1
|
Zhang S, Ji Z, Jiao W, Shen C, Qin Y, Huang Y, Huang M, Kang S, Liu X, Li S, Mo Z, Yu Y, Jiang B, Tian Y, Wang L, Song Q, Wang S, Li S. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice. Nat Commun 2025; 16:1420. [PMID: 39915505 PMCID: PMC11802876 DOI: 10.1038/s41467-025-56752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Between the two major rice subspecies, indica varieties generally exhibit higher nitrate (NO3‒) uptake and nitrogen (N)-use efficiency (NUE) than japonica varieties. Introducing efficient NO3‒ utilization alleles from indica into japonica could improve NUE, and at the same time uncover unknown regulators of NO3‒ metabolism. Here, we identify OsWRKY23 as a key regulator of NO3‒ uptake and NUE differences between indica and japonica rice. The OsWRKY23indica allele exhibits reduced transcriptional activation of a negative regulator of auxin accumulation, DULL NITROGEN RESPONSE1 (DNR1). The resultant increase in auxin level improves NO3‒ uptake and assimilation, which ultimately enhances grain yield. Geographical and evolutionary analyses reveal overlapping distribution of OsWRKY23indica and DNR1indica, particularly in low-fertility soils, suggesting their involvement in the adaptation to low N conditions to improve NUE and grain yield. Incorporating the OsWRKY23-DNR1 module from indica rice represents a promising strategy to enhance japonica NUE, which is crucial for sustainable agriculture.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Wu Jiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chengbo Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yaojun Qin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Menghan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuming Kang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shunqi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zulong Mo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ying Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Bingyu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Wan Z, Li X, Cheng H, Zhang J, Chen Y, Xu Y, Jin S. Comprehensive Genomic Survey, Structural Classification, and Expression Analysis of WRKY Transcription Factor Family in Rhododendron simsii. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212967. [PMID: 36365420 PMCID: PMC9654210 DOI: 10.3390/plants11212967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/01/2023]
Abstract
(1) Rhododendron is one of the top ten traditional flowers in China, with both high ornamental and economic values. However, with the change of the environment, Rhododendron suffers from various biological stresses. The WRKY transcription factor is a member of the most crucial transcription factor families, which plays an essential regulatory role in a variety of physiological processes and developmental stresses. (2) In this study, 57 RsWRKYs were identified using genome data and found to be randomly distributed on 13 chromosomes. Based on gene structure and phylogenetic relationships, 57 proteins were divided into three groups: I, II, and III. Multiple alignments of RsWRKYs with Arabidopsis thaliana homologous genes revealed that WRKY domains in different groups had different conserved sites. RsWRKYs have a highly conserved domain, WRKYGQK, with three variants, WRKYGKK, WRKYGEK, and WRKYGRK. Furthermore, cis-acting elements analysis revealed that all of the RsWRKYs had stress and plant hormone cis-elements, with figures varying by group. Finally, the expression patterns of nine WRKY genes treated with gibberellin acid (GA), methyl jasmonate (MeJA), heat, and drought in Rhododendron were also measured using quantitative real-time PCR (qRT-PCR). The results showed that the expression levels of the majority of RsWRKY genes changed in response to multiple phytohormones and abiotic stressors. (3) This current study establishes a theoretical basis for future studies on the response of RsWRKY transcription factors to various hormone and abiotic stresses as well as a significant foundation for the breeding of new stress-tolerant Rhododendron varieties.
Collapse
Affiliation(s)
- Ziyun Wan
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Hefeng Cheng
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Jing Zhang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yujia Chen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
- School of Life Science and Health, Huzhou College, Huzhou 313000, China
| |
Collapse
|
3
|
Barua D, Mishra A, Kirti PB, Barah P. Identifying Signal-Crosstalk Mechanism in Maize Plants during Combined Salinity and Boron Stress Using Integrative Systems Biology Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1027288. [PMID: 35505877 PMCID: PMC9057046 DOI: 10.1155/2022/1027288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 01/04/2023]
Abstract
Combined stress has been seen as a major threat to world agriculture production. Maize is one of the leading cereal crops of the world due to its wide spectrum of growth conditions and is moderately sensitive to salt stress. A saline soil environment is a major factor that hinders its growth and overall yield and causes an increase in the concentration of micronutrients like boron, leading to excess over the requirement of the plant. Boron toxicity combined with salinity has been reported to be a serious threat to the yield and quality of maize. The response signatures of the maize plants to the combined effect of salinity and boron stress have not been studied well. We carried out an integrative systems-level analysis of the publicly available transcriptomic data generated on tolerant maize (Lluteño maize from the Atacama Desert, Chile) landrace under combined salt and boron stress. We identified significant biological processes that are differentially regulated in combined salt and boron stress in the leaves and roots of maize, respectively. Protein-protein interaction network analysis identified important roles of aldehyde dehydrogenase (ALDH), galactinol synthase 2 (GOLS2) proteins of leaf and proteolipid membrane potential regulator (pmpm4), metallothionein lea protein group 3 (mlg3), and cold regulated 410 (COR410) proteins of root in salt tolerance and regulating boron toxicity in maize. Identification of transcription factors coupled with regulatory network analysis using machine learning approach identified a few heat shock factors (HSFs) and NAC (NAM (no apical meristem, Petunia), ATAF1-2 (Arabidopsis thaliana activating factor), and CUC2 (cup-shaped cotyledon, Arabidopsis)) family transcription factors (TFs) to play crucial roles in salt tolerance, maintaining reactive oxygen species (ROS) levels and minimizing oxidative damage to the cells. These findings will provide new ways to design targeted functional validation experiments for developing multistress-resistant maize crops.
Collapse
Affiliation(s)
- Drishtee Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Asutosh Mishra
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - P. B. Kirti
- Agri Biotech Foundation, Agricultural University Campus, Rajendranagar, Hyderabad, 500030, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| |
Collapse
|
4
|
ERF Transcription Factor OsBIERF3 Positively Contributes to Immunity against Fungal and Bacterial Diseases but Negatively Regulates Cold Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23020606. [PMID: 35054806 PMCID: PMC8775505 DOI: 10.3390/ijms23020606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.
Collapse
|
5
|
Cheng Z, Luan Y, Meng J, Sun J, Tao J, Zhao D. WRKY Transcription Factor Response to High-Temperature Stress. PLANTS 2021; 10:plants10102211. [PMID: 34686020 PMCID: PMC8541500 DOI: 10.3390/plants10102211] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.
Collapse
Affiliation(s)
- Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Yuting Luan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
- Correspondence: ; Tel.: +86-514-87997219; Fax: +86-514-87347537
| |
Collapse
|
6
|
Mahesh HB, Shirke MD, Wang GL, Gowda M. In planta transcriptome analysis reveals tissue-specific expression of pathogenicity genes and microRNAs during rice-Magnaporthe interactions. Genomics 2020; 113:265-275. [PMID: 33326830 DOI: 10.1016/j.ygeno.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Transcriptional re-programming in host and pathogen upon leaf and neck infection is an evolving area of research for the rice blast community. Analysis of in planta rice transcriptome in leaf and neck tissues revealed tissue-specific and infection-specific expression of rice and Magnaporthe oryzae genes in host and pathogen. The glycosyl hydrolase, isocitrate lyase, cupin domain containing protein, TF2, CMPG1, CHIT17 and OsCML14 genes were uniquely expressed in leaf infection. Genes like cytochrome P450, inhibitor I family protein, GSTU6, abscisic stress ripening, and cupin domain containing protein were up-regulated during neck infection. In our microRNA sequencing study, Osa-miR166n-3p was highly expressed in upon Magnaporthe leaf infection, whereas osa-miR1661-3p, osa-miR166n-3p and osa-miR159b were overexpressed in neck infection. Here we report several transcripts being targeted by up and down regulated microRNAs during infection. The putative genes expressed upon infection in leaf and neck could be used in understanding the dual-epidemics of blast disease.
Collapse
Affiliation(s)
- H B Mahesh
- Genomics Laboratory, Centre for Cellular and Molecular Platforms (C-CAMP), National Centre for Biological Sciences (NCBS), Bengaluru 560065, India; Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru 560065, India; Centre for Functional Genomics and Bioinformatics, The University of Trans-disciplinary Health Science and Technology, Bengaluru 560064, India.
| | - Meghana Deepak Shirke
- Centre for Functional Genomics and Bioinformatics, The University of Trans-disciplinary Health Science and Technology, Bengaluru 560064, India
| | - Guo-Liang Wang
- Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru 560065, India
| | - Malali Gowda
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus 43210, USA; Centre for Functional Genomics and Bioinformatics, The University of Trans-disciplinary Health Science and Technology, Bengaluru 560064, India.
| |
Collapse
|
7
|
Panthapulakkal Narayanan S, Lung SC, Liao P, Lo C, Chye ML. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci Rep 2020; 10:14918. [PMID: 32913218 PMCID: PMC7483469 DOI: 10.1038/s41598-020-71851-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
8
|
Wang X, Li J, Guo J, Qiao Q, Guo X, Ma Y. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. HORTICULTURE RESEARCH 2020; 7:57. [PMID: 32284869 PMCID: PMC7113260 DOI: 10.1038/s41438-020-0267-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 05/14/2023]
Abstract
In this study, the disease resistance gene PlWRKY65 was isolated from the leaves of Paeonia lactiflora and analyzed by bioinformatics methods, and the localization of the encoded protein was explored. Quantitative real-time PCR (qRT-PCR) was also used to explore the response of this gene to Alternaria tenuissima. The results showed that the gene sequence contained multiple cis-acting elements involved in the response to hormone signaling molecules belonging to the IIe subgroup of the WRKY family, and the encoded proteins were located in the nucleus. The PlWRKY65 gene has a positive regulatory effect on A. tenuissima infection. After silencing the PlWRKY65 gene via virus-induced gene silencing (VIGS), it was found that the gene-silenced plants were more sensitive to A. tenuissima infection than the wild plants, exhibiting more severe infection symptoms and different degrees of changes in the expression of the pathogenesis-related (PR) genes. In addition, we showed that the endogenous jasmonic acid (JA) content of P. lactiflora was increased in response to A. tenuissima infection, whereas the salicylic acid (SA) content decreased. After PlWRKY65 gene silencing, the levels of the two hormones changed accordingly, indicating that PlWRKY65, acting as a disease resistance-related transcriptional activator, exerts a regulatory effect on JA and SA signals. This study lays the foundation for functional research on WRKY genes in P. lactiflora and for the discovery of candidate disease resistance genes.
Collapse
Affiliation(s)
- Xue Wang
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
| | - Junjie Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
| | - Jing Guo
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscapes, 271018 Tai’an, Shandong China
| | - Qian Qiao
- Shandong Institute of Pomology, 271000 Tai’an, Shandong China
| | - Xianfeng Guo
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscapes, 271018 Tai’an, Shandong China
| | - Yan Ma
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Road, 271018 Tai’an, Shandong China
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscapes, 271018 Tai’an, Shandong China
| |
Collapse
|
9
|
Sarabia LD, Boughton BA, Rupasinghe T, Callahan DL, Hill CB, Roessner U. Comparative spatial lipidomics analysis reveals cellular lipid remodelling in different developmental zones of barley roots in response to salinity. PLANT, CELL & ENVIRONMENT 2020; 43:327-343. [PMID: 31714612 PMCID: PMC7063987 DOI: 10.1111/pce.13653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 05/18/2023]
Abstract
Salinity-induced metabolic, ionic, and transcript modifications in plants have routinely been studied using whole plant tissues, which do not provide information on spatial tissue responses. The aim of this study was to assess the changes in the lipid profiles in a spatial manner and to quantify the changes in the elemental composition in roots of seedlings of four barley cultivars before and after a short-term salt stress. We used a combination of liquid chromatography-tandem mass spectrometry, inductively coupled plasma mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry imaging, and reverse transcription - quantitative real time polymerase chain reaction platforms to examine the molecular signatures of lipids, ions, and transcripts in three anatomically different seminal root tissues before and after salt stress. We found significant changes to the levels of major lipid classes including a decrease in the levels of lysoglycerophospholipids, ceramides, and hexosylceramides and an increase in the levels of glycerophospholipids, hydroxylated ceramides, and hexosylceramides. Our results revealed that modifications to lipid and transcript profiles in plant roots in response to a short-term salt stress may involve recycling of major lipid species, such as phosphatidylcholine, via resynthesis from glycerophosphocholine.
Collapse
Affiliation(s)
- Lenin D. Sarabia
- School of BioSciences and Metabolomics AustraliaUniversity of MelbourneParkvilleVIC3010Australia
| | | | | | - Damien L. Callahan
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, (Burwood Campus)Deakin University, Geelong, Australia221 Burwood HighwayBurwoodVIC3125Australia
| | - Camilla B. Hill
- School of Veterinary and Life SciencesMurdoch UniversityMurdochWA6150Australia
| | - Ute Roessner
- School of BioSciences and Metabolomics AustraliaUniversity of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
10
|
Overexpression of Magnaporthe Oryzae Systemic Defense Trigger 1 (MoSDT1) Confers Improved Rice Blast Resistance in Rice. Int J Mol Sci 2019; 20:ijms20194762. [PMID: 31557947 PMCID: PMC6802482 DOI: 10.3390/ijms20194762] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
The effector proteins secreted by a pathogen not only promote virulence and infection of the pathogen, but also trigger plant defense response. Therefore, these proteins could be used as important genetic resources for transgenic improvement of plant disease resistance. Magnaporthe oryzae systemic defense trigger 1 (MoSDT1) is an effector protein. In this study, we compared the agronomic traits and blast disease resistance between wild type (WT) and MoSDT1 overexpressing lines in rice. Under control conditions, MoSDT1 transgenic lines increased the number of tillers without affecting kernel morphology. In addition, MoSDT1 transgenic lines conferred improved blast resistance, with significant effects on the activation of callose deposition, reactive oxygen species (ROS) accumulation and cell death. On the one hand, overexpression of MoSDT1 could delay biotrophy-necrotrophy switch through regulating the expression of biotrophy-associated secreted protein 4 (BAS4) and Magnaporthe oryzaecell death inducing protein 1 (MoCDIP1), and activate plant defense response by regulating the expression of Bsr-d1, MYBS1, WRKY45, peroxidase (POD), heat shock protein 90 (HSP90), allenoxide synthase 2 (AOS2), phenylalanine ammonia lyase (PAL), pathogenesis-related protein 1a (PR1a) in rice. On the other hand, overexpression of MoSDT1 could increase the accumulation of some defense-related primary metabolites such as two aromatic amino acids (L-tyrosine and L-tryptohan), 1-aminocyclopropane carboxylic acid, which could be converted to ethylene, vanillic acid and L-saccharopine. Taken together, overexpression of MoSDT1 confers improved rice blast resistance in rice, through modulation of callose deposition, ROS accumulation, the expression of defense-related genes, and the accumulation of some primary metabolites.
Collapse
|
11
|
The Maize WRKY Transcription Factor ZmWRKY40 Confers Drought Resistance in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:ijms19092580. [PMID: 30200246 PMCID: PMC6164628 DOI: 10.3390/ijms19092580] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
Abiotic stresses restrict the growth and yield of crops. Plants have developed a number of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are plant-specific transcription factors that play essential roles in multiple plant processes, including abiotic stress response. At present, little information regarding drought-related WRKY genes in maize is available. In this study, we identified a WRKY transcription factor gene from maize, named ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under drought stress. According to the results, the present study may provide a candidate gene involved in the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in response to abiotic stresses in maize.
Collapse
|
12
|
Singh A, Gupta R, Pandey R. Exogenous application of rutin and gallic acid regulate antioxidants and alleviate reactive oxygen generation in Oryza sativa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:301-309. [PMID: 28461719 PMCID: PMC5391362 DOI: 10.1007/s12298-017-0430-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 05/07/2023]
Abstract
The effect of rutin and gallic acid on growth, phytochemical and defense gene activation of rice (Oryza sativa L.) was investigated. The seeds of rice were primed with different concentrations of rutin and gallic acid (10-60 µg mL-1) to explicate the effect on germination on water agar plates. Further, to study the effect of most effective concentrations of gallic acid (60 µg mL-1) and rutin (50 µg mL-1), greenhouse pot experiment was set up to determine the changes in growth, antioxidant and defense parameters. The results revealed more pronounced effect of gallic acid on total chlorophyll and carotenoids as well as on total flavonoid content and free radical scavenging activities. Gene expression analysis of OsWRKY71, PAL, CHS and LOX genes involved in strengthening the plant defense further validated the results obtained from the biochemical analysis. Microscopic analysis also confirmed reduction in total reactive oxygen species, free radicals like H2O2 and O2- by exogenous application of gallic acid and rutin. The data obtained thus suggest that both gallic acid and rutin can affect the growth and physiology of rice plants and therefore can be used to develop effective plant growth promoters and as substitute of biofertilizers for maximizing their use in field conditions.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| | - Rupali Gupta
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| |
Collapse
|
13
|
Lv S, Wang Z, Yang X, Guo L, Qiu D, Zeng H. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1818. [PMID: 27990152 PMCID: PMC5131010 DOI: 10.3389/fpls.2016.01818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/18/2016] [Indexed: 05/05/2023]
Abstract
MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
14
|
Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics 2016; 17:800. [PMID: 27733120 PMCID: PMC5062822 DOI: 10.1186/s12864-016-3146-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane smut, which is caused by Sporisorium scitamineum, has been threatening global sugarcane production. Breeding smut resistant sugarcane varieties has been proven to be the most effective method of controlling this particular disease. However, a lack of genome information of sugarcane has hindered the development of genome-assisted resistance breeding programs. Furthermore, the molecular basis of sugarcane response to S. scitamineum infection at the proteome level was incomplete and combining proteomic and transcriptional analysis has not yet been conducted. RESULTS We identified 273 and 341 differentially expressed proteins in sugarcane smut-resistant (Yacheng05-179) and susceptible (ROC22) genotypes at 48 h after inoculation with S. scitamineum by employing an isobaric tag for relative and absolute quantification (iTRAQ). The proteome quantitative data were then validated by multiple reaction monitoring (MRM). The integrative analysis showed that the correlations between the quantitative proteins and the corresponding genes that was obtained in our previous transcriptome study were poor, which were 0.1502 and 0.2466 in Yacheng05-179 and ROC22, respectively, thereby revealing a post-transcriptional event during Yacheng05-179-S. scitamineum incompatible interaction and ROC22-S. scitamineum compatible interaction. Most differentially expressed proteins were closely related to sugarcane smut resistance such as beta-1,3-glucanase, peroxidase, pathogenesis-related protein 1 (PR1), endo-1,4-beta-xylanase, heat shock protein, and lectin. Ethylene and gibberellic acid pathways, phenylpropanoid metabolism and PRs, such as PR1, PR2, PR5 and PR14, were more active in Yacheng05-179, which suggested of their possible roles in sugarcane smut resistance. However, calcium signaling, reactive oxygen species, nitric oxide, and abscisic acid pathways in Yacheng05-179 were repressed by S. scitamineum and might not be crucial for defense against this particular pathogen. CONCLUSIONS These results indicated complex resistance-related events in sugarcane-S. scitamineum interaction, and provided novel insights into the molecular mechanism underlying the response of sugarcane to S. scitamineum infection.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhuqing Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiong Peng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuting Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yun Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005 China
| |
Collapse
|
15
|
Jiang G, Yin D, Zhao J, Chen H, Guo L, Zhu L, Zhai W. The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Sci Rep 2016; 6:26104. [PMID: 27185545 PMCID: PMC4868969 DOI: 10.1038/srep26104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/26/2016] [Indexed: 11/08/2022] Open
Abstract
Thylakoid membrane-bound ascorbate peroxidase (tAPX) is a major H2O2-scavenging enzyme. To clarify its functions in tolerance to rice bacterial blight, we produced rice lines overexpressing and suppressing tAPX (OsAPX8). The overexpressing lines exhibited increased tolerance to bacterial pathogen. The RNA interference (RNAi) lines were considerably more sensitive than the control plant. Further analysis of the H2O2 content in these transgenic plants indicated that the H2O2 accumulation of OsAPX8-overexpressing plants was considerably less than that of wild-type and RNAi plants upon challenge with bacterial pathogen. Interestingly, H2O2 was the most important factor for the serious leaf dehydration and withering of rice without major resistance genes and was not the cause of hypersensitivity. It addition, wall tightening or loosening can occur according to the level of H2O2. In addition, OsAPX8 interacted with the susceptibility protein Os8N3/Xa13, and their binding repressed the reaction of OsAPX8 in tolerance to bacterial blight.
Collapse
Affiliation(s)
- Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dedong Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiying Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lequn Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Jin J, Kong J, Qiu J, Zhu H, Peng Y, Jiang H. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae. Dev Genes Evol 2016; 226:15-25. [PMID: 26754485 DOI: 10.1007/s00427-015-0523-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
Abstract
The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Jingjing Kong
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Jianle Qiu
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Huasheng Zhu
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Yuancheng Peng
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
17
|
Abeynayake SW, Byrne S, Nagy I, Jonavičienė K, Etzerodt TP, Boelt B, Asp T. Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions. BMC PLANT BIOLOGY 2015; 15:250. [PMID: 26474965 PMCID: PMC4609083 DOI: 10.1186/s12870-015-0643-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Activation of numerous protective mechanisms during cold acclimation is important for the acquisition of freezing tolerance in perennial ryegrass (Lolium perenne L.). To elucidate the molecular mechanisms of cold acclimation in two genotypes ('Veyo' and 'Falster') of perennial ryegrass from distinct geographical origins, we performed transcriptome profiling during cold acclimation using RNA-Seq. METHODS We cold-acclimated plants from both genotypes in controlled conditions for a period of 17 days and isolated Total RNA at various time points for high throughput sequencing using Illumina technology. RNA-seq reads were aligned to genotype specific references to identify transcripts with significant changes in expression during cold acclimation. RESULTS The genes induced were involved in protective mechanisms such as cell response to abiotic stimulus, signal transduction, redox homeostasis, plasma membrane and cell wall modifications, and carbohydrate metabolism in both genotypes. 'Falster' genotype, adapted to cold climates, showed a stronger transcriptional differentiation during cold acclimation, and more differentially expressed transcripts related to stress, signal transduction, response to abiotic stimulus, and metabolic processes compared to 'Veyo'. 'Falster' genotype also showed an induction of more transcripts with sequence homology to fructosyltransferase genes (FTs) and a higher fold induction of fructan in response to low-temperature stress. The circadian rhythm network was perturbed in the 'Veyo' genotype adapted to warmer climates. CONCLUSION In this study, the differentially expressed genes during cold acclimation, potentially involved in numerous protective mechanisms, were identified in two genotypes of perennial ryegrass from distinct geographical origins. The observation that the circadian rhythm network was perturbed in 'Veyo' during cold acclimation may point to a low adaptability of 'Veyo' to low temperature stresses. This study also revealed the transcriptional mechanisms underlying carbon allocation towards fructan biosynthesis in perennial ryegrass.
Collapse
Affiliation(s)
- Shamila Weerakoon Abeynayake
- Department of Agroecology - Crop Health, Aarhus University, Slagelse, Denmark.
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| | - Stephen Byrne
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| | - Kristina Jonavičienė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Kėdainiai distr, Lithuania.
| | | | - Birte Boelt
- Department of Agroecology - Crop Health, Aarhus University, Slagelse, Denmark.
| | - Torben Asp
- Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, Slagelse, Denmark.
| |
Collapse
|
18
|
Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, Shen QJ. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:214-22. [PMID: 26025535 DOI: 10.1016/j.plantsci.2015.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 05/06/2023]
Abstract
Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Patricia Ringler
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Stanley Smith
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX 75252, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|
19
|
Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. PLoS One 2015; 10:e0127831. [PMID: 26035591 PMCID: PMC4452794 DOI: 10.1371/journal.pone.0127831] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
AP2/ERF–type transcription factors regulate important functions of plant growth and development as well as responses to environmental stimuli. A rice AP2/ERF transcription factor, OsEREBP1 is a downstream component of a signal transduction pathway in a specific interaction between rice (Oryza sativa) and its bacterial pathogen, Xoo (Xanthomonas oryzae pv. oryzae). Constitutive expression of OsEREBP1 in rice driven by maize ubiquitin promoter did not affect normal plant growth. Microarray analysis revealed that over expression of OsEREBP1 caused increased expression of lipid metabolism related genes such as lipase and chloroplastic lipoxygenase as well as several genes related to jasmonate and abscisic acid biosynthesis. PR genes, transcription regulators and Aldhs (alcohol dehydrogenases) implicated in abiotic stress and submergence tolerance were also upregulated in transgenic plants. Transgenic plants showed increase in endogenous levels of α-linolenate, several jasmonate derivatives and abscisic acid but not salicylic acid. Soluble modified GFP (SmGFP)-tagged OsEREBP1 was localized to plastid nucleoids. Comparative analysis of non-transgenic and OsEREBP1 overexpressing genotypes revealed that OsEREBP1 attenuates disease caused by Xoo and confers drought and submergence tolerance in transgenic rice. Our results suggest that constitutive expression of OsEREBP1 activates the jasmonate and abscisic acid signalling pathways thereby priming the rice plants for enhanced survival under abiotic or biotic stress conditions. OsEREBP1 is thus, a good candidate gene for engineering plants for multiple stress tolerance.
Collapse
Affiliation(s)
- V. Jisha
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Department Bioorganic Chemistry, Jena, Germany
| | | | | |
Collapse
|
20
|
Vijayan J, Devanna BN, Singh NK, Sharma TR. Cloning and functional validation of early inducible Magnaporthe oryzae responsive CYP76M7 promoter from rice. FRONTIERS IN PLANT SCIENCE 2015; 6:371. [PMID: 26052337 PMCID: PMC4441127 DOI: 10.3389/fpls.2015.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/11/2015] [Indexed: 05/04/2023]
Abstract
Cloning and functional characterization of plant pathogen inducible promoters is of great significance for their use in the effective management of plant diseases. The rice gene CYP76M7 was up regulated at 24, 48, and 72 hours post inoculation (hpi) with two isolates of Magnaporthe oryzae Mo-ei-11 and Mo-ni-25. In this study, the promoter of CYP76M7 gene was cloned from rice cultivar HR-12, characterized and functionally validated. The Transcription Start Site of CYP76M7 was mapped at 45 bases upstream of the initiation codon. To functionally validate the promoter, 5' deletion analysis of the promoter sequences was performed and the deletion fragments fused with the β-glucuronidase (GUS) reporter gene were used for generating stable transgenic Arabidopsis plants as well as for transient expression in rice. The spatial and temporal expression pattern of GUS in transgenic Arabidopsis plants and also in transiently expressed rice leaves revealed that the promoter of CYP76M7 gene was induced by M. oryzae. The induction of CYP76M7 promoter was observed at 24 hpi with M. oryzae. We report that, sequences spanning -222 bp to -520 bp, with the cluster of three W-boxes, two ASF1 motifs and a single GT-1 element may contribute to the M. oryzae inducible nature of CYP76M7 promoter. The promoter characterized in this study would be an ideal candidate for the overexpression of defense genes in rice for developing durable blast resistance rice lines.
Collapse
Affiliation(s)
| | | | | | - Tilak R. Sharma
- *Correspondence: Tilak R. Sharma, National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110 012, India ;
| |
Collapse
|
21
|
Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC Genomics 2014; 15:1026. [PMID: 25428615 PMCID: PMC4258296 DOI: 10.1186/1471-2164-15-1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice (Oryza sativa. L) is more sensitive to drought stress than other cereals, and large genotypic variation in drought tolerance (DT) exists within the cultivated rice gene pool and its wild relatives. Selective introgression of DT donor segments into a drought-sensitive (DS) elite recurrent parent by backcrossing is an effective way to improve drought stress tolerance in rice. To dissect the molecular mechanisms underlying DT in rice, deep transcriptome sequencing was used to investigate transcriptome differences among a DT introgression line H471, the DT donor P28, and the drought-sensitive, recurrent parent HHZ under drought stress. RESULTS The results revealed constitutively differential gene expression before stress and distinct global transcriptome reprogramming among the three genotypes under a time series of drought stress, consistent with their different genotypes and DT phenotypes. A set of genes with higher basal expression in both H471 and P28 compared with HHZ were functionally enriched in oxidoreductase and lyase activities, implying their positive role in intrinsic DT. Gene Ontology analysis indicated that common up-regulated genes in all three genotypes under mild drought stress were enriched in signaling transduction and transcription regulation. Meanwhile, diverse functional categories were characterized for the commonly drought-induced genes in response to severe drought stress. Further comparative transcriptome analysis between H471 and HHZ under drought stress found that introgression caused wide-range gene expression changes; most of the differentially expressed genes (DEGs) in H471 relative to HHZ under drought were beyond the identified introgressed regions, implying that introgression resulted in novel changes in expression. Co-expression analysis of these DEGs represented a complex regulatory network, including the jasmonic acid and gibberellin pathway, involved in drought stress tolerance in H471. CONCLUSIONS Comprehensive gene expression profiles revealed that genotype-specific drought induced genes and genes with higher expression in the DT genotype under normal and drought conditions contribute jointly to DT improvement. The molecular genetic pathways of drought stress tolerance uncovered in this study, as well as the DEGs co-localized with DT-related QTLs and introgressed intervals, will serve as useful resources for further functional dissection of the molecular mechanisms of drought stress response in rice.
Collapse
Affiliation(s)
| | | | | | | | - Yongli Zhou
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing 100081, China.
| | | | | |
Collapse
|
22
|
Zhou L, Wang NN, Kong L, Gong SY, Li Y, Li XB. Molecular characterization of 26 cotton WRKY genes that are expressed differentially in tissues and are induced in seedlings under high salinity and osmotic stress. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2014. [PMID: 0 DOI: 10.1007/s11240-014-0520-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
23
|
Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Kaku H, Minami E, Nishizawa Y. OsNAC111, a blast disease-responsive transcription factor in rice, positively regulates the expression of defense-related genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1027-34. [PMID: 25014590 DOI: 10.1094/mpmi-03-14-0065-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants respond to pathogen attack by transcriptionally regulating defense-related genes via various types of transcription factors. We identified a transcription factor in rice, OsNAC111, belonging to the TERN subgroup of the NAC family that was transcriptionally upregulated after rice blast fungus (Magnaporthe oryzae) inoculation. OsNAC111 was localized in the nucleus of rice cells and had transcriptional activation activity in yeast and rice cells. Transgenic rice plants overexpressing OsNAC111 showed increased resistance to the rice blast fungus. In OsNAC111-overexpressing plants, the expression of several defense-related genes, including pathogenesis-related (PR) genes, was constitutively high compared with the control. These genes all showed blast disease-responsive expression in leaves. Among them, two chitinase genes and one β-1,3-glucanase gene showed reduced expression in transgenic rice plants in which OsNAC111 function was suppressed by a chimeric repressor (OsNAC111-SRDX). OsNAC111 activated transcription from the promoters of the chitinase and β-1,3-glucanase genes in rice cells. In addition, brown pigmentation at the infection sites, a defense response of rice cells to the blast fungus, was lowered in OsNAC111-SRDX plants at the early infection stage. These results indicate that OsNAC111 positively regulates the expression of a specific set of PR genes in the disease response and contributes to disease resistance.
Collapse
|
24
|
Azizi P, Rafii MY, Abdullah SNA, Nejat N, Maziah M, Hanafi MM, Latif MA, Sahebi M. Toward understanding of rice innate immunity against Magnaporthe oryzae. Crit Rev Biotechnol 2014; 36:165-74. [PMID: 25198435 DOI: 10.3109/07388551.2014.946883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.
Collapse
Affiliation(s)
- P Azizi
- a Laboratory of Food Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - M Y Rafii
- a Laboratory of Food Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - S N A Abdullah
- b Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and
| | - N Nejat
- b Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and
| | - M Maziah
- c Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - M M Hanafi
- b Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and
| | - M A Latif
- a Laboratory of Food Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - M Sahebi
- b Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , Serdang , Selangor , Malaysia , and
| |
Collapse
|
25
|
Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y, Hu Y. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC PLANT BIOLOGY 2013; 13:148. [PMID: 24088323 PMCID: PMC3850935 DOI: 10.1186/1471-2229-13-148] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/01/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. RESULTS We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. CONCLUSIONS In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean.
Collapse
Affiliation(s)
- Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongliang Xu
- Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shuyang Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yajuan Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
26
|
Ali F, Pan Q, Chen G, Zahid KR, Yan J. Evidence of Multiple Disease Resistance (MDR) and implication of meta-analysis in marker assisted selection. PLoS One 2013; 8:e68150. [PMID: 23874526 PMCID: PMC3707948 DOI: 10.1371/journal.pone.0068150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 11/30/2022] Open
Abstract
Meta-analysis was performed for three major foliar diseases with the aim to find out the total number of QTL responsible for these diseases and depict some real QTL for molecular breeding and marker assisted selection (MAS) in maize. Furthermore, we confirmed our results with some major known disease resistance genes and most well-known gene family of nucleotide binding site (NBS) encoding genes. Our analysis revealed that disease resistance QTL were randomly distributed in maize genome, but were clustered at different regions of the chromosomes. Totally 389 QTL were observed for these three major diseases in diverse maize germplasm, out of which 63 QTL were controlling more than one disease revealing the presence of multiple disease resistance (MDR). 44 real-QTLs were observed based on 4 QTL as standard in a specific region of genome. We also confirmed the Ht1 and Ht2 genes within the region of real QTL and 14 NBS-encoding genes. On chromosome 8 two NBS genes in one QTL were observed and on chromosome 3, several cluster and maximum MDR QTL were observed indicating that the apparent clustering could be due to genes exhibiting pleiotropic effect. Significant relationship was observed between the number of disease QTL and total genes per chromosome based on the reference genome B73. Therefore, we concluded that disease resistance genes are abundant in maize genome and these results can unleash the phenomenon of MDR. Furthermore, these results could be very handy to focus on hot spot on different chromosome for fine mapping of disease resistance genes and MAS.
Collapse
Affiliation(s)
- Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Cereal Crops Research Institute (CCRI) Pirsabak Nowshera, Khyber Pakhtunkhwa, Pakistan
| | - Qingchun Pan
- National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Genshen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kashif Rafiq Zahid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Muthiah M, Ramadass A, Amalraj RS, Palaniyandi M, Rasappa V. Expression profiling of transcription factors (TFs) in sugarcane X Colletotrichum falcatum interaction. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2013; 22:286-294. [DOI: 10.1007/s13562-012-0157-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
28
|
Singh R, Jwa NS. The rice MAPKK-MAPK interactome: the biological significance of MAPK components in hormone signal transduction. PLANT CELL REPORTS 2013; 32:923-31. [PMID: 23571660 DOI: 10.1007/s00299-013-1437-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK-MAPKK-MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK-MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | | |
Collapse
|
29
|
Singh R, Lee MO, Lee JE, Choi J, Park JH, Kim EH, Yoo RH, Cho JI, Jeon JS, Rakwal R, Agrawal GK, Moon JS, Jwa NS. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. PLANT PHYSIOLOGY 2012; 160:477-87. [PMID: 22786887 PMCID: PMC3440221 DOI: 10.1104/pp.112.200071] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/08/2012] [Indexed: 05/03/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades support the flow of extracellular signals to intracellular target molecules and ultimately drive a diverse array of physiological functions in cells, tissues, and organisms by interacting with other proteins. Yet, our knowledge of the global physical MAPK interactome in plants remains largely fragmented. Here, we utilized the yeast two-hybrid system and coimmunoprecipitation, pull-down, bimolecular fluorescence complementation, subcellular localization, and kinase assay experiments in the model crop rice (Oryza sativa) to systematically map what is to our knowledge the first plant MAPK-interacting proteins. We identified 80 nonredundant interacting protein pairs (74 nonredundant interactors) for rice MAPKs and elucidated the novel proteome-wide network of MAPK interactors. The established interactome contains four membrane-associated proteins, seven MAP2Ks (for MAPK kinase), four MAPKs, and 59 putative substrates, including 18 transcription factors. Several interactors were also validated by experimental approaches (in vivo and in vitro) and literature survey. Our results highlight the importance of OsMPK1, an ortholog of tobacco (Nicotiana benthamiana) salicyclic acid-induced protein kinase and Arabidopsis (Arabidopsis thaliana) AtMPK6, among the rice MAPKs, as it alone interacts with 41 unique proteins (51.2% of the mapped MAPK interaction network). Additionally, Gene Ontology classification of interacting proteins into 34 functional categories suggested MAPK participation in diverse physiological functions. Together, the results obtained essentially enhance our knowledge of the MAPK-interacting protein network and provide a valuable research resource for developing a nearly complete map of the rice MAPK interactome.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Mi-Ok Lee
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jae-Eun Lee
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jihyun Choi
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ji Hun Park
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Eun Hye Kim
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ran Hee Yoo
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jung-Il Cho
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jong-Seong Jeon
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Randeep Rakwal
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Ganesh Kumar Agrawal
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | - Jae Sun Moon
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul 143–747, Republic of Korea (R.S., M.-O.L., J.-E.L., J.C., J.H.P., E.H.K., N.-S.J.)
- Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305–333, Republic of Korea (R.H.Y., J.S.M.); Biosystems and Bioengineering Program, University of Science and Technology, Yuseong-gu, Daejeon 305–350, Republic of Korea (R.H.Y., J.S.M.)
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Republic of Korea (J.-I.C., J.-S.J.)
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305–8572, Japan (R.R.)
- Department of Anatomy I, Showa University School of Medicine, Shinagawa, Tokyo 142–8555, Japan (R.R.)
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 44600, Nepal (R.R., G.K.A.)
| | | |
Collapse
|
30
|
Giberti S, Bertea CM, Narayana R, Maffei ME, Forlani G. Two phenylalanine ammonia lyase isoforms are involved in the elicitor-induced response of rice to the fungal pathogen Magnaporthe oryzae. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:249-54. [PMID: 22137607 DOI: 10.1016/j.jplph.2011.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/25/2011] [Accepted: 10/02/2011] [Indexed: 05/22/2023]
Abstract
Suspension cultured cells of a blast-resistant rice genotype (Oryza sativa L. cv. Gigante Vercelli) were treated with cell wall hydrolysates prepared from the fungal pathogen Magnaporthe oryzae. As a consequence, a complex pattern of phenylalanine ammonia lyase time course specific activity levels was evident. Ion-exchange chromatographic fractionation of crude extracts suggested that the early (6 h) and the late (48-72 h after elicitation) increase of activity relied upon the sequential induction of two different isoenzymes. The relative expression levels of 11 genes putatively coding for a phenylalanine ammonia lyase were measured by semi-quantitative capillary gel electrophoresis of RT-PCR products. Two genes were indeed found to be induced by treatments with the hydrolysate, and data were validated by real-time PCR. Conversely, only the early-responsive enzyme form was observed following elicitation in a blast-sensitive rice genotype (cv. Vialone nano). Therefore, the late-responsive isoform may represent a candidate gene to select for decreased sensitivity to blast.
Collapse
Affiliation(s)
- Samuele Giberti
- Department of Biology and Evolution, University of Ferrara, via Luigi Borsari 46, I-44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
31
|
Wei KF, Chen J, Chen YF, Wu LJ, Xie DX. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 2012; 19:153-64. [PMID: 22279089 PMCID: PMC3325079 DOI: 10.1093/dnares/dsr048] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.
Collapse
Affiliation(s)
- Kai-Fa Wei
- Department of Biological Sciences and Biotechnology, Zhangzhou Normal University, Zhangzhou, Fujian, China.
| | | | | | | | | |
Collapse
|
32
|
Hwang SH, Yie SW, Hwang DJ. Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:316-23. [PMID: 21763543 DOI: 10.1016/j.plantsci.2011.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 05/05/2023]
Abstract
The WRKY proteins are a major family of plant transcription factors implicated in the regulation of plant defense mechanisms against pathogens. OsWRKY6 was isolated based on expression profiling data carried out with samples infected by Xanthomonas oryzae pv. oryzae (Xoo). OsWRKY6 encodes a DNA binding protein that contains one WRKY domain, a nuclear localization signal and C(2)H(2)-type zinc finger motif. OsWRKY6 is a member of the group II family of WRKY proteins. Based on the result of yeast one hybrid assay this OsWRKY6 protein binds to the typical W box ((T)TGACC/T). OsWRKY6 functions as a transcriptional activator in yeast. OsWRKY6 enhanced the expression of the reporter gene downstream of OsPR1 promoter, indicating that OsWRKY6 is a transcriptional activator in rice as well. Heterologous expression of OsWRKY6 enhanced disease resistance to pathogen. Defense-related genes were constitutively expressed in Arabidopsis transgenic lines overexpressing OsWRKY6. All together, OsWRKY6 functions as a positive transcriptional regulator of the plant defense response.
Collapse
Affiliation(s)
- Seon-Hee Hwang
- National Academy of Agricultural Science, Rural Development Administration, Suwon 440-707, Republic of Korea.
| | | | | |
Collapse
|
33
|
Kang CH, Moon BC, Park HC, Koo SC, Jeon JM, Cheong YH, Chung WS, Lim CO, Kim JY, Yoon BD, Lee SY, Kim CY. Rice OsERG3 encodes an unusual small C2-domain protein containing a Ca(2+)-binding module but lacking phospholipid-binding properties. Biochim Biophys Acta Gen Subj 2011; 1810:1317-22. [PMID: 21756975 DOI: 10.1016/j.bbagen.2011.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The C2 domain is a Ca(2+)/phospholipid-binding motif found in many proteins involved in signal transduction or membrane trafficking. OsERG3 is a homolog of OsERG1, a gene encoding a small C2-domain protein in rice. METHODS OsERG3 Ca(2+)-binding and phospholipid-binding assays were carried out using (3)H-labeled phospholipid liposomes and a (45)Ca(2+) overlay assay, respectively. Cytosolic expression of OsERG3 was investigated by Western blot analysis and the OsERG3::smGFP transient expression assay. RESULTS OsERG3 transcript levels were greatly enhanced by treatment with a fungal elicitor and Ca(2+)-ionophore. OsERG3 protein proved unable to interact with phospholipids regardless of the presence or absence of Ca(2+) ions. Nonetheless, OsERG3 displayed calcium-binding activity in an in vitro(45)Ca(2+)-binding assay, a property not observed with OsERG1. The cytosolic location of OsERG3 was not altered by the presence of fungal elicitor or Ca(2+)-ionophore. CONCLUSIONS OsERG3 encodes a small C2-domain protein consisting of a single C2 domain. OsERG3 binds Ca(2+) ions but not phospholipids. OsERG3 is a cytosolic soluble protein. The OsERG3 gene may play a role in signaling pathway involving Ca(2+) ions. GENERAL SIGNIFICANCE The data demonstrate that OsERG3 is an unusual small C2-domain protein containing a Ca(2+)-binding module but lacking phospholipid-binding properties.
Collapse
Affiliation(s)
- Chang Ho Kang
- Division of Applied Life Sciences (BK21 Program), Gyeongsang National University, Jinju 660701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
JIANG WB, YU DQ. Arabidopsis WRKY2 Transcription Factor may be Involved in Osmotic Stress Response. ACTA ACUST UNITED AC 2010. [DOI: 10.3724/sp.j.1143.2009.09046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J, Deng X. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. PLANTA 2009; 230:1155-66. [PMID: 19760263 DOI: 10.1007/s00425-009-1014-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/28/2009] [Indexed: 05/20/2023]
Abstract
Accumulation of compatible osmolytes, such as soluble sugars, in plants is an important osmoprotective mechanism. Sugars play a role in osmotic adjustment and are associated with stabilization of proteins and cell structures, reactive oxygen species scavenging, signaling functions or induction of adaptive pathways. Galactinol is the galactosyl donor for the synthesis of raffinose family oligosaccharides (RFOs) and its synthesis by galactinol synthase (GolS) is the first committed step of the RFOs biosynthetic pathway. GolS genes are induced by a variety of stresses in both stress-sensitive and tolerant-plant species; however, the mechanism of transcriptional regulation is not fully established. In this paper, we characterized a GolS gene (BhGolS1) that was dehydration and ABA-inducible in the resurrection plant Boea hygrometrica and conferred dehydration tolerance in a transgenic tobacco system. Four W-box cis-elements were identified in the BhGolS1 promoter and shown to be bound by an early dehydration and ABA-inducible WRKY gene (BhWRKY1). These data suggest a mechanism where BhWRKY1 is likely to function in an ABA-dependent signal pathway to regulate BhGolS1 expression, which leads to the accumulation of RFOs in desiccation-tolerant B. hygrometrica leaves.
Collapse
Affiliation(s)
- Zhi Wang
- Research Center of Plant Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Yokotani N, Ichikawa T, Kondou Y, Maeda S, Iwabuchi M, Mori M, Hirochika H, Matsui M, Oda K. Overexpression of a rice gene encoding a small C2 domain protein OsSMCP1 increases tolerance to abiotic and biotic stresses in transgenic Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 71:391-402. [PMID: 19653105 DOI: 10.1007/s11103-009-9530-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/16/2009] [Indexed: 05/26/2023]
Abstract
Plant growth and crop production are limited by environmental stress. We used a large population of transgenic Arabidopsis expressing rice full-length cDNAs to isolate the rice genes that improve the tolerance of plants to environmental stress. By sowing T2 seeds of the transgenic lines under conditions of salinity stress, the salt-tolerant line R07047 was isolated. It expressed a rice gene, OsSMCP1, which encodes a small protein with a single C2 domain, a Ca(2+)-dependent membrane-targeting domain. Retransformation of wild-type Arabidopsis revealed that OsSMCP1 is responsible for conferring the salt tolerance. It is particularly interesting that R07047 and newly constructed OsSMCP1-overexpressing Arabidopsis showed enhanced tolerance not only to high salinity but also to osmotic, dehydrative, and oxidative stresses. Furthermore, R07047 showed improved resistance to Pseudomonas syringae. The OsSMCP1 expression in rice is constitutive. Particle-bombardment-mediated transient expression analysis revealed that OsSMCP1 is targeted to plastids in rice epidermal cells. It induced overexpression of several nuclear encoded genes, including the stress-associated genes, in transgenic Arabidopsis. No marked morphological change or growth retardation was observed in R07047 or retransformants. For molecular breeding to improve the tolerance of crops against environmental stress, OsSMCP1 is a promising candidate.
Collapse
Affiliation(s)
- Naoki Yokotani
- Research Institute for Biological Sciences Okayama, 7549-1 Yoshikawa, Kibichuo, Okayama 716-1241, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro ACM, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pè ME, Piffanelli P. Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC PLANT BIOLOGY 2009; 9:120. [PMID: 19772648 PMCID: PMC2761919 DOI: 10.1186/1471-2229-9-120] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 09/22/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa). This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. RESULTS The presented results suggested that 24 members of the rice WRKY gene family (22% of the total) were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B) and two smaller ones (COR-C and COR-D), all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. CONCLUSION In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory networks, it is possible to highlight novel clusters of plant genes contributing to the same biological processes or signal transduction pathways. Our approach will contribute to unveil gene cooperation pathways not yet identified by classical genetic analyses. This information will open new routes contributing to the dissection of WRKY signal transduction pathways in plants.
Collapse
Affiliation(s)
- Stefano Berri
- Department of Biomolecular Sciences and Biotechnology, University of Milan, via Celoria 26, 20133 Milan, Italy
- School of Computing, University of Leeds, LS2 9JT Leeds, UK
| | - Pamela Abbruscato
- Rice Genomics Unit, Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy
| | - Odile Faivre-Rampant
- Rice Genomics Unit, Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy
- UMR BGPI, CIRAD, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Ana CM Brasileiro
- Parque Estação Biológica, Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte, 02372, Brasília DF, Brazil
- UMR DAP, CIRAD, Avenue Agropolis, 34398 Montpellier Cedex 5, France
| | - Irene Fumasoni
- Rice Genomics Unit, Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy
| | - Kouji Satoh
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shoshi Kikuchi
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan
| | - Luca Mizzi
- Department of Biomolecular Sciences and Biotechnology, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Biology, University of Milan and CNR Institut of Biophysics (Milan Section), via Celoria 26, 20133 Milan, Italy
| | - Mario Enrico Pè
- Department of Biomolecular Sciences and Biotechnology, University of Milan, via Celoria 26, 20133 Milan, Italy
- Sant'Anna School for Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Pietro Piffanelli
- Rice Genomics Unit, Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy
| |
Collapse
|
38
|
Promoter analysis of the elicitor-induced WRKY gene OsWRKY53, which is involved in defense responses in rice. Biosci Biotechnol Biochem 2009; 73:1901-4. [PMID: 19661718 DOI: 10.1271/bbb.90262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OsWRKY53, a chitin oligosaccharide elicitor-responsive rice WRKY gene, has been found to be involved in defense responses in rice. We identified three tandem W-box elements, putative recognition sites for WRKY transcription factors, as cis elements that are essential to the elicitor-responsiveness of OsWRKY53 by deletion and mutation analysis of the promoter by dual luciferase assay.
Collapse
|
39
|
Yang WJ, Wu YM, Tang YX. [Expressing and functional analysis of GmMYBJ6 from soybean]. YI CHUAN = HEREDITAS 2009; 31:645-53. [PMID: 19586866 DOI: 10.3724/sp.j.1005.2009.00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MYB transcription factor is one of the largest families in plants, which plays an important role in regulating plant development and physiological metabolism. In this study, the expression and function of the new MYB transcription factor gene GmMYBJ6 (GenBank No. DQ902863), isolated from soybean (Glycine max L.), were characterized. The expression pattern of GmMYBJ6 in different organs was examined using Northern blotting analysis. The expression of GmMYBJ6 was detected only in the leaves. The transcriptional activation ability of GmMYBJ6 protein was confirmed by the yeast assay system and the activity of beta-galactosidase was 28.48 U/mL. The green fluorescent protein expression vector p163-GFP-GmMYBJ6 was constructed and transformed into the epidermal cells of onion via particle bombardmental method. The results of instantaneous expression showed that GmMYBJ6 proteins were localized in cell nucleus. Semi-quantitative RT-PCR analysis indicated that GmMYBJ6 improved the expression of certain flavonoid biosynthetic genes, such as PAL (Phenylalanine ammonia lyase), C4H (cinnamate-4-hydroxylase), 4CL (4-coumaroyl-CoA ligase), CHS (Chalcone synthase), CHI (Chalcone isomerase), F3H (Flavanone 3-hydroxylase), and FLS (Flavonol synthase), resulting an increase of the total flavonoid levels in positive tobacco transformants. Additionally, the increasing expression of GmMYBJ6 in soybean cultivar Zhongdou 27, induced by UV-B radiation, drought, and high-salt treatment, indicated that GmMYBJ6 was associated with response to abiotic stresses.
Collapse
Affiliation(s)
- Wen-Jie Yang
- Huaiyin Teachers' College, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huai'an 223300, China.
| | | | | |
Collapse
|
40
|
Liao M, Li Y, Wang Z. Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 2009; 9:2809-19. [DOI: 10.1002/pmic.200800192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. PLANT CELL REPORTS 2009; 28:21-30. [PMID: 18818929 DOI: 10.1007/s00299-008-0614-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 05/18/2023]
Abstract
An OsWRKY11 gene, which encodes a transcription factor with the WRKY domain, was identified as one of the genes that was induced by both heat shock and drought stresses in seedlings of rice (Oryza sativa L.). To determine if overexpression of OsWRKY11 confers heat and drought tolerance, OsWRKY11 cDNA was fused to the promoter of HSP101 of rice and introduced into a rice cultivar Sasanishiki. Overexpression of OsWRKY11 was induced by heat treatment. After heat pretreatment, the transgenic lines showed significant heat and drought tolerance, as indicated by the slower leaf-wilting and less-impaired survival rate of green parts of plants. They also showed significant desiccation tolerance, as indicated by the slower water loss in detached leaves. Our results indicate that the OsWRKY11 gene plays a role in heat and drought stress response and tolerance, and might be useful for improvement of stress tolerance.
Collapse
Affiliation(s)
- Xiaolan Wu
- Laboratory of Environmental Biotechnology, Tohoku University, 1-1 Tsutumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | | | | | | | | |
Collapse
|
42
|
Hiroyuki K, Terauchi R. Regulation of expression of rice thaumatin-like protein: inducibility by elicitor requires promoter W-box elements. PLANT CELL REPORTS 2008; 27:1521-8. [PMID: 18425517 DOI: 10.1007/s00299-008-0536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/17/2008] [Accepted: 02/29/2008] [Indexed: 05/05/2023]
Abstract
Rice thaumatin-like protein (Rtlp1) is a high-molecular-weight antimicrobial pathogenesis-related protein that plays a role in plant stress response. This study examines transcriptional regulation of Rtlp1 using wild type and transgenic rice plants carrying a beta-glucuronidase (GUS) reporter gene driven by the Rtlp1 promoter (pRtlp1GUS). The Rtlp1 promoter is induced within 6 h after infection with rice blast fungus (Magnaporthe grisea). The Rtlp1 promoter is also induced by salicylic acid (SA), methyl jasmonate (MeJA), wounding or an elicitor from rice blast fungus. The function of the pRtlp1GUS reporter gene was analyzed by deletion mapping and transient expression assays in cell culture. A 120 bp truncated fusion construct with six W-boxes (5'-TGAC-3') demonstrated a strong dose-dependent elicitor-response. These results suggest that W-box elements are required for the response of the Rtlp1 promoter to fungal elicitors.
Collapse
MESH Headings
- Acetates/pharmacology
- Base Sequence
- Cyclopentanes/pharmacology
- DNA, Complementary/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Magnaporthe/pathogenicity
- Molecular Sequence Data
- Oryza/genetics
- Oryza/metabolism
- Oryza/microbiology
- Oxylipins/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plasmids
- Promoter Regions, Genetic/drug effects
- RNA, Plant/genetics
- Salicylic Acid/pharmacology
Collapse
Affiliation(s)
- Kanzaki Hiroyuki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | | |
Collapse
|
43
|
Kavitha PG, Thomas G. Defence transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. J Biosci 2008; 33:81-90. [PMID: 18376073 DOI: 10.1007/s12038-008-0002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Soft rot is a serious disease in ginger (Zingiber of?cinale Roscoe),imposing a considerable economic loss annually in all ginger-producing countries. In this study,mRNA differential display was employed to identify genes whose expression was altered in a soft rot-resistant accession of Zingiber zerumbet (L.) Smith,a wild relative of ginger, in response to Pythium aphanidermatum (Edson) Fitzp.,which is the principal causative agent of soft-rot disease in ginger. Analysis using 68 primer combinations identified 70 differentially expressed transcript-derived fragments (TDFs),of which 34 TDFs were selected for further analysis following reverse northern screening. Cloning and sequence characterization of the 34 TDFs yielded a total of 54 distinct clones. Functional categorization of these clones revealed seven categories,of which the defence/stress/signalling group was the largest,with clones homologous to genes known to be actively involved in various pathogenesis-related functions in other plant species.The significance of these genes in relation to the resistance response in Z.zerumbet is discussed. This study has provided a pool of candidate genes for detailed molecular dissection of the defence mechanisms in Z.zerumbet and for accessing wild genetic resources for the transgenic improvement of ginger.
Collapse
Affiliation(s)
- P G Kavitha
- Plant Molecular Biology Group, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, India
| | | |
Collapse
|
44
|
Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:501-16. [PMID: 18075727 DOI: 10.1007/s00122-007-0686-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/23/2007] [Indexed: 05/04/2023]
Abstract
Rice sheath blight, caused by Rhizoctonia solani is one of the major diseases of rice. The pathogen infects rice plants directly through stomata or using lobate appressoria and hyphal masses called infection cushions. The infection structures were normally found at 36 h post-inoculation. During infection, the pathogenesis-related genes, PR1b and PBZ1 were induced in rice plants. To identify rice genes induced early in the defense response, suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for transcripts differentially expressed during infection by R. solani. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced. Fifty unique cDNA clones were found and assigned to five different functional categories. Most of the genes were not previously identified as being induced in response to pathogens. We examined expression of 100 rice genes induced by infection with Magnaporthe grisea, Xanthomonas oryzae pv. oryze (Xoo) and X. oryzae pv. oryzicola (Xooc). Twenty-five of them were found to be differentially expressed after the sheath blight infection, suggesting overlap of defense responses to different fungal and bacterial pathogens infection.
Collapse
Affiliation(s)
- Chang-Jiang Zhao
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Expression of OsWRKY71, a rice WRKY gene, was induced by biotic elicitors and pathogen infection. It was also found that OsWRKY71 has features characteristic of a transcriptional repressor. Microarray analysis revealed that several elicitor-induced defense-related genes were upregulated in rice cells overexpressing OsWRKY71. These results indicate that the activation of defense-related genes by OsWRKY71 was probably indirect.
Collapse
|
46
|
Libault M, Wan J, Czechowski T, Udvardi M, Stacey G. Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:900-11. [PMID: 17722694 DOI: 10.1094/mpmi-20-8-0900] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chitin, found in the cell walls of true fungi and the exoskeleton of insects and nematodes, is a well-established elicitor of plant defense responses. In this study, we analyzed the expression patterns of Arabidopsis thaliana transcription factor (TF) and ubiquitin-ligase genes in response to purified chitooctaose at different treatment times (15, 30, 60, 90, and 120 min after treatment), using both quantitative polymerase chain reaction and the Affymetrix Arabidopsis whole-genome array. A total of 118 TF genes and 30 ubiquitin-ligase genes were responsive to the chitin treatment. Among these genes, members from the following four TF families were overrepresented: APETALA2/ethylene-reponsive element binding proteins (27), C2H2 zinc finger proteins (14), MYB domain-containing proteins (11), and WRKY domain transcription factors (14). Transcript variants from a few of these genes were found to respond differentially to chitin, suggesting transcript-specific regulation of these TF genes.
Collapse
Affiliation(s)
- Marc Libault
- National Center for Soybean Biotechnology, Division of Plant Science, Department of Molecular Microbiology and Immunology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
47
|
Liu X, Bai X, Wang X, Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:969-79. [PMID: 16919842 DOI: 10.1016/j.jplph.2006.07.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 07/03/2006] [Indexed: 05/11/2023]
Abstract
WRKY proteins are a large family of transcription factors that mainly participate in plant biotic stress responses. So far, one hundred and five OsWRKY genes have been predicted in the rice genome. To identify OsWRKY genes that might function in inducible defense responses, a phylogenetic tree including 184 WRKY proteins from Arabidopsis thaliana, rice, and other species was constructed. Based on the phylogenetic analysis, ten candidate OsWRKY genes that may be involved in defense responses were isolated from salicylic acid (SA)-treated rice seedlings. One of them, OsWRKY71, was up-regulated by several defense signaling molecules, such as SA, methyl jasmonate (MeJA), 1-aminocyclo-propane-1-carboxylic acid (ACC), as well as wounding and pathogen infection, suggesting that OsWRKY71 might function in rice biotic stress response. Transient expression of OsWRKY71:GFP fusion protein in onion epidermis cells revealed that OsWRKY71 was localized in the nucleus. Overexpression of OsWRKY71 gene in rice resulted in enhanced resistance to virulent bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) 13751. Furthermore, two marker genes in defense signaling pathway, OsNPR1 and OsPR1b, were constitutively expressed in OsWRKY71-overexpressing transgenic plants. These results suggest that OsWRKY71 might function as a transcriptional regulator upstream of OsNPR1 and OsPR1b in rice defense signaling pathways.
Collapse
Affiliation(s)
- Xiaoqiang Liu
- National Key Laboratory of Plant Genomics and Plant Gene Research Center (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | | | |
Collapse
|
48
|
|
49
|
Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. THE PLANT CELL 2007; 19:2064-76. [PMID: 17601827 PMCID: PMC1955718 DOI: 10.1105/tpc.106.046250] [Citation(s) in RCA: 406] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Benzothiadiazole (BTH) is a so-called plant activator and protects plants from diseases by activating the salicylic acid (SA) signaling pathway. By microarray screening, we identified BTH- and SA-inducible WRKY transcription factor (TF) genes that were upregulated within 3 h after BTH treatment. Overexpression of one of them, WRKY45, in rice (Oryza sativa) markedly enhanced resistance to rice blast fungus. RNA interference-mediated knockdown of WRKY45 compromised BTH-inducible resistance to blast disease, indicating that it is essential for BTH-induced defense responses. In a transient expression system, WRKY45 activated reporter gene transcription through W-boxes. Epistasis analysis suggested that WRKY45 acts in the SA signaling pathway independently of NH1, a rice ortholog of Arabidopsis thaliana NPR1, which distinguishes WRKY45 from known Arabidopsis WRKY TFs. Two defense-related genes, encoding a glutathione S-transferase and a cytochrome P450, were found to be regulated downstream of WRKY45 but were not regulated by NH1, consistent with the apparent independence of the WRKY45- and NH1-dependent pathways. Defense gene expression in WRKY45-overexpressed rice plants varied with growth conditions, suggesting that some environmental factor(s) acts downstream of WRKY45 transcription. We propose a role for WRKY45 in BTH-induced and SA-mediated defense signaling in rice and its potential utility in improving disease resistance of rice, an importance food resource worldwide.
Collapse
Affiliation(s)
- Masaki Shimono
- Plant Disease Resistance Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Gowda M, Venu RC, Li H, Jantasuriyarat C, Chen S, Bellizzi M, Pampanwar V, Kim H, Dean RA, Stahlberg E, Wing R, Soderlund C, Wang GL. Magnaporthe grisea infection triggers RNA variation and antisense transcript expression in rice. PLANT PHYSIOLOGY 2007; 144:524-33. [PMID: 17351054 PMCID: PMC1913787 DOI: 10.1104/pp.107.095653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/15/2007] [Indexed: 05/14/2023]
Abstract
Rice blast disease, caused by the fungal pathogen Magnaporthe grisea, is an excellent model system to study plant-fungal interactions and host defense responses. In this study, comprehensive analysis of the rice (Oryza sativa) transcriptome after M. grisea infection was conducted using robust-long serial analysis of gene expression. A total of 83,382 distinct 21-bp robust-long serial analysis of gene expression tags were identified from 627,262 individual tags isolated from the resistant (R), susceptible (S), and control (C) libraries. Sequence analysis revealed that the tags in the R and S libraries had a significant reduced matching rate to the rice genomic and expressed sequences in comparison to the C library. The high level of one-nucleotide mismatches of the R and S library tags was due to nucleotide conversions. The A-to-G and U-to-C nucleotide conversions were the most predominant types, which were induced in the M. grisea-infected plants. Reverse transcription-polymerase chain reaction analysis showed that expression of the adenine deaminase and cytidine deaminase genes was highly induced after inoculation. In addition, many antisense transcripts were induced in infected plants and expression of four antisense transcripts was confirmed by strand-specific reverse transcription-polymerase chain reaction. These results demonstrate that there is a series of dynamic and complex transcript modifications and changes in the rice transcriptome at the M. grisea early infection stages.
Collapse
Affiliation(s)
- Malali Gowda
- Department of Plant Pathology, Ohio State University, Columbus, OH 43212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|