1
|
Zhang H. Plant latent defense response against compatibility. THE ISME JOURNAL 2023; 17:787-791. [PMID: 36991179 PMCID: PMC10203107 DOI: 10.1038/s41396-023-01399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Managing the association with microbes is crucial for plants. Evidence is emerging for the plant latent defense response, which is conditionally elicited by certain microbial nonpathogenic factors and thereby guards against potential risks from beneficial or commensal microbes. Latent defense response is an exciting new research area with a number of key issues immediately awaiting exploration. A detailed understanding of latent defense response will underpin the applications of beneficial microbes.
Collapse
Affiliation(s)
- Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
2
|
Song JH, Montes-Luz B, Tadra-Sfeir MZ, Cui Y, Su L, Xu D, Stacey G. High-Resolution Translatome Analysis Reveals Cortical Cell Programs During Early Soybean Nodulation. FRONTIERS IN PLANT SCIENCE 2022; 13:820348. [PMID: 35498680 PMCID: PMC9048599 DOI: 10.3389/fpls.2022.820348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Nodule organogenesis in legumes is regulated temporally and spatially through gene networks. Genome-wide transcriptome, proteomic, and metabolomic analyses have been used previously to define the functional role of various plant genes in the nodulation process. However, while significant progress has been made, most of these studies have suffered from tissue dilution since only a few cells/root regions respond to rhizobial infection, with much of the root non-responsive. To partially overcome this issue, we adopted translating ribosome affinity purification (TRAP) to specifically monitor the response of the root cortex to rhizobial inoculation using a cortex-specific promoter. While previous studies have largely focused on the plant response within the root epidermis (e.g., root hairs) or within developing nodules, much less is known about the early responses within the root cortex, such as in relation to the development of the nodule primordium or growth of the infection thread. We focused on identifying genes specifically regulated during early nodule organogenesis using roots inoculated with Bradyrhizobium japonicum. A number of novel nodulation gene candidates were discovered, as well as soybean orthologs of nodulation genes previously reported in other legumes. The differential cortex expression of several genes was confirmed using a promoter-GUS analysis, and RNAi was used to investigate gene function. Notably, a number of differentially regulated genes involved in phytohormone signaling, including auxin, cytokinin, and gibberellic acid (GA), were also discovered, providing deep insight into phytohormone signaling during early nodule development.
Collapse
Affiliation(s)
- Jae Hyo Song
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Bruna Montes-Luz
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Michelle Zibetti Tadra-Sfeir
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Yaya Cui
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Roy Choudhury S, Pandey S. SymRK-dependent phosphorylation of Gα protein and its role in signaling during soybean (Glycine max) nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:277-291. [PMID: 35048428 DOI: 10.1111/tpj.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Heterotrimeric G proteins, comprised of Gα, Gβ and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gβγ, potentially allowing for constitutive signaling by the freed Gβγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
4
|
Pervent M, Lambert I, Tauzin M, Karouani A, Nigg M, Jardinaud MF, Severac D, Colella S, Martin-Magniette ML, Lepetit M. Systemic control of nodule formation by plant nitrogen demand requires autoregulation-dependent and independent mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7942-7956. [PMID: 34427647 DOI: 10.1093/jxb/erab374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
In legumes interacting with rhizobia, the formation of symbiotic organs involved in the acquisition of atmospheric nitrogen gas (N2) is dependent on the plant nitrogen (N) demand. We used Medicago truncatula plants cultivated in split-root systems to discriminate between responses to local and systemic N signaling. We evidenced a strong control of nodule formation by systemic N signaling but obtained no clear evidence of a local control by mineral nitrogen. Systemic signaling of the plant N demand controls numerous transcripts involved in root transcriptome reprogramming associated with early rhizobia interaction and nodule formation. SUPER NUMERIC NODULES (SUNN) has an important role in this control, but we found that major systemic N signaling responses remained active in the sunn mutant. Genes involved in the activation of nitrogen fixation are regulated by systemic N signaling in the mutant, explaining why its hypernodulation phenotype is not associated with higher nitrogen fixation of the whole plant. We show that the control of transcriptome reprogramming of nodule formation by systemic N signaling requires other pathway(s) that parallel the SUNN/CLE (CLAVATA3/EMBRYO SURROUNDING REGION-LIKE PEPTIDES) pathway.
Collapse
Affiliation(s)
- Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Ilana Lambert
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Marc Tauzin
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alicia Karouani
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Martha Nigg
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes Microorganismes INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Dany Severac
- MGX, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Stefano Colella
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia-Antipolis, France
| |
Collapse
|
5
|
Dodueva I, Lebedeva M, Lutova L. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112243. [PMID: 34834606 PMCID: PMC8618561 DOI: 10.3390/plants10112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/14/2023]
Abstract
Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.
Collapse
|
6
|
Huo H, Wang X, Liu Y, Chen J, Wei G. A Nod factor- and type III secretion system-dependent manner for Robinia pseudoacacia to establish symbiosis with Mesorhizobium amorphae CCNWGS0123. TREE PHYSIOLOGY 2021; 41:817-835. [PMID: 33219377 DOI: 10.1093/treephys/tpaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Under nitrogen-limiting conditions, symbiotic nodulation promotes the growth of legume plants via the fixation of atmospheric nitrogen to ammonia by rhizobia in root nodules. The rhizobial Nod factor (NF) and type III secretion system (T3SS) are two key signaling pathways for establishing the legume-rhizobium symbiosis. However, whether NF signaling is involved in the nodulation of Robinia pseudoacacia and Mesorhizobium amorphae CCNWGS0123, and its symbiotic differences compared with T3SS signaling remain unclear. Therefore, to elucidate the function of NF signaling in nodulation, we mutated nodC in M. amorphae CCNWGS0123, which aborted NF synthesis. Compared with the plants inoculated with the wild type strain, the plants inoculated with the NF-deficient strain exhibited shorter shoots with etiolated leaves. These phenotypic characteristics were similar to those of the plants inoculated with the T3SS-deficient strain, which served as a Nod- (non-effective nodulation) control. The plants inoculated with both the NF- and T3SS-deficient strains formed massive root hair swellings, but no normal infection threads were detected. Sections of the nodules showed that inoculation with the NF- and T3SS-deficient strains induced small, white bumps without any rhizobia inside. Analyzing the accumulation of 6 plant hormones and the expression of 10 plant genes indicated that the NF- and T3SS-deficient strains activated plant defense reactions while suppressing plant symbiotic signaling during the perception and nodulation processes. The requirement for NF signaling appeared to be conserved in two other leguminous trees that can establish symbiosis with M. amorphae CCNWGS0123. In contrast, the function of the T3SS might differ among species, even within the same subfamily (Faboideae). Overall, this work demonstrated that nodulation of R. pseudoacacia and M. amorphae CCNWGS0123 was both NF and T3SS dependent.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water conservation, Northwest A&F University, 26 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Sen S, DasGupta M. Involvement of Arachis hypogaea Jasmonate ZIM domain/TIFY proteins in root nodule symbiosis. JOURNAL OF PLANT RESEARCH 2021; 134:307-326. [PMID: 33558946 DOI: 10.1007/s10265-021-01256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Jasmonate ZIM domain (JAZ) proteins are the key negative regulators of jasmonate signaling, an important integrator of plant-microbe relationships. Versatility of jasmonate signaling outcomes are maintained through the multiplicity of JAZ proteins and their definitive functionalities. How jasmonate signaling influences the legume-Rhizobium symbiotic relationship is still unclear. In Arachis hypogaea (peanut), a legume plant, one JAZ sub-family (JAZ1) gene and one TIFY sequence containing protein family member (TIFY8) gene show enhanced expression in the early stage and late stage of root nodule symbiosis (RNS) respectively. In plants, JAZ sub-family proteins belong to a larger TIFY family. Here, this study denotes the first attempt to reveal in planta interactions of downstream jasmonate signaling regulators through proteomics and mass spectrometry to find out the mode of jasmonate signaling participation in the RNS process of A. hypogaea. From 4-day old Bradyrhizobium-infected peanut roots, the JAZ1-protein complex shows its contribution towards the rhizobial entry, nodule development, autoregulation of nodulation and photo-morphogenesis during the early stage of symbiosis. From 30-day old Bradyrhizobium infected roots, the TIFY8-protein complex reveals repressor functionality of TIFY8, suppression of root jasmonate signaling, modulation of root circadian rhythm and nodule development. Cellular localization and expression level of the interaction partners during the nodulation process further substantiate the in planta interaction pairs. This study provides a comprehensive insight into the jasmonate functionality in RNS through modulation of nodule number and development, during the early stage and root circadian rhythm during the late stage of nodulation, through the protein complexes of JAZ1 and TIFY8 respectively in A. hypogaea.
Collapse
Affiliation(s)
- Saswati Sen
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
8
|
Karlo M, Boschiero C, Landerslev KG, Blanco GS, Wen J, Mysore KS, Dai X, Zhao PX, de Bang TC. The CLE53-SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4972-4984. [PMID: 32309861 PMCID: PMC7410177 DOI: 10.1093/jxb/eraa193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/17/2020] [Indexed: 05/13/2023]
Abstract
Plants and arbuscular mycorrhizal fungi (AMF) engage in mutually beneficial symbioses based on a reciprocal exchange of nutrients. The beneficial character of the symbiosis is maintained through a mechanism called autoregulation of mycorrhization (AOM). AOM includes root-to-shoot-to-root signaling; however, the molecular details of AOM are poorly understood. AOM shares many features of autoregulation of nodulation (AON) where several genes are known, including the receptor-like kinase SUPER NUMERIC NODULES (SUNN), root-to-shoot mobile CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) peptides, and the hydroxyproline O-arabinosyltransferase ROOT DETERMINED NODULATION1 (RDN1) required for post-translational peptide modification. In this work, CLE53 was identified to negatively regulate AMF symbiosis in a SUNN- and RDN1-dependent manner. CLE53 expression was repressed at low phosphorus, while it was induced by AMF colonization and high phosphorus. CLE53 overexpression reduced AMF colonization in a SUNN- and RDN1 dependent manner, while cle53, rdn1, and sunn mutants were more colonized than the wild type. RNA-sequencing identified 700 genes with SUNN-dependent regulation in AMF-colonized plants, providing a resource for future identification of additional AOM genes. Disruption of AOM genes in crops potentially constitutes a novel route for improving AMF-derived phosphorus uptake in agricultural systems with high phosphorus levels.
Collapse
Affiliation(s)
- Magda Karlo
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Katrine Gram Landerslev
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Gonzalo Sancho Blanco
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | | | - Xinbin Dai
- Noble Research Institute LLC, Ardmore, OK, USA
| | | | - Thomas C de Bang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
9
|
Lambert I, Pervent M, Le Queré A, Clément G, Tauzin M, Severac D, Benezech C, Tillard P, Martin-Magniette ML, Colella S, Lepetit M. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5039-5052. [PMID: 32386062 PMCID: PMC7410188 DOI: 10.1093/jxb/eraa221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/30/2020] [Indexed: 05/26/2023]
Abstract
In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These responses are associated with the induction of nodule senescence and the activation of plant defenses against microbes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.
Collapse
Affiliation(s)
- Ilana Lambert
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Antoine Le Queré
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marc Tauzin
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Dany Severac
- MGX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Claire Benezech
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Pascal Tillard
- Biologie et Physiologie Moléculaire des Plantes, INRAE, CNRS, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ. Evry, CNRS, INRAE, Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Stefano Colella
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marc Lepetit
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
10
|
Yoro E, Suzaki T, Kawaguchi M. CLE-HAR1 Systemic Signaling and NIN-Mediated Local Signaling Suppress the Increased Rhizobial Infection in the daphne Mutant of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:320-327. [PMID: 31880983 DOI: 10.1094/mpmi-08-19-0223-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Legumes survive in nitrogen-limited soil by forming a symbiosis with rhizobial bacteria. During root nodule symbiosis, legumes strictly control the development of their symbiotic organs, the nodules, in a process known as autoregulation of nodulation (AON). The study of hypernodulation mutants has elucidated the molecular basis of AON. Some hypernodulation mutants show an increase in rhizobial infection in addition to developmental alteration. However, the relationship between the AON and the regulation of rhizobial infection has not been clarified. We previously isolated daphne, a nodule inception (nin) allelic mutant, in Lotus japonicus. This mutant displayed dramatically increased rhizobial infection, suggesting the existence of NIN-mediated negative regulation of rhizobial infection. Here, we investigated whether the previously isolated components of AON, especially CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and their putative receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1), were able to suppress increased infection in the daphne mutant. The constitutive expression of LjCLE-RS1/2 strongly reduced the infection in the daphne mutant in a HAR1-dependent manner. Moreover, reciprocal grafting analysis showed that strong reduction of infection in daphne rootstock constitutively expressing LjCLE-RS1 was canceled by a scion of the har1 or klavier mutant, the genes responsible for encoding putative LjCLE-RS1 receptors. These data indicate that rhizobial infection is also systemically regulated by CLE-HAR1 signaling, a component of AON. In addition, the constitutive expression of NIN in daphne har1 double-mutant roots only partially reduced the rhizobial infection. Our findings indicate that the previously identified NIN-mediated negative regulation of infection involves unknown local signaling, as well as CLE-HAR1 long-distance signaling.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
11
|
Torkamaneh D, Chalifour FP, Beauchamp CJ, Agrama H, Boahen S, Maaroufi H, Rajcan I, Belzile F. Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:665-676. [PMID: 31822937 DOI: 10.1007/s00122-019-03499-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/30/2019] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE We explored the genetic basis of SNF-related traits through GWAS and identified 40 candidate genes. This study provides fundamental insights into SNF-related traits and will accelerate efforts for SNF breeding. Symbiotic nitrogen fixation (SNF) increases sustainability by supplying biological nitrogen for crops to enhance yields without damaging the ecosystem. A better understanding of this complex biological process is critical for addressing the triple challenges of food security, environmental degradation, and climate change. Soybean plants, the most important legume worldwide, can form a mutualistic interaction with specialized soil bacteria, bradyrhizobia, to fix atmospheric nitrogen. Here we report a comprehensive genome-wide association study of 11 SNF-related traits using 79K GBS-derived SNPs in 297 African soybeans. We identified 25 QTL regions encompassing 40 putative candidate genes for SNF-related traits including 20 genes with no prior known role in SNF. A line with a large deletion (164 kb), encompassing a QTL region containing a strong candidate gene (CASTOR), exhibited a marked decrease in SNF. This study performed on African soybean lines provides fundamental insights into SNF-related traits and yielded a rich catalog of candidate genes for SNF-related traits that might accelerate future efforts aimed at sustainable agriculture.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | | - Hesham Agrama
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
- Sultan Qaboos University, Muscat, Oman
| | - Steve Boahen
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
12
|
Abstract
The phytohormone jasmonate (JA) modulates various defense and developmental responses of plants, and is implied in the integration of multiple environmental signals. Given its centrality in regulating plant physiology according to external stimuli, JA influences the establishment of interactions between plant roots and beneficial bacteria or fungi. In many cases, moderate JA signaling promotes the onset of mutualism, while massive JA signaling inhibits it. The output also depends on the compatibility between microbe and host plant and on nutritional or environmental cues. Also, JA biosynthesis and perception participate in the systemic regulation of mutualistic interactions and in microbe-induced resistance to biotic and abiotic stress. Here, we review our current knowledge of the role of JA biosynthesis, signaling, and responses during mutualistic root-microbe interactions.
Collapse
Affiliation(s)
- Veronica Basso
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France
| | - Claire Veneault-Fourrey
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France.
| |
Collapse
|
13
|
Si Z, Yang Q, Liang R, Chen L, Chen D, Li Y. Digalactosyldiacylglycerol Synthase Gene MtDGD1 Plays an Essential Role in Nodule Development and Nitrogen Fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1196-1209. [PMID: 30986120 DOI: 10.1094/mpmi-11-18-0322-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.
Collapse
Affiliation(s)
- Zaiyong Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qianqian Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rongrong Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
14
|
Roy Choudhury S, Johns SM, Pandey S. A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives. PLANT DIRECT 2019; 3:e00135. [PMID: 31245773 PMCID: PMC6589526 DOI: 10.1002/pld3.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/16/2023]
Abstract
Legumes develop root nodules that harbor endosymbiotic bacteria, rhizobia. These rhizobia convert nitrogen to ammonia by biological nitrogen fixation. A thorough understanding of the biological nitrogen fixation in legumes and its regulation is key to develop sustainable agriculture. It is well known that plant hormones affect nodule formation; however, most studies are limited to model legumes due to their suitability for in vitro, plate-based assays. Specifically, it is almost impossible to measure the effects of exogenous hormones or other additives during nodule development in crop legumes such as soybean as they have huge root system in soil. To circumvent this issue, the present research develops suitable media and growth conditions for efficient nodule development under in vitro, soil-free conditions in an important legume crop, soybean. Moreover, we also evaluate the effects of all major phytohormones on soybean nodule development under identical growing conditions. Phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) had an overall inhibitory effect and those such as gibberellic acid (GA) or brassinosteroids (BRs) had an overall positive effect on nodule formation. This versatile, inexpensive, scalable, and simple protocol provides several advantages over previously established methods. It is extremely time- and resource-efficient, does not require special training or equipment, and produces highly reproducible results. The approach is expandable to other large legumes as well as for other exogenous additives.
Collapse
Affiliation(s)
| | | | - Sona Pandey
- Donald Danforth Plant Science CenterSt. LouisMissouri
| |
Collapse
|
15
|
Gautrat P, Mortier V, Laffont C, De Keyser A, Fromentin J, Frugier F, Goormachtig S. Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1407-1417. [PMID: 30753553 PMCID: PMC6382332 DOI: 10.1093/jxb/ery465] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.
Collapse
Affiliation(s)
- Pierre Gautrat
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Diderot, Université d’Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Carole Laffont
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Diderot, Université d’Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Justine Fromentin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Diderot, Université d’Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, Gif-sur-Yvette, France
- Correspondence: or
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: or
| |
Collapse
|
16
|
Fernandez-Göbel TF, Deanna R, Muñoz NB, Robert G, Asurmendi S, Lascano R. Redox Systemic Signaling and Induced Tolerance Responses During Soybean- Bradyrhizobium japonicum Interaction: Involvement of Nod Factor Receptor and Autoregulation of Nodulation. FRONTIERS IN PLANT SCIENCE 2019; 10:141. [PMID: 30828341 PMCID: PMC6384266 DOI: 10.3389/fpls.2019.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/28/2019] [Indexed: 05/27/2023]
Abstract
The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.
Collapse
Affiliation(s)
- Tadeo F. Fernandez-Göbel
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - Rocío Deanna
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Nacira B. Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sebastian Asurmendi
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
Guo W, Zhang F, Bao A, You Q, Li Z, Chen J, Cheng Y, Zhao W, Shen X, Zhou X, Jiao Y. The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode. MOLECULAR PLANT PATHOLOGY 2019; 20:270-286. [PMID: 30264924 PMCID: PMC6637870 DOI: 10.1111/mpp.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rhg1 (resistance to Heterodera glycines 1) is an important locus that contributes to resistance against soybean cyst nematode (SCN; Heterodera glycines Ichinohe), which is the most economically damaging disease of soybean worldwide. Simultaneous overexpression of three genes encoding a predicted amino acid transporter, an α-soluble N-ethylmaleimide-sensitive factor attachment protein (α-SNAP) and a predicted wound-induced protein resulted in resistance to SCN provided by this locus. However, the roles of two of these genes (excluding α-SNAP) remain unknown. Here, we report the functional characterization of Glyma.18G022400, a gene at the Rhg1 locus that encodes the predicted amino acid transporter Rhg1-GmAAT. Although the direct role of Rhg1-GmAAT in glutamate transport was not demonstrated, multiple lines of evidence showed that Rhg1-GmAAT impacts glutamic acid tolerance and glutamate transportation in soybean. Transcriptomic and metabolite profiling indicated that overexpression of Rhg1-GmAAT activated the jasmonic acid (JA) pathway. Treatment with a JA biosynthesis inhibitor reduced the resistance provided by the Rhg1-containing PI88788 to SCN, which suggested that the JA pathway might play a role in Rhg1-mediated resistance to SCN. Our results could be helpful for the clarification of the mechanism of resistance to SCN provided by Rhg1 in soybean.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Feng Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Aili Bao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Qingbo You
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Zeyu Li
- Daqing Branch of Heilongjiang Academy of Agricultural SciencesDaqingHeilongjiang163316China
| | - Jingsheng Chen
- Daqing Branch of Heilongjiang Academy of Agricultural SciencesDaqingHeilongjiang163316China
| | - Yihui Cheng
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Wei Zhao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Xinjie Shen
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Yongqing Jiao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
- Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenan450002China
| |
Collapse
|
18
|
Yoro E, Nishida H, Ogawa-Ohnishi M, Yoshida C, Suzaki T, Matsubayashi Y, Kawaguchi M. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:507-517. [PMID: 30351431 PMCID: PMC6322572 DOI: 10.1093/jxb/ery364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/12/2018] [Indexed: 05/21/2023]
Abstract
Legumes can survive in nitrogen-deficient environments by forming root-nodule symbioses with rhizobial bacteria; however, forming nodules consumes energy, and nodule numbers must thus be strictly controlled. Previous studies identified major negative regulators of nodulation in Lotus japonicus, including the small peptides CLAVATA3/ESR (CLE)-RELATED-ROOT SIGNAL1 (CLE-RS1), CLE-RS2, and CLE-RS3, and their putative major receptor HYPERNODULATION AND ABERRANT ROOT FORMATION1 (HAR1). CLE-RS2 is known to be expressed in rhizobia-inoculated roots, and is predicted to be post-translationally arabinosylated, a modification essential for its activity. Moreover, all three CLE-RSs suppress nodulation in a HAR1-dependent manner. Here, we identified PLENTY as a gene responsible for the previously isolated hypernodulation mutant plenty. PLENTY encoded a hydroxyproline O-arabinosyltransferase orthologous to ROOT DETERMINED NODULATION1 in Medicago truncatula. PLENTY was localized to the Golgi, and an in vitro analysis of the recombinant protein demonstrated its arabinosylation activity, indicating that CLE-RS1/2/3 may be substrates for PLENTY. The constitutive expression experiments showed that CLE-RS3 was the major candidate substrate for PLENTY, suggesting the substrate preference of PLENTY for individual CLE-RS peptides. Furthermore, a genetic analysis of the plenty har1 double mutant indicated the existence of another PLENTY-dependent and HAR1-independent pathway negatively regulating nodulation.
Collapse
Affiliation(s)
- Emiko Yoro
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Hanna Nishida
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Chie Yoshida
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takuya Suzaki
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University Chikusa, Nagoya, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
19
|
Martín-Rodríguez JÁ, Leija A, Formey D, Hernández G. The MicroRNA319d/TCP10 Node Regulates the Common Bean - Rhizobia Nitrogen-Fixing Symbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:1175. [PMID: 30147704 PMCID: PMC6095992 DOI: 10.3389/fpls.2018.01175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 05/30/2023]
Abstract
Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) - TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean (Phaseolus vulgaris) - Rhizobium tropici symbiosis. The miR319d, one of nine miR319 isoforms from common bean, was highly expressed in root and nodules from inoculated plants as compared to roots from fertilized plants. The miR319d targets TCP10 (Phvul.005G067950), identified by degradome analysis, whose expression showed a negative correlation with miR319d expression. The phenotypic analysis of R. tropici-inoculated composite plants with transgenic roots/nodules overexpressing or silencing the function of miR319d demonstrated the relevant role of the miR319d/TCP10 node in the common bean rhizobia symbiosis. Increased miR319d resulted in reduced root length/width ratio, increased rhizobial infection evidenced by more deformed root hairs and infection threads, and decreased nodule formation and nitrogenase activity per plant. In addition, these plants with lower TCP10 levels showed decreased expression level of the jasmonic acid (JA) biosynthetic gene: LOX2. The transcription of LOX2 by TCPs has been demonstrated for Arabidopsis and in several plants LOX2 level and JA content have been associate with TCP levels. On this basis, we propose that in roots/nodules of inoculated common bean plants TCP10 could be the transcriptional regulator of LOX2 and the miR319d/TCP10 node could affect nodulation through JA signaling. However, given the complexity of nodulation, the participation of other signaling pathways in the phenotypes observed cannot be ruled out.
Collapse
|
20
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Wang C, Reid JB, Foo E. The Art of Self-Control - Autoregulation of Plant-Microbe Symbioses. FRONTIERS IN PLANT SCIENCE 2018; 9:988. [PMID: 30042780 PMCID: PMC6048281 DOI: 10.3389/fpls.2018.00988] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/19/2018] [Indexed: 05/07/2023]
Abstract
Plants interact with diverse microbes including those that result in nutrient-acquiring symbioses. In order to balance the energy cost with the benefit gained, plants employ a systemic negative feedback loop to control the formation of these symbioses. This is particularly well-understood in nodulation, the symbiosis between legumes and nitrogen-fixing rhizobia, and is known as autoregulation of nodulation (AON). However, much less is understood about the autoregulation of the ancient arbuscular mycorrhizal symbioses that form between Glomeromycota fungi and the majority of land plants. Elegant physiological studies in legumes have indicated there is at least some overlap in the genes and signals that regulate these two symbioses but there are major gaps in our understanding. In this paper we examine the hypothesis that the autoregulation of mycorrhizae (AOM) pathway shares some elements with AON but that there are also some important differences. By reviewing the current knowledge of the AON pathway, we have identified important directions for future AOM studies. We also provide the first genetic evidence that CLV2 (an important element of the AON pathway) influences mycorrhizal development in a non-legume, tomato and review the interaction of the autoregulation pathway with plant hormones and nutrient status. Finally, we discuss whether autoregulation may play a role in the relationships plants form with other microbes.
Collapse
Affiliation(s)
| | | | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
22
|
Azarakhsh M, Lebedeva MA, Lutova LA. Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes ( IPTs) Involved in Local and Systemic Control of Nodulation. FRONTIERS IN PLANT SCIENCE 2018; 9:304. [PMID: 29593763 PMCID: PMC5855100 DOI: 10.3389/fpls.2018.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/22/2018] [Indexed: 05/26/2023]
Abstract
Cytokinins are essential for legume plants to establish a nitrogen-fixing symbiosis with rhizobia. Recently, the expression level of cytokinin biosynthesis IPTs (ISOPENTENYLTRANSFERASES) genes was shown to be increased in response to rhizobial inoculation in Lotus japonicus, Medicago truncatula and Pisum sativum. In addition to its well-established positive role in nodule primordium initiation in root cortex, cytokinin negatively regulates infection processes in the epidermis. Moreover, it was reported that shoot-derived cytokinin inhibits the subsequent nodule formation through AON (autoregulation of nodulation) pathway. In L. japonicus, LjIPT3 gene was shown to be activated in the shoot phloem via the components of AON system, negatively affecting nodulation. However, in M. truncatula, the detailed analysis of MtIPTs expression, both in roots and shoots, in response to nodulation has not been performed yet, and the link between IPTs and AON has not been studied so far. In this study, we performed an extensive analysis of MtIPTs expression levels in different organs, focusing on the possible role of MtIPTs in nodule development. MtIPTs expression dynamics in inoculated roots suggest that besides its early established role in the nodule primordia development, cytokinin may be also important for later stages of nodulation. According to expression analysis, MtIPT3, MtIPT4, and MtIPT5 are activated in the shoots in response to inoculation. Among these genes, MtIPT3 is the only one the induction of which was not observed in leaves of the sunn-3 mutant defective in CLV1-like kinase, the key component of AON, suggesting that MtIPT3 is activated in the shoots in an AON-dependent manner. Taken together, our findings suggest that MtIPTs are involved in the nodule development at different stages, both locally in inoculated roots and systemically in shoots, where their expression can be activated in an AON-dependent manner.
Collapse
|
23
|
Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS One 2018; 13:e0190884. [PMID: 29304107 PMCID: PMC5755929 DOI: 10.1371/journal.pone.0190884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Jasmonic acid (JA), its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA) form a group of phytohormones, the jasmonates, representing signal molecules involved in plant stress responses, in the defense against pathogens as well as in development. Elevated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induction of nitrogen-fixing root nodules. In this study, the gene families of two committed enzymes of the JA biosynthetic pathway, allene oxide synthase (AOS) and allene oxide cyclase (AOC), were characterized in the determinate nodule-forming model legume Lotus japonicus JA levels were to be analysed in the course of nodulation. Since in all L. japonicus organs examined, JA levels increased upon mechanical disturbance and wounding, an aeroponic culture system was established to allow for a quick harvest, followed by the analysis of JA levels in whole root and shoot systems. Nodulated plants were compared with non-nodulated plants grown on nitrate or ammonium as N source, respectively, over a five week-period. JA levels turned out to be more or less stable independently of the growth conditions. However, L. japonicus nodules formed on aeroponically grown plants often showed patches of cells with reduced bacteroid density, presumably a stress symptom. Immunolocalization using a heterologous antibody showed that the vascular systems of these nodules also seemed to contain less AOC protein than those of nodules of plants grown in perlite/vermiculite. Hence, aeroponically grown L. japonicus plants are likely to be habituated to stress which could have affected JA levels.
Collapse
|
24
|
Cheng C, Li C, Wang D, Zhai L, Cai Z. The Soybean GmNARK Affects ABA and Salt Responses in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:514. [PMID: 29720993 PMCID: PMC5915533 DOI: 10.3389/fpls.2018.00514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/04/2018] [Indexed: 05/12/2023]
Abstract
GmNARK (Glycine max nodule autoregulation receptor kinase) is the homolog of Arabidopsis thaliana CLAVATA1 (CLV1) and one of the most important regulators in the process of AON (Autoregulation of Nodulation), a process that restricts excessive nodule numbers in soybean. However, except for the function in AON, little is known about this gene. Here, we report that GmNARK plays important roles in process of plant response to abiotic stresses. Bioinformatic analysis and subcellular localization experiment results showed that GmNARK was a putative receptor like kinase and located at membrane. The promoter of GmNARK contains manifold cis regulatory elements that are responsive to hormone and stresses. Gene transcript expression pattern analysis in soybean revealed GmNARK was induced by ABA and NaCl treatment in both shoot and root. Overexpression of GmNARK in Arabidopsis resulted in higher sensitivity to ABA and salt treatment during seed germination and greening stages. We also checked the expression levels of some ABA response genes in the transgenic lines; the results showed that the transcript level of all the ABA response genes were much higher than that of wild type under ABA treatment. Our results revealed a novel role of GmNARK in response to abiotic stresses during plant growth and development.
Collapse
|
25
|
Chen T, Duan L, Zhou B, Yu H, Zhu H, Cao Y, Zhang Z. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula. Front Microbiol 2017; 8:973. [PMID: 28611764 PMCID: PMC5447765 DOI: 10.3389/fmicb.2017.00973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011) and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2), pathogenesis-related protein 10 (PR10), and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Bo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
26
|
Rudikovskaya EG, Akimova GP, Rudikovskii AV, Katysheva NB, Dudareva LV. Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Kim HW, Amirsadeghi S, McKenzie-Gopsill A, Afifi M, Bozzo G, Lee EA, Lukens L, Swanton CJ. Changes in light quality alter physiological responses of soybean to thiamethoxam. PLANTA 2016; 244:639-50. [PMID: 27114265 DOI: 10.1007/s00425-016-2531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION The interaction between neighboring weed-induced far-red enriched light and thiamethoxam can significantly alter soybean seedling morphology, nodulation, isoflavone levels, UV-absorbing phenolics, and carbon and nitrogen content. Neonicotinoid insecticides that are widely used on major crop plants can enhance plant growth and yield. Although the underlying mechanism of this enhanced growth and yield is not clear, recent studies suggest that neonicotinoids such as thiamethoxam (TMX) may exert their effects at least in part via signals that involve salicylic acid (SA) and jasmonic acid (JA). In the current research, effects of TMX on morphological and physiological responses of soybean have been compared under far-red-depleted (FR-D) and far-red-enriched (FR-E) light reflected by neighboring weeds. TMX significantly enhanced shoot and root growth but did not prevent stem elongation under FR-E light. Also, TMX did not prevent reductions in shoot carbon content and shoot carbon to nitrogen ratio under FR-E light. Despite similarities between these TMX effects in soybean and those known for SA and JA in other plant species, TMX significantly enhanced root-nodule numbers per plant and levels of root isoflavones malonyl-daidzin and malonyl-genistin under FR-E light only. These results suggest that the combined effect of FR-E light and TMX triggers a mechanism that operates concomitantly to enhance root isoflavones and nodulation in soybean.
Collapse
Affiliation(s)
- Hae Won Kim
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Andrew McKenzie-Gopsill
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Maha Afifi
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Gale Bozzo
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Elizabeth A Lee
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada
| | - Clarence J Swanton
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd. East, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
28
|
Desalegn G, Turetschek R, Kaul HP, Wienkoop S. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. J Proteomics 2016; 143:173-187. [PMID: 27016040 DOI: 10.1016/j.jprot.2016.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. BIOLOGICAL SIGNIFICANCE A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis.
Collapse
Affiliation(s)
- G Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - R Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - H-P Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - S Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
29
|
Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson L, Ding Y, Scheel D, Herklotz S, Hilbert M, Zuccaro A. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. THE NEW PHYTOLOGIST 2015; 207:841-57. [PMID: 25919406 DOI: 10.1111/nph.13411] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/07/2015] [Indexed: 05/04/2023]
Abstract
During a compatible interaction, the sebacinoid root-associated fungi Piriformospora indica and Sebacina vermifera induce modification of root morphology and enhance shoot growth in Arabidopsis thaliana. The genomic traits common in these two fungi were investigated and compared with those of other root-associated fungi and saprotrophs. The transcriptional responses of the two sebacinoid fungi and of Arabidopsis roots to colonization at three different symbiotic stages were analyzed by custom-designed microarrays. We identified key genomic features characteristic of sebacinoid fungi, such as expansions for gene families involved in hydrolytic activities, carbohydrate-binding and protein-protein interaction. Additionally, we show that colonization of Arabidopsis correlates with the induction of salicylic acid catabolism and accumulation of jasmonate and glucosinolates (GSLs). Genes involved in root developmental processes were specifically induced by S. vermifera at later stages during interaction. Using different Arabidopsis indole-GSLs mutants and measurement of secondary metabolites, we demonstrate the importance of the indolic glucosinolate pathway in the growth restriction of P. indica and S. vermifera and we identify indole-phytoalexins and specifically indole-carboxylic acids derivatives as potential key players in the maintenance of a mutualistic interaction with root endophytes.
Collapse
Affiliation(s)
- Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| | - Henning Frerigmann
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| | - Lisa Leson
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| | - Yi Ding
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Siska Herklotz
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Magdalena Hilbert
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| |
Collapse
|
30
|
Jiménez-Guerrero I, Pérez-Montaño F, Monreal JA, Preston GM, Fones H, Vioque B, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:790-9. [PMID: 25775271 DOI: 10.1094/mpmi-01-15-0020-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.
Collapse
Affiliation(s)
| | | | - José Antonio Monreal
- 2 Departamento de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Gail M Preston
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Helen Fones
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Blanca Vioque
- 4 Departamento de Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Avda. Padre García Tejero, 4, 41012, Sevilla, Spain
| | | | | |
Collapse
|
31
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
32
|
Foo E, Ferguson BJ, Reid JB. Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. PLANT SIGNALING & BEHAVIOR 2014; 9:e29593. [PMID: 25763697 PMCID: PMC4205148 DOI: 10.4161/psb.29593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 05/20/2023]
Abstract
All of the classical plant hormones have been suggested to influence nodulation, including some that interact with the Autoregulation of Nodulation (AON) pathway. Leguminous plants strictly regulate the number of nodules formed through this AON pathway via a root-shoot-root loop that acts to suppress excessive nodulation. A related pathway, the Autoregulation of Mycorrhization (AOM) pathway controls the more ancient, arbuscular mycorrhizal (AM) symbiosis. A comparison of the published responses to the classical hormones in these 2 symbioses shows that most influence the symbioses in the same direction. This may be expected if they affect the symbioses via common components of these symbiotic regulatory pathways. However, some hormones influence these symbioses in opposite directions, suggesting a more complex relationship, and probably one that is not via the common components of these pathways. In a recent paper we showed, using a genetic approach, that strigolactones and brassinosteroids do not act downstream of the AON genes examined and argued that they probably act independently to promote nodule formation. Recently it has been shown that the control of nodulation via the AON pathway involves mobile CLE peptide signals. It is therefore suggested that a more direct avenue to determine if the classical hormones play a direct role in the autoregulatory pathways is to further examine whether CLE peptides and other components of these processes can influence, or be influenced by, the classical hormones. Such studies and other comparisons between the nodulation and mycorrhizal symbioses should allow the role of the classical hormones in these critical symbioses to be rapidly advanced.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences; University of Tasmania; TAS Australia
- Correspondence to: Eloise Foo,
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences; The University of Queensland; St Lucia, Brisbane, QLD Australia
| | - James B Reid
- School of Biological Sciences; University of Tasmania; TAS Australia
| |
Collapse
|
33
|
Schaarschmidt S, Gresshoff PM, Hause B. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 2013; 14:R62. [PMID: 23777981 PMCID: PMC3706930 DOI: 10.1186/gb-2013-14-6-r62] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 06/18/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. RESULTS Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. CONCLUSIONS Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- Humboldt-Universität zu Berlin, Faculty of Agriculture and Horticulture, Division Urban Plant Ecophysiology, Lentzeallee 55-57, 14195 Berlin, Germany
| | - Peter M Gresshoff
- ARC Centre of Excellence for Integrative Legume Research (CILR), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
34
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1451] [Impact Index Per Article: 131.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
35
|
Hayashi S, Gresshoff PM, Ferguson BJ. Systemic Signalling in Legume Nodulation: Nodule Formation and Its Regulation. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ. Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:995-1010. [PMID: 22863334 DOI: 10.1111/j.1467-7652.2012.00729.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
All lateral organ development in plants, such as nodulation in legumes, requires the temporal and spatial regulation of genes and gene networks. A total mRNA profiling approach using RNA-seq to target the specific soybean (Glycine max) root tissues responding to compatible rhizobia [i.e. the Zone Of Nodulation (ZON)] revealed a large number of novel, often transient, mRNA changes occurring during the early stages of nodulation. Focusing on the ZON enabled us to discard the majority of root tissues and their developmentally diverse gene transcripts, thereby highlighting the lowly and transiently expressed nodulation-specific genes. It also enabled us to concentrate on a precise moment in early nodule development at each sampling time. We focused on discovering genes regulated specifically by the Bradyrhizobium-produced Nod factor signal, by inoculating roots with either a competent wild-type or incompetent mutant (nodC(-) ) strain of Bradyrhizobium japonicum. Collectively, 2915 genes were identified as being differentially expressed, including many known soybean nodulation genes. A number of unknown nodulation gene candidates and soybean orthologues of nodulation genes previously reported in other legume species were also identified. The differential expression of several candidates was confirmed and further characterized via inoculation time-course studies and qRT-PCR. The expression of many genes, including an endo-1,4-β-glucanase, a cytochrome P450 and a TIR-LRR-NBS receptor kinase, was transient, peaking quickly during the initiation of nodule ontogeny. Additional genes were found to be down-regulated. Significantly, a set of differentially regulated genes acting in the gibberellic acid (GA) biosynthesis pathway was discovered, suggesting a novel role of GAs in nodulation.
Collapse
Affiliation(s)
- Satomi Hayashi
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Costanzo ME, Andrade A, del Carmen Tordable M, Cassán F, Abdala G. Production and function of jasmonates in nodulated roots of soybean plants inoculated with Bradyrhizobium japonicum. Arch Microbiol 2012; 194:837-45. [PMID: 22547296 DOI: 10.1007/s00203-012-0817-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 02/28/2012] [Accepted: 04/11/2012] [Indexed: 12/18/2022]
Abstract
Little is known regarding production and function of endogenous jasmonates (JAs) in root nodules of soybean plants inoculated with Bradyrhizobium japonicum. We investigated (1) production of jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) in roots of control and inoculated plants and in isolated nodules; (2) correlations between JAs levels, nodule number, and plant growth during the symbiotic process; and (3) effects of exogenous JA and OPDA on nodule cell number and size. In roots of control plants, JA and OPDA levels reached a maximum at day 18 after inoculation; OPDA level was 1.24 times that of JA. In roots of inoculated plants, OPDA peaked at day 15, whereas JA level did not change appreciably. Shoot dry matter of inoculated plants was higher than that of control at day 21. Chlorophyll a decreased more abruptly in control plants than in inoculated plants, whereas b decreased gradually in both cases. Exogenous JA or OPDA changed number and size of nodule central cells and peripheral cells. Findings from this and previous studies suggest that increased levels of JA and OPDA in control plants are related to senescence induced by nutritional stress. OPDA accumulation in nodulated roots suggests its involvement in "autoregulation of nodulation."
Collapse
Affiliation(s)
- María Emilia Costanzo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
38
|
Thatcher LF, Powell JJ, Aitken EAB, Kazan K, Manners JM. The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt Susceptibility and jasmonate signaling in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:407-18. [PMID: 22786889 PMCID: PMC3440215 DOI: 10.1104/pp.112.199067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/09/2012] [Indexed: 05/17/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family encodes plant-specific transcriptional regulators functioning in organ development. In a screen of Arabidopsis (Arabidopsis thaliana) sequence-indexed transferred DNA insertion mutants, we found disruption of the LOB DOMAIN-CONTAINING PROTEIN20 (LBD20) gene led to increased resistance to the root-infecting vascular wilt pathogen Fusarium oxysporum. In wild-type plants, LBD20 transcripts were barely detectable in leaves but abundant in roots, where they were further induced after F. oxysporum inoculation or methyl jasmonate treatment. Induction of LBD20 expression in roots was abolished in coronatine insensitive1 (coi1) and myc2 (allelic to jasmonate insensitive1) mutants, suggesting LBD20 may function in jasmonate (JA) signaling. Consistent with this, expression of the JA-regulated THIONIN2.1 (Thi2.1) and VEGETATIVE STORAGE PROTEIN2 (VSP2) genes were up-regulated in shoots of lbd20 following treatment of roots with F. oxysporum or methyl jasmonate. However, PLANT DEFENSIN1.2 expression was unaltered, indicating a repressor role for LBD20 in a branch of the JA-signaling pathway. Plants overexpressing LBD20 (LBD20-OX) had reduced Thi2.1 and VSP2 expression. There was a significant correlation between increased LBD20 expression in the LBD20-OX lines with both Thi2.1 and VSP2 repression, and reduced survival following F. oxysporum infection. Chlorosis resulting from application of F. oxysporum culture filtrate was also reduced in lbd20 leaves relative to the wild type. Taken together, LBD20 is a F. oxysporum susceptibility gene that appears to regulate components of JA signaling downstream of COI1 and MYC2 that are required for full elicitation of F. oxysporum- and JA-dependent responses. To our knowledge, this is the first demonstration of a role for a LBD gene family member in either biotic stress or JA signaling.
Collapse
Affiliation(s)
- Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland 4067, Australia.
| | | | | | | | | |
Collapse
|
39
|
Ryu H, Cho H, Choi D, Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 2012; 34:117-26. [PMID: 22820920 PMCID: PMC3887813 DOI: 10.1007/s10059-012-0131-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyunwoo Cho
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Daeseok Choi
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Ildoo Hwang
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
40
|
Reid DE, Hayashi S, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ. Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:680-9. [PMID: 22624681 DOI: 10.1111/j.1467-7652.2012.00706.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Establishment of the nitrogen-fixing nodulation symbiosis between legumes and rhizobia requires plant-wide reprogramming to allow infection and development of nodules. Nodulation is regulated principally via a mechanism called autoregulation of nodulation (AON). AON is dependent on shoot and root factors and is maintained by the nodulation autoregulation receptor kinase (NARK) in soybean. We developed a bioassay to detect root-derived signalling molecules in xylem sap of soybean plants which may function in AON. The bioassay involves feeding of xylem extracts via the cut hypocotyl of soybean seedlings and monitoring of molecular markers of AON in the leaf. Transcript abundance changes occurring in the leaf in response to feeding were used to determine the biological activity of the extracts. To identify transcript abundance changes that occur during AON, which may also be used in the bioassay, we used an RNA-seq-based transcriptomics approach. We identified changes in the leaves of bioassay plants fed with xylem extracts derived from either Bradyrhizobium japonicum-inoculated or uninoculated plants. Differential expression responses were detected for genes involved in jasmonic acid metabolism, pathogenesis and receptor kinase signalling. We identified an inoculation- and NARK-dependent candidate gene (GmUFD1a) that responds in both the bioassay and intact, inoculated plants. GmUFD1a is a component of the ubiquitin-dependent protein degradation pathway and provides new insight into the molecular responses occurring during AON. It may now also be used in our feeding bioassay as a molecular marker to assist in identifying the factors contributing to the systemic regulation of nodulation.
Collapse
Affiliation(s)
- Dugald E Reid
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Landgraf R, Schaarschmidt S, Hause B. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. PLANT, CELL & ENVIRONMENT 2012; 35:1344-57. [PMID: 22329418 DOI: 10.1111/j.1365-3040.2012.02495.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root-colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen-fixing bacterium Sinorhizobium meliloti. To obtain a long-lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate-induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall-bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA-induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.
Collapse
Affiliation(s)
- Ramona Landgraf
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | |
Collapse
|
42
|
Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. PLANT, CELL & ENVIRONMENT 2012; 35:245-58. [PMID: 21819415 DOI: 10.1111/j.1365-3040.2011.02406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.
Collapse
Affiliation(s)
- Virginie Mortier
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | |
Collapse
|
43
|
Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:139-50. [PMID: 21995763 DOI: 10.1094/mpmi-06-11-0179] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control activity, can stimulate plant growth by directly suppressing deleterious soilborne pathogens or by priming aboveground plant parts for enhanced defense against foliar pathogens or insect herbivores. The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses. A growing body of evidence suggests that beneficial microbes are initially recognized as potential invaders, after which an immune response is triggered, whereas, at later stages of the interaction, mutualists are able to short-circuit plant defense responses to enable successful colonization of host roots. Here, we review our current understanding of how symbiotic and nonsymbiotic beneficial soil microbes modulate the plant immune system and discuss the role of local and systemic defense responses in establishing the delicate balance between the two partners.
Collapse
|
44
|
Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM. Molecular mechanisms controlling legume autoregulation of nodulation. ANNALS OF BOTANY 2011; 108:789-95. [PMID: 21856632 PMCID: PMC3177682 DOI: 10.1093/aob/mcr205] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/17/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND High input costs and environmental pressures to reduce nitrogen use in agriculture have increased the competitive advantage of legume crops. The symbiotic relationship that legumes form with nitrogen-fixing soil bacteria in root nodules is central to this advantage. SCOPE Understanding how legume plants maintain control of nodulation to balance the nitrogen gains with their energy needs and developmental costs will assist in increasing their productivity and relative advantage. For this reason, the regulation of nodulation has been extensively studied since the first mutants exhibiting increased nodulation were isolated almost three decades ago. CONCLUSIONS Nodulation is regulated primarily via a systemic mechanism known as the autoregulation of nodulation (AON), which is controlled by a CLAVATA1-like receptor kinase. Multiple components sharing homology with the CLAVATA signalling pathway that maintains control of the shoot apical meristem in arabidopsis have now been identified in AON. This includes the recent identification of several CLE peptides capable of activating nodule inhibition responses, a low molecular weight shoot signal and a role for CLAVATA2 in AON. Efforts are now being focused on directly identifying the interactions of these components and to identify the form that long-distance transport molecules take.
Collapse
|
45
|
Staehelin C, Xie ZP, Illana A, Vierheilig H. Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way? PLANT SIGNALING & BEHAVIOR 2011; 6:372-7. [PMID: 21455020 PMCID: PMC3142418 DOI: 10.4161/psb.6.3.13881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 05/03/2023]
Abstract
Legumes enter nodule symbioses with nitrogen-fixing bacteria (rhizobia), whereas most flowering plants establish symbiotic associations with arbuscular mycorrhizal (AM) fungi. Once first steps of symbiosis are initiated, nodule formation and mycorrhization in legumes is negatively controlled by a shoot-derived inhibitor (SDI), a phenomenon termed autoregulation. According to current views, autoregulation of nodulation and mycorrhization in legumes is regulated in a similar way. CLE peptides induced in response to rhizobial nodulation signals (Nod factors) have been proposed to represent the ascending long-distance signals to the shoot. Although not proven yet, these CLE peptides are likely perceived by leucine-rich repeat (LRR) autoregulation receptor kinases in the shoot. Autoregulation of mycorrhization in non-legumes is reminiscent to the phenomenon of "systemic acquired resistance" in plant-pathogen interactions.
Collapse
Affiliation(s)
- Christian Staehelin
- State Key Laboratory of Biocontrol; School of Life Sciences; Sun Yat-sen (Zhongshan) University (East Campus); Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol; School of Life Sciences; Sun Yat-sen (Zhongshan) University (East Campus); Guangzhou, China
| | - Antonio Illana
- Departamento de Microbiología de Suelos; Estación Experimental del Zaidín; CSIC; Granada, Spain
| | - Horst Vierheilig
- Departamento de Microbiología de Suelos; Estación Experimental del Zaidín; CSIC; Granada, Spain
| |
Collapse
|
46
|
Heath KD, Lau JA. Herbivores alter the fitness benefits of a plant–rhizobium mutualism. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2010.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Lin YH, Lin MH, Gresshoff PM, Ferguson BJ. An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 2011; 6:36-45. [PMID: 21212781 DOI: 10.1038/nprot.2010.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introducing bioactive molecules into plants helps establish their roles in plant growth and development. Here we describe a simple and effective petiole-feeding protocol to introduce aqueous solutions into the vascular stream and apoplast of dicotyledonous plants. This 'intravenous feeding' procedure has wide applicability to plant physiology, specifically with regard to the analysis of source-sink allocations, long-distance signaling, hormone biology and overall plant development. In comparison with existing methods, this technique allows the continuous feeding of aqueous solutions into plants without the need for constant monitoring. Findings are provided from experiments using soybean plants fed with a range of aqueous solutions containing tracer dyes, small metabolites, radiolabeled chemicals and biologically active plant extracts controlling nodulation. Typically, feeding experiments consist of (i) generating samples to feed (extracts, solutions and so on); (ii) growing recipient plants; (iii) setting up the feeding apparatus; and (iv) feeding sample solutions into the recipient plants. When the plants are ready, the feeding procedure can take 1-3 h to set up depending on the size of experiment (not including preparation of materials). The petiole-feeding technique also works with other plant species, including tomato, chili pepper and cabbage plants, as demonstrated here.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
48
|
Zdyb A, Demchenko K, Heumann J, Mrosk C, Grzeganek P, Göbel C, Feussner I, Pawlowski K, Hause B. Jasmonate biosynthesis in legume and actinorhizal nodules. THE NEW PHYTOLOGIST 2011; 189:568-79. [PMID: 20964693 DOI: 10.1111/j.1469-8137.2010.03504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Jasmonic acid (JA) is a plant signalling compound that has been implicated in the regulation of mutualistic symbioses. In order to understand the spatial distribution of JA biosynthetic capacity in nodules of two actinorhizal species, Casaurina glauca and Datisca glomerata, and one legume, Medicago truncatula, we determined the localization of allene oxide cyclase (AOC) which catalyses a committed step in JA biosynthesis. In all nodule types analysed, AOC was detected exclusively in uninfected cells. The levels of JA were compared in the roots and nodules of the three plant species. The nodules and noninoculated roots of the two actinorhizal species, and the root systems of M. truncatula, noninoculated or nodulated with wild-type Sinorhizobium meliloti or with mutants unable to fix nitrogen, did not show significant differences in JA levels. However, JA levels in all plant organs examined increased significantly on mechanical disturbance. To study whether JA played a regulatory role in the nodules of M. truncatula, composite plants containing roots expressing an MtAOC1-sense or MtAOC1-RNAi construct were inoculated with S. meliloti. Neither an increase nor reduction in AOC levels resulted in altered nodule formation. These data suggest that jasmonates are not involved in the development and function of root nodules.
Collapse
Affiliation(s)
- Anna Zdyb
- Georg-August-University Göttingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H, Minamisawa K. Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. PLANT & CELL PHYSIOLOGY 2010; 51:1398-410. [PMID: 20685969 DOI: 10.1093/pcp/pcq119] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Diverse microorganisms are living as endophytes in plant tissues and as epiphytes on plant surfaces in nature. Questions about driving forces shaping the microbial community associated with plants remain unanswered. Because legumes developed systems to attain endosymbioses with rhizobia as well as mycorrhizae during their evolution, the above questions can be addressed using legume mutants relevant to genes for symbiosis. Analytical methods for the microbial community have recently been advanced by enrichment procedures of plant-associated microbes and culture-independent analyses targeting the small subunit of rRNA in microbial ecology. In this review, we first deal with interdisciplinary works on the global diversity of bacteria associated with field-grown soybeans with different nodulation genotypes and nitrogen application. A subpopulation of Proteobacteria in aerial parts of soybean shoots was likely to be regulated through both the autoregulation system for plant-rhizobium symbiosis and the nitrogen signaling pathway, suggesting that legumes accommodate a taxonomically characteristic microbial community through unknown plant-microbe communications. In addition to the community views, we then show multiphasic analysis of a beneficial rice endophyte for comparative bacterial genomics and plant responses. The significance and perspectives of community- and genome-based approaches are discussed to achieve a better understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Seishi Ikeda
- Memuro Research Station, National Agricultural Research Center for Hokkaido Region, Shinsei, Memuro-cho, Kasaigun, Hokkaido 082-0081, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li H, Deng Y, Wu T, Subramanian S, Yu O. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. PLANT PHYSIOLOGY 2010; 153:1759-70. [PMID: 20508137 PMCID: PMC2923892 DOI: 10.1104/pp.110.156950] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/20/2010] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant growth and development. Previously, we identified a group of conserved and novel miRNA families from soybean (Glycine max) roots. Many of these miRNAs are specifically induced during soybean-Bradyrhizobium japonicum interactions. Here, we examined the gene expression levels of six families of novel miRNAs and investigated their functions in nodule development. We used northern-blot analyses to study the tissue specificity and time course of miRNA expression. Transgenic expression of miR482, miR1512, and miR1515 led to significant increases of nodule numbers, while root length, lateral root density, and the number of nodule primordia were not altered in all tested miRNA lines. We also found differential expression of these miRNAs in nonnodulating and supernodulating soybean mutants. The expression levels of 22 predicted target genes regulated by six novel miRNAs were studied by real-time polymerase chain reaction and quantitative real-time polymerase chain reaction. These results suggested that miRNAs play important roles in soybean nodule development.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Yu
- Shanghai JiaoTong University, School of Agriculture and Biology, Shanghai 200240, China (H.L., T.W.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.D., S.S., O.Y.); Plant Science Department, South Dakota State University, Brookings, South Dakota 57007 (S.S.)
| |
Collapse
|