1
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
2
|
Lin X, Olave-Achury A, Heal R, Pais M, Witek K, Ahn HK, Zhao H, Bhanvadia S, Karki HS, Song T, Wu CH, Adachi H, Kamoun S, Vleeshouwers VGAA, Jones JDG. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. MOLECULAR PLANT 2022; 15:1457-1469. [PMID: 35915586 DOI: 10.1016/j.molp.2022.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Andrea Olave-Achury
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Marina Pais
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - He Zhao
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Shivani Bhanvadia
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hari S Karki
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK
| | - Vivianne G A A Vleeshouwers
- Wageningen UR Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK.
| |
Collapse
|
3
|
Cheng W, Lin M, Chu M, Xiang G, Guo J, Jiang Y, Guan D, He S. RNAi-Based Gene Silencing of RXLR Effectors Protects Plants Against the Oomycete Pathogen Phytophthora capsici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:440-449. [PMID: 35196108 DOI: 10.1094/mpmi-12-21-0295-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytophthora capsici is a broad-host range oomycete pathogen that can cause severe phytophthora blight disease of pepper and hundreds of other plant species worldwide. Natural resistance against P. capsici is inadequate, and it is very difficult to control by most of existing chemical fungicides. Therefore, it is urgent to develop alternative strategies to control this pathogen. Recently, host-induced or spray-induced gene silencing of essential or virulent pathogen genes provided an effective strategy for disease controls. Here, we demonstrate that P. capsici can effectively take up small interfering RNAs (siRNAs) from the environment. According to RNA-seq and quantitative reverse transcription PCR analysis, we identified four P. capsici RXLR effector genes that are significantly up-regulated during the infection stage. Transient overexpression and promote-infection assays indicated that RXLR1 and RXLR4 could promote pathogen infection. Using a virus-induced gene silencing system in pepper plants, we found that in planta-expressing RNA interference (RNAi) constructs that target RXLR1 or RXLR4 could significantly reduce pathogen infection, while co-interfering RXLR1 and RXLR4 could confer a more enhanced resistance to P. capsici. We also found that exogenously applying siRNAs that target RXLR1 or RXLR4 could restrict growth of P. capsici on the pepper and Nicotiana benthamiana leaves; when targeting RXLR1 and RXLR4 simultaneously, the control effect was more remarkable. These data suggested that RNAi-based gene silencing of RXLR effectors has great potential for application in crop improvement against P. capsici and also provides an important basis for the development of RNA-based antioomycete agents.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wei Cheng
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Menglan Lin
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Moli Chu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Guixiang Xiang
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianwen Guo
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan Jiang
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuilin He
- National Education Minister Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
4
|
Receptor-mediated nonhost resistance in plants. Essays Biochem 2022; 66:435-445. [PMID: 35388900 PMCID: PMC9528085 DOI: 10.1042/ebc20210080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023]
Abstract
Nonhost resistance (NHR) is a plant immune response that prevents many microorganisms in the plant's environment from pathogenicity against the plant. Since successful pathogens have adapted to overcome the immune systems of their host, the durable nature of NHR has potential in the management of plant disease. At present, there is genetic and molecular evidence that the underlying molecular mechanisms of NHR are similar to the plant immune responses that occur in host plants following infection by adapted pathogens. We consider that the molecular basis of NHR is multilayered, conferred by physicochemical barriers and defense responses that are induced following molecular recognition events. Moreover, the relative contribution of each component may depend on evolutionary distances between host and nonhost plants of given pathogen species. This mini-review has focused on the current knowledge of plant NHR, especially the recognition of non-adapted pathogens by nonhost plants at the cellular level. Recent gains in understanding the roles of plasma membrane-localized pattern-recognition receptors (PRRs) and the cytoplasmic nucleotide-binding leucine-rich repeat receptors (NLRs) associated with these processes, as well as the genes involved, are summarized. Finally, we provide a theoretical perspective on the durability of receptor-mediated NHR and its practical potential as an innovative strategy for crop protection against pathogens.
Collapse
|
5
|
Ghimire B, Saraiva M, Andersen CB, Gogoi A, Saleh M, Zic N, van West P, Brurberg MB. Transformation systems, gene silencing and gene editing technologies in oomycetes. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
High-Quality Reference Genome Sequence for the Oomycete Vegetable Pathogen Phytophthora capsici Strain LT1534. Microbiol Resour Announc 2021; 10:e0029521. [PMID: 34042486 PMCID: PMC8201633 DOI: 10.1128/mra.00295-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.
Collapse
|
7
|
Dunker F, Oberkofler L, Lederer B, Trutzenberg A, Weiberg A. An Arabidopsis downy mildew non-RxLR effector suppresses induced plant cell death to promote biotroph infection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:718-732. [PMID: 33063828 PMCID: PMC7853606 DOI: 10.1093/jxb/eraa472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 05/11/2023]
Abstract
Our understanding of obligate biotrophic pathogens is limited by lack of knowledge concerning the molecular function of virulence factors. We established Arabidopsis host-induced gene silencing (HIGS) to explore gene functions of Hyaloperonospora arabidopsidis, including CYSTEINE-RICH PROTEIN (HaCR)1, a potential secreted effector gene of this obligate biotrophic pathogen. HaCR1 HIGS resulted in H. arabidopsidis-induced local plant cell death and reduced pathogen reproduction. We functionally characterized HaCR1 by ectopic expression in Nicotiana benthamiana. HaCR1 was capable of inhibiting effector-triggered plant cell death. Consistent with this, HaCR1 expression in N. benthamiana led to stronger disease symptoms caused by the hemibiotrophic oomycete pathogen Phytophthora capsici, but reduced disease symptoms caused by the necrotrophic fungal pathogen Botrytis cinerea. Expressing HaCR1 in transgenic Arabidopsis confirmed higher susceptibility to H. arabidopsidis and to the bacterial hemibiotrophic pathogen Pseudomonas syringae. Increased H. arabidopsidis infection was in accordance with reduced PATHOGENESIS RELATED (PR)1 induction. Expression of full-length HaCR1 was required for its function, which was lost if the signal peptide was deleted, suggesting its site of action in the plant apoplast. This study provides phytopathological and molecular evidence for the importance of this widespread, but largely unexplored class of non-RxLR effectors in biotrophic oomycetes.
Collapse
Affiliation(s)
- Florian Dunker
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Lorenz Oberkofler
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Bernhard Lederer
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Adriana Trutzenberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| | - Arne Weiberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Haile ZM, Gebremichael DE, Capriotti L, Molesini B, Negrini F, Collina M, Sabbadini S, Mezzetti B, Baraldi E. Double-Stranded RNA Targeting Dicer-Like Genes Compromises the Pathogenicity of Plasmopara viticola on Grapevine. FRONTIERS IN PLANT SCIENCE 2021; 12:667539. [PMID: 34084177 PMCID: PMC8167485 DOI: 10.3389/fpls.2021.667539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Downy mildew caused by Plasmopara viticola is one of the most devastating diseases of grapevine, attacking all green parts of the plant. The damage is severe when the infection at flowering stage is left uncontrolled. P. viticola management consumes a significant amount of classical pesticides applied in vineyards, requiring efficient and environmentally safe disease management options. Spray-induced gene silencing (SIGS), through the application of exogenous double-stranded RNA (dsRNA), has shown promising results for the management of diseases in crops. Here, we developed and tested the potential of dsRNA targeting P. viticola Dicer-like (DCL) genes for SIGS-based crop protection strategy. The exogenous application of PvDCL1/2 dsRNA, a chimera of PvDCL1 and PvDCL2, highly affected the virulence of P. viticola. The reduced expression level of PvDCL1 and PvDCL2 transcripts in infected leaves, treated with PvDCL1/2 dsRNA, was an indication of an active RNA interference mechanism inside the pathogen to compromise its virulence. Besides the protective property, the PvDCL1/2 dsRNA also exhibited a curative role by reducing the disease progress rate of already established infection. Our data provide a promising future for PvDCL1/2 dsRNA as a new generation of RNA-based resistant plants or RNA-based agrochemical for the management of downy mildew disease in grapevine.
Collapse
Affiliation(s)
- Zeraye Mehari Haile
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
- Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | | | - Luca Capriotti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Francesca Negrini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Marina Collina
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Elena Baraldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
- *Correspondence: Elena Baraldi,
| |
Collapse
|
9
|
Biotechnological Approaches: Gene Overexpression, Gene Silencing, and Genome Editing to Control Fungal and Oomycete Diseases in Grapevine. Int J Mol Sci 2020; 21:ijms21165701. [PMID: 32784854 PMCID: PMC7460970 DOI: 10.3390/ijms21165701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Downy mildew, powdery mildew, and grey mold are some of the phytopathological diseases causing economic losses in agricultural crops, including grapevine, worldwide. In the current scenario of increasing global warming, in which the massive use of agrochemicals should be limited, the management of fungal disease has become a challenge. The knowledge acquired on candidate resistant (R) genes having an active role in plant defense mechanisms has allowed numerous breeding programs to integrate these traits into selected cultivars, even though with some limits in the conservation of the proper qualitative characteristics of the original clones. Given their gene-specific mode of action, biotechnological techniques come to the aid of breeders, allowing them to generate simple and fast modifications in the host, without introducing other undesired genes. The availability of efficient gene transfer procedures in grapevine genotypes provide valid tools that support the application of new breeding techniques (NBTs). The expertise built up over the years has allowed the optimization of these techniques to overexpress genes that directly or indirectly limit fungal and oomycetes pathogens growth or silence plant susceptibility genes. Furthermore, the downregulation of pathogen genes which act as virulence effectors by exploiting the RNA interference mechanism, represents another biotechnological tool that increases plant defense. In this review, we summarize the most recent biotechnological strategies optimized and applied on Vitis species, aimed at reducing their susceptibility to the most harmful fungal and oomycetes diseases. The best strategy for combating pathogenic organisms is to exploit a holistic approach that fully integrates all these available tools.
Collapse
|
10
|
Li T, Wang Q, Feng R, Li L, Ding L, Fan G, Li W, Du Y, Zhang M, Huang G, Schäfer P, Meng Y, Tyler BM, Shan W. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. THE NEW PHYTOLOGIST 2019. [PMID: 31436314 DOI: 10.1111/nph.16139] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruirui Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Licai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meixiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Chen XR, Zhang Y, Li HY, Zhang ZH, Sheng GL, Li YP, Xing YP, Huang SX, Tao H, Kuan T, Zhai Y, Ma W. The RXLR Effector PcAvh1 Is Required for Full Virulence of Phytophthora capsici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:986-1000. [PMID: 30811314 DOI: 10.1094/mpmi-09-18-0251-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Ye Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hai-Yang Li
- 3College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zi-Hui Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Gui-Lin Sheng
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yan-Peng Li
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yu-Ping Xing
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Shen-Xin Huang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hang Tao
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tung Kuan
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Yi Zhai
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
12
|
Toljamo A, Blande D, Munawar M, Kärenlampi SO, Kokko H. Expression of the GAF Sensor, Carbohydrate-Active Enzymes, Elicitins, and RXLRs Differs Markedly Between Two Phytophthora cactorum Isolates. PHYTOPATHOLOGY 2019; 109:726-735. [PMID: 30412010 DOI: 10.1094/phyto-04-18-0136-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The phytopathogen Phytophthora cactorum infects economically important herbaceous and woody plant species. P. cactorum isolates differ in host specificity; for example, strawberry crown rot is often caused by a specialized pathotype. Here we compared the transcriptomes of two P. cactorum isolates that differ in their virulence to garden strawberry (Pc407: high virulence; Pc440: low virulence). De novo transcriptome assembly and clustering of contigs resulted in 19,372 gene clusters. Two days after inoculation of Fragaria vesca roots, 3,995 genes were differently expressed between the P. cactorum isolates. One of the genes that were highly expressed only in Pc407 encodes a GAF sensor protein potentially involved in membrane trafficking processes. Two days after inoculation, elicitins were highly expressed in Pc407 and lipid catabolism appeared to be more active than in Pc440. Of the carbohydrate-active enzymes, those that degrade pectin were often more highly expressed in Pc440, whereas members of glycosyl hydrolase family 1, potentially involved in the metabolism of glycosylated secondary metabolites, were more highly expressed in Pc407 at the time point studied. Differences were also observed among the RXLR effectors: Pc407 appears to rely on a smaller set of key RXLR effectors, whereas Pc440 expresses a greater number of RXLRs. This study is the first step toward improving understanding of the molecular basis of differences in the virulence of P. cactorum isolates. Identification of the key effectors is important, as it enables effector-assisted breeding strategies toward crown rot-resistant strawberry cultivars.
Collapse
Affiliation(s)
- Anna Toljamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Daniel Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Mustafa Munawar
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Sirpa O Kärenlampi
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Harri Kokko
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
13
|
Belisle RJ, McKee B, Hao W, Crowley M, Arpaia ML, Miles TD, Adaskaveg JE, Manosalva P. Phenotypic Characterization of Genetically Distinct Phytophthora cinnamomi Isolates from Avocado. PHYTOPATHOLOGY 2019; 109:384-394. [PMID: 30070969 DOI: 10.1094/phyto-09-17-0326-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytophthora cinnamomi, the causal agent of Phytophthora root rot (PRR), is the most destructive disease of avocado worldwide. A previous study identified two genetically distinct clades of A2 mating type avocado isolates in California; however, the phenotypic variation among them was not assessed. This study described the phenotype of a subset of isolates from these groups regarding growth rate, growth temperature, virulence, and fungicide sensitivity. Isolates corresponding to the A2 clade I group exhibited higher mycelial growth rate and sensitivity to higher temperatures than other isolates. Among the fungicides tested, potassium phosphite had the highest 50% effective concentration for mycelial growth inhibition and oxathiapiprolin had the lowest. Mycelial growth rate and potassium phosphite sensitivity phenotypes correlate with specific groups of isolates, suggesting that these traits could be a group characteristic. Moreover, isolates that are more virulent in avocado and less sensitive to potassium phosphite were identified. A detached-leaf P. cinnamomi inoculation method using Nicotiana benthamiana was developed and validated, providing an alternative method for assessing the virulence of a large number of isolates. This information will help avocado PRR management and assist breeding programs for the selection of rootstocks resistant against a more diverse pathogen population.
Collapse
Affiliation(s)
- Rodger J Belisle
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - Brandon McKee
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - Wei Hao
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - Margaret Crowley
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - Mary Lu Arpaia
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - Timothy D Miles
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - James E Adaskaveg
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| | - Patricia Manosalva
- First, second, third, seventh, and eighth authors: Department of Microbiology and Plant Pathology, and fourth and fifth authors: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521; and sixth author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955
| |
Collapse
|
14
|
Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust ( Albugo candida). Proc Natl Acad Sci U S A 2019; 116:2767-2773. [PMID: 30692254 PMCID: PMC6377460 DOI: 10.1073/pnas.1812911116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most plants resist most plant pathogens. Barley resists wheat-infecting powdery mildew races (and vice versa), and both barley and wheat resist potato late blight. Such “nonhost” resistance could result because the pathogen fails to suppress defense or triggers innate immunity due to failure to evade detection. Albugo candida causes white rust on most Brassicaceae, and we investigated Arabidopsis NHR to Brassica-infecting races. Transgressive segregation for resistance in Arabidopsis recombinant inbred lines revealed genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. Some of these NLR-encoding genes confer resistance to white rust in Brassica sp. This genetic method thus provides a route to reveal resistance genes for crops, widening the pool from which such genes might be obtained. Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens.
Collapse
|
15
|
Evolution of Disease Defense Genes and Their Regulators in Plants. Int J Mol Sci 2019; 20:ijms20020335. [PMID: 30650550 PMCID: PMC6358896 DOI: 10.3390/ijms20020335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Biotic stresses do damage to the growth and development of plants, and yield losses for some crops. Confronted with microbial infections, plants have evolved multiple defense mechanisms, which play important roles in the never-ending molecular arms race of plant–pathogen interactions. The complicated defense systems include pathogen-associated molecular patterns (PAMP) triggered immunity (PTI), effector triggered immunity (ETI), and the exosome-mediated cross-kingdom RNA interference (CKRI) system. Furthermore, plants have evolved a classical regulation system mediated by miRNAs to regulate these defense genes. Most of the genes/small RNAs or their regulators that involve in the defense pathways can have very rapid evolutionary rates in the longitudinal and horizontal co-evolution with pathogens. According to these internal defense mechanisms, some strategies such as molecular switch for the disease resistance genes, host-induced gene silencing (HIGS), and the new generation of RNA-based fungicides, have been developed to control multiple plant diseases. These broadly applicable new strategies by transgene or spraying ds/sRNA may lead to reduced application of pesticides and improved crop yield.
Collapse
|
16
|
Gilbert B, Bettgenhaeuser J, Upadhyaya N, Soliveres M, Singh D, Park RF, Moscou MJ, Ayliffe M. Components of Brachypodium distachyon resistance to nonadapted wheat stripe rust pathogens are simply inherited. PLoS Genet 2018; 14:e1007636. [PMID: 30265668 PMCID: PMC6161853 DOI: 10.1371/journal.pgen.1007636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022] Open
Abstract
Phytopathogens have a limited range of host plant species that they can successfully parasitise ie. that they are adapted for. Infection of plants by nonadapted pathogens often results in an active resistance response that is relatively poorly characterised because phenotypic variation in this response often does not exist within a plant species, or is too subtle for genetic dissection. In addition, complex polygenic inheritance often underlies these resistance phenotypes and mutagenesis often does not impact upon this resistance, presumably due to genetic or mechanistic redundancy. Here it is demonstrated that phenotypic differences in the resistance response of Brachypodium distachyon to the nonadapted wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) are genetically tractable and simply inherited. Two dominant loci were identified on B. distachyon chromosome 4 that each reduce attempted Pst colonisation compared with sib and parent lines without these loci. One locus (Yrr1) is effective against diverse Australian Pst isolates and present in two B. distachyon mapping families as a conserved region that was reduced to 5 candidate genes by fine mapping. A second locus, Yrr2, shows Pst race-specificity and encodes a disease resistance gene family typically associated with host plant resistance. These data indicate that some components of resistance to nonadapted pathogens are genetically tractable in some instances and may mechanistically overlap with host plant resistance to avirulent adapted pathogens.
Collapse
Affiliation(s)
- Brian Gilbert
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| | - Jan Bettgenhaeuser
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Narayana Upadhyaya
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| | - Melanie Soliveres
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| | - Davinder Singh
- University of Sydney, Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Robert F. Park
- University of Sydney, Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Matthew J. Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| |
Collapse
|
17
|
Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, Wen Q, Shan W. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity. MOLECULAR PLANT 2018; 11:1067-1083. [PMID: 29864524 DOI: 10.1016/j.molp.2018.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora pathogens secrete a large arsenal of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Phytophthora effectors manipulate host plant cells still remain largely unclear. In this study, we report that PcAvr3a12, a Phytophthora capsici RXLR effector and a member of the Avr3a effector family, suppresses plant immunity by targeting and inhibiting host plant peptidyl-prolyl cis-trans isomerase (PPIase). Overexpression of PcAvr3a12 in Arabidopsis thaliana enhanced plant susceptibility to P. capsici. FKBP15-2, an endoplasmic reticulum (ER)-localized protein, was identified as a host target of PcAvr3a12 during early P. capsici infection. Analyses of A. thaliana T-DNA insertion mutant (fkbp15-2), RNAi, and overexpression lines consistently showed that FKBP15-2 positively regulates plant immunity in response to Phytophthora infection. FKBP15-2 possesses PPIase activity essential for its contribution to immunity but is directly suppressed by PcAvr3a12. Interestingly, we found that FKBP15-2 is involved in ER stress sensing and is required for ER stress-mediated plant immunity. Taken together, these results suggest that P. capsici deploys an RXLR effector, PcAvr3a12, to facilitate infection by targeting and suppressing a novel ER-localized PPIase, FKBP15-2, which is required for ER stress-mediated plant immunity.
Collapse
Affiliation(s)
- Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyu Qiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Barchenger DW, Lamour KH, Bosland PW. Challenges and Strategies for Breeding Resistance in Capsicum annuum to the Multifarious Pathogen, Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2018; 9:628. [PMID: 29868083 PMCID: PMC5962783 DOI: 10.3389/fpls.2018.00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici is the most devastating pathogen for chile pepper production worldwide and current management strategies are not effective. The population structure of the pathogen is highly variable and few sources of widely applicable host resistance have been identified. Recent genomic advancements in the host and the pathogen provide important insights into the difficulties reported by epidemiological and physiological studies published over the past century. This review highlights important challenges unique to this complex pathosystem and suggests strategies for resistance breeding to help limit losses associated with P. capsici.
Collapse
Affiliation(s)
- Derek W. Barchenger
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul W. Bosland
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
19
|
Wang M, Thomas N, Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:133-141. [PMID: 28570950 PMCID: PMC5720367 DOI: 10.1016/j.pbi.2017.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 05/19/2023]
Abstract
Small RNA (sRNA) induces RNA interference (RNAi) in almost all eukaryotes. While sRNAs can move within an organism, they can also move between interacting organisms to induce gene silencing, a phenomenon called 'cross-kingdom RNAi'. Some sRNAs from pathogens or pests move into host cells and suppress host immunity in both plants and animals; whereas some host sRNAs travel into pathogen/pest cells to inhibit their virulence. Moreover, uptake of exogenous RNAs from the environment was recently discovered in certain fungal pathogens, which makes it possible to suppress fungal diseases by directly applying pathogen-targeting RNAs on crops and post-harvest products. This new-generation of RNA-based fungicides is powerful, environmentally friendly, and can be easily adapted to control multiple diseases simultaneously.
Collapse
Affiliation(s)
- Ming Wang
- Department of Plant Pathology & Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, United States
| | - Nicholas Thomas
- Department of Plant Pathology & Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, United States
| | - Hailing Jin
- Department of Plant Pathology & Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, United States.
| |
Collapse
|
20
|
Lefebvre FA, Lécuyer E. Small Luggage for a Long Journey: Transfer of Vesicle-Enclosed Small RNA in Interspecies Communication. Front Microbiol 2017; 8:377. [PMID: 28360889 PMCID: PMC5352665 DOI: 10.3389/fmicb.2017.00377] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
In the evolutionary arms race, symbionts have evolved means to modulate each other's physiology, oftentimes through the dissemination of biological signals. Beyond small molecules and proteins, recent evidence shows that small RNA molecules are transferred between organisms and transmit functional RNA interference signals across biological species. However, the mechanisms through which specific RNAs involved in cross-species communication are sorted for secretion and protected from degradation in the environment remain largely enigmatic. Over the last decade, extracellular vesicles have emerged as prominent vehicles of biological signals. They can stabilize specific RNA transcripts in biological fluids and selectively deliver them to recipient cells. Here, we review examples of small RNA transfers between plants and bacterial, fungal, and animal symbionts. We also discuss the transmission of RNA interference signals from intestinal cells to populations of the gut microbiota, along with its roles in intestinal homeostasis. We suggest that extracellular vesicles may contribute to inter-species crosstalk mediated by small RNA. We review the mechanisms of RNA sorting to extracellular vesicles and evaluate their relevance in cross-species communication by discussing conservation, stability, stoichiometry, and co-occurrence of vesicles with alternative communication vehicles.
Collapse
Affiliation(s)
- Fabio A. Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
- Divison of Experimental Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
21
|
Vega-Arreguín JC, Shimada-Beltrán H, Sevillano-Serrano J, Moffett P. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp. FRONTIERS IN PLANT SCIENCE 2017; 8:205. [PMID: 28261255 PMCID: PMC5309224 DOI: 10.3389/fpls.2017.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/03/2017] [Indexed: 05/29/2023]
Abstract
The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.
Collapse
Affiliation(s)
- Julio C. Vega-Arreguín
- Boyce Thompson Institute for Plant Research, IthacaNY, USA
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Harumi Shimada-Beltrán
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Jacobo Sevillano-Serrano
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Peter Moffett
- Boyce Thompson Institute for Plant Research, IthacaNY, USA
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, SherbrookeQC, Canada
| |
Collapse
|
22
|
Mantelin S, Thorpe P, Jones JT. Translational biology of nematode effectors. Or, to put it another way, functional analysis of effectors – what’s the point? NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a huge amount of work put into identifying and characterising effectors from plant-parasitic nematodes in recent years. Although this work has provided insights into the mechanisms by which nematodes can infect plants, the potential translational outputs of much of this research are not always clear. This short article will summarise how developments in effector biology have allowed, or will allow, new control strategies to be developed, drawing on examples from nematology and from other pathosystems.
Collapse
Affiliation(s)
- Sophie Mantelin
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter Thorpe
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John T. Jones
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Biology Department, University of St Andrews, St Andrews, Fife KY16 9TZ, UK
| |
Collapse
|
23
|
Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Choi E, Lee SE, Choi D. Current Understandings of Plant Nonhost Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:5-15. [PMID: 27925500 DOI: 10.1094/mpmi-10-16-0213-cr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Joohyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
24
|
Wang M, Weiberg A, Lin FM, Thomma B, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. NATURE PLANTS 2016; 2:16151. [PMID: 27643635 PMCID: PMC5040644 DOI: 10.1038/nplants.2016.151] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 09/01/2016] [Indexed: 05/17/2023]
Abstract
Aggressive fungal pathogens such as Botrytis and Verticillium spp. cause severe crop losses worldwide. We recently discovered that Botrytis cinerea delivers small RNAs (Bc-sRNAs) into plant cells to silence host immunity genes. Such sRNA effectors are mostly produced by Botrytis cinerea Dicer-like protein 1 (Bc-DCL1) and Bc-DCL2. Here we show that expressing sRNAs that target Bc-DCL1 and Bc-DCL2 in Arabidopsis and tomato silences Bc-DCL genes and attenuates fungal pathogenicity and growth, exemplifying bidirectional cross-kingdom RNAi and sRNA trafficking between plants and fungi. This strategy can be adapted to simultaneously control multiple fungal diseases. We also show that Botrytis can take up external sRNAs and double-stranded RNAs (dsRNAs). Applying sRNAs or dsRNAs that target Botrytis DCL1 and DCL2 genes on the surface of fruits, vegetables and flowers significantly inhibits grey mould disease. Such pathogen gene-targeting RNAs represent a new generation of environmentally friendly fungicides.
Collapse
Affiliation(s)
- Ming Wang
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Feng-Mao Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Bart Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
- Correspondence to Hailing Jin.
| |
Collapse
|
25
|
Chaloner T, van Kan JAL, Grant-Downton RT. RNA 'Information Warfare' in Pathogenic and Mutualistic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:738-748. [PMID: 27318950 DOI: 10.1016/j.tplants.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Regulatory non-coding RNAs are emerging as key players in host-pathogen interactions. Small RNAs such as microRNAs are implicated in regulating plant transcripts involved in immunity and defence. Surprisingly, RNAs with silencing properties can be translocated from plant hosts to various invading pathogens and pests. Small RNAs are now confirmed virulence factors, with the first report of fungal RNAs that travel to host cells and hijack post-transcriptional regulatory machinery to suppress host defence. Here, we argue that trans-organism movement of RNAs represents a common mechanism of control in diverse interactions between plants and other eukaryotes. We suggest that extracellular vesicles are the key to such RNA movement events. Plant pathosystems serve as excellent experimental models to dissect RNA 'information warfare' and other RNA-mediated interactions.
Collapse
Affiliation(s)
- Thomas Chaloner
- The Queen's College, University of Oxford, High Street, Oxford, UK
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
26
|
Ye W, Ma W. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Curr Opin Microbiol 2016; 32:1-6. [PMID: 27104934 DOI: 10.1016/j.mib.2016.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
Abstract
Filamentous eukaryotic pathogens including fungi and oomycetes are major threats of plant health. During the co-evolutionary arms race with the hosts, these pathogens have evolved a large repertoire of secreted virulence proteins, called effectors, to facilitate colonization and infection. Many effectors are believed to directly manipulate targeted processes inside the host cells; and a fundamental function of the effectors is to dampen immunity. Recent evidence suggests that the destructive oomycete pathogens in the genus Phytophthora encode RNA silencing suppressors. These effectors play an important virulence role during infection, likely through their inhibitory effect on host small RNA-mediated defense.
Collapse
Affiliation(s)
- Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA; Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
27
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|
28
|
Rajaraman J, Douchkov D, Hensel G, Stefanato FL, Gordon A, Ereful N, Caldararu OF, Petrescu AJ, Kumlehn J, Boyd LA, Schweizer P. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:1836. [PMID: 28018377 PMCID: PMC5156707 DOI: 10.3389/fpls.2016.01836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/21/2016] [Indexed: 05/04/2023]
Abstract
Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Pathogen-Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland, Germany
| | - Dimitar Douchkov
- Pathogen-Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland, Germany
| | - Götz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland, Germany
| | | | - Anna Gordon
- National Institute of Agricultural BotanyCambridge, UK
| | - Nelzo Ereful
- National Institute of Agricultural BotanyCambridge, UK
| | - Octav F. Caldararu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian AcademyBucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian AcademyBucharest, Romania
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland, Germany
| | | | - Patrick Schweizer
- Pathogen-Stress Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt Seeland, Germany
- *Correspondence: Patrick Schweizer,
| |
Collapse
|
29
|
Iribarren MJ, Pascuan C, Soto G, Ayub ND. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island. FEMS Microbiol Lett 2015; 362:fnv189. [PMID: 26443834 DOI: 10.1093/femsle/fnv189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 11/12/2022] Open
Abstract
Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora.
Collapse
Affiliation(s)
- María Josefina Iribarren
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Universidad Nacional de Luján, Buenos Aires, CP1428, Argentina
| | - Cecilia Pascuan
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| | - Gabriela Soto
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| | - Nicolás Daniel Ayub
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| |
Collapse
|
30
|
Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Recent Progress in RXLR Effector Research. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1063-72. [PMID: 26125490 DOI: 10.1094/mpmi-01-15-0022-cr] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Some of the most devastating oomycete pathogens deploy effector proteins, with the signature amino acid motif RXLR, that enter plant cells to promote virulence. Research on the function and evolution of RXLR effectors has been very active over the decade that has transpired since their discovery. Comparative genomics indicate that RXLR genes play a major role in virulence for Phytophthora and downy mildew species. Importantly, gene-for-gene resistance against these oomycete lineages is based on recognition of RXLR proteins. Comparative genomics have revealed several mechanisms through which this resistance can be broken, most notably involving epigenetic control of RXLR gene expression. Structural studies have revealed a core fold that is present in the majority of RXLR proteins, providing a foundation for detailed mechanistic understanding of virulence and avirulence functions. Finally, functional studies have demonstrated that suppression of host immunity is a major function for RXLR proteins. Host protein targets are being identified in a variety of plant cell compartments. Some targets comprise hubs that are also manipulated by bacteria and fungi, thereby revealing key points of vulnerability in the plant immune network.
Collapse
Affiliation(s)
- Ryan G Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Devdutta Deb
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - Kevin Fedkenheuer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| | - John M McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, U.S.A
| |
Collapse
|
31
|
Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:875-83. [PMID: 25487781 DOI: 10.1111/pbi.12307] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/18/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
Host-induced gene silencing (HIGS) is an RNA interference-based approach in which small interfering RNAs (siRNAs) are produced in the host plant and subsequently move into the pathogen to silence pathogen genes. As a proof-of-concept, we generated stable transgenic lettuce plants expressing siRNAs targeting potentially vital genes of Bremia lactucae, a biotrophic oomycete that causes downy mildew, the most important disease of lettuce worldwide. Transgenic plants, expressing inverted repeats of fragments of either the Highly Abundant Message #34 (HAM34) or Cellulose Synthase (CES1) genes of B. lactucae, specifically suppressed expression of these genes, resulting in greatly reduced growth and inhibition of sporulation of B. lactucae. This demonstrates that HIGS can provide effective control of B. lactucae in lettuce; such control does not rely on ephemeral resistance conferred by major resistance genes and therefore offers new opportunities for durable control of diverse diseases in numerous crops.
Collapse
Affiliation(s)
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Richard W Michelmore
- Genome Center, University of California, Davis, CA, USA
- Departments of Plant Science, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, USA
| |
Collapse
|
32
|
Baulcombe DC. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:141-6. [PMID: 26247121 DOI: 10.1016/j.pbi.2015.06.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/28/2015] [Accepted: 06/06/2015] [Indexed: 05/21/2023]
Abstract
Recent evidence indicates two-way traffic of silencing RNA between filamentous organisms and their plant hosts. There are also indications that suppressors of RNA silencing are transferred from filamentous organisms into host plant cells where they influence the innate immune system. Here I use virus disease as a template for interpretation of RNA silencing in connection with filamentous organisms and infected plant cells. I propose that host plant interactions of these organisms are influenced by RNA silencing networks in which there are: small interfering RNAs from the host that are transported into the filamentous organism and vice versa; silencing suppressors from the organism that are transported into the host; endogenous small interfering RNAs and micro RNAs that target components of the innate immune system or endogenous suppressors of the innate immune system.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
33
|
Fu L, Zhu C, Ding X, Yang X, Morris PF, Tyler BM, Zhang X. Characterization of Cell-Death-Inducing Members of the Pectate Lyase Gene Family in Phytophthora capsici and Their Contributions to Infection of Pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:766-75. [PMID: 25775270 DOI: 10.1094/mpmi-11-14-0352-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pectate lyases (PL) play a critical role in pectin degradation. PL have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, the contribution of PL to infection by oomycete pathogens remains largely unknown. Here, we cloned 22 full-length pectate lyase (PcPL) genes from a highly aggressive strain of Phytophthora capsici SD33. Of these, PVX agroinfiltration revealed that 12 PcPL genes were found to be highly induced during infection of pepper by SD33 but the induction level was twofold less in a mildly aggressive strain, YN07. The four genes with the highest transcript levels as measured by by quantitative reverse-transcription polymerase chain reaction (PcPL1, PcPL15, PcPL16, and PcPL20) also produced a severe cell death response following transient expression in pepper leaves but the other eight PcPL genes did not. Overexpression of these four genes increased the virulence of SD33 on pepper slightly, and increased it more substantially during infection of tobacco. Overexpression of the genes in YN07 restored its aggressiveness to near that of SD33. Gene silencing experiments with the 12 PcPL genes produced diverse patterns of silencing of PcPL genes, from which it could be inferred from regression analysis that PcPL1, PcPL16, and PcPL20 could account for nearly all of the contributions of the PcPL genes to virulence.
Collapse
Affiliation(s)
- Li Fu
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Chunyuan Zhu
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Xiaomeng Ding
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Xiaoyan Yang
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| | - Paul F Morris
- 2 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403 U.S.A
| | - Brett M Tyler
- 3 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, 97331, U.S.A
| | - Xiuguo Zhang
- 1 Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong Street, Taian, Shandong, 271018, China
| |
Collapse
|
34
|
Zhang M, Ahmed Rajput N, Shen D, Sun P, Zeng W, Liu T, Juma Mafurah J, Dou D. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana. Sci Rep 2015; 5:10837. [PMID: 26039925 PMCID: PMC4454142 DOI: 10.1038/srep10837] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/05/2015] [Indexed: 11/29/2022] Open
Abstract
Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Department of Plant Pathology, Sindh Agriculture University, Tandojam, Pakistan
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Peng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Wentao Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tingli Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Joseph Juma Mafurah
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Wang KD, Empleo R, Nguyen TTV, Moffett P, Sacco MA. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses. MOLECULAR PLANT PATHOLOGY 2015; 16:435-48. [PMID: 25187258 PMCID: PMC6638411 DOI: 10.1111/mpp.12201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0(T) (u) ), PLRV (P0(PL) ) and Cucurbit aphid-borne yellows virus (P0(CA) ) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0(PL) only. Genetic analysis showed that recognition of P0(T) (u) by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0(T) (u) mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance.
Collapse
Affiliation(s)
- Ken-Der Wang
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | | | | | | | | |
Collapse
|
36
|
Gill US, Lee S, Mysore KS. Host versus nonhost resistance: distinct wars with similar arsenals. PHYTOPATHOLOGY 2015; 105:580-7. [PMID: 25626072 DOI: 10.1094/phyto-11-14-0298-rvw] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants face several challenges by bacterial, fungal, oomycete, and viral pathogens during their life cycle. In order to defend against these biotic stresses, plants possess a dynamic, innate, natural immune system that efficiently detects potential pathogens and initiates a resistance response in the form of basal resistance and/or resistance (R)-gene-mediated defense, which is often associated with a hypersensitive response. Depending upon the nature of plant-pathogen interactions, plants generally have two main defense mechanisms, host resistance and nonhost resistance. Host resistance is generally controlled by single R genes and less durable compared with nonhost resistance. In contrast, nonhost resistance is believed to be a multi-gene trait and more durable. In this review, we describe the mechanisms of host and nonhost resistance against fungal and bacterial plant pathogens. In addition, we also attempt to compare host and nonhost resistance responses to identify similarities and differences, and their practical applications in crop improvement.
Collapse
Affiliation(s)
- Upinder S Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Seonghee Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401
| |
Collapse
|
37
|
Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 2015; 32:207-215. [PMID: 25622136 DOI: 10.1016/j.copbio.2014.12.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022]
Abstract
Humans, animals, and plants are constantly under attack from pathogens and pests, resulting in severe consequences on global human health and crop production. Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism that is involved in almost all eukaryotic cellular processes, including host immunity and pathogen virulence. Recent evidence supports the significant contribution of sRNAs and RNAi to the communication between hosts and some eukaryotic pathogens, pests, parasites, or symbiotic microorganisms. Mobile silencing signals—most likely sRNAs—are capable of translocating from the host to its interacting organism, and vice versa. In this review, we will provide an overview of sRNA communications between different kingdoms, with a primary focus on the advances in plant-pathogen interaction systems.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Marschal Bellinger
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
38
|
Han L, Luan YS. Horizontal Transfer of Small RNAs to and from Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1113. [PMID: 26697056 PMCID: PMC4674566 DOI: 10.3389/fpls.2015.01113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.
Collapse
|
39
|
Ali S, Magne M, Chen S, Obradovic N, Jamshaid L, Wang X, Bélair G, Moffett P. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. FRONTIERS IN PLANT SCIENCE 2015; 6:623. [PMID: 26322064 PMCID: PMC4532164 DOI: 10.3389/fpls.2015.00623] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 05/08/2023]
Abstract
Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.
Collapse
Affiliation(s)
- Shawkat Ali
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
- Horticulture R & D Centre, Agriculture and Agri-Food CanadaSt-Jean-sur-Richelieu, QC, Canada
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Maxime Magne
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Shiyan Chen
- School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Natasa Obradovic
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Lubna Jamshaid
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
| | - Xiaohong Wang
- School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
- US Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Agricultural Research ServiceIthaca, NY, USA
| | - Guy Bélair
- Horticulture R & D Centre, Agriculture and Agri-Food CanadaSt-Jean-sur-Richelieu, QC, Canada
| | - Peter Moffett
- Département de Biologie, Université de SherbrookeSherbrooke, QC, Canada
- *Correspondence: Peter Moffett, Faculté des Sciences, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
40
|
Abstract
This review focuses on the mobility of small RNA (sRNA) molecules from the perspective of trans-kingdom gene silencing. Mobility of sRNA molecules within organisms is a well-known phenomenon, facilitating gene silencing between cells and tissues. sRNA signals are also transmitted between organisms of the same species and of different species. Remarkably, in recent years many examples of RNA-signal exchange have been described to occur between organisms of different kingdoms. These examples are predominantly found in interactions between hosts and their pathogens, parasites, and symbionts. However, they may only represent the tip of the iceberg, since the emerging picture suggests that organisms in biological niches commonly exchange RNA-silencing signals. In this case, we need to take this into account fully to understand how a given biological equilibrium is obtained. Despite many observations of trans-kingdom RNA signal transfer, several mechanistic aspects of these signals remain unknown. Such RNA signal transfer is already being exploited for practical purposes, though. Pathogen genes can be silenced by plant-produced sRNAs designed to affect these genes. This is also known as Host-Induced Genes Silencing (HIGS), and it has the potential to become an important disease-control method in the future.
Collapse
Affiliation(s)
- Marijn Knip
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria E. Constantin
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
41
|
Stam R, Mantelin S, McLellan H, Thilliez G. The role of effectors in nonhost resistance to filamentous plant pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:582. [PMID: 25426123 PMCID: PMC4224059 DOI: 10.3389/fpls.2014.00582] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.
Collapse
Affiliation(s)
- Remco Stam
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- *Correspondence: Remco Stam, Division of Plant Sciences, University of Dundee – The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK e-mail:
| | - Sophie Mantelin
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
| | - Gaëtan Thilliez
- Division of Plant Sciences, University of Dundee – The James Hutton InstituteDundee, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|