink limitation. Also, due to the lower biomass of saplings compared with adults, we expected that saplings should experience stronger seasonal NSC remobilization than adults. We confirmed this last expectation. Moreover, we found no significant growth reduction during drought in the rainy site and a slightly significant growth reduction at the mesic site for both saplings and adults. Across organs and in both sites and age classes, NSC, starch, and sugar concentrations were generally higher in the first than in the second year following drought, while NSC seasonal remobilization was generally lower. Higher NSC concentrations along with lower seasonal NSC remobilization during the first post-drought year are supportive of sink limitation. However, as these results were found at both sites while growth decreased slightly and just at the mesic site, limited growth only is unlikely to have caused NSC accumulation. Rather, these results suggest that the post-drought dynamics of carbohydrate storage are partly decoupled from the growth dynamics, and that the rebuild of C reserves after drought may be a priority in this species.
Collapse
Affiliation(s)
- Rocío Urrutia-Jalabert
- Instituto Forestal INFOR, Valdivia, Chile
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Antonio Lara
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
- Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
| | - Jonathan Barichivich
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Laboratoire des Sciences du Climat et de l’Environnement, IPSL, CRNS/CEA/UVSQ, Paris, France
| | - Nicolás Vergara
- Centro de Ciencia del Clima y la Resiliencia, CR2, Santiago, Chile
| | - Carmen Gloria Rodriguez
- Laboratorio de Dendrocronología y Cambio Global, Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
| | - Frida I. Piper
- Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile
| |
Collapse
|
28
|
Rosinger C, Sandén H, Godbold DL. Non-structural carbohydrate concentrations of Fagus sylvatica and Pinus sylvestris fine roots are linked to ectomycorrhizal enzymatic activity during spring reactivation. MYCORRHIZA 2020; 30:197-210. [PMID: 32078049 PMCID: PMC7228962 DOI: 10.1007/s00572-020-00939-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 05/29/2023]
Abstract
We evaluated whether changes in fine root non-structural carbohydrate reserves of Fagus sylvatica and Pinus sylvestris trees influence potential enzymatic activities of their ectomycorrhizal symbionts from winter towards spring reactivation, and whether these changes influence potential soil enzymatic activities. We analyzed sugar and starch concentrations in the fine roots of Fagus sylvatica and Pinus sylvestris and potential activities of ß-glucosidase, ß-xylosidase, and cellobiohydrolase (as proxies for carbon-degrading enzymes) as well as leucine aminopeptidase and chitinase (as proxies for nitrogen-degrading enzymes) of their dominant ectomycorrhizal symbionts as well as in the soil. Sugar concentrations in the fine roots were significantly positively correlated with enzymatic activities of the ectomycorrhizal symbionts. In Pinus sylvestris, both carbon- and nitrogen-degrading enzyme activities showed significant positive correlations with fine root sugar concentrations. In Fagus sylvatica, fine root sugar concentrations were explicitly positively correlated with the activity of nitrogen-degrading enzymes. The chitinase activity in the soil was found to be strongly positively correlated with the enzymatic activity of the ectomycorrhizal symbionts as well as with fine root sugar concentrations. Fine root carbohydrate concentrations of Fagus sylvatica and Pinus sylvestris trees and enzymatic activities of their associated ectomycorrhizal fungi are connected. The specific nutrient demand of the tree species during spring reactivation may affect ectomycorrhizal enzymatic activity via carbon mobilization in the fine roots of Fagus sylvatica and Pinus sylvestris. Moreover, our results suggest that trees indirectly contribute to the degradation of fungal necromass by stimulating ectomycorrhizal chitinase activity in the soil.
Collapse
Affiliation(s)
- Christoph Rosinger
- Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674, Cologne, Germany.
| | - Hans Sandén
- Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Douglas L Godbold
- Institute of Forest Ecology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Landscape Carbon Deposition, Academy of Sciences of the Czech Republic, Global Change Research Institute, Ceské Budejovice, Czech Republic
| |
Collapse
|
29
|
Paudel I, Gerbi H, Wagner Y, Zisovich A, Sapir G, Brumfeld V, Klein T. Drought tolerance of wild versus cultivated tree species of almond and plum in the field. TREE PHYSIOLOGY 2020; 40:454-466. [PMID: 31860710 DOI: 10.1093/treephys/tpz134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Trees of the genus Prunus produce some of the most widely consumed fruits globally. The combination of climate change-related warming and increased drought stress, scarcity of freshwater resources for irrigation, and increasing demands due to population growth creates a need for increased drought tolerance in these tree species. Recently, we have shown in the field that a native wild pear species performs better under drought than two cultivated pear species. Here, a comparative field study was conducted in Israel to investigate traits associated with drought tolerance in almond (cultivated Prunus dulcis (Mill.) D. A. Webb vs wild Prunus ramonensis Danin) and plum (cultivated Prunus domestica L. vs wild Prunus ursina Kotschy). Measurements of xylem embolism and shoot and root carbon reserves were done along a year, including seasonal drought in the wild and a 35-day drought experiment in the orchards. Synchronous measurements of native xylem embolism and shoot water potential showed that cultivated and wild almond trees lost ~50% of hydraulic conductivity at -2.3 and -3.2 MPa, respectively. Micro-CT images confirmed the higher embolism ratio in cultivated versus wild almond, whereas the two plum species were similar. Dynamics of tissue concentrations of nonstructural carbohydrates were mostly similar across species, with higher levels in cultivated versus wild plum. Our results indicate an advantage for the wild almond over its cultivated relative in terms of xylem resistance to embolism, a major risk factor for trees under drought stress. This result is in line with our previous experiment on pear species. However, the opposite trends observed among the studied plum species mean that these trends cannot be generalized. It is possible that the potential for superior drought tolerance in wild tree species, relative to their cultivated relatives, is limited to wild species from dry and hot habitats.
Collapse
Affiliation(s)
- Indira Paudel
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Forestry and Natural Resourses, Purdue University, West Lafayette, IN, USA
| | - Hadas Gerbi
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Wagner
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Annat Zisovich
- Extension Service, Ministry of Agriculture, Kiryat Shemona 10200, Israel
| | - Gal Sapir
- MIGAL Galilee Research Institute, PO Box 831, Kiryat Shemona 11016, Israel
| | - Vlad Brumfeld
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Mund M, Herbst M, Knohl A, Matthäus B, Schumacher J, Schall P, Siebicke L, Tamrakar R, Ammer C. It is not just a 'trade-off': indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest. THE NEW PHYTOLOGIST 2020; 226:111-125. [PMID: 31901219 DOI: 10.1111/nph.16408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2 = 0.85), and negatively to precipitation in May (R2 = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.
Collapse
Affiliation(s)
- Martina Mund
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Mathias Herbst
- German Meteorological Service, Centre for Agrometeorological Research, Bundesallee 33, D-38116, Braunschweig, Germany
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| | - Bertrand Matthäus
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Schützenberg 12, D-32756, Detmold, Germany
| | - Jens Schumacher
- Institute of Mathematics, University of Jena, Ernst-Abbe-Platz 2, D-07743, Jena, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Lukas Siebicke
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
| | - Rijan Tamrakar
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| |
Collapse
|
31
|
Tixier A, Guzmán-Delgado P, Sperling O, Amico Roxas A, Laca E, Zwieniecki MA. Comparison of phenological traits, growth patterns, and seasonal dynamics of non-structural carbohydrate in Mediterranean tree crop species. Sci Rep 2020; 10:347. [PMID: 31941910 PMCID: PMC6962427 DOI: 10.1038/s41598-019-57016-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Despite non-structural carbohydrate (NSC) importance for tree productivity and resilience, little is known about their seasonal regulations and trade-off with growth and reproduction. We characterize the seasonal dynamics of NSC in relation to the aboveground phenology and temporal growth patterns of three deciduous Mediterranean species: almond (Prunus dulcis (Mill.) D. A. Webb), walnut (Juglans regia L.) and pistachio (Pistacia vera L.). Seasonal dynamics of NSC were synchronous between wood tissues from trunk, branches and twigs. Almond had almost identical levels and patterns of NSC variation in twigs, branches and trunks whereas pistachio and walnut exhibited clear concentration differences among plant parts whereby twigs had the highest and most variable NSC concentration, followed by branches and then trunk. While phenology had a significant influence on NSC seasonal trends, there was no clear trade-off between NSC storage and growth suggesting that both were similarly strong sinks for NSC. A temporal trade-off observed at the seasonal scale was influenced by the phenology of the species. We propose that late senescing species experience C allocation trade-off at the end of the growing season because of C-limiting thermal conditions and priority allocation to storage in order to survive winter.
Collapse
Affiliation(s)
- Aude Tixier
- UMR 1347 Agroécologie, AgroSup/INRA/uB, Dijon, France.
| | | | - Or Sperling
- Department of Plant Sciences, Agriculture Research Organization (ARO), Negev, Israel
| | - Adele Amico Roxas
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Emilio Laca
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
32
|
Deslauriers A, Rossi S. Metabolic memory in the phenological events of plants: looking beyond climatic factors. TREE PHYSIOLOGY 2019; 39:1272-1276. [PMID: 31359049 DOI: 10.1093/treephys/tpz082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'université, Chicoutimi, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'université, Chicoutimi, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, China
| |
Collapse
|
33
|
Microsite Effects on Physiological Performance of Betula ermanii at and Beyond an Alpine Treeline Site on Changbai Mountain in Northeast China. FORESTS 2019. [DOI: 10.3390/f10050400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The alpine treeline demarcates the temperature-limited upper elevational boundary of the tree life form. However, this treeline does not always occur exclusively as a sharp “line”, outposts of tree groups (OTG) with a height of at least 3 m are often observed in microsites up to several hundred meters beyond the line of continuous forest on some mountains. This suggests that other factors such as microenvironment may play a significant role in compensating for the alpine tree facing growth-limiting low temperature conditions. To test the microenvironment effects, this study compared the differences in growing conditions (climate and soil properties) and ecophysiological performance of Erman’s birch (Betula ermanii Cham.) trees growing in a continuous treeline site (CTL, ~1950 m above sea level, a.s.l.) and OTGs (~2050 m a.s.l.) on Changbai Mountain in northeastern China. The results show the average 2-m air temperature for OTG was slightly lower in the non-growing season than which at the CTL (−10.2 °C < −8.4 °C), there was no difference in growing season air temperature and soil temperature at 10 cm depth between CTL and OTG. The contents of focal soil nutrients in CTL and OTG were similar. Difference in K and Mn contents between sites were detected in leaves, difference in K, Mn, and Zn in shoots. However, comparing similarity of ecophysiological performances at an individual level, trees at CTL and OTG show no significant difference. Our study reveals that mature trees at the CTL and OTG experience generally similar environmental conditions (climate and soil properties) and exhibit similar overall ecophysiological performance (reflected in carbon reserves and nutrients). This might provide insight into how mature trees might be able to survive in areas higher than the continuous treeline, as well as the importance of microclimatic amelioration provided by protective microsites and the trees themselves.
Collapse
|
34
|
Deslauriers A, Fournier MP, Cartenì F, Mackay J. Phenological shifts in conifer species stressed by spruce budworm defoliation. TREE PHYSIOLOGY 2019; 39:590-605. [PMID: 30597102 DOI: 10.1093/treephys/tpy135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Synchrony between host budburst and insect emergence greatly influences the time window for insect development and survival. A few alterations of bud phenology have been reported under defoliation without clear consensus regarding the direction of effects, i.e., advance or delay. Here, we compared budburst phenology between conifers in defoliation and control treatments, and measured carbon allocation as a potential mechanistic explanation of changes in phenology. In a 2-year greenhouse experiment, saplings of balsam fir, black spruce and white spruce of two different provenances (north and south) were subjected to either control (no larvae) or natural defoliation treatment (larvae added) by spruce budworm. Bud and instar phenology, primary and secondary growth, defoliation and non-structural carbohydrates were studied during the growing season. No differences were observed in bud phenology during the first year of defoliation. After 1 year of defoliation, bud phenology advanced by 6-7 days in black spruce and balsam fir and by 3.5 days in white spruce compared with the control. Because of this earlier bud break, apical and shoot growth exceeded 50% of its final length before mature instar defoliation occurred, which decreased the overall level of damage. A sugar-mediated response, via earlier starch breakdown, and higher sugar availability to buds explains the advanced budburst in defoliated saplings. The advanced phenological response to defoliation was consistent across the conifer species and provenances except for one species × provenance combination. Allocation of carbon to buds and shoots growth at the expense of wood growth in the stem and reserve accumulation represents a shift in the physiological resources priorities to ensure tree survival. This advancement in bud phenology could be considered as a physiological response to defoliation based on carbohydrate needs for primary growth, rather than a resistance trait to spruce budworm.
Collapse
Affiliation(s)
- Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Marie-Pier Fournier
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, Canada
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici (NA), Italy
| | - John Mackay
- Centre d'Étude de la Forêt, Département des Sciences du Bois et de la Forêt, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Liu JF, Deng YP, Wang XF, Ni YY, Wang Q, Xiao WF, Lei JP, Jiang ZP, Li MH. The Concentration of Non-structural Carbohydrates, N, and P in Quercus variabilis Does Not Decline Toward Its Northernmost Distribution Range Along a 1500 km Transect in China. FRONTIERS IN PLANT SCIENCE 2018; 9:1444. [PMID: 30386352 PMCID: PMC6199963 DOI: 10.3389/fpls.2018.01444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Understanding the mechanisms that determine plant distribution range is crucial for predicting climate-driven range shifts. Compared to altitudinal gradients, less attention has been paid to the mechanisms that determine latitudinal range limit. To test whether intrinsic resource limitation contributes to latitudinal range limits of woody species, we investigated the latitudinal variation in non-structural carbohydrates (NSC; i.e., total soluble sugar plus starch) and nutrients (nitrogen and phosphorus) in mature and juvenile Chinese cork oak (Quercus variabilis Blume) along a 1500 km north-south transect in China. During the growing season and dormant season, leaves, branches, and fine roots were collected from both mature and juvenile oaks in seven sites along the transect. Tissue concentration of NSCs, N, and P did not decrease with increasing latitude irrespective of sampling season and ontogenetic stage. Furthermore, higher levels of NSCs and N in tissues of juveniles relative to mature trees were found during the dormant season. Partial correlation analysis also revealed that during the dormant season, soluble sugar, NSC, the ratio of soluble sugar to starch, and tissue nitrogen concentration were correlated positively with latitude but negatively with precipitation and mean temperature of dormant season. Our results suggest that carbon or nutrient availability may not be the driving factors of the latitudinal range limit of the studied species. Further studies should be carried out at the community or ecosystem level with multiple species to additionally test the roles of factors such as regeneration, competition, and disturbance in determining a species' northern distribution limit.
Collapse
Affiliation(s)
- Jian-Feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yun-Peng Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiao-Fei Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yan-Yan Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forest, Ecology and Environment Protection, Chinese Academy of Forestry, Beijing, China
| | - Qi Wang
- Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Wen-Fa Xiao
- Research Institute of Forest, Ecology and Environment Protection, Chinese Academy of Forestry, Beijing, China
| | - Jing-Pin Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ze-Ping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forest, Ecology and Environment Protection, Chinese Academy of Forestry, Beijing, China
| | - Mai-He Li
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- School of Geographical Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
36
|
Cartenì F, Deslauriers A, Rossi S, Morin H, De Micco V, Mazzoleni S, Giannino F. The Physiological Mechanisms Behind the Earlywood-To-Latewood Transition: A Process-Based Modeling Approach. FRONTIERS IN PLANT SCIENCE 2018; 9:1053. [PMID: 30079078 PMCID: PMC6063077 DOI: 10.3389/fpls.2018.01053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/28/2018] [Indexed: 05/24/2023]
Abstract
In extratropical ecosystems, the growth of trees is cyclic, producing tree rings composed of large-lumen and thin-walled cells (earlywood) alternating with narrow-lumen and thick-walled cells (latewood). So far, the physiology behind wood formation processes and the associated kinetics has rarely been considered to explain this pattern. We developed a process-based mechanistic model that simulates the development of conifer tracheids, explicitly considering the processes of cell enlargement and the deposition and lignification of cell walls. The model assumes that (1) wall deposition gradually slows down cell enlargement and (2) the deposition of cellulose and lignin is regulated by the availability of soluble sugars. The model reliably reproduces the anatomical traits and kinetics of the tracheids of four conifer species. At the beginning of the growing season, low sugar availability in the cambium results in slow wall deposition that allows for a longer enlargement time; thus, large cells with thin walls (i.e., earlywood) are produced. In late summer and early autumn, high sugar availability produces narrower cells having thick cell walls (i.e., latewood). This modeling framework provides a mechanistic link between plant ecophysiology and wood phenology and significantly contributes to understanding the role of sugar availability during xylogenesis.
Collapse
Affiliation(s)
- Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, Guangzhou, China
| | - Hubert Morin
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
37
|
Smith MG, Miller RE, Arndt SK, Kasel S, Bennett LT. Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees. TREE PHYSIOLOGY 2018; 38:570-581. [PMID: 29112735 DOI: 10.1093/treephys/tpx141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Non-structural carbohydrates (NSCs) form a fundamental yet poorly quantified carbon pool in trees. Studies of NSC seasonality in forest trees have seldom measured whole-tree NSC stocks and allocation among organs, and are not representative of all tree functional types. Non-structural carbohydrate research has primarily focussed on broadleaf deciduous and coniferous evergreen trees with distinct growing seasons, while broadleaf evergreen trees remain under-studied despite their different growth phenology. We measured whole-tree NSC allocation and temporal variation in Eucalyptus obliqua L'Hér., a broadleaf evergreen tree species typically occurring in mixed-age temperate forests, which has year-round growth and the capacity to resprout after fire. Our overarching objective was to improve the empirical basis for understanding the functional importance of NSC allocation and stock changes at the tree- and organ-level in this tree functional type. Starch was the principal storage carbohydrate and was primarily stored in the stem and roots of young (14-year-old) trees rather than the lignotuber, which did not appear to be a specialized starch storage organ. Whole-tree NSC stocks were depleted during spring and summer due to significant decreases in starch mass in the roots and stem, seemingly to support root and crown growth but potentially exacerbated by water stress in summer. Seasonality of stem NSCs differed between young and mature trees, and was not synchronized with stem basal area increments in mature trees. Our results suggest that the relative magnitude of seasonal NSC stock changes could vary with tree growth stage, and that the main drivers of NSC fluctuations in broadleaf evergreen trees in temperate biomes could be periodic disturbances such as summer drought and fire, rather than growth phenology. These results have implications for understanding post-fire tree recovery via resprouting, and for incorporating NSC pools into carbon models of mixed-age forests.
Collapse
Affiliation(s)
- Merryn G Smith
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Rebecca E Miller
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Sabine Kasel
- School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, Victoria 3121, Australia
| | - Lauren T Bennett
- School of Ecosystem and Forest Sciences, The University of Melbourne, 4 Water Street, Creswick, Victoria 3363, Australia
| |
Collapse
|
38
|
Martín-Gómez P, Aguilera M, Pemán J, Gil-Pelegrín E, Ferrio JP. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). TREE PHYSIOLOGY 2017; 37:1478-1492. [PMID: 29040771 DOI: 10.1093/treephys/tpx101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Submediterranean forests are considered an ecotone between Mediterranean and Eurosiberian ecosystems, and are very sensitive to global change. A decline of Scots pine (Pinus sylvestris L.) and a related expansion of oak species (Quercus spp.) have been reported in the Spanish Pre-Pyrenees. Although this has been associated with increasing drought stress, the underlying mechanisms are not fully understood, and suitable monitoring protocols are lacking. The aim of this study is to bring insight into the physiological mechanisms anticipating selective decline of the pines, with particular focus on carbon and water relations. For this purpose, we performed a sampling campaign covering two growing seasons in a mixed stand of P. sylvestris and Quercus subpyrenaica E.H del Villar. We sampled seasonally twig xylem and soil for water isotope composition (δ18O and δ2H), leaves for carbon isotope composition (δ13C) and stems to quantify non-structural carbohydrates (NSC) concentration, and measured water potential and leaf gas exchange. The first summer drought was severe for both species, reaching low predawn water potential (-2.2 MPa), very low stomatal conductance (12 ± 1.0 mmol m-2 s-1) and near-zero or even negative net photosynthesis, particularly in P. sylvestris (-0.6 ± 0.34 μmol m-2 s-1 in oaks, -1.3 ± 0.16 μmol m-2 s-1 in pines). Hence, the tighter stomatal control and more isohydric strategy of P. sylvestris resulted in larger limitations on carbon assimilation, and this was also reflected in carbon storage, showing twofold larger total NSC concentration in oaks than in pines (7.8 ± 2.4% and 4.0 ± 1.3%, respectively). We observed a faster recovery of predawn water potential after summer drought in Q. subpyrenaica than in P. sylvestris (-0.8 MPa and -1.1 MPa, respectively). As supported by the isotopic data, this was probably associated with a deeper and more reliable water supply in Q. subpyrenaica. In line with these short-term observations, we found a more pronounced negative effect of steadily increasing drought stress on long-term growth in pines compared with oaks. All these observations confer evidence of early warning of P. sylvestris decline and indicate the adaptive advantage of Q. subpyrenaica in the area.
Collapse
Affiliation(s)
- Paula Martín-Gómez
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Mònica Aguilera
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Jesús Pemán
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, CITA de Aragón, Av. Montañana, 930, 50059 Zaragoza, Spain
| | - Juan Pedro Ferrio
- Department of Crop and Forest Sciences-AGROTECNIO, Universitat de Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
39
|
Signarbieux C, Toledano E, Sanginés de Carcer P, Fu YH, Schlaepfer R, Buttler A, Vitasse Y. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring. GLOBAL CHANGE BIOLOGY 2017; 23:4569-4580. [PMID: 28464396 DOI: 10.1111/gcb.13740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
In temperate trees, the timings of plant growth onset and cessation affect biogeochemical cycles, water, and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been yet investigated in trees. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1,340 vs. 371 m a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease in air temperature in winter/spring resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we also found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in late summer. Budset of saplings that experienced a cooler winter was delayed by 31 days compared to the control, whereas it was delayed by only 10 days in saplings that experienced a warmer winter. Budburst timing in 2015 was not significantly impacted by the artificial advance or delay of the budburst timing in 2014, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.
Collapse
Affiliation(s)
- Constant Signarbieux
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
| | - Ester Toledano
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
- Universidad Polítecnica de Madrid, Madrid, Spain
| | - Paula Sanginés de Carcer
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
| | - Yongshuo H Fu
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Beijing Normal University, Beijing, China
| | - Rodolphe Schlaepfer
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Alexandre Buttler
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et Techniques, 16 route de Gray, Université de Franche-Comté, Besançon, France
| | - Yann Vitasse
- Institute of Geography, University of Neuchatel, Neuchatel, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Neuchâtel, Switzerland
| |
Collapse
|
40
|
Piper FI, Fajardo A, Hoch G. Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location. TREE PHYSIOLOGY 2017; 37:1001-1010. [PMID: 28549182 DOI: 10.1093/treephys/tpx061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/15/2017] [Indexed: 05/24/2023]
Abstract
Since growth is more sensitive to drought than photosynthesis, trees inhabiting dry regions are expected to exhibit higher carbohydrate storage and less growth than their conspecifics from more humid regions. However, the same pattern can be the result of different genotypes inhabiting contrasting humidity conditions. To test if reduced growth and high carbohydrate storage are environmentally driven by drought, we examined the growth and non-structural carbohydrate (NSC) concentrations in single-provenance stands of mature trees of Pinus contorta Douglas and Pinus ponderosa Douglas ex C. Lawson planted at contrasting humidity conditions (900 versus 300 mm of annual precipitation) in Patagonia, Chile. Individual tree growth was measured for each species and at each location as mean basal area increment of the last 10 years (BAI10), annual shoot elongation for the period 2011-14, and needle length for 2013 and 2014 cohorts. Additionally, needle, branch, stem sapwood and roots were collected from each sampled tree to determine soluble sugars, starch and total NSC concentrations. The two species showed lower mean BAI10 and 2013 needle length in the dry site; P. ponderosa also had lower annual shoot extension for 2011 and 2014, and lower 2014 needle length, in the dry than in the mesic site. By contrast, NSC concentrations of all woody tissues for both species were either similar or higher in the dry site when compared with the mesic site. Patterns of starch and sugars were substantially different: starch concentrations were similar between sites except for roots of P. ponderosa, which were higher in the dry site, while sugar concentrations of all woody tissues in both species were higher in the dry site. Overall, our study provides evidence that reduced growth along with carbon (C) accumulation is an environmentally driven response to drought. Furthermore, the significant accumulation of low-molecular weight sugars in the dry site is compatible with a prioritized C allocation for osmoregulation. However, since this accumulation did not come at the expense of reduced starch, it is unlikely that growth was limited by C supply in the dry site.
Collapse
Affiliation(s)
- Frida I Piper
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16, Coyhaique 5951601, Chile
- Universidad Austral de Chile, Campus Patagonia, Camino Coyhaique Alto Km 4, Coyhaique, Chile
| | - Alex Fajardo
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Moraleda 16, Coyhaique 5951601, Chile
- Universidad Austral de Chile, Campus Patagonia, Camino Coyhaique Alto Km 4, Coyhaique, Chile
| | - Günter Hoch
- Department of Environmental Sciences-Botany, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
| |
Collapse
|
41
|
Zhang Y, Xie JB, Li Y. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:191-200. [PMID: 27696600 DOI: 10.1111/plb.12511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Tree mortality induced by drought is one of the most complex processes in ecology. Although two mechanisms associated with water and carbon balance are proposed to explain tree mortality, outstanding problems still exist. Here, in order to test how the root system benefits survival and resprouting of Haloxylon ammodendron seedlings, we examined the various water- and carbon-related physiological indicators (shoot water potential, photosynthesis, dark respiration, hydraulic conductance and non-structural carbohydrates [NSC]) of H. ammodendron seedlings, which were grown in drought and control conditions throughout a grow season in greenhouse. The survival time of the seedling root system (died 70 days after drought) doubled the survival time of the shoot (died at 35 days). Difference in survival time between shoot and root resulted from sustained root respiration supported by increased NSC in roots under drought. Furthermore, investment into the root contributed to resprouting following drought. Based on these results, a death criterion is proposed for this species. The time sequence of major events indicated that drought shifted carbon allocation between shoot and root and altered the flux among different sinks (growth, respiration or storage). The interaction of water and carbon processes determined death or survival of droughted H. ammodendron seedlings. These findings revealed that the 'root protection' strategy is critical in determining survival and resprouting of this species, and provided insights into the effects of carbon and water dynamics on tree mortality.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - J-B Xie
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- College of Life Science, Shihezi University, Shihezi, China
| | - Y Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| |
Collapse
|