1
|
Manjarrez LF, de María N, Vélez MD, Cabezas JA, Mancha JA, Ramos P, Pizarro A, Blanco-Urdillo E, López-Hinojosa M, Cobo-Simón I, Guevara MÁ, Díaz-Sala MC, Cervera MT. Comparative Stem Transcriptome Analysis Reveals Pathways Associated with Drought Tolerance in Maritime Pine Grafts. Int J Mol Sci 2024; 25:9926. [PMID: 39337414 PMCID: PMC11432578 DOI: 10.3390/ijms25189926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The maritime pine (Pinus pinaster Ait.) is a highly valuable Mediterranean conifer. However, recurrent drought events threaten its propagation and conservation. P. pinaster populations exhibit remarkable differences in drought tolerance. To explore these differences, we analyzed stem transcriptional profiles of grafts combining genotypes with contrasting drought responses under well-watered and water-stress regimes. Our analysis underscored that P. pinaster drought tolerance is mainly associated with constitutively expressed genes, which vary based on genotype provenance. However, we identified key genes encoding proteins involved in water stress response, abscisic acid signaling, and growth control including a PHD chromatin regulator, a histone deubiquitinase, the ABI5-binding protein 3, and transcription factors from Myb-related, DOF NAC and LHY families. Additionally, we identified that drought-tolerant rootstock could enhance the drought tolerance of sensitive scions by regulating the accumulation of transcripts involved in carbon mobilization, osmolyte biosynthesis, flavonoid and terpenoid metabolism, and reactive oxygen species scavenging. These included genes encoding galactinol synthase, CBL-interacting serine/threonine protein kinase 5, BEL1-like homeodomain protein, dihydroflavonol 4-reductase, and 1-deoxy-D-xylulose-5-phosphate. Our results revealed several hub genes that could help us to understand the molecular and physiological response to drought of conifers. Based on all the above, grafting with selected drought-tolerant rootstocks is a promising method for propagating elite recalcitrant conifer species, such as P. pinaster.
Collapse
Affiliation(s)
- Lorenzo Federico Manjarrez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - José Antonio Cabezas
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - José Antonio Mancha
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Paula Ramos
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Alberto Pizarro
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Endika Blanco-Urdillo
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Miriam López-Hinojosa
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - Irene Cobo-Simón
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - María Ángeles Guevara
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | - María Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Manjarrez LF, Guevara MÁ, de María N, Vélez MD, Cobo-Simón I, López-Hinojosa M, Cabezas JA, Mancha JA, Pizarro A, Díaz-Sala MC, Cervera MT. Maritime Pine Rootstock Genotype Modulates Gene Expression Associated with Stress Tolerance in Grafted Stems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1644. [PMID: 38931075 PMCID: PMC11207801 DOI: 10.3390/plants13121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Climate change-induced hazards, such as drought, threaten forest resilience, particularly in vulnerable regions such as the Mediterranean Basin. Maritime pine (Pinus pinaster Aiton), a model species in Western Europe, plays a crucial role in the Mediterranean forest due to its genetic diversity and ecological plasticity. This study characterizes transcriptional profiles of scion and rootstock stems of four P. pinaster graft combinations grown under well-watered conditions. Our grafting scheme combined drought-sensitive and drought-tolerant genotypes for scions (GAL1056: drought-sensitive scion; and Oria6: drought-tolerant scion) and rootstocks (R1S: drought-sensitive rootstock; and R18T: drought-tolerant rootstock). Transcriptomic analysis revealed expression patterns shaped by genotype provenance and graft combination. The accumulation of differentially expressed genes (DEGs) encoding proteins, involved in defense mechanisms and pathogen recognition, was higher in drought-sensitive scion stems and also increased when grafted onto drought-sensitive rootstocks. DEGs involved in drought tolerance mechanisms were identified in drought-tolerant genotypes as well as in drought-sensitive scions grafted onto drought-tolerant rootstocks, suggesting their establishment prior to drought. These mechanisms were associated with ABA metabolism and signaling. They were also involved in the activation of the ROS-scavenging pathways, which included the regulation of flavonoid and terpenoid metabolisms. Our results reveal DEGs potentially associated with the conifer response to drought and point out differences in drought tolerance strategies. These findings suggest genetic trade-offs between pine growth and defense, which could be relevant in selecting more drought-tolerant Pinus pinaster trees.
Collapse
Affiliation(s)
- Lorenzo Federico Manjarrez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - María Ángeles Guevara
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Irene Cobo-Simón
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Miriam López-Hinojosa
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - José Antonio Cabezas
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - José Antonio Mancha
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Alberto Pizarro
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain; (A.P.); (M.C.D.-S.)
| | - María Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain; (A.P.); (M.C.D.-S.)
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| |
Collapse
|
3
|
Wesselkamp M, Roberts DR, Dormann CF. Identifying potential provenances for climate-change adaptation using spatially variable coefficient models. BMC Ecol Evol 2024; 24:70. [PMID: 38807083 DOI: 10.1186/s12862-024-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Selection of climate-change adapted ecotypes of commercially valuable species to date relies on DNA-assisted screening followed by growth trials. For trees, such trials can take decades, hence any approach that supports focussing on a likely set of candidates may save time and money. We use a non-stationary statistical analysis with spatially varying coefficients to identify ecotypes that indicate first regions of similarly adapted varieties of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) in North America. For over 70,000 plot-level presence-absences, spatial differences in the survival response to climatic conditions are identified. RESULTS The spatially-variable coefficient model fits the data substantially better than a stationary, i.e. constant-effect analysis (as measured by AIC to account for differences in model complexity). Also, clustering the model terms identifies several potential ecotypes that could not be derived from clustering climatic conditions itself. Comparing these six identified ecotypes to known genetically diverging regions shows some congruence, as well as some mismatches. However, comparing ecotypes among each other, we find clear differences in their climate niches. CONCLUSION While our approach is data-demanding and computationally expensive, with the increasing availability of data on species distributions this may be a useful first screening step during the search for climate-change adapted varieties. With our unsupervised learning approach being explorative, finely resolved genotypic data would be helpful to improve its quantitative validation.
Collapse
Affiliation(s)
- Marieke Wesselkamp
- Department of Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Straße 4, Freiburg, 79106, Germany.
| | - David R Roberts
- Department of Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Straße 4, Freiburg, 79106, Germany
- InnoTech Alberta, 3608 - 33 Street NW, Calgary, AB, T2L 2A6, Canada
- Alberta Biodiversity Monitoring Institute, 1-107 Centennial Centre for Interdisciplinary Studies (CCIS), University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Carsten F Dormann
- Department of Biometry and Environmental System Analysis, University of Freiburg, Tennenbacher Straße 4, Freiburg, 79106, Germany
| |
Collapse
|
4
|
Vu GTH, Cao HX, Hofmann M, Steiner W, Gailing O. Uncovering epigenetic and transcriptional regulation of growth in Douglas-fir: identification of differential methylation regions in mega-sized introns. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:863-875. [PMID: 37984804 PMCID: PMC10955500 DOI: 10.1111/pbi.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Tree growth performance can be partly explained by genetics, while a large proportion of growth variation is thought to be controlled by environmental factors. However, to what extent DNA methylation, a stable epigenetic modification, contributes to phenotypic plasticity in the growth performance of long-lived trees remains unclear. In this study, a comparative analysis of targeted DNA genotyping, DNA methylation and mRNAseq profiling for needles of 44-year-old Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco) having contrasting growth characteristics was performed. In total, we identified 195 differentially expressed genes (DEGs) and 115 differentially methylated loci (DML) that are associated with genes involved in fitness-related processes such as growth, stress management, plant development and energy resources. Interestingly, all four intronic DML were identified in mega-sized (between 100 and 180 kbp in length) and highly expressed genes, suggesting specialized regulation mechanisms of these long intron genes in gymnosperms. DNA repetitive sequences mainly comprising long-terminal repeats of retroelements are involved in growth-associated DNA methylation regulation (both hyper- and hypomethylation) of 99 DML (86.1% of total DML). Furthermore, nearly 14% of the DML was not tagged by single nucleotide polymorphisms, suggesting a unique contribution of the epigenetic variation in tree growth.
Collapse
Affiliation(s)
- Giang Thi Ha Vu
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| | - Martin Hofmann
- Nordwestdeutsche Forstliche VersuchsanstaltAbteilung WaldgenressourcenHann. MündenGermany
| | - Wilfried Steiner
- Nordwestdeutsche Forstliche VersuchsanstaltAbteilung WaldgenressourcenHann. MündenGermany
| | - Oliver Gailing
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| |
Collapse
|
5
|
Yang K, Llusià J, Preece C, Ogaya R, Márquez Tur L, Mu Z, You C, Xu Z, Tan Y, Peñuelas J. Impacts of seasonality, drought, nitrogen fertilization, and litter on soil fluxes of biogenic volatile organic compounds in a Mediterranean forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167354. [PMID: 37774858 DOI: 10.1016/j.scitotenv.2023.167354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) play critical roles in ecosystems at various scales, influencing above- and below-ground interactions and contributing to the atmospheric environment. Nonetheless, there is a lack of research on soil BVOC fluxes and their response to environmental changes. This study aimed to investigate the impact of drought, nitrogen (N) fertilization, and litter manipulation on soil BVOC fluxes in a Mediterranean forest. We assessed the effects of drought and N fertilization on soil BVOC exchanges and soil CO2 fluxes over two consecutive years using a dynamic chamber method, and solid-phase microextraction was utilized to quantify soil BVOCs in one year. Our findings revealed that the soil acted as an annual net sink for isoprenoids (1.30-10.33 μg m-2 h-1), with the highest uptake rates observed during summers (25.90 ± 9.36 μg m-2 h-1). The increased summer uptake can be attributed to the significant concentration gradient of BVOCs between atmosphere and soil. However, strong seasonal dynamics were observed, as the soil acted as a source of BVOCs in spring and autumn. The uptake rate of isoprenoids exhibited a significant positive correlation with soil temperature and atmospheric isoprenoid concentrations, while displaying a negative correlation with soil moisture and soil CO2 flux. The effects of drought and N fertilization on soil BVOCs were influenced by the type of VOCs, litter layer, and season. Specifically, drought significantly affected the exchange rate and quantities of sesquiterpenes. N fertilization led to increased emissions of specific BVOCs (α-pinene and camphene) due to the stimulation of litter emissions. These findings underscore the importance of the soil as a sink for atmospheric BVOCs in this dry Mediterranean ecosystem. Future drought conditions may significantly impact soil water content, resulting in drier soils throughout the year, which will profoundly affect the exchange of soil BVOCs between the soil and atmosphere.
Collapse
Affiliation(s)
- Kaijun Yang
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain.
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Catherine Preece
- Institute of Agrifood Research and Technology (IRTA), Sustainability in Biosystems Programme, Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Roma Ogaya
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Laura Márquez Tur
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Zhaobin Mu
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chengming You
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenfeng Xu
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Tan
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Su J, Wang Y, Bai M, Peng T, Li H, Xu HJ, Guo G, Bai H, Rong N, Sahu SK, He H, Liang X, Jin C, Liu W, Strube ML, Gram L, Li Y, Wang E, Liu H, Wu H. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. MICROBIOME 2023; 11:61. [PMID: 36973820 PMCID: PMC10044787 DOI: 10.1186/s40168-023-01504-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The medicinal material quality of Citrus reticulata 'Chachi' differs depending on the bioactive components influenced by the planting area. Environmental factors, such as soil nutrients, the plant-associated microbiome and climatic conditions, play important roles in the accumulation of bioactive components in citrus. However, how these environmental factors mediate the production of bioactive components of medicinal plants remains understudied. RESULTS Here, a multi-omics approach was used to clarify the role of environmental factors such as soil nutrients and the root-associated microbiome on the accumulation of monoterpenes in the peel of C. reticulata 'Chachi' procured from core (geo-authentic product region) and non-core (non-geo-authentic product region) geographical regions. The soil environment (high salinity, Mg, Mn and K) enhanced the monoterpene content by promoting the expression of salt stress-responsive genes and terpene backbone synthase in the host plants from the core region. The microbial effects on the monoterpene accumulation of citrus from the core region were further verified by synthetic community (SynCom) experiments. Rhizosphere microorganisms activated terpene synthesis and promoted monoterpene accumulation through interactions with the host immune system. Endophyte microorganisms derived from soil with the potential for terpene synthesis might enhance monoterpene accumulation in citrus by providing precursors of monoterpenes. CONCLUSIONS Overall, this study demonstrated that both soil properties and the soil microbiome impacted monoterpene production in citrus peel, thus providing an essential basis for increasing fruit quality via reasonable fertilization and precision microbiota management. Video Abstract.
Collapse
Affiliation(s)
- Jianmu Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tianhua Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huisi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hui-Juan Xu
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guifang Guo
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyi Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ning Rong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kgs. Lyngby, Denmark
| | - Yongtao Li
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Cobo-Simón I, Maloof JN, Li R, Amini H, Méndez-Cea B, García-García I, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Wegrzyn JL, Seco JI, Linares JC, Gallego FJ. Contrasting transcriptomic patterns reveal a genomic basis for drought resilience in the relict fir Abies pinsapo Boiss. TREE PHYSIOLOGY 2023; 43:315-334. [PMID: 36210755 DOI: 10.1093/treephys/tpac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Climate change challenges the adaptive capacity of several forest tree species in the face of increasing drought and rising temperatures. Therefore, understanding the mechanistic connections between genetic diversity and drought resilience is highly valuable for conserving drought-sensitive forests. Nonetheless, the post-drought recovery in trees from a transcriptomic perspective has not yet been studied by comparing contrasting phenotypes. Here, experimental drought treatments, gas-exchange dynamics and transcriptomic analysis (RNA-seq) were performed in the relict and drought-sensitive fir Abies pinsapo Boiss. to identify gene expression differences over immediate (24 h) and extended drought (20 days). Post-drought responses were investigated to define resilient and sensitive phenotypes. Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of A. pinsapo drought resilience. Weighted gene co-expression network analysis showed an activation of stomatal closing and an inhibition of plant growth-related genes during the immediate drought, consistent with an isohydric dynamic. During the extended drought, transcription factors, as well as cellular damage and homeostasis protection-related genes prevailed. Resilient individuals activate photosynthesis-related genes and inhibit aerial growth-related genes, suggesting a shifting shoot/root biomass allocation to improve water uptake and whole-plant carbon balance. About, 152 fixed SNPs were found between resilient and sensitive seedlings, which were mostly located in RNA-activity-related genes, including epigenetic regulation. Contrasting gene expression and SNPs were found between different post-drought resilience phenotypes for the first time in a forest tree, suggesting a transcriptomic and genomic basis for drought resilience. The obtained drought-related transcriptomic profile and drought-resilience candidate genes may guide conservation programs for this threatened tree species.
Collapse
Affiliation(s)
- Irene Cobo-Simón
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Julin N Maloof
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Ruijuan Li
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Hajar Amini
- University of California at Davis, Department of Plant Biology, Davis, CA 95616, USA
| | - Belén Méndez-Cea
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Isabel García-García
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - José Ignacio Seco
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Carlos Linares
- Dpto Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Dpto Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid 28040, Spain
| |
Collapse
|
8
|
Gugliuzzo A, Kreuzwieser J, Ranger CM, Tropea Garzia G, Biondi A, Biedermann PHW. Volatiles of fungal cultivars act as cues for host-selection in the fungus-farming ambrosia beetle Xylosandrus germanus. Front Microbiol 2023; 14:1151078. [PMID: 37125205 PMCID: PMC10140376 DOI: 10.3389/fmicb.2023.1151078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/28/2023] [Indexed: 05/02/2023] Open
Abstract
Many wood-boring insects use aggregation pheromones during mass colonization of host trees. Bark beetles (Curculionidae: Scolytinae) are a model system, but much less is known about the role of semiochemicals during host selection by ambrosia beetles. As an ecological clade within the bark beetles, ambrosia beetles are obligately dependent on fungal mutualists for their sole source of nutrition. Mass colonization of trees growing in horticultural settings by exotic ambrosia beetles can occur, but aggregation cues have remained enigmatic. To elucidate this mechanism, we first characterized the fungal associates of the exotic, mass-aggregating ambrosia beetle Xylosandrus germanus in Southern Germany. Still-air olfactometer bioassays documented the attraction of X. germanus to its primary nutritional mutualist Ambrosiella grosmanniae and to a lesser extent another common fungal isolate (Acremonium sp.). During two-choice bioassays, X. germanus was preferentially attracted to branch sections (i.e., bolts) that were either pre-colonized by conspecifics or pre-inoculated with A. grosmanniae. Subsequent analyses identified microbial volatile organic compounds (MVOCs) that could potentially function as aggregation pheromones for X. germanus. To our knowledge, this is the first evidence for fungal volatiles as attractive cues during host selection by X. germanus. Adaptive benefits of responding to fungal cues associated with an infestation of conspecifics could be a function of locating a suitable substrate for cultivating fungal symbionts and/or increasing the likelihood of mating opportunities with the flightless males. However, this requires solutions for evolutionary conflict arising due to potential mixing of vertically transmitted and horizontally acquired symbiont strains, which are discussed.
Collapse
Affiliation(s)
- Antonio Gugliuzzo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- *Correspondence: Antonio Gugliuzzo,
| | | | - Christopher M. Ranger
- Horticultural Insects Research Laboratory, USDA-Agricultural Research Service, Wooster, OH, United States
| | | | - Antonio Biondi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Peter H. W. Biedermann
- Chair for Forest Entomology and Protection, University of Freiburg, Stegen, Germany
- Peter H. W. Biedermann,
| |
Collapse
|
9
|
Yang W, Zhang B, Wu Y, Liu S, Kong F, Li L. Effects of soil drought and nitrogen deposition on BVOC emissions and their O 3 and SOA formation for Pinus thunbergii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120693. [PMID: 36402418 DOI: 10.1016/j.envpol.2022.120693] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Soil drought and nitrogen (N) deposition can influence the biogenic volatile organic compound (BVOC) emissions and thereby their ozone (O3) and secondary organic aerosol (SOA) formation. This study addressed their single and combined effects on BVOC emissions of Pinus thunbergii by laboratory simulation experiments. The results showed that light drought (LD, 50% soil volumetric water content (VWC)) stimulated isoprene, monoterpene, sesquiterpene, and total BVOC emissions, while moderate drought (MD, 30% and 40% VWC) and severe drought (SD, 10% and 20% VWC) inhibited their emissions (except for sesquiterpene in 20% VWC). N deposition decreased other VOC emissions and increased isoprene and sesquiterpene emissions. Total BVOCs and monoterpene were stimulated in low N deposition (LN, 2 g N/(m2·yr)) and inhibited in moderate (MN, 5 g N/(m2·yr)) and high N deposition (HN, 10 g N/(m2·yr)). Under combined treatment of soil drought and N deposition, total BVOC, monoterpene, and other VOC emissions were inhibited, sesquiterpene had no significant change, and isoprene emission was inhibited in MD combined treatment but promoted in SD. The O3 formation potential (OFP) and SOA formation potential (SOAP) from the changed BVOC emissions were calculated, OFP and SOAP of BVOC emissions and their compositions varied significantly among the treatments. Our study provided theoretical basis for assessing the impact of climate change and atmospheric pollution on BVOC emissions and their contribution to the formation of secondary atmospheric pollution.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Baowen Zhang
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Bahmani K, Robinson A, Majumder S, LaVardera A, Dowell JA, Goolsby EW, Mason CM. Broad diversity in monoterpene-sesquiterpene balance across wild sunflowers: Implications of leaf and floral volatiles for biotic interactions. AMERICAN JOURNAL OF BOTANY 2022; 109:2051-2067. [PMID: 36317693 DOI: 10.1002/ajb2.16093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
PREMISE As plant lineages diversify across environmental gradients, species are predicted to encounter divergent biotic pressures. This study investigated the evolution of volatile secondary metabolism across species of Helianthus. METHODS Leaves and petals of 40 species of wild Helianthus were analyzed via gas chromatography-mass spectrometry to determine volatile secondary metabolite profiles. RESULTS Across all species, 500 compounds were identified; 40% were sesquiterpenes, 18% monoterpenes, 3% diterpenes, 4% fatty acid derivatives, and 35% other compounds such as phenolics and small organic molecules. Qualitatively, annuals and species from more arid western climates had leaf compositions with a higher proportion of total monoterpenes, while erect perennials and species from more mesic eastern habitats contained a higher proportion of total sesquiterpenes. Among species, mass-based leaf monoterpene and sesquiterpene abundance were identified as largely orthogonal axes of variation by principal component analysis. Profiles for leaves were not strongly correlated with those of petals. CONCLUSIONS Volatile metabolites were highly diverse among wild Helianthus, indicating the value of this genus as a model system and rich genetic resource. The independence of leaf and petal volatile profiles indicates a low level of phenotypic integration between vegetative and reproductive structures, implying vegetative defense and reproductive defense or pollinator attraction functions mediated by terpene profiles in these two organs can evolve without major trade-offs. The major biosynthetic pathways for the major terpenes in wild Helianthus are already well described, providing a road map to deeper inquiry into the drivers of this diversity.
Collapse
Affiliation(s)
- Keivan Bahmani
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Sambadi Majumder
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | | | - Jordan A Dowell
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
11
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|
12
|
Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought. Int J Mol Sci 2022; 23:ijms23158441. [PMID: 35955577 PMCID: PMC9368996 DOI: 10.3390/ijms23158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low light and drought often limit the growth and performance of Masson pines (Pinus massoniana) in the subtropical forest ecosystem of China. We speculated that stress-induced defensive secondary metabolites, such as flavonoids and terpenoids, might influence the growth of Masson pines, considering the existence of tradeoffs between growth and defense. However, the mechanisms of Masson pines responsive to low light and drought at the levels of these two metabolites remain unclear. In the present work, the compositions of flavonoids and terpenoids, as well as their biosynthetic pathways, were revealed through metabolome and transcriptome analyses, respectively, coupled with a study on carbon allocation using a 13CO2-pulse-labeling experiment in two-year-old seedlings under low light (LL), drought (DR), and their combined stress (DL) compared to a control (CK). A total of 35 flavonoids and derivatives (LL vs. CK: 18; DR vs. CK: 20; and DL vs. CK: 18), as well as 29 terpenoids and derivatives (LL vs. CK: 23; DR vs. CK: 13; and DL vs. CK: 7), were differentially identified in the leaves. Surprisingly, most of them were decreased under all three stress regimes. At the transcriptomic level, most or all of the detected DEGs (differentially expressed genes) involved in the biosynthetic pathways of flavonoids and terpenoids were downregulated in phloem and xylem under stress treatments. This indicated that stress treatments limited the production of flavonoids and terpenoids. The reduction in the 13C allocation to stems might suggest that it is necessary for maintaining the growth of Masson pine seedlings at the whole-plant level by attenuating energetic resources to the biosynthetic pathways of flavonoids and terpenoids when facing the occurrence of adverse environments. Our results provide new insight into understanding the acclimation strategy of Masson pines or other conifers in adverse environments.
Collapse
|
13
|
Perreca E, Eberl F, Santoro MV, Wright LP, Schmidt A, Gershenzon J. Effect of Drought and Methyl Jasmonate Treatment on Primary and Secondary Isoprenoid Metabolites Derived from the MEP Pathway in the White Spruce Picea glauca. Int J Mol Sci 2022; 23:ijms23073838. [PMID: 35409197 PMCID: PMC8998179 DOI: 10.3390/ijms23073838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
White spruce (Picea glauca) emits monoterpenes that function as defensive signals and weapons after herbivore attack. We assessed the effects of drought and methyl jasmonate (MeJA) treatment, used as a proxy for herbivory, on monoterpenes and other isoprenoids in P. glauca. The emission of monoterpenes was significantly increased after MeJA treatment compared to the control, but drought suppressed the MeJA-induced increase. The composition of the emitted blend was altered strongly by stress, with drought increasing the proportion of oxygenated compounds and MeJA increasing the proportion of induced compounds such as linalool and (E)-β-ocimene. In contrast, no treatment had any significant effect on the levels of stored monoterpenes and diterpenes. Among other MEP pathway-derived isoprenoids, MeJA treatment decreased chlorophyll levels by 40%, but had no effect on carotenoids, while drought stress had no impact on either of these pigment classes. Of the three described spruce genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS) catalyzing the first step of the MEP pathway, the expression of only one, DXS2B, was affected by our treatments, being increased by MeJA and decreased by drought. These findings show the sensitivity of monoterpene emission to biotic and abiotic stress regimes, and the mediation of the response by DXS genes.
Collapse
Affiliation(s)
- Erica Perreca
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
- Correspondence:
| | - Franziska Eberl
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
- Faculty of Biological Sciences, Friedrich Schiller University, 07745 Jena, Germany
| | - Maricel Valeria Santoro
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
| | | | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
| |
Collapse
|
14
|
Kreuzwieser J, Meischner M, Grün M, Yáñez-Serrano AM, Fasbender L, Werner C. Drought affects carbon partitioning into volatile organic compound biosynthesis in Scots pine needles. THE NEW PHYTOLOGIST 2021; 232:1930-1943. [PMID: 34523149 DOI: 10.1111/nph.17736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The effect of drought on the interplay of processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and volatile organic compound (VOC) biosynthesis, is not fully understood. To elucidate the effect of drought on the fate of cellular C sources into VOCs vs CO2 , we conducted tracer experiments with 13 CO2 and position-specific 13 C-labelled pyruvate, a key metabolite between primary and secondary metabolisms, in Scots pine seedlings. We determined the stable carbon isotope composition of leaf exchanged CO2 and VOC. Drought reduced the emission of the sesquiterpenes α-farnesene and β-farnesene but did not affect 13 C-incorporation from 13 C-pyruvate. The labelling patterns suggest that farnesene biosynthesis partially depends on isopentenyl diphosphate crosstalk between chloroplasts and cytosol, and that drought inhibits this process. Contrary to sesquiterpenes, drought did not affect emission of isoprene, monoterpenes and some oxygenated compounds. During the day, pyruvate was used in the TCA cycle to a minor degree but was mainly consumed in pathways of secondary metabolism. Drought partly inhibited such pathways, while allocation into the TCA cycle increased. Drought caused a re-direction of pyruvate consuming pathways, which contributed to maintenance of isoprene and monoterpene production despite strongly inhibited photosynthesis. This underlines the importance of these volatiles for stress tolerance.
Collapse
Affiliation(s)
- Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Mirjam Meischner
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Michel Grün
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Ana Maria Yáñez-Serrano
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, 08034, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 08193, Spain
- Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Spain
| | - Lukas Fasbender
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
15
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Untargeted GC-TOFMS Analysis Reveals Metabolomic Changes in Salvia miltiorrhiza Bunge Leaf and Root in Response to Long-Term Drought Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salvia miltiorrhiza Bunge (Danshen) is an important traditional Chinese medicine herb. This study aimed to investigate the drought-responsive metabolic profiling in S. miltiorrhiza using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) analysis. Fifty day-old S. miltiorrhiza seedlings were treated with two (moderate drought, MD) and four weeks (high drought, HD) of withholding water. The S. miltiorrhiza leaf and root samples were prepared for the GC-TOFMS analysis. Differential metabolites with substantial changes in content in S. miltiorrhiza leaf and root were identified using multivariate and univariate statistics. A total of 178 and 157 annotated metabolites were detected in S. miltiorrhiza leaf and root, respectively. Multivariate analysis showed that significantly discriminant metabolites in S. miltiorrhiza leaf by drought were associated with “galactose metabolism” and “citrate cycle”. In addition, the significantly discriminant metabolites in S. miltiorrhiza root were associated with “starch and sucrose metabolism”. Univariate statistics showed that the content of succinic acid, d-glucose, and oxoglutaric acid in S. miltiorrhiza leaf was increased by drought (fold change, FC > 1.5). Allose, d-xylose, melibiose, mannose, sorbitol, quinic acid, sinigrin, and taurine in S. miltiorrhiza root were decreased by drought (FC < 0.67). There were different metabolic profiles between S. miltiorrhiza leaf and root. However, the influence of drought stress on the pharmacological value and accumulation of bioactive constituents in S. miltiorrhiza should be further investigated.
Collapse
|
17
|
López-Hinojosa M, de María N, Guevara MA, Vélez MD, Cabezas JA, Díaz LM, Mancha JA, Pizarro A, Manjarrez LF, Collada C, Díaz-Sala C, Cervera Goy MT. Rootstock effects on scion gene expression in maritime pine. Sci Rep 2021; 11:11582. [PMID: 34078936 PMCID: PMC8173007 DOI: 10.1038/s41598-021-90672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
Pines are the dominant conifers in Mediterranean forests. As long-lived sessile organisms that seasonally have to cope with drought periods, they have developed a variety of adaptive responses. However, during last decades, highly intense and long-lasting drought events could have contributed to decay and mortality of the most susceptible trees. Among conifer species, Pinus pinaster Ait. shows remarkable ability to adapt to different environments. Previous molecular analysis of a full-sib family designed to study drought response led us to find active transcriptional activity of stress-responding genes even without water deprivation in tolerant genotypes. To improve our knowledge about communication between above- and below-ground organs of maritime pine, we have analyzed four graft-type constructions using two siblings as rootstocks and their progenitors, Gal 1056 and Oria 6, as scions. Transcriptomic profiles of needles from both scions were modified by the rootstock they were grafted on. However, the most significant differential gene expression was observed in drought-sensitive Gal 1056, while in drought-tolerant Oria 6, differential gene expression was very much lower. Furthermore, both scions grafted onto drought-tolerant rootstocks showed activation of genes involved in tolerance to abiotic stress, and is most remarkable in Oria 6 grafts where higher accumulation of transcripts involved in phytohormone action, transcriptional regulation, photosynthesis and signaling has been found. Additionally, processes, such as those related to secondary metabolism, were mainly associated with the scion genotype. This study provides pioneering information about rootstock effects on scion gene expression in conifers.
Collapse
Affiliation(s)
- M López-Hinojosa
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - N de María
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - M A Guevara
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - M D Vélez
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - J A Cabezas
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - L M Díaz
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - J A Mancha
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - A Pizarro
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), Alcalá de Henares, Spain
| | - L F Manjarrez
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain
| | - C Collada
- Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain.,Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Forestal y Medio Natural, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - C Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), Alcalá de Henares, Spain
| | - M T Cervera Goy
- Departamento de Ecología y Genética Forestal, Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain. .,Unidad Mixta de Genómica y Ecofisiología Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/Universidad Politécnica de Madrid (INIA/UPM), Madrid, Spain.
| |
Collapse
|
18
|
George J, Schueler S, Grabner M, Karanitsch‐Ackerl S, Mayer K, Stierschneider M, Weissenbacher L, van Loo M. Looking for the needle in a downsized haystack: Whole-exome sequencing unravels genomic signals of climatic adaptation in Douglas-fir ( Pseudotsuga menziesii). Ecol Evol 2021; 11:8238-8253. [PMID: 34188883 PMCID: PMC8216971 DOI: 10.1002/ece3.7654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022] Open
Abstract
Conifers often occur along steep gradients of diverse climates throughout their natural ranges, which is expected to result in spatially varying selection to local climate conditions. However, signals of climatic adaptation can often be confounded, because unraveled clines covary with signals caused by neutral evolutionary processes such as gene flow and genetic drift. Consequently, our understanding of how selection and gene flow have shaped phenotypic and genotypic differentiation in trees is still limited.A 40-year-old common garden experiment comprising 16 Douglas-fir (Pseudotsuga menziesii) provenances from a north-to-south gradient of approx. 1,000 km was analyzed, and genomic information was obtained from exome capture, which resulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. We used a restrictive and conservative filtering approach, which permitted us to include only SNPs and individuals in environmental association analysis (EAA) that were free of potentially confounding effects (LD, relatedness among trees, heterozygosity deficiency, and deviations from Hardy-Weinberg proportions). We used four conceptually different genome scan methods based on FST outlier detection and gene-environment association in order to disentangle truly adaptive SNPs from neutral SNPs.We found that a relatively small proportion of the exome showed a truly adaptive signal (0.01%-0.17%) when population substructuring and multiple testing was accounted for. Nevertheless, the unraveled SNP candidates showed significant relationships with climate at provenance origins, which strongly suggests that they have featured adaptation in Douglas-fir along a climatic gradient. Two SNPs were independently found by three of the employed algorithms, and one of them is in close proximity to an annotated gene involved in circadian clock control and photoperiodism as was similarly found in Populus balsamifera. Synthesis. We conclude that despite neutral evolutionary processes, phenotypic and genomic signals of adaptation to climate are responsible for differentiation, which in particular explain disparity between the well-known coastal and interior varieties of Douglas-fir.
Collapse
Affiliation(s)
- Jan‐Peter George
- Faculty of Science & TechnologyTartu ObservatoryUniversity of TartuTartuEstonia
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| | - Silvio Schueler
- Department of Forest Growth, Silviculture and GeneticsAustrian Research Centre for ForestsViennaAustria
| | - Michael Grabner
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Sandra Karanitsch‐Ackerl
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | - Konrad Mayer
- Institute of Wood Science and TechnologyUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria
| | | | - Lambert Weissenbacher
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and Genetics/Unit of provenance research and breedingAustrian Research Centre for ForestsViennaAustria
| |
Collapse
|
19
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
20
|
Boncan DAT, Tsang SS, Li C, Lee IH, Lam HM, Chan TF, Hui JH. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int J Mol Sci 2020; 21:E7382. [PMID: 33036280 PMCID: PMC7583029 DOI: 10.3390/ijms21197382] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The interactions of plants with environment and insects are bi-directional and dynamic. Consequently, a myriad of mechanisms has evolved to engage organisms in different types of interactions. These interactions can be mediated by allelochemicals known as volatile organic compounds (VOCs) which include volatile terpenes (VTs). The emission of VTs provides a way for plants to communicate with the environment, including neighboring plants, beneficiaries (e.g., pollinators, seed dispersers), predators, parasitoids, and herbivores, by sending enticing or deterring signals. Understanding terpenoid distribution, biogenesis, and function provides an opportunity for the design and implementation of effective and efficient environmental calamity and pest management strategies. This review provides an overview of plant-environment and plant-insect interactions in the context of terpenes and terpenoids as important chemical mediators of these abiotic and biotic interactions.
Collapse
Affiliation(s)
- Delbert Almerick T. Boncan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Stacey S.K. Tsang
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| | - Ivy H.T. Lee
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jerome H.L. Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| |
Collapse
|
21
|
Nawae W, Shearman JR, Tangphatsornruang S, Punpee P, Yoocha T, Sangsrakru D, Naktang C, Sonthirod C, Wirojsirasak W, Ukoskit K, Sriroth K, Klomsa-Ard P, Pootakham W. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ 2020; 8:e9608. [PMID: 33240580 PMCID: PMC7676377 DOI: 10.7717/peerj.9608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/05/2020] [Indexed: 01/17/2023] Open
Abstract
Sugarcane contributes 80% of global sugar production and to bioethanol generation for the bioenergy industry. Its productivity is threatened by drought that can cause up to 60% yield loss. This study used RNA-Seq to gain a better understanding of the underlying mechanism by which drought-tolerant sugarcane copes with water stress. We compared gene expression in KPS01-12 (drought-tolerant genotype) and UT12 (drought-sensitive genotype) that have significantly different yield loss rates under drought conditions. We treated KPS01-12 and UT12 with mild and moderate water stress and found differentially expressed genes in various biological processes. KPS01-12 had higher expression of genes that were involved in water retention, antioxidant secondary metabolite biosynthesis, and oxidative and osmotic stress response than UT12. In contrast, the sensitive genotype had more down-regulated genes that were involved in photosynthesis, carbon fixation and Calvin cycle than the tolerant genotype. Our obtained expression profiles suggest that the tolerant sugarcane has a more effective genetic response than the sensitive genotype at the initiation of drought stress. The knowledge gained from this study may be applied in breeding programs to improve sugarcane production in drought conditions.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Jeremy R Shearman
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Prapat Punpee
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Warodom Wirojsirasak
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand.,Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Klanarong Sriroth
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Peeraya Klomsa-Ard
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
22
|
Bustamante MÁ, Michelozzi M, Barra Caracciolo A, Grenni P, Verbokkem J, Geerdink P, Safi C, Nogues I. Effects of Soil Fertilization on Terpenoids and Other Carbon-Based Secondary Metabolites in Rosmarinus officinalis Plants: A Comparative Study. PLANTS 2020; 9:plants9070830. [PMID: 32630705 PMCID: PMC7411580 DOI: 10.3390/plants9070830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
Abstract
Rosmarinus officinalis is an evergreen aromatic plant with important commercial interest as it contains numerous essential oils (composed of terpenoid compounds) and phenolic constituents (natural antioxidant compounds). This work aims at evaluating the concomitant effects of different inorganic and organic fertilization treatments and the subsequent increases in soil nutrient availability on terpenoids and other carbon-based secondary metabolites, e.g., flavonoids and phenolic compounds, in Rosmarinus officinalis leaves. The results showed that, as expected, the structural carbohydrate content (lignocellulosic compounds) in stems was higher in fertilized plants than in controls. Additionally, positive correlations were observed of the absolute amounts of total terpenoids and some single terpenoid compounds with N or P contents in leaves. On the contrary, the phenolic and flavonoid concentrations in all the rosemary plant parts were lower with the fertilization treatments. Indeed, negative correlations between the phenolic compounds (and flavonoids) and N in rosemary leaves were also found. Overall, the results suggest that the terpenoid production's response to fertilization was due to N, which is essential for protein synthesis and terpene synthase activity, and to P, which is necessary for the synthesis of both terpenoid precursors and ATP and NADPH, also needed for terpenoid synthesis. On the other hand, the basis for the fertilization's effects on the production of phenolic compounds is the direct nitrogen trade-off between growth and the shikimic acid pathway by which phenolics compounds are synthesized.
Collapse
Affiliation(s)
- Maria Ángeles Bustamante
- Department of Agrochemistry and Environment, Miguel Hernandez University, EPS-Orihuela, ctra. Beniel km 3.2, 03312 Orihuela, Spain;
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy;
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council, Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy; (A.B.C.); (P.G.)
| | - Paola Grenni
- Water Research Institute, National Research Council, Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy; (A.B.C.); (P.G.)
| | - Janine Verbokkem
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.V.); (P.G.); (C.S.)
| | - Peter Geerdink
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.V.); (P.G.); (C.S.)
| | - Carl Safi
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.V.); (P.G.); (C.S.)
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems, National Research Council, Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
- Correspondence: ; Tel.: +39-06-9067-2227
| |
Collapse
|
23
|
Duan Q, Bonn B, Kreuzwieser J. Terpenoids are transported in the xylem sap of Norway spruce. PLANT, CELL & ENVIRONMENT 2020; 43:1766-1778. [PMID: 32266975 DOI: 10.1111/pce.13763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Norway spruce is a conifer storing large amounts of terpenoids in resin ducts of various tissues. Parts of the terpenoids stored in needles can be emitted together with de novo synthesized terpenoids. Since previous studies provided hints on xylem transported terpenoids as a third emission source, we tested if terpenoids are transported in xylem sap of Norway spruce. We further aimed at understanding if they might contribute to terpenoid emission from needles. We determined terpenoid content and composition in xylem sap, needles, bark, wood and roots of field grown trees, as well as terpenoid emissions from needles. We found considerable amounts of terpenoids-mainly oxygenated compounds-in xylem sap. The terpenoid concentration in xylem sap was relatively low compared with the content in other tissues, where terpenoids are stored in resin ducts. Importantly, the terpenoid composition in the xylem sap greatly differed from the composition in wood, bark or roots, suggesting that an internal transport of terpenoids takes place at the sites of xylem loading. Four terpenoids were identified in xylem sap and emissions, but not within needle tissue, suggesting that these compounds are likely derived from xylem sap. Our work gives hints that plant internal transport of terpenoids exists within conifers; studies on their functions should be a focus of future research.
Collapse
Affiliation(s)
- Qiuxiao Duan
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Boris Bonn
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Junker-Frohn LV, Kleiber A, Jansen K, Gessler A, Kreuzwieser J, Ensminger I. Differences in isoprenoid-mediated energy dissipation pathways between coastal and interior Douglas-fir seedlings in response to drought. TREE PHYSIOLOGY 2019; 39:1750-1766. [PMID: 31287896 DOI: 10.1093/treephys/tpz075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/21/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Plants have evolved energy dissipation pathways to reduce photooxidative damage under drought when photosynthesis is hampered. Non-volatile and volatile isoprenoids are involved in non-photochemical quenching of excess light energy and scavenging of reactive oxygen species. A better understanding of trees' ability to cope with and withstand drought stress will contribute to mitigate the negative effects of prolonged drought periods expected under future climate conditions. Therefore we investigated if Douglas-fir (Pseudotsuga menziesii(Mirb.)) provenances from habitats with contrasting water availability reveal intraspecific variation in isoprenoid-mediated energy dissipation pathways. In a controlled drought experiment with 1-year-old seedlings of an interior and a coastal Douglas-fir provenance, we assessed the photosynthetic capacity, pool sizes of non-volatile isoprenoids associated with the photosynthetic apparatus, as well as pool sizes and emission of volatile isoprenoids. We observed variation in the amount and composition of non-volatile and volatile isoprenoids among provenances, which could be linked to variation in photosynthetic capacity under drought. The coastal provenance exhibited an enhanced biosynthesis and emission of volatile isoprenoids, which is likely sustained by generally higher assimilation rates under drought. In contrast, the interior provenance showed an enhanced photoprotection of the photosynthetic apparatus by generally higher amounts of non-volatile isoprenoids and increased amounts of xanthophyll cycle pigments under drought. Our results demonstrate that there is intraspecific variation in isoprenoid-mediated energy dissipation pathways among Douglas-fir provenances, which may be important traits when selecting provenances suitable to grow under future climate conditions.
Collapse
Affiliation(s)
- Laura Verena Junker-Frohn
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany
| | - Anita Kleiber
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Kirstin Jansen
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zürich, Switzerland
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
| | - Ingo Ensminger
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON, Canada
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestr. 4, 79100 Freiburg, Germany
| |
Collapse
|
25
|
Creyaufmüller FC, Chassignet I, Delb H, Dounavi A, Gailing O, Leinemann L, Kreuzwieser J, Teply-Szymanski J, Vornam B. Terpene Synthase Genes in Quercus robur - Gene Characterization, Expression and Resulting Terpenes Due to Cockchafer Feeding. FRONTIERS IN PLANT SCIENCE 2018; 9:1753. [PMID: 30559755 PMCID: PMC6287202 DOI: 10.3389/fpls.2018.01753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Root herbivory caused by larvae of the forest cockchafer (Melolontha hippocastani) enhances the impact of drought on trees, particularly in oak forest rejuvenations. In Germany, geographically distant oak stands show differences in infestation strength by the forest cockchafer. While in Southwestern Germany this insect causes severe damage, oak forests in northern Germany are rarely infested. It is known that root-released volatile organic compounds (VOCs) are perceived by soil herbivores, thus guiding the larvae toward the host roots. In this work, we exposed seedlings of two distant oak provenances to forest cockchafer larvae and studied their population genetic properties, their root-based VOC chemotypes, their attraction for larvae and terpene synthase gene expression. Based on nuclear and chloroplast marker analysis, we found both oak populations to be genetically highly variable while showing typical patterns of migration from different refugial regions. However, no clear association between genetic constitution of the different provenances and the abundance of cockchafer populations on site was observed. In contrast to observations in the field, bioassays revealed a preference of the larvae for the northeastern oak provenance. The behavior of larvae was most likely related to root-released volatile terpenes and benzenoids since their composition and quantity differed between oak populations. We assume repellent effects of these compounds because the populations attractive to insects showed low abundance of these compounds. Five different oak terpene synthase (TPS) genes were identified at the genomic level which can be responsible for biosynthesis of the released terpenes. TPS gene expression patterns in response to larval feeding revealed geographic variation rather than genotypic variation. Our results support the assumption that root-released VOC are influencing the perception of roots by herbivores.
Collapse
Affiliation(s)
| | - Isabelle Chassignet
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Horst Delb
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Aikaterini Dounavi
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| | - Ludger Leinemann
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| | - Jürgen Kreuzwieser
- Chair of Tree Physiology, Institute of Forest Science, University of Freiburg, Freiburg, Germany
| | - Julia Teply-Szymanski
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Freiburg, Germany
| | - Barbara Vornam
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1445. [PMID: 30333846 PMCID: PMC6176061 DOI: 10.3389/fpls.2018.01445] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Plant secondary compounds (PSCs), also called secondary metabolites, have high chemical and structural diversity and appear as non-volatile or volatile compounds. These compounds may have evolved to have specific physiological and ecological functions in the adaptation of plants to their growth environment. PSCs are produced by several metabolic pathways and many PSCs are specific for a few plant genera or families. In forest ecosystems, full-grown trees constitute the majority of plant biomass and are thus capable of producing significant amounts of PSCs. We summarize older literature and review recent progress in understanding the effects of abiotic and biotic factors on PSC production of forest trees and PSC behavior in forest ecosystems. The roles of different PSCs under stress and their important role in protecting plants against abiotic and biotic factors are also discussed. There was strong evidence that major climate change factors, CO2 and warming, have contradictory effects on the main PSC groups. CO2 increases phenolic compounds in foliage, but limits terpenoids in foliage and emissions. Warming decreases phenolic compounds in foliage but increases terpenoids in foliage and emissions. Other abiotic stresses have more variable effects. PSCs may help trees to adapt to a changing climate and to pressure from current and invasive pests and pathogens. Indirect adaptation comes via the effects of PSCs on soil chemistry and nutrient cycling, the formation of cloud condensation nuclei from tree volatiles and by CO2 sequestration into PSCs in the wood of living and dead forest trees.
Collapse
Affiliation(s)
- Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - James D. Blande
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
27
|
Haberstroh S, Kreuzwieser J, Lobo-do-Vale R, Caldeira MC, Dubbert M, Werner C. Terpenoid Emissions of Two Mediterranean Woody Species in Response to Drought Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1071. [PMID: 30083180 PMCID: PMC6064746 DOI: 10.3389/fpls.2018.01071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 05/23/2023]
Abstract
Drought is a major environmental constrain affecting plant performance and survival, particularly in Mediterranean ecosystems. Terpenoids may play a protective role under these conditions, however, observations of drought effects on plant terpenoid emissions are controversial ranging from decreased emissions to unaffected or increased release of terpenoids. In the present study we investigated terpenoid emissions of cork oak (Quercus suber) and gum rockrose (Cistus ladanifer) in response to summer drought stress in 2017. Pre-dawn leaf water potential (ΨPD) decreased from -0.64 to -1.72 MPa in Q. suber and from -1.69 to -4.05 MPa in C. ladanifer, indicating a transition from mild to severe drought along summer. Total terpenoid emissions decreased with drought, but differed significantly between species (p < 0.001) and in response to ΨPD, air temperature and assimilation rates. C. ladanifer emitted a large variety of >75 compounds comprising monoterpenes, sesquiterpenes and even diterpenes, which strongly decreased from 1.37 ± 0.23 μg g-1h-1 to 0.40 ± 0.08 μg g-1h-1 (p < 0.001) in response to drought. Total emission rates were positively correlated to air temperature (p < 0.001). C. ladanifer behavior points toward terpenoid leaf storage depletion and reduced substrate availability for terpenoid synthesis with increasing drought, most likely accelerated by high air temperatures. Q. suber emitted mainly monoterpenes and emissions declined significantly from June (0.50 ± 0.08 μg g-1h-1) to August (0.29 ± 0.02 μg g-1h-1) (p < 0.01). Emission rates were weakly correlated with net assimilation rates (R2 = 0.19, p < 0.001), but did not respond strongly to ΨPD and air temperature. Early onset of drought in 2017 most likely reduced plant metabolism in Q. suber, resulting in diminished, but stable terpenoid fluxes. Calculation of standard emission factors (at 30°C) revealed contrasting emission patterns of decreasing, unaffected, or increasing fluxes of single terpenoid compounds. Unaffected or drought-enhanced emissions of compounds such as α-pinene, camphene or manoyl oxide may point toward a specific role of these terpenoids in abiotic stress adaptation. In conclusion, these results suggest a strong negative, but species- and compound-specific effect of severe drought on terpenoid fluxes in Mediterranean ecosystems.
Collapse
Affiliation(s)
- Simon Haberstroh
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | - Raquel Lobo-do-Vale
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Maria C. Caldeira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Maren Dubbert
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
28
|
Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Sci Rep 2018; 8:6855. [PMID: 29717178 PMCID: PMC5931525 DOI: 10.1038/s41598-018-25056-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/16/2018] [Indexed: 11/16/2022] Open
Abstract
Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m−2 s−1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m−2 s−1) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m−2 s−1) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.
Collapse
|