1
|
Bakrim S, Elouafy Y, Touhtouh J, Aanniz T, El Kadri K, Khalid A, Fawzy S, Mesaik MA, Lee LH, Chamkhi I, Bouyahya A. Exploring the chemistry, biological effects, and mechanism insights of natural coumaroyltyramine: First report. Fitoterapia 2024; 178:106182. [PMID: 39153554 DOI: 10.1016/j.fitote.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Today, pharmaceutical drugs have been shown to have serious side effects, while the bioactive components of botanical plants are proven to be effective in the treatment of several diseases marked by enhanced oxidative stress and mild inflammation, often associated with minimal adverse events. Coumaroyltyramine, designated by various nomenclatures such as paprazine, N-p-trans-coumaroyltyramine, p-coumaroyltyramine and N-p-coumaroyltyramine, could be a promising bioactive ingredient to address health issues thanks to its powerful anti-inflammatory and antioxidant effects. This review represents the first in-depth analysis of coumaroyltyramine, an intriguing phenylpropanoid substance found in many species of plants. In fact, an in-depth examination of coumaroyltyramine's biological characteristics, chemical attributes, and synthesis process has been undertaken. All previous research relating to the discovery, extraction, biosynthesis, and characterization of the biologically and pharmacologically active properties of coumaroyltyramine has been reviewed and taken into consideration in this analysis. All articles published in a peer-reviewed English-language journal were examined between the initial compilations of the appropriate database until February 12, 2024. A variety of phytochemicals revealed that coumaroyltyramine is a neutral amide of hydroxycinnamic acid that tends to concentrate in plants as a reaction against infection caused by pathogens and is extracted from several medicinal herbs such as Cannabis sativa, Solanum melongena, Allium bakeri, Annona cherimola, Polygonatum zanlanscianense, and Lycopersicon esculentum. Thanks to its effectiveness in suppressing the effect of the enzyme α-glucosidase, coumaroltyramine has demonstrated antihyperglycemic activity and could have an impact on diabetes and metabolic disorders. It has considerable anti-inflammatory and antioxidant effects. These results were obtained through biological and pharmacological studies in silico, in vivo, and in vitro. In addition, coumaroyltyramine has demonstrated hypocholesterolemic and neuroprotective benefits, thereby diminishing heart and vascular disease incidence and helping to prevent neurological disorders. Other interesting properties of coumaroltyramine include anticancer, antibacterial, anti-urease, antifungal, antiviral, and antidysmenorrheal activities. Targeted pathways encompass activity at different molecular levels, notably through induction of endoplasmic reticulum stress-dependent apoptosis, arrest of the cell cycle, and inhibition of the growth of cancer cells, survival, and proliferation. Although the findings from in silico, in vivo, and in vitro experiments illustrate coumaroyltyramine's properties and modes of action, further research is needed to fully exploit its therapeutic potential. To improve our understanding of the compound's pharmacodynamic effects and pharmacokinetic routes, large-scale research should first be undertaken. To determine whether coumaroyltyramine is clinically safe and effective, further studies are required in the clinical and toxicological fields. This upcoming research will be crucial to achieving the overall potency of this substance as a natural drug and in terms of its potential synergies with other drugs.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco.
| | - Jihane Touhtouh
- Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco.
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia.
| | - Shereen Fawzy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - M Ahmed Mesaik
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, 315000 Ningbo, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia.
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony. Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
2
|
Roumani M, Besseau S, Hehn A, Larbat R. Functional characterization of a small gene family coding for putrescine hydroxycinnamoyltransferases, involved in phenolamide accumulation, in tomato. PHYTOCHEMISTRY 2024; 229:114271. [PMID: 39260586 DOI: 10.1016/j.phytochem.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Phenolamides are specialized metabolites widely distributed in the plant kingdom. Their structure is composed by the association of hydroxycinnamic acid derivatives to mono-/poly-amine through an amination catalyzed by N-hydroxycinnamoyltransferases enzymes. Tomato plants accumulate putrescine-derived phenolamides in their vegetative parts. Recently, two first genes coding for putrescine-hydroxycinnamoyltransferase (PHT, Solyc11g071470 and Solyc11g071480) were identified in tomato and demonstrated to control the leaf accumulation of caffeoylputrescine in response to leafminer infestation. In this study, two additional genes (Solyc06g074710 and Solyc11g066640) were functionally characterized as new tomato PHT. The substrate specificity and the expression pattern in planta were determined for the four tomato PHT. Taken together the results give a comprehensive view of the control of the putrescine-derived phenolamide accumulation in tomato plant through the biochemical specificity and the spatial expression of this small family of PHT.
Collapse
Affiliation(s)
- Marwa Roumani
- Université de Lorraine, INRAE, UMR1121 Laboratoire Agronomie et Environnement (LAE), F-54000, Nancy, France.
| | - Sébastien Besseau
- EA 2106, Biomolécules et Biotechnologies Végétales (BBV), Université de Tours, Tours, France.
| | - Alain Hehn
- Université de Lorraine, INRAE, UMR1121 Laboratoire Agronomie et Environnement (LAE), F-54000, Nancy, France.
| | - Romain Larbat
- Université de Lorraine, INRAE, UMR1121 Laboratoire Agronomie et Environnement (LAE), F-54000, Nancy, France; Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
3
|
Tian Z, Jia J, Yin B, Chen W. Constructing the metabolic network of wheat kernels based on structure-guided chemical modification and multi-omics data. J Genet Genomics 2024; 51:714-722. [PMID: 38458562 DOI: 10.1016/j.jgg.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities, although it often proves to be challenging and labor-intensive, particularly with non-model organisms. In this study, we develop a computational approach that employs reaction models based on the structure-guided chemical modification and related compounds to construct a metabolic network in wheat. This construction results in a comprehensive structure-guided network, including 625 identified metabolites and additional 333 putative reactions compared with the Kyoto Encyclopedia of Genes and Genomes database. Using a combination of gene annotation, reaction classification, structure similarity, and correlations from transcriptome and metabolome analysis, a total of 229 potential genes related to these reactions are identified within this network. To validate the network, the functionality of a hydroxycinnamoyltransferase (TraesCS3D01G314900) for the synthesis of polyphenols and a rhamnosyltransferase (TraesCS2D01G078700) for the modification of flavonoids are verified through in vitro enzymatic studies and wheat mutant tests, respectively. Our research thus supports the utility of structure-guided chemical modification as an effective tool in identifying causal candidate genes for constructing metabolic networks and further in metabolomic genetic studies.
Collapse
Affiliation(s)
- Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Ware I, Franke K, Frolov A, Bureiko K, Kysil E, Yahayu M, El Enshasy HA, Wessjohann LA. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:30. [PMID: 38743199 PMCID: PMC11093948 DOI: 10.1007/s13659-024-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant's economic value as herbal medicine or in food applications.
Collapse
Affiliation(s)
- Ismail Ware
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Katrin Franke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Kseniia Bureiko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Maizatulakmal Yahayu
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, 21934, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Wang W, Xie X, Lv Y, Guan H, Liu L, Huang Q, Bao Y, Zhou J, Bao L, Gong C, Yu Y. Identification and profile of phenolamides with anthracnose resistance potential in tea ( Camellia sinensis). HORTICULTURE RESEARCH 2023; 10:uhad154. [PMID: 37719276 PMCID: PMC10500153 DOI: 10.1093/hr/uhad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Tea anthracnose is a prevalent disease in China that can lead to reduced tea production and lower quality, yet there is currently a lack of effective means for controlling this disease. In this study, we identified 46 phenolamides (including 27 isomers) in different tissues and organs of tea plants based on a developed workflow, and the secondary mass spectra of all these compounds have been documented. It was revealed that tea plants predominantly accumulate protonated aliphatic phenolamides, rather than aromatic phenolamides. The profile of phenolamides indicate that their buildup in tea plants is specific to certain tissues and acyl-acceptors, and this distribution is associated with the extent of phenolamide acyl-modification. Additionally, it was observed that N-Feruloylputrescine (Fer-Put, a type of phenolamides) was responsive to the stimulated accumulation of the tea anthracnose pathogen. The findings of anti-anthracnose experiments in vitro and on tea leaf demonstrated that Fer-Put was capable of significantly inhibiting the growth of anthracnose pathogen colony, effectively prevented tea leaf disease. Furthermore, it was observed that Fer-Put treatment can enhance the antioxidant enzyme activity of tea leaves. TEA002780.1 and TEA013165.1 gene may be responsible for the biosynthesis of Fer-Put in the disease resistance process in tea plants. Through these studies, the types and distribution of phenolamides in tea plants have been elucidated, and Fer-Put's ability to resist anthracnose has been established, providing new insights into the resistance of tea anthracnose.
Collapse
Affiliation(s)
- Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Xingcui Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yuanyuan Lv
- College of Tropical Crops, Hainan University, Haikou 570228 Hainan, China
| | - Haonan Guan
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Lu Liu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Qian Huang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yumeng Bao
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| |
Collapse
|
6
|
Dopamine Inhibits Arabidopsis Growth through Increased Oxidative Stress and Auxin Activity. STRESSES 2023. [DOI: 10.3390/stresses3010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Like some bacterial species and all animals, plants synthesize dopamine and react to its exogenous applications. Despite dopamine’s widespread presence and activity in plants, its role in plant physiology is still poorly understood. Using targeted experimentation informed by the transcriptomic response to dopamine exposure, we identify three major effects of dopamine. First, we show that dopamine causes hypersensitivity to auxin indole-3-acetic acid by enhancing auxin activity. Second, we show that dopamine increases oxidative stress, which can be mitigated with glutathione. Third, we find that dopamine downregulates iron uptake mechanisms, leading to a decreased iron content—a response possibly aimed at reducing DA-induced oxidative stress. Finally, we show that dopamine-induced auxin sensitivity is downstream of glutathione biosynthesis, indicating that the auxin response is likely a consequence of DA-induced oxidative stress. Collectively, our results show that exogenous dopamine increases oxidative stress, which inhibits growth both directly and indirectly by promoting glutathione-biosynthesis-dependent auxin hypersensitivity.
Collapse
|
7
|
Bahloul A, Benayahoum A, Bouakkaz S, Bordjiba T, Boudjahem A, Lilya B, Bachari K. The antioxidant activity of N-E-caffeoyl and N-E-feruloyl tyramine conformers and their sulfured analogs contribution: density functional theory studies. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Payá C, Minguillón S, Hernández M, Miguel SM, Campos L, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC PLANT BIOLOGY 2022; 22:549. [PMID: 36443652 PMCID: PMC9706870 DOI: 10.1186/s12870-022-03939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. RESULTS We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. CONCLUSION Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.
Collapse
Affiliation(s)
- C. Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. Minguillón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. M. Miguel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - L. Campos
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - I. Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - J. M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - P. Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
9
|
Hong H, Sloan L, Saxena D, Scott DA. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022; 10:1959. [PMID: 36009504 PMCID: PMC9406052 DOI: 10.3390/biomedicines10081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Collapse
Affiliation(s)
- HeeJue Hong
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lucy Sloan
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Deepak Saxena
- Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Liu S, Jiang J, Ma Z, Xiao M, Yang L, Tian B, Yu Y, Bi C, Fang A, Yang Y. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:922119. [PMID: 35812905 PMCID: PMC9257175 DOI: 10.3389/fpls.2022.922119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The compounds involved in the hydroxycinnamic acid amide (HCAA) pathway are an important class of metabolites in plants. Extensive studies have reported that a variety of plant hydroxycinnamamides exhibit pivotal roles in plant-pathogen interactions, such as p-coumaroylagmatine and ferulic acid. The aim of this review is to discuss the emerging findings on the functions of hydroxycinnamic acid amides (HCAAs) accumulation associated with plant defenses against plant pathologies, antimicrobial activity of HCAAs, and the mechanism of HCAAs involved in plant immune responses (such as reactive oxygen species (ROS), cell wall response, plant defense hormones, and stomatal immunity). However, these advances have also revealed the complexity of HCAAs participation in plant defense reactions, and many mysteries remain to be revealed. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future exploration of phytochemical defense metabolites.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jincheng Jiang
- Committee on Agriculture and Rural Affairs of Yongchuan District, Chongqing, China
| | - Zihui Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lan Yang
- Analytical and Testing Center, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Transcriptomics and Metabolomics Analyses Reveal High Induction of the Phenolamide Pathway in Tomato Plants Attacked by the Leafminer Tuta absoluta. Metabolites 2022; 12:metabo12060484. [PMID: 35736416 PMCID: PMC9230075 DOI: 10.3390/metabo12060484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tomato plants are attacked by a variety of herbivore pests and among them, the leafminer Tuta absoluta, which is currently a major threat to global tomato production. Although the commercial tomato is susceptible to T. absoluta attacks, a better understanding of the defensive plant responses to this pest will help in defining plant resistance traits and broaden the range of agronomic levers that can be used for an effective integrated pest management strategy over the crop cycle. In this study, we developed an integrative approach combining untargeted metabolomic and transcriptomic analyses to characterize the local and systemic metabolic responses of young tomato plants to T. absoluta larvae herbivory. From metabolomic analyses, the tomato response appeared to be both local and systemic, with a local response in infested leaves being much more intense than in other parts of the plant. The main response was a massive accumulation of phenolamides with great structural diversity, including rare derivatives composed of spermine and dihydrocinnamic acids. The accumulation of this family of specialized metabolites was supported by transcriptomic data, which showed induction of both phenylpropanoid and polyamine precursor pathways. Moreover, our transcriptomic data identified two genes strongly induced by T. absoluta herbivory, that we functionally characterized as putrescine hydroxycinnamoyl transferases. They catalyze the biosynthesis of several phenolamides, among which is caffeoylputrescine. Overall, this study provided new mechanistic clues of the tomato/T. absoluta interaction.
Collapse
|
12
|
Macoy DMJ, Uddin S, Ahn G, Peseth S, Ryu GR, Cha JY, Lee JY, Bae D, Paek SM, Chung HJ, Mackey D, Lee SY, Kim WY, Kim MG. Effect of Hydroxycinnamic Acid Amides, Coumaroyl Tyramine and Coumaroyl Tryptamine on Biotic Stress Response in Arabidopsis. JOURNAL OF PLANT BIOLOGY 2022; 65:145-155. [DOI: 10.1007/s12374-021-09341-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 08/28/2023]
|
13
|
Wheat Metabolite Interferences on Fluorescent Pseudomonas Physiology Modify Wheat Metabolome through an Ecological Feedback. Metabolites 2022; 12:metabo12030236. [PMID: 35323679 PMCID: PMC8955329 DOI: 10.3390/metabo12030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Plant roots exude a wide variety of secondary metabolites able to attract and/or control a large diversity of microbial species. In return, among the root microbiota, some bacteria can promote plant development. Among these, Pseudomonas are known to produce a wide diversity of secondary metabolites that could have biological activity on the host plant and other soil microorganisms. We previously showed that wheat can interfere with Pseudomonas secondary metabolism production through its root metabolites. Interestingly, production of Pseudomonas bioactive metabolites, such as phloroglucinol, phenazines, pyrrolnitrin, or acyl homoserine lactones, are modified in the presence of wheat root extracts. A new cross metabolomic approach was then performed to evaluate if wheat metabolic interferences on Pseudomonas secondary metabolites production have consequences on wheat metabolome itself. Two different Pseudomonas strains were conditioned by wheat root extracts from two genotypes, leading to modification of bacterial secondary metabolites production. Bacterial cells were then inoculated on each wheat genotypes. Then, wheat root metabolomes were analyzed by untargeted metabolomic, and metabolites from the Adular genotype were characterized by molecular network. This allows us to evaluate if wheat differently recognizes the bacterial cells that have already been into contact with plants and highlights bioactive metabolites involved in wheat—Pseudomonas interaction.
Collapse
|
14
|
Margaritopoulou T, Kizis D, Kotopoulis D, Papadakis IE, Anagnostopoulos C, Baira E, Termentzi A, Vichou AE, Leifert C, Markellou E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. PLANT PHYSIOLOGY 2022; 188:576-592. [PMID: 34597395 PMCID: PMC8774738 DOI: 10.1093/plphys/kiab453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew (PM) disease, caused by the obligate biotrophic fungal pathogen Podosphaera xanthii, is the most reported and destructive disease on cultivated Cucurbita species all over the world. Recently, the appearance of highly aggressive P. xanthii isolates has led to PM outbreaks even in resistant crops, making disease management a very difficult task. To challenge this, breeders rely on genetic characteristics for PM control. Analysis of commercially available intermediate resistance courgette (Cucurbita pepo L. var. cylindrica) varieties using cytological, molecular, and biochemical approaches showed that the plants were under a primed state and induced systemic acquired resistance (SAR) responses, exhibiting enhanced callose production, upregulation of salicylic acid (SA) defense signaling pathway genes, and accumulation of SA and defense metabolites. Additionally, the intermediate resistant varieties showed an altered epigenetic landscape in histone marks that affect transcriptional activation. We demonstrated that courgette plants had enriched H3K4me3 marks on SA-BINDING PROTEIN 2 and YODA (YDA) genes of the Pm-0 interval introgression, a genomic region that confers resistant to Cucurbits against P. xanthii. The open chromatin of SA-BINDING PROTEIN 2 and YDA genes was consistent with genes' differential expression, induced SA pathway, altered stomata characteristics, and activated SAR responses. These findings demonstrate that the altered epigenetic landscape of the intermediate resistant varieties modulates the activation of SA-BINDING PROTEIN 2 and YDA genes leading to induced gene transcription that primes courgette plants.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimitris Kotopoulis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Ioannis E Papadakis
- Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Christos Anagnostopoulos
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Eirini Baira
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini Termentzi
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini-Eleni Vichou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Carlo Leifert
- SCU Plant Science, Southern Cross University, Lismore, Australia
- Department of Nutrition, IMB, University of Oslo, Oslo 0372, Norway
| | - Emilia Markellou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| |
Collapse
|
15
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Metabolomic Evaluation of Ralstonia solanacearum Cold Shock Protein Peptide (csp22)-Induced Responses in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:803104. [PMID: 35069661 PMCID: PMC8780328 DOI: 10.3389/fpls.2021.803104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen's associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.
Collapse
|
16
|
Yamane M, Takenoya M, Yajima S, Sue M. Molecular and structural characterization of agmatine coumaroyltransferase in Triticeae, the key regulator of hydroxycinnamic acid amide accumulation. PHYTOCHEMISTRY 2021; 189:112825. [PMID: 34119689 DOI: 10.1016/j.phytochem.2021.112825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Hydroxycinnamic acid amides (HCAAs) are involved in stress-induced defense in many plant species. Barley accumulates high concentrations of HCAAs irrespective of exogenous stressors, while other major cereals such as wheat and rice accumulate relatively low levels of HCAAs in intact tissues. The primary HCAA species in barley are biosynthesized by agmatine p-coumaroyltransferase (ACT), an N-acyltransferase of the BAHD superfamily. However, the molecular basis underlying barley's uniquely high HCAA accumulation has not been elucidated, and information regarding the structural details of BAHD N-acyltransferases is limited. Hence, we aimed to investigate the ACTs of family Poaceae. We isolated ACT (-like) genes, including those previously undescribed, and investigated their enzymatic and genetic features. All the identified enzymes belonged to clade IVa of the BAHD superfamily. The barley and wheat ACTs were further categorized, based on catalytic properties and primary structures, into ACT1 and ACT2 groups, the encoding loci of which are neighbors on the same chromosome. While all ACTs exhibited similar Km values for CoA-thioesters (acyl-group donors), members of the ACT1 group showed a distinctly higher affinity for agmatine (acyl-acceptor). Among the ACTs tested, an ACT isozyme in barley (HvACT1-1) showed the highest catalytic efficiency and transcript level, indicating that ACT regulates high-level HCAA accumulation in barley. For further enzymatic characterization of the ACTs, we crystalized wheat ACT2 (TaACT2) and determined its structure at 2.3 Å resolution. Structural alignment of TaACT2 and HvACT1-1 showed that the architectures of the substrate binding pockets were well conserved. However, the structure of a loop located at the entrance to acyl-acceptor binding site may be more flexible in TaACT2, which could be responsible for the lower affinity of TaACT2 to agmatine. Mutations of HvACT1-1 at Glu372 and Asp374 within one of the clade-IV specific motifs facing the deduced acyl-acceptor binding pocket caused significant catalytic deterioration toward agmatine both in Km and kcat, suggesting their key roles in acyl acceptor binding by the clade-IV enzymes. This study elucidated the molecular basis of how plants accumulate defensive specialized metabolites and provided insights into developing efficient and eco-friendly agricultural methods.
Collapse
Affiliation(s)
- Miyo Yamane
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Mihoko Takenoya
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
17
|
Song Y, Mei T, Liu Y, Kong S, Zhang J, Xie M, Ou S, Liang M, Wang Q. Metabolites Identification of Chemical Constituents From the Eggplant ( Solanum melongena L.) Calyx in Rats by UPLC/ESI/qTOF-MS Analysis and Their Cytotoxic Activities. Front Pharmacol 2021; 12:655008. [PMID: 34335243 PMCID: PMC8320773 DOI: 10.3389/fphar.2021.655008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Eggplant (Solanum melongena L.) Calyx is a medicinal and edible traditional Chinese medicine with anti-inflammatory, anti-oxidant, and anti-cancer properties. However, the pharmacodynamic components and metabolic characteristics remain unclear. Amide and phenylpropanoid were the two main constituents, and four amides, including n-trans-p-coumaroyltyramine (1), n-trans-p-coumaroyloctopamine (2), n-trans-p-coumaroylnoradrenline (3), n-trans-feruloyloctopamine (4), and a phenylpropanoid neochlorogenic acid (5) were selected. In this study, these five representative compounds showed cytotoxic activities on A549, HCT116, and MCF7 cells. In addition, the metabolites of 1–5 from the eggplant calyx in rats were identified. In total, 23, 37, 29, and 17 metabolites were separately characterized in rat plasma, urine, feces, and livers, by UPLC/ESI/qTOF-MS analysis. The metabolism of amides and phenylpropanoid was mainly involved in hydroxylation, methylation, glucuronidation, or sulfation reactions. Two hydroxylated metabolites (1-M2 and 2-M3) were clearly identified by comparison with reference standards. Rat liver microsome incubation experiments indicated that P450 enzymes could hydroxylate 1–5, and the methylation reaction of the 7-hydroxyl was also observed. This is the first study on the in vivo metabolism of these compounds, which lays a foundation for follow-up studies on pharmacodynamic evaluations and mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Song
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting Mei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengnan Kong
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jincheng Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shan Ou
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Meixia Liang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Roumani M, Besseau S, Gagneul D, Robin C, Larbat R. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2334-2355. [PMID: 33315095 DOI: 10.1093/jxb/eraa582] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Sébastien Besseau
- EA 2106, Biomolécules et biotechnologies végétales (BBV), Université de Tours, Tours, France
| | - David Gagneul
- UMR 1158, BioEcoAgro, Université de Lille, INRAe, Université de Liège, UPJV, YNCREA, Université d'Artois, Université Littoral Côte d'Opale, Institut Charles Viollette (ICV), Lille, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| |
Collapse
|
19
|
Ahmad MZ, Zhang Y, Zeng X, Li P, Wang X, Benedito VA, Zhao J. Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1349-1369. [PMID: 33130852 DOI: 10.1093/jxb/eraa511] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 05/20/2023]
Abstract
Malonyl-CoA:flavonoid acyltransferases (MaTs) modify isoflavones, but only a few have been characterized for activity and assigned to specific physiological processes. Legume roots exude isoflavone malonates into the rhizosphere, where they are hydrolyzed into isoflavone aglycones. Soybean GmMaT2 was highly expressed in seeds, root hairs, and nodules. GmMaT2 and GmMaT4 recombinant enzymes used isoflavone 7-O-glucosides as acceptors and malonyl-CoA as an acyl donor to generate isoflavone glucoside malonates. GmMaT2 had higher activity towards isoflavone glucosides than GmMaT4. Overexpression in hairy roots of GmMaT2 and GmMaT4 produced more malonyldaidzin, malonylgenistin, and malonylglycitin, and resulted in more nodules than control. However, only GmMaT2 knockdown (KD) hairy roots showed reduced levels of malonyldaidzin, malonylgenistin, and malonylglycitin, and, likewise, reduced nodule numbers. These were consistent with the up-regulation of only GmMaT2 by rhizobial infection, and higher expression levels of early nodulation genes in GmMaT2- and GmMaT4-overexpressing roots, but lower only in GmMaT2-KD roots compared with control roots. Higher malonyl isoflavonoid levels in transgenic hairy roots were associated with higher levels of isoflavones in root exudates and more nodules, and vice versa. We suggest that GmMaT2 participates in soybean nodulation by catalyzing isoflavone malonylation and affecting malonyl isoflavone secretion for activation of Nod factor and nodulation.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Vagner A Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
20
|
Leonard W, Zhang P, Ying D, Fang Z. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry. Crit Rev Food Sci Nutr 2020; 62:1608-1625. [PMID: 33206548 DOI: 10.1080/10408398.2020.1845603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyramine-derived hydroxycinnamic acid amines (HCAAT) are naturally occurring group of secondary metabolites present in various plant genera, such as Allium, Cannabis, Lycium, Polyganotum and Solanum. It belongs to the neutral, water-insoluble compounds and plays a role in plant growth, development and defence mechanism. The past two decades have seen a shift in the study of HCAAT from its role in plants to its potent biological activities. This review highlights the sources, roles in plants, biosynthetic pathways, metabolic engineering and chemical synthesis of HCAAT. The biological properties of HCAAT remain the focus in this paper, including antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-melanogenesis and neuroprotective properties. The effects of food processing and technology on HCAAT are also discussed. Given the current research gap, this review proposes future directions on the study of HCAAT, as well as its potential applications in food and pharmaceutical industry.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Kong D, Li S, Smolke CD. Discovery of a previously unknown biosynthetic capacity of naringenin chalcone synthase by heterologous expression of a tomato gene cluster in yeast. SCIENCE ADVANCES 2020; 6:6/44/eabd1143. [PMID: 33127687 PMCID: PMC7608815 DOI: 10.1126/sciadv.abd1143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 05/11/2023]
Abstract
Chalcone synthase (CHS) canonically catalyzes carbon-carbon bond formation through iterative decarboxylative Claisen condensation. Here, we characterize a previously unidentified biosynthetic capability of SlCHS to catalyze nitrogen-carbon bond formation, leading to the production of a hydroxycinnamic acid amide (HCAA) compound. By expressing a putative tomato (Solanum lycopersicum) gene cluster in yeast (Saccharomyces cerevisiae), we elucidate the activity of a pathway consisting of a carboxyl methyltransferase (SlMT2), which methylates the yeast primary metabolite 3-hydroxyanthranilic acid (3-HAA) to form a methyl ester, and a SlCHS, which catalyzes the condensation of 3-HAA methyl ester and p-coumaroyl-coenzyme A (CoA) through formation of an amide bond. We demonstrate that this aminoacylation activity could be a common secondary activity in plant CHSs by validating the activity in vitro with variants from S. lycopersicum and Arabidopsis thaliana Our work demonstrates yeast as a platform for characterizing putative plant gene clusters with the potential for compound structure and enzymatic activity discovery.
Collapse
Affiliation(s)
- Deze Kong
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853, USA
| | - Christina D Smolke
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Roumani M, Duval RE, Ropars A, Risler A, Robin C, Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed Pharmacother 2020; 131:110762. [PMID: 33152925 DOI: 10.1016/j.biopha.2020.110762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | | | - Armelle Ropars
- Stress Immunity Pathogens Université de Lorraine, Nancy, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France.
| |
Collapse
|
23
|
Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci U S A 2020; 117:3874-3883. [PMID: 32015118 DOI: 10.1073/pnas.1912130117] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial communities associated with roots confer specific functions to their hosts, thereby modulating plant growth, health, and productivity. Yet, seminal questions remain largely unaddressed including whether and how the rhizosphere microbiome modulates root metabolism and exudation and, consequently, how plants fine tune this complex belowground web of interactions. Here we show that, through a process termed systemically induced root exudation of metabolites (SIREM), different microbial communities induce specific systemic changes in tomato root exudation. For instance, systemic exudation of acylsugars secondary metabolites is triggered by local colonization of bacteria affiliated with the genus Bacillus Moreover, both leaf and systemic root metabolomes and transcriptomes change according to the rhizosphere microbial community structure. Analysis of the systemic root metabolome points to glycosylated azelaic acid as a potential microbiome-induced signaling molecule that is subsequently exuded as free azelaic acid. Our results demonstrate that rhizosphere microbiome assembly drives the SIREM process at the molecular and chemical levels. It highlights a thus-far unexplored long-distance signaling phenomenon that may regulate soil conditioning.
Collapse
|
24
|
Valette M, Rey M, Gerin F, Comte G, Wisniewski-Dyé F. A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:228-246. [PMID: 30920733 DOI: 10.1111/jipb.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 05/21/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR), whose growth is stimulated by root exudates, are able to improve plant growth and health. Among those, bacteria of the genus Azospirillum were shown to affect root secondary metabolite content in rice and maize, sometimes without visible effects on root architecture. Transcriptomic studies also revealed that expression of several genes involved in stress and plant defense was affected, albeit with fewer genes when a strain was inoculated onto its original host cultivar. Here, we investigated, via a metabolic profiling approach, whether rice roots responded differently and with gradual intensity to various PGPR, isolated from rice or not. A common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This was accompanied by the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots, a result contrasting with previous reports of increased HCAA content in leaves upon pathogen infection. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of plant to bacterial perception.
Collapse
Affiliation(s)
- Marine Valette
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
25
|
Knollenberg BJ, Li GX, Lambert JD, Maximova SN, Guiltinan MJ. Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2020; 11:617520. [PMID: 33424909 PMCID: PMC7786005 DOI: 10.3389/fpls.2020.617520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized phenylpropanoid metabolites distributed widely in the plant kingdom and are known to be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a small number of distantly related species. To explore the contribution of specialized metabolites to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed untargeted metabolomics using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 'Scavina 6' ('Sca6') were found to accumulate dramatically higher levels of clovamide and several other HCAAs compared to the susceptible 'Imperial College Selection 1' ('ICS1'). Clovamide was the most abundant metabolite in 'Sca6' leaf extracts based on MS signal, and was up to 58-fold higher in 'Sca6' than in 'ICS1'. In vitro assays demonstrated that clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance exclusively in 'Sca6' suggesting a potential functional role of these compounds. The potential to breed cacao with increased HCAAs for improved agricultural performance is discussed.
Collapse
Affiliation(s)
- Benjamin J. Knollenberg
- Plant Biology PhD Program ‐ Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guo-Xing Li
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Joshua D. Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan,
| |
Collapse
|
26
|
Sun G, Strebl M, Merz M, Blamberg R, Huang FC, McGraphery K, Hoffmann T, Schwab W. Glucosylation of the phytoalexin N-feruloyl tyramine modulates the levels of pathogen-responsive metabolites in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:20-37. [PMID: 31124249 DOI: 10.1111/tpj.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 05/03/2023]
Abstract
Enzyme promiscuity, a common property of many uridine diphosphate sugar-dependent glycosyltransferases (UGTs) that convert small molecules, significantly hinders the identification of natural substrates and therefore the characterization of the physiological role of enzymes. In this paper we present a simple but effective strategy to identify endogenous substrates of plant UGTs using LC-MS-guided targeted glycoside analysis of transgenic plants. We successfully identified natural substrates of two promiscuous Nicotiana benthamiana UGTs (NbUGT73A24 and NbUGT73A25), orthologues of pathogen-induced tobacco UGT (TOGT) from Nicotiana tabacum, which is involved in the hypersensitive reaction. While in N. tabacum, TOGT glucosylated scopoletin after treatment with salicylate, fungal elicitors and the tobacco mosaic virus, NbUGT73A24 and NbUGT73A25 produced glucosides of phytoalexin N-feruloyl tyramine, which may strengthen cell walls to prevent the intrusion of pathogens, and flavonols after agroinfiltration of the corresponding genes in N. benthamiana. Enzymatic glucosylation of fractions of a physiological aglycone library confirmed the biological substrates of UGTs. In addition, overexpression of both genes in N. benthamiana produced clear lesions on the leaves and led to a significantly reduced content of pathogen-induced plant metabolites such as phenylalanine and tryptophan. Our results revealed some additional biological functions of TOGT enzymes and indicated a multifunctional role of UGTs in plant resistance.
Collapse
Affiliation(s)
- Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Michael Strebl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Maximilian Merz
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Robert Blamberg
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Fong-Chin Huang
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| |
Collapse
|
27
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
28
|
Santamaría-Hernando S, Senovilla M, González-Mula A, Martínez-García PM, Nebreda S, Rodríguez-Palenzuela P, López-Solanilla E, Rodríguez-Herva JJ. The Pseudomonas syringae pv. tomato DC3000 PSPTO_0820 multidrug transporter is involved in resistance to plant antimicrobials and bacterial survival during tomato plant infection. PLoS One 2019; 14:e0218815. [PMID: 31237890 PMCID: PMC6592562 DOI: 10.1371/journal.pone.0218815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/10/2019] [Indexed: 01/25/2023] Open
Abstract
Multidrug resistance efflux pumps protect bacterial cells against a wide spectrum of antimicrobial compounds. PSPTO_0820 is a predicted multidrug transporter from the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000. Orthologs of this protein are conserved within many Pseudomonas species that interact with plants. To study the potential role of PSPTO_0820 in plant-bacteria interaction, a mutant in this gene was isolated and characterized. In addition, with the aim to find the outer membrane channel for this efflux system, a mutant in PSPTO_4977, a TolC-like gene, was also analyzed. Both mutants were more susceptible to trans-cinnamic and chlorogenic acids and to the flavonoid (+)-catechin, when added to the culture medium. The expression level of both genes increased in the presence of (+)-catechin and, in the case of PSPTO_0820, also in response to trans-cinnamic acid. PSPTO_0820 and PSPTO_4977 mutants were unable to colonize tomato at high population levels. This work evidences the involvement of these two proteins in the resistance to plant antimicrobials, supporting also the importance of chlorogenic acid, trans-cinnamic acid, and (+)-catechin in the tomato plant defense response against P. syringae pv. tomato DC3000 infection.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Almudena González-Mula
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Pedro Manuel Martínez-García
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Sandra Nebreda
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Li J, Zhang K, Meng Y, Hu J, Ding M, Bian J, Yan M, Han J, Zhou M. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:444-457. [PMID: 29752755 DOI: 10.1111/tpj.13960] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 05/19/2023]
Abstract
Hydroxycinnamic acid amides (HCAAs) are a class of antimicrobial metabolites involved in plant defense against necrotrophic pathogens, including Alternaria brassicicola and Botrytis cinerea. The agmatine coumaryl transferase (AtACT) is the key enzyme that catalyzes the last reaction in the biosynthesis of HCAAs, including p-coumaroylagmatine (CouAgm) and feruloylagmatine in Arabidopsis thaliana. However, the regulatory mechanism of AtACT gene expression is currently unknown. Yeast one-hybrid screening using the AtACT promoter as bait isolated the key positive regulator ORA59 that is involved in jasmonic acid/ethylene (JA/ET)-mediated plant defense responses. AtACT gene expression and HCAAs biosynthesis were synergistically induced by a combination of JA and ET. In the AtACT promoter, two GCC-boxes function equivalently for trans-activation by ORA59 in Arabidopsis protoplasts, and mutation of either GCC-box abolished AtACT mRNA accumulation in transgenic plants. Site-directed mutation analysis demonstrated that the specific Leu residue at position 228 of the ORA59 EDLL motif mainly contributed to its transcriptional activity on AtACT gene expression. Importantly, MEDIATOR25 (MED25) and ORA59 homodimer are also required for ORA59-dependent activation of the AtACT gene. These results suggest that ORA59 and two functionally equivalent GCC-boxes form the regulatory module together with MED25 that enables AtACT gene expression and HCAAs biosynthesis to respond to simultaneous activation of the JA/ET signaling pathways.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Meng
- College of Landscape and Travel, Agricultural University of Hebei, Baoding, 071001, China
| | - Jianping Hu
- College of Agricultural Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahui Bian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Jianming Han
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
30
|
|
31
|
Abstract
Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.
Collapse
|
32
|
López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, Conejero V, Bellés JM. A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. FRONTIERS IN PLANT SCIENCE 2017; 8:1188. [PMID: 28725238 PMCID: PMC5495837 DOI: 10.3389/fpls.2017.01188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 05/08/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plants are secondary metabolites that mediate the plant interaction with pathogens and herbivores. These compounds may perform direct defensive functions, i.e., acting as antioxidant, antibacterial, or antifungal agents, or indirectly by signaling the activation of the plant's defensive responses. Using a non-targeted GC-MS metabolomics approach, we identified the profile of the VOCs associated with the differential immune response of the Rio Grande tomato leaves infected with either virulent or avirulent strains of Pseudomonas syringae DC3000 pv. tomato. The VOC profile of the tomato leaves infected with avirulent bacteria is characterized by esters of (Z)-3-hexenol with acetic, propionic, isobutyric or butyric acids, and several hydroxylated monoterpenes, e.g., linalool, α-terpineol, and 4-terpineol, which defines the profile of an immunized plant response. In contrast, the same tomato cultivar infected with the virulent bacteria strain produced a VOC profile characterized by monoterpenes and SA derivatives. Interestingly, the differential VOCs emission correlated statistically with the induction of the genes involved in their biosynthetic pathway. Our results extend plant defense system knowledge and suggest the possibility for generating plants engineered to over-produce these VOCs as a complementary strategy for resistance.
Collapse
|
33
|
Cheng XX, Zhao LH, Klosterman SJ, Feng HJ, Feng ZL, Wei F, Shi YQ, Li ZF, Zhu HQ. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:12-23. [PMID: 28483050 DOI: 10.1016/j.plantsci.2017.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 05/06/2023]
Abstract
Chitinases function in the digestion of chitin molecules, which are present principally in insects and fungi. In plants, chitinase genes play important roles in defense, and their expression can be triggered in response to both biotic and abiotic stresses. In this study, we cloned and characterized an endochitinase (VDECH) from Verticillium dahliae, strain Vd080. The VDECH coding region consists of 1845bp with two exons and one 54bp intron, encoding a 615 amino acid protein with the predicted molecular weight (MW) of 63.9kDa. The VDECH cDNA without signal peptide-encoding region was introduced into pCold-TF vector and the recombinant protein HIS-VDECH with a predicted MW of ∼114kDa was expressed. HIS-VDECH showed high tolerance to extreme temperature, exhibiting efficient chitinolytic activity at 50°C. In addition, VDECH triggered typical plant defense responses, including a hypersensitive response, oxidative burst, and elicited increased expression of defense-related genes in both Arabidopsis and cotton. VDECH-treatment of the conidial spores of V. dahliae and Fusarium oxysporum resulted in marked reductions in the germination of these spores in both fungi. After 36h of incubation with VDECH, the inhibition rate of germination was recorded at 99.57% for V. dahliae, and 96.89% for F. oxysporum. These results provide evidence that VDECH is recognized by the plant to elicit defense responses, and also that VDECH is an effective inhibitor of conidia germination, both of which may be exploited for disease control.
Collapse
Affiliation(s)
- Xiao-Xiao Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Li-Hong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | | | - Hong-Jie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zi-Li Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yong-Qiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhi-Fang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
34
|
Kumari A, Ray K, Sadhna S, Pandey AK, Sreelakshmi Y, Sharma R. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato. PLoS One 2017; 12:e0176978. [PMID: 28481937 PMCID: PMC5421760 DOI: 10.1371/journal.pone.0176978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/20/2017] [Indexed: 11/21/2022] Open
Abstract
Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones.
Collapse
Affiliation(s)
- Alka Kumari
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Kamalika Ray
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Sadhna Sadhna
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Arun Kumar Pandey
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
35
|
López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Bellés JM. Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLoS One 2016; 11:e0166938. [PMID: 27893781 PMCID: PMC5125658 DOI: 10.1371/journal.pone.0166938] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022] Open
Abstract
Tomato plants expressing the NahG transgene, which prevents accumulation of endogenous salicylic acid (SA), were used to study the importance of the SA signalling pathway in basal defence against Citrus Exocortis Viroid (CEVd) or Tomato Spotted Wilt Virus (TSWV). The lack of SA accumulation in the CEVd- or TSWV-infected NahG tomato plants led to an early and dramatic disease phenotype, as compared to that observed in the corresponding parental Money Maker. Addition of acibenzolar-S-methyl, a benzothiadiazole (BTH), which activates the systemic acquired resistance pathway downstream of SA signalling, improves resistance of NahG tomato plants to CEVd and TSWV. CEVd and TSWV inoculation induced the accumulation of the hydroxycinnamic amides p-coumaroyltyramine, feruloyltyramine, caffeoylputrescine, and feruloylputrescine, and the defence related proteins PR1 and P23 in NahG plants earlier and with more intensity than in Money Maker plants, indicating that SA is not essential for the induction of these plant defence metabolites and proteins. In addition, NahG plants produced very high levels of ethylene upon CEVd or TSWV infection when compared with infected Money Maker plants, indicating that the absence of SA produced additional effects on other metabolic pathways. This is the first report to show that SA is an important component of basal resistance of tomato plants to both CEVd and TSWV, indicating that SA-dependent defence mechanisms play a key role in limiting the severity of symptoms in CEVd- and TSWV-infected NahG tomato plants.
Collapse
Affiliation(s)
- M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Vicente Conejero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV)- Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
36
|
Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.08.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Royer M, Larbat R, Le Bot J, Adamowicz S, Nicot PC, Robin C. Tomato response traits to pathogenic Pseudomonas species: Does nitrogen limitation matter? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 244:57-67. [PMID: 26810453 DOI: 10.1016/j.plantsci.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Induced chemical defence is a cost-efficient protective strategy, whereby plants induce the biosynthesis of defence-related compounds only in the case of pest attack. Plant responses that are pathogen specific lower the cost of defence, compared to constitutive defence. As nitrogen availability (N) in the root zone is one of the levers mediating the concentration of defence-related compounds in plants, we investigated its influence on response traits of tomato to two pathogenic bacteria, growing plants hydroponically at low or high N supply. Using two sets of plants for each level of N supply, we inoculated one leaf of one set of plants with Pseudomonas syringae, and inoculated the stem of other set of plants with Pseudomonas corrugata. Tomato response traits (growth, metabolites) were investigated one and twelve days after inoculation. In infected areas, P. syringae decreased carbohydrate concentrations whereas they were increased by P. corrugata. P. syringae mediated a redistribution of carbon within the phenylpropanoid pathway, regardless of N supply: phenolamides, especially caffeoylputrescine, were stimulated, impairing defence-related compounds such as chlorogenic acid. Inoculation of P. syringae produced strong and sustainable systemic responses. By contrast, inoculation of P. corrugata induced local and transient responses. The effects of pathogens on plant growth and leaf gas exchanges appeared to be independant of N supply. This work shows that the same genus of plant pathogens with different infection strategies can mediate contrasted plant responses.
Collapse
Affiliation(s)
- Mathilde Royer
- INRA, UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandœuvre-lès-Nancy, France.
| | - Romain Larbat
- INRA, UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandœuvre-lès-Nancy, France.
| | - Jacques Le Bot
- INRA, UR 1115 "Plantes et Systèmes de Culture Horticoles", CS 40509, 84914 Avignon Cedex 9, France.
| | - Stéphane Adamowicz
- INRA, UR 1115 "Plantes et Systèmes de Culture Horticoles", CS 40509, 84914 Avignon Cedex 9, France.
| | - Philippe C Nicot
- INRA, UR 407 "Pathologie végétale", CS 60094, 84143 Montfavet Cedex, France.
| | - Christophe Robin
- INRA, UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandœuvre-lès-Nancy, France; Université de Lorraine, UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
38
|
Elejalde-Palmett C, de Bernonville TD, Glevarec G, Pichon O, Papon N, Courdavault V, St-Pierre B, Giglioli-Guivarc'h N, Lanoue A, Besseau S. Characterization of a spermidine hydroxycinnamoyltransferase in Malus domestica highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7271-85. [PMID: 26363642 DOI: 10.1093/jxb/erv423] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phenolamides, so called hydroxycinnamic acid amides, are specialized metabolites produced in higher plants, involved in development, reproduction and serve as defence compounds in biotic interactions. Among them, trihydroxycinnamoyl spermidine derivatives were initially found to be synthetized by a spermidine hydroxycinnamoyltransferase (AtSHT) in Arabidopsis thaliana and to accumulate in the pollen coat. This study reports the identification, in Malus domestica, of an acyltransferase able to complement the sht mutant of Arabidopsis. The quantitative RT-PCR expression profile of MdSHT reveals a specific expression in flowers coordinated with anther development and tapetum cell activities. Three phenolamides including N (1),N (5),N (10)-tricoumaroyl spermidine and N (1),N (5)-dicoumaroyl-N (10)-caffeoyl spermidine identified by LC/MS, were shown to accumulate specifically in pollen grain coat of apple tree. Moreover, in vitro biochemical characterization confirmed MdSHT capacity to synthesize tri-substituted spermidine derivatives with a substrate specificity restricted to p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor. Further investigations of the presence of tri-substituted hydroxycinnamoyl spermidine conjugates in higher plants were performed by targeted metabolic analyses in pollens coupled with bioinformatic analyses of putative SHT orthologues in a wide range of available plant genomes. This work highlights a probable early evolutionary appearance in the common ancestral core Eudicotyledons of a novel enzyme from the BAHD acyltransferase superfamily, dedicated to the synthesis of trihydroxycinnamoyl spermidines in pollen coat. This pathway was maintained in most species; however, recent evolutionary divergences have appeared among Eudicotyledons, such as an organ reallocation of SHT gene expression in Fabales and a loss of SHT in Malvales and Cucurbitales.
Collapse
Affiliation(s)
- Carolina Elejalde-Palmett
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Gaëlle Glevarec
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Olivier Pichon
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Nicolas Papon
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| |
Collapse
|
39
|
Asselin JAE, Lin J, Perez-Quintero AL, Gentzel I, Majerczak D, Opiyo SO, Zhao W, Paek SM, Kim MG, Coplin DL, Blakeslee JJ, Mackey D. Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii. PLANT PHYSIOLOGY 2015; 167:1117-35. [PMID: 25635112 PMCID: PMC4348765 DOI: 10.1104/pp.114.253120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/24/2015] [Indexed: 05/20/2023]
Abstract
AvrE family type III effector proteins share the ability to suppress host defenses, induce disease-associated cell death, and promote bacterial growth. However, despite widespread contributions to numerous bacterial diseases in agriculturally important plants, the mode of action of these effectors remains largely unknown. WtsE is an AvrE family member required for the ability of Pantoea stewartii ssp. stewartii (Pnss) to proliferate efficiently and cause wilt and leaf blight symptoms in maize (Zea mays) plants. Notably, when WtsE is delivered by a heterologous system into the leaf cells of susceptible maize seedlings, it alone produces water-soaked disease symptoms reminiscent of those produced by Pnss. Thus, WtsE is a pathogenicity and virulence factor in maize, and an Escherichia coli heterologous delivery system can be used to study the activity of WtsE in isolation from other factors produced by Pnss. Transcriptional profiling of maize revealed the effects of WtsE, including induction of genes involved in secondary metabolism and suppression of genes involved in photosynthesis. Targeted metabolite quantification revealed that WtsE perturbs maize metabolism, including the induction of coumaroyl tyramine. The ability of mutant WtsE derivatives to elicit transcriptional and metabolic changes in susceptible maize seedlings correlated with their ability to promote disease. Furthermore, chemical inhibitors that block metabolic flux into the phenylpropanoid pathways targeted by WtsE also disrupted the pathogenicity and virulence activity of WtsE. While numerous metabolites produced downstream of the shikimate pathway are known to promote plant defense, our results indicate that misregulated induction of phenylpropanoid metabolism also can be used to promote pathogen virulence.
Collapse
Affiliation(s)
- Jo Ann E Asselin
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Jinshan Lin
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Alvaro L Perez-Quintero
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Irene Gentzel
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Doris Majerczak
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Stephen O Opiyo
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Wanying Zhao
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Seung-Mann Paek
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Min Gab Kim
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - David L Coplin
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| | - David Mackey
- Department of Horticulture and Crop Science (J.E.A., J.L., A.L.P.-Q., Do.M., W.Z., J.J.B., Da.M.), Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center (J.L., S.O.O., J.J.B.), Translational Plant Sciences Graduate Program (I.G.), Center for Applied Plant Sciences (I.G., Da.M.), Department of Plant Pathology (D.L.C.), and Department of Molecular Genetics (Da.M.), Ohio State University, Columbus, Ohio 43210; andCollege of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-751, Republic of Korea (S.-M.P., M.G.K.)
| |
Collapse
|
40
|
Häusler RE, Ludewig F, Krueger S. Amino acids--a life between metabolism and signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:225-237. [PMID: 25443849 DOI: 10.1016/j.plantsci.2014.09.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/09/2023]
Abstract
Amino acids serve as constituents of proteins, precursors for anabolism, and, in some cases, as signaling molecules in mammalians and plants. This review is focused on new insights, or speculations, on signaling functions of serine, γ-aminobutyric acid (GABA) and phenylalanine-derived phenylpropanoids. Serine acts as signal in brain tissue and mammalian cancer cells. In plants, de novo serine biosynthesis is also highly active in fast growing tissues such as meristems, suggesting a similar role of serine as in mammalians. GABA functions as inhibitory neurotransmitter in the brain. In plants, GABA is also abundant and seems to be involved in sexual reproduction, cell elongation, patterning and cell identity. The aromatic amino acids phenylalanine, tyrosine, and tryptophan are precursors for the production of secondary plant products. Besides their pharmaceutical value, lignans, neolignans and hydroxycinnamic acid amides (HCAA) deriving from phenylpropanoid metabolism and, in the case of HCAA, also from arginine have been shown to fulfill signaling functions or are involved in the response to biotic and abiotic stress. Although some basics on phenylpropanoid-derived signaling have been described, little is known on recognition- or signal transduction mechanisms. In general, mutant- and transgenic approaches will be helpful to elucidate the mechanistic basis of metabolite signaling.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany.
| | - Frank Ludewig
- Department of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany
| | - Stephan Krueger
- Department of Botany II, University of Cologne, Cologne Biocenter, Zülpicherstr. 47B, 50674 Cologne, Germany
| |
Collapse
|
41
|
Campos L, Lisón P, López-Gresa MP, Rodrigo I, Zacarés L, Conejero V, Bellés JM. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1159-69. [PMID: 25014592 DOI: 10.1094/mpmi-04-14-0104-r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.
Collapse
|
42
|
Gunnaiah R, Kushalappa AC. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:40-50. [PMID: 25084325 DOI: 10.1016/j.plaphy.2014.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum, reduces grain yield and contaminates grains with trichothecene mycotoxins. Host resistance to FHB is quantitatively inherited and more than 100 QTLs have been mapped, but the host resistance mechanisms are poorly understood. Non-targeted metabolic profiling was applied to elucidate the host resistance mechanisms to FHB spread through rachis of wheat cultivar Sumai-3 against both trichothecene producing and non-producing isolates of Fusarium graminearum. The accumulation of deoxynivalenol (DON) in Sumai-3 was low, however the resistance to spread was not due to its detoxification into DON-3-O-glucoside (D3G), as the proportion of total DON converted to D3G in the resistant was not significantly different from that in the susceptible cultivar Roblin. Instead, the resistance was considered to be due to the accumulation of resistance related (RR) metabolites belonging to the phenylpropanoid pathway that reduced pathogen advancement through increased host cell wall thickening and also reduced pathogen growth due to antifungal and/or antioxidant properties which, in turn, reduced subsequent trichothecene biosynthesis. The RR phenylpropanoids accumulated in Sumai-3 were mainly the preformed syringyl rich monolignols and their glucosides, which are precursors of lignin biosynthesis, as well as antimicrobial flavonoids. The resistant cultivar Sumai-3 inoculated with trichothecene producing F. graminearum not only accumulated less RR metabolites but also the abundance of many RR metabolites was lesser than in the trichothecene non-producing F. graminearum. This implies repression of host resistance mechanisms by trichothecenes/DON, which is a protein biosynthesis inhibitor. Enhancement of resistance in wheat against FHB can be exploited through stacking of candidate phenylpropanoid pathway genes.
Collapse
Affiliation(s)
- Raghavendra Gunnaiah
- Plant Science Department, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X3V9, Canada
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X3V9, Canada.
| |
Collapse
|
43
|
Larbat R, Paris C, Le Bot J, Adamowicz S. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:62-73. [PMID: 24908507 DOI: 10.1016/j.plantsci.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 05/09/2023]
Abstract
Phenolics are implicated in the defence strategies of many plant species rendering their concentration increase of putative practical interest in the field of crop protection. Little attention has been given to the nature, concentration and distribution of phenolics within vegetative organs of tomato (Solanum lycopersicum. L) as compared to fruits. In this study, we extensively characterized the phenolics in leaves, stems and roots of nine tomato cultivars using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS(n)) and assessed the impact of low nitrogen (LN) availability on their accumulation. Thirty-one phenolics from the four sub-classes, hydroxycinnamoyl esters, flavonoids, anthocyanins and phenolamides were identified, five of which had not previously been reported in these tomato organs. A higher diversity and concentration of phenolics was found in leaves than in stems and roots. The qualitative distribution of these compounds between plant organs was similar for the nine cultivars with the exception of Micro-Tom because of its significantly higher phenolic concentrations in leaves and stems as compared to roots. With few exceptions, the influence of the LN treatment on the three organs of all cultivars was to increase the concentrations of hydroxycinnamoyl esters, flavonoids and anthocyanins and to decrease those of phenolamides. This impact of LN was greater in roots than in leaves and stems. Nitrogen nutrition thus appears as a means of modulating the concentration and composition of organ phenolics and their distribution within the whole plant.
Collapse
Affiliation(s)
- Romain Larbat
- INRA UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France; Université de Lorraine UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Cédric Paris
- Université de Lorraine, Laboratoire d'Ingénierie des Biomolécules, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Jacques Le Bot
- INRA, UR 1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France.
| | - Stéphane Adamowicz
- INRA, UR 1115 PSH (Plantes et Systèmes de culture Horticoles), F-84000 Avignon, France.
| |
Collapse
|
44
|
Casarrubias-Castillo K, Martínez-Gallardo NA, Délano-Frier JP. Treatment of Amaranthus cruentus with chemical and biological inducers of resistance has contrasting effects on fitness and protection against compatible Gram positive and Gram negative bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:927-39. [PMID: 24913050 DOI: 10.1016/j.jplph.2014.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 05/19/2023]
Abstract
Amaranthus cruentus (Ac) plants were treated with the synthetic systemic acquired resistance (SAR) inducer benzothiadiazole (BTH), methyl jasmonate (MeJA) and the incompatible pathogen, Pseudomonas syringae pv. syringae (Pss), under greenhouse conditions. The treatments induced a set of marker genes in the absence of pathogen infection: BTH and Pss similarly induced genes coding for pathogenesis-related and antioxidant proteins, whereas MeJA induced the arginase, LOX2 and amarandin 1 genes. BTH and Pss were effective when tested against the Gram negative pathogen Ps pv. tabaci (Pst), which was found to have a compatible interaction with grain amaranth. The resistance response appeared to be salicylic acid-independent. However, resistance against Clavibacter michiganensis subsp. michiganensis (Cmm), a Gram positive tomato pathogen also found to infect Ac, was only conferred by Pss, while BTH increased susceptibility. Conversely, MeJA was ineffective against both pathogens. Induced resistance against Pst correlated with the rapid and sustained stimulation of the above genes, including the AhPAL2 gene, which were expressed both locally and distally. The lack of protection against Cmm provided by BTH, coincided with a generalized down-regulation of defense gene expression and chitinase activity. On the other hand, Pss-treated Ac plants showed augmented expression levels of an anti-microbial peptide gene and, surprisingly, of AhACCO, an ethylene biosynthetic gene associated with susceptibility to Cmm in tomato, its main host. Pss treatment had no effect on productivity, but compromised growth, whereas MeJA reduced yield and harvest index. Conversely, BTH treatments led to smaller plants, but produced significantly increased yields. These results suggest essential differences in the mechanisms employed by biological and chemical agents to induce SAR in Ac against bacterial pathogens having different infection strategies. This may determine the outcome of a particular plant-pathogen interaction, leading to resistance or susceptibility, as in Cmm-challenged Ac plants previously induced with Pss or BTH, respectively.
Collapse
Affiliation(s)
| | | | - John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, Cinvestav-Unidad Irapuato, México, Mexico.
| |
Collapse
|
45
|
Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct Integr Genomics 2014; 14:285-98. [DOI: 10.1007/s10142-013-0358-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
46
|
Selim ME, Mahdy ME, Sorial ME, Dababat AA, Sikora RA. Biological and chemical dependent systemic resistance and their significance for the control of root-knot nematodes. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inducing host plant-based systemic resistance is one of the modes of action involved in tri-trophic interactions between host plants, pests and mutualistic microorganisms. Two different types of systemic resistance – systemic acquired resistance (SAR) and induced systemic resistance (ISR) – were found to be functional against pathogens and plant-parasitic nematodes. In this study, the ability of Trichoderma harzianum isolate T10 and insecticidal active neem powder (NP) to induce systemic resistance in tomato against the root-knot nematode Meloidogyne javanica was compared with salicylic acid (SA) and jasmonic acid (JA) as standard elicitors for SAR and ISR, respectively. Results showed that, when the biotic and abiotic elicitors were applied to the inducer side of a split root plant system, a significant reduction in nematode infection was observed on the responder side. Physiological changes in the tomato plant due to the induction of SAR or ISA by these biotic and abiotic elicitors were further investigated using HPLC. Results demonstrated that T10 significantly increased the accumulation of different metabolites in the shoot of the tomato over the NP, JA and SA elicitors. Furthermore, the results demonstrated that several metabolic, physical and biochemical changes occurred in the shoots of the treated plants with both the biotic and abiotic elicitors. The percentage of membrane leakage (Ml) at nematode-infected tomato roots was significantly high, but the differences in percentage leakage were not significant in other treatments compared to the non-infested control. The best results were recorded with SA, T10 and NP, which gave the lowest MI% compared to the infested plants.
Collapse
Affiliation(s)
- Mohamed E. Selim
- Agricultural Botany Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Magdy E. Mahdy
- Agricultural Botany Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Mervat E. Sorial
- Agricultural Botany Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | | | | |
Collapse
|
47
|
Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:3-24. [PMID: 24997027 DOI: 10.1007/978-1-4939-0897-4_1] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA,
| |
Collapse
|
48
|
|
49
|
Etalo DW, Stulemeijer IJ, Peter van Esse H, de Vos RC, Bouwmeester HJ, Joosten MH. System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato. PLANT PHYSIOLOGY 2013; 162:1599-617. [PMID: 23719893 PMCID: PMC3707553 DOI: 10.1104/pp.113.217471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/24/2013] [Indexed: 05/21/2023]
Abstract
The hypersensitive response (HR) is considered to be the hallmark of the resistance response of plants to pathogens. To study HR-associated transcriptome and metabolome reprogramming in tomato (Solanum lycopersicum), we used plants that express both a resistance gene to Cladosporium fulvum and the matching avirulence gene of this pathogen. In these plants, massive reprogramming occurred, and we found that the HR and associated processes are highly energy demanding. Ubiquitin-dependent protein degradation, hydrolysis of sugars, and lipid catabolism are used as alternative sources of amino acids, energy, and carbon skeletons, respectively. We observed strong accumulation of secondary metabolites, such as hydroxycinnamic acid amides. Coregulated expression of WRKY transcription factors and genes known to be involved in the HR, in addition to a strong enrichment of the W-box WRKY-binding motif in the promoter sequences of the coregulated genes, point to WRKYs as the most prominent orchestrators of the HR. Our study has revealed several novel HR-related genes, and reverse genetics tools will allow us to understand the role of each individual component in the HR.
Collapse
Affiliation(s)
- Desalegn W. Etalo
- Laboratory of Plant Physiology (D.W.E., H.J.B.), Plant Research International Bioscience (D.W.E., R.C.H.d.V.), and Laboratory of Phytopathology (I.J.E.S., H.P.v.E., M.H.A.J.J.), Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (D.W.E., R.C.H.d.V., H.J.B., M.H.A.J.J.); and
- Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands (D.W.E., R.C.H.d.V., M.H.A.J.J.)
| | | | - H. Peter van Esse
- Laboratory of Plant Physiology (D.W.E., H.J.B.), Plant Research International Bioscience (D.W.E., R.C.H.d.V.), and Laboratory of Phytopathology (I.J.E.S., H.P.v.E., M.H.A.J.J.), Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (D.W.E., R.C.H.d.V., H.J.B., M.H.A.J.J.); and
- Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands (D.W.E., R.C.H.d.V., M.H.A.J.J.)
| | - Ric C.H. de Vos
- Laboratory of Plant Physiology (D.W.E., H.J.B.), Plant Research International Bioscience (D.W.E., R.C.H.d.V.), and Laboratory of Phytopathology (I.J.E.S., H.P.v.E., M.H.A.J.J.), Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (D.W.E., R.C.H.d.V., H.J.B., M.H.A.J.J.); and
- Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands (D.W.E., R.C.H.d.V., M.H.A.J.J.)
| | | | - Matthieu H.A.J. Joosten
- Laboratory of Plant Physiology (D.W.E., H.J.B.), Plant Research International Bioscience (D.W.E., R.C.H.d.V.), and Laboratory of Phytopathology (I.J.E.S., H.P.v.E., M.H.A.J.J.), Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (D.W.E., R.C.H.d.V., H.J.B., M.H.A.J.J.); and
- Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands (D.W.E., R.C.H.d.V., M.H.A.J.J.)
| |
Collapse
|
50
|
Marti G, Erb M, Boccard J, Glauser G, Doyen GR, Villard N, Robert CAM, Turlings TCJ, Rudaz S, Wolfender JL. Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. PLANT, CELL & ENVIRONMENT 2013; 36:621-39. [PMID: 22913585 DOI: 10.1111/pce.12002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant-herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.
Collapse
Affiliation(s)
- Guillaume Marti
- School of Pharmaceutical Sciences, EPGL, University of Geneva and University of Lausanne, Geneva Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|